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UNIVERSITY COLLEGE LONDON 

ABSTRACT 

 

PHOTOREALISTIC RETRIEVAL OF OCCLUDED FACIAL 
INFORMATION USING A PERFORMANCE-DRIVEN FACE 

MODEL 

by Fatos Berisha 

Facial occlusions can cause both human observers and computer algorithms 

to fail in a variety of important tasks such as facial action analysis and 

expression classification. This is because the missing information is not 

reconstructed accurately enough for the purpose of the task in hand. Most 

current computer methods that are used to tackle this problem implement 

complex three-dimensional polygonal face models that are generally time-

consuming to produce and unsuitable for photorealistic reconstruction of 

missing facial features and behaviour.  

In this thesis, an image-based approach is adopted to solve the occlusion 

problem. A dynamic computer model of the face is used to retrieve the 

occluded facial information from the driver faces. The model consists of a 

set of orthogonal basis actions obtained by application of principal 

component analysis (PCA) on image changes and motion fields extracted 

from a sequence of natural facial motion (Cowe 2003). Examples of 

occlusion affected facial behaviour can then be projected onto the model to 

compute coefficients of the basis actions and thus produce photorealistic 

performance-driven animations.  

Visual inspection shows that the PCA face model recovers aspects of 

expressions in those areas occluded in the driver sequence, but the 
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expression is generally muted. To further investigate this finding, a database 

of test sequences affected by a considerable set of artificial and natural 

occlusions is created. A number of suitable metrics is developed to measure 

the accuracy of the reconstructions. Regions of the face that are most 

important for performance-driven mimicry and that seem to carry the best 

information about global facial configurations are revealed using Bubbles, 

thus in effect identifying facial areas that are most sensitive to occlusions.  

Recovery of occluded facial information is enhanced by applying an 

appropriate scaling factor to the respective coefficients of the basis actions 

obtained by PCA. This method improves the reconstruction of the facial 

actions emanating from the occluded areas of the face. However, due to the 

fact that PCA produces bases that encode composite, correlated actions, 

such an enhancement also tends to affect actions in non-occluded areas of 

the face. To avoid this, more localised controls for facial actions are 

produced using independent component analysis (ICA).  Simple projection 

of the data onto an ICA model is not viable due to the non-orthogonality of 

the extracted bases. Thus occlusion-affected mimicry is first generated using 

the PCA model and then enhanced by accordingly manipulating the 

independent components that are subsequently extracted from the mimicry. 

This combination of methods yields significant improvements and results in 

photorealistic reconstructions of occluded facial actions. 
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Chapter 1 

 

INTRODUCTION 

Faces are organs of communication par excellence that display an astonishing 

array of social signals. These signals can be detected and interpreted 

effortlessly and with good precision by another human being and convey 

important information about the bearer, such as their age, their sex or their 

identity.  Facial expressions and gestures also inform us about their 

emotional state, and verbal & non-verbal communication is supported by 

our perception of facial motion. Nevertheless, the apparent ease with which 

human subjects or even computer models perform tasks like facial action 

analysis and expression classification quickly disappears when some visual 

facial information is missing due to occlusions of the face.  

This thesis concerns the accurate retrieval of such occluded visual facial 

information using a photo-realistic, moveable computer model of the face 

that synthesises human faces and their movements from standard video 

footage examples. The thesis sets out with an overview of the psychology of 

face perception and leads to the subject of computer modelling of the face. 

Thereafter, the automatic and example-based computer-generated facial 

model (Cowe 2003) is introduced and its performance in retrieving occluded 

facial information is tested and analyzed. After addressing the weaknesses of 

the model and locating important areas of the face for performance-driven 

mimicry, several enhancements are developed resulting in photo-realistic 

reconstructions of occluded facial actions. 
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Biological structure of the face 

Through a combination of evolutionary and genetic influences, the human 

face just as that of many animals is a symmetric structure with eyes placed 

horizontally above a single centrally placed nose and mouth. Our skulls and 

foreheads have evolved to the current size to house the brain; the shapes of 

the jaws, teeth were influenced by our ancestors’ diets while the sizes and 

positions of our nasal cavity and eyes complement our species’ other 

predatory traits. 

While the hard and soft tissues of the face produce the individual variations 

in appearance important for identification and categorisation, it is the 

movements of the face which give it this ability to transmit a range of social 

signals. Emotional expressions are a result of movements of facial skin and 

connective tissue, or fascia, caused by the contraction of one or more of the 

44 bilaterally symmetrical facial muscles, of which only four are attached to 

and move skeletal structures (e.g. the jaw) in mastication, while the others 

innervated by the fascial nerve operate to arrange facial features in 

meaningful or functionally useful configurations (Rinn 1984). This is not to 

say, however, that the facial muscle configuration has evolved thus 

specifically to facilitate facial expression: 

 “there are no grounds, as far as I can discover, for believing 

that any muscle has been developed or even modified 

exclusively for the sake of expression” (Darwin 1872 - page 

355). 

According to Darwin and others since, our specific human expressive 

movements are seen as remnants of behavioural responses to emotionally 

arousing events. 
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Figure 1.1 - Illustration of the muscles of the face, by Sir Charles Bell 

 

The structure of the face thus makes it an ideal medium or system for 

transmitting a wide range of different signals and messages, capable of 

tremendous flexibility and specificity. This system conveys information 

using four classes of signals (Ekman & Friesen 1975): 

1) static facial signals: permanent features of the face that contribute to 

facial appearance, like the bony structure and soft tissue masses 

2) slow facial signals: changes in facial appearance over time, like 

wrinkles, texture, etc. 

3) artificial signals: exogenously determined features, such as 

eyeglasses, and cosmetics 

4) rapid facial signals: phasic changes on neuromuscular activity that 

lead to visible changes in facial appearance. 

These four types of signals and different combinations thereof contribute to 

perceptions of facial identity, expression, sex, etc. This type of classification 
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formed the basis of early attempts to record and encode individual facial 

expressions in a comparable and interpretable manner, namely the Facial 

Action Coding Scheme (FACS) (Ekman & Friesen 1978).  Such a system 

however is highly unlikely to be employed in biological vision, since FACS 

offers no temporal encoding for an inherently dynamic stimulus such as the 

face. FACS parameters were later extended by adding temporal information 

via optic flow data, giving rise to FACS+ (Essa & Pentland 1997). 

 

Biological face processing 

Given this diversity of signals and information that can be extracted from a 

face, we might expect face perception to be accomplished by a system with 

multiple components (Bruce & Young 1986 - see fig.1.2 below).   

 
Figure 1.2 - Bruce and Young's functional model for face perception, from Bruce and Young (1986) 
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Indeed, evidence from neuropsychology suggests that dissociable neural 

systems exist for different face processing tasks. For example in the 

recognition of individual faces, an early event-related potential (ERP) N170 

response to faces was recorded, whether those faces were familiar or 

unfamiliar, probably originating in ventral occipito-temporal cortex, but later 

ERPs occurring between 250ms and 500ms after stimulus presentation 

seem to be sensitive to face familiarity (Bentin et al 1996; Bentin et al 1999). 

Other distinct components of the face processing system were found to be 

responsible for the discrimination of emotional expressions (Schyns et al 

2007) and the discrimination of the direction of overt attention, i.e. gaze 

(Puce et al 2000). But recent work seems to suggest that as much as three 

functionally dissociated neural mechanisms are involved in general face 

processing, namely one for the task of detection, one for configural analysis 

and one for recognition (Anaki et al 2007; Flevaris et al 2008).  

So it seems that cognitive neuroscientists have made great advances in 

identifying indicators of neural substrates involved in extracting the 

different types of information conveyed by faces. But does this mean that 

each of these neural substrates is a face-specific processing component that 

together with the others forms a system which is itself face-specific or does 

this system (and all its implied components) only discriminate between 

similar exemplars of the same category, faces being prototypical stimuli but 

not the exclusive ones? This question was asked by Thierry et al (2007ab; 

2007ba), pointing out that the face stimuli that elicit N170 were nearly 

always presented in full-frontal view while the other stimuli are more 

perceptually variable, leading to uncontrolled inter-stimulus perceptual 

variance (ISPV). Their findings seem to call into question the face selectivity 

of the N170 and establish ISPV as a critical factor to control in experiments 

relying on multi-trial averaging. However, their claims have been refuted 

and substantially weakened by subsequent studies showing amongst other 
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things that control of ISPV does not abolish the N170 face effect (Bentin et 

al 2007). 

Face-specific area 

The debate about the spatial loci of face perception is just as active as the 

one described in the previous section. It focuses especially on the early 

components of face recognition centred on the mid-fusiform gyrus, called 

the fusiform face area (FFA) (Kanwisher et al 1997).  

 

Figure 1.3 - Arrow points at fusiform face area (FFA) 

 

Tong et al. (2000) show that this area is activated by a wide variety of face 

stimuli (including cartoon faces and cat faces) compared to other non-face 

objects. They argue that this region is selectively involved in some aspect of 

the perceptual analysis of faces such as the detection of a face in an image or 

the structural encoding of the information necessary for face recognition. 

Indeed, patients with lesions in the said area do display a deficit – 

prosopagnosia - where all faces appear unfamiliar to them, even in cases failing 

to recognise their own face (Bodamer 1947). 

By contrast, Gauthier et al. (2000) argue that the FFA is more active when 

subjects make subordinate-level classifications than basic-level classifications 

(e.g. classifying a particular canine as a beagle rather than a dog).  This 

finding is at odds with the findings of Kanwisher et al. and Tong et al. 

which were showing that the response in the FFA was at least twice as 
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strong when discriminating between faces as compared with within-class 

discriminations between hands, houses and backs of human heads. One 

explanation given by Kanwisher is that the discrepancy might arise due to 

Gauthier et al. using a different technique to identify the FFA from that 

originally proposed by Kanwisher et al (1997), thus inadvertently looking in 

the wrong place. If this is really the reason for the discrepancy, then a 

solution might be found very soon, bearing in mind the fast advances made 

in fMRI technology, and Grill-Spector, Kanwisher and Chun. (2004) do 

produce further proof that the FFA indeed is face specific. As things stand, 

this debate still actively continues. 

Face-specific mechanisms 

The problem of specificity doesn’t concern only the FFA. It is also thought 

that the brain has special mechanisms devoted to the sole purpose of 

processing faces. A single-case study of a 16-year old boy named Adam 

(Farah et al 2000) who became prosopagnosic following bilateral infarction 

in the occipital lobes at one day of age, reveals that Adam could recognise 

objects much better than faces. This seems to suggest that there exists some 

innate face-specific mechanism whose function can’t be assumed by other 

structures, despite plenty of time and opportunity for it to happen.  

However, Gauthier and Logothetis (2000) again argue that through 

extensive training specialised mechanisms can be acquired whose 

characteristics will resemble, and may even overlap or be identical with, 

those used to recognise faces. As evidence, they cite Gauthier and Tarr’s 

work on recognising "greebles" which, like faces, share a common spatial 

configuration (Gauthier & Tarr 2002; Gauthier et al 1998). 

Recently presented key new evidence from McKone, Kanwisher et al (2007)  

from multiple approaches – behavioural studies, neuropsychology, brain 

imaging and monkey single-unit recording – argues strongly in support of 

face specificity over expertise. Future work using fMRI in monkeys should 
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allow for a more precise survey of a large cortical territory and at a variety of 

stages during the acquisition of extensive expertise with novel objects. In 

combination with studies of the deficits that result from brain damage, this 

work will be crucial in resolving the debate about the specificity of visual 

recognition systems. They may also help answer the even more fundamental 

question: what might a face ‘template’ look like and how would it perform 

(both computationally and neurally) holistic processing. 

Analytic vs Holistic face processing 

A popular hypothesis is that object recognition is analytic and part-based 

whereas face recognition is holistic and configural.  

Inverting faces, for example, has a disproportionately large detrimental 

effect on recognition than for most other objects. When testing recognition 

with pictures of faces against houses, planes and schematic men-in-motion, 

Yin found recognition of faces to be superior when upright, but when the 

pictures were inverted, performance on faces was degraded far worse than 

for any of the other stimuli (Bradshaw et al 1980; Phelps & Roberts 1994; 

Valentine & Bruce 1986; Yin 1969; Yin 1970a). Similar results have also 

been found when comparing faces to houses and words (Farah et al 1998). 

These findings seem to support the above hypothesis because inversion 

impairs the perception of the spatial configuration among features on which 

face recognition depends more than identification of the features 

themselves, which would suffice for much of object recognition. They also 

establish inversion as a marker of face-specific processes and a tool for 

investigating what makes face-recognition special. 

Others have postulated that this effect could occur simply because of our 

much greater exposure to upright faces, and in some cases reproduced the 

effect with other subjects and objects, like with experts vs non-experts 

tested in recognising inverted images of pedigree dogs, the experts suffering 

a greater impairing effect (Diamond & Carey 1986). Experiments on the 
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recognition of other-race faces seem to contradict this view, since inversion 

of Black faces caused Caucasian subjects to display a greater impairment in 

recognition of Black faces rather than Caucasian faces (Valentine & Bruce 

1986). It seems this result intimates that other-race faces are encoded in a 

somewhat less efficient manner, and inversion then hinders their decoding 

even more. 

What is intriguing in all this is that Tong et al. (2000) found only a slight 

reduction in activation of the FFA when examining the effects of face 

inversion, the response to inverted faces still remaining much higher than 

the response to objects, which seems to suggest that even inverted faces are 

not treated as objects by the FFA. A solution to this quandary was 

suggested by Moscovitch & Moscovitch (2000). They propose that the 

object system forms a representation of the face based on information 

congruent with its operating characteristics, which it then transfers to the 

FFA for further processing. The FFA, in turn, sends its output to more 

anterior regions for identification. Thus, even inverted faces should activate 

the FFA, though not as strongly, and at a delay, compared to upright faces, 

as shown later experimentally by Haxby et al. (1999). So the holistic 

processing paradigm does seem to hold here. Alternatively, as Maurer et al. 

(2002) claim, more than one configural processing action may take place, the 

holistic one being only one of them: 

“… first order relations that define faces (i.e. two eyes above a 

nose and mouth), holistic processing (glueing the features 

together into a gestalt), and processing second-order relations 

(i.e. the spacing among features).” 

Powerful configural effects have been found with faces using 

psychophysical tests like the classic Thatcher illusion (Thompson 1980) 

which rather strikingly demonstrates our insensitivity to spatial relationship 

in inverted faces. Here, the eyes and mouth in a photo depicting Margaret 
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Thatcher’s smiling face were cut out and turned upside down, and when the 

result is viewed with the entire face in its usual orientation the face appears 

to have a grotesque expression, but shown upside-down it is difficult to see 

that there is anything at all abnormal about the face. Young and Hay (1986) 

provided another piece of experimental evidence that we do not process 

features independently from each other, using composite faces created by 

adjoining the top half of one famous individual’s face with the bottom half 

of another’s. Here people were quite good in identifying isolated top or 

bottom halves seen on their own, but when joined together it became more 

and more difficult the more the halves became well-aligned. These and 

other experiments provide evidence that suggests quite strongly that the 

visual system does not store a face just in terms of its individual features, 

but rather as a more general, holistic configuration where spatial inter-

relations play a crucial role in recognition. 

Facial representation invariance 

Recognition can be seriously impaired by changes in view, lighting, size and 

other aspects of the perceived face. Does this mean that regardless of the 

proven ability and effectiveness of our visual system to identify familiar 

objects when shown in different positions or orientations, the 

representation of faces is not invariant to such changes? 

The psychophysical evidence seems to suggest that indeed a viewpoint or 

lighting invariant representation of faces is not present in our visual system. 

In the case of view, Hill, Schyns et al. (1997) demonstrated how subjects 

performed poorly in a recognition task where viewing conditions were 

altered. 
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Figure 1.4 - Even in same viewpoint, it's hard to tell it's the same person due to lighting changes! (taken from Hill 

and Bruce 1997) 

 

Although all views were equally well recognised when they all had been 

learned, they were shown to be surprisingly poor at generalising to novel 

views when given a single view of a face, with performance decreasing as 

the difference in viewing angle increased. Further studies seem to confirm 

this viewpoint dependence in the high-level encoding of facial identity 

(Benton et al 2006; Fang & He 2005), but others warn that face recognition 

reaction time and accuracy costs that are attributed purely to viewpoint 

changes could also be affected by the information that is typically 

unavailable in the experimental stimuli (normally 2D), rather than being 

solely a result of the underlying neural representation of facial identity 

(Burke et al 2007). 

A similar impairment in recognition was recorded with recognition tasks 

under different lighting conditions. In same-or-different comparison tasks 

with pairs of laser-scanned heads presented from varying views and under 

varying lighting conditions, Hill and Bruce found that variations in lighting 

posed difficulties as great as variations in view (Hill & Bruce 1996 - see 

figure 1.4). An advantage for illumination from above was found, with 

better performance in a matching task under this condition, again most 
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likely due to higher exposure to the illumination from above lighting 

condition.  

Intriguingly, by illuminating faces from below and then inverting, Johnston 

et al. (1990) showed that the face inversion effect could be significantly 

reduced, a reduction also noted with contrast-negated faces, when lit from 

below (Liu et al 1999). And while this may point to some kind of surface 

based code for faces, the hollow-face experiments by Hill and Bruce (1993; 

1994) show that familiarity with the three-dimensional structure of the face 

still seems to play some part in the process. Recently some experiments 

looked at size invariance as well. Lee et al. (2006) show that size changes up 

to four-fold had no effect on face discrimination and recognition, while 

viewpoint changes were again confirmed to be detrimental to recognition.  

Neurophysiological investigations of the macaque brain have uncovered 

cells in the superior temporal sulcus tuned to specific facial orientations, 

particularly full-face and profile (Perret et al 1991; Perret et al 1985) and also 

such view dependent cells were found to be lighting and position invariant 

(Hietanen et al 1992). Added to the fact that Hasselmo (1989) a had already 

found cells that respond to all views of a face, we seem to have here plenty 

of indications that the brain has a two-dimensional image-based storage 

scheme for faces with a collection of views encoded separately in order to 

attain recognition from a variety of viewpoints (Wallis & Bulthoff 1999).  

Psychophysical evidence supports this hypothesis with demonstrations that, 

having learned two views of an object, subjects perform better when tested 

on views between them, rather than outside (Tarr & Pinker 1989). This can 

be explained in the view-based context by considering interpolated views to 

partially excite cells responsive to both learned views, whilst extrapolated 

views partially excite cells responsive to only one of the learned views. 

Wallis and Bülthoff propose that these invariant representations, based on 

individual views, can be learned by “experience through temporal coupling 

as well as physical similarity of views”. They also conducted another type of 
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experiment (Wallis & Bulthoff 2001) where viewing position and identity of 

a face were simultaneously altered, and here subjects treated the views as 

though they were of the same person.  

Variance of features and motion of the face 

We can ask, what are the principal sources of variance in the human face? 

To find this out psychologists often conduct experiments in which different 

sources of information are systematically concealed or enhanced, or in 

which different cues are put into conflict with one another. One such 

experiment was conducted by Fraser and Parker (1986), where by randomly 

flashing up individual features that made up a composite face and testing 

subjects on their ability to detect which was missing, they found that the 

most salient feature was the outline of the face, followed by eyes, mouth, 

then nose. Also, Shepherd et al. (1981) had found the principal sources of 

variation in a set of faces to be hairstyle, face shape and age.  

To encode such changes in an efficient manner, a parameterised model of 

the face is needed, with factors related directly to the principal variations in 

faces. But the evidence above shows that, when not testing specific features, 

principal sources of variation appear to be more subtle and global, such as 

face shape and age. Thus it seems a better solution to consider a 

representation in which the face varies in terms of pseudo-features that 

affect the configuration of the face as a whole. And by considering faces to 

be parameterised by a set of features, regardless of their local or global 

nature, a face space can be created in which dimensions are composed of the 

parameters and the average of all faces lies at the centre. Leopold et al. 

(2001) recently demonstrated powerful after-effects in the context of the 

face-space paradigm. By adapting subjects to a particular face, they showed 

how recognition tasks for faces situated along that identity vector in face 

space were facilitated, whilst recognition was impaired for other faces. They 

also attempted to throw some light on the neural principles of encoding of 

face spaces by testing two different models (example-based and mean or 
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norm-referenced models) using electrophysiological data from macaque area 

IT. They found that the majority of IT neurons might represent deviations 

from a norm or mean face, which is determined by an average over the 

distribution of typically occurring faces (Giese & Leopold 2004; Leopold et 

al 2006). 

Regarding motion, while initially it was thought that motion in sequences 

doesn’t improve recognition when compared to stills, it was shown using 

point light sources that certain objects can be recognised from their motion 

only (Johansson 1973). Bassili then found that naïve subjects were able to 

recognise the sequences (generated by filming blacked out faces and teeth 

with makeup and scattered white circular labels over the surface) as faces 

from the movement of the point light sources alone, leading him to 

postulate that facial motion was sufficient information for the recognition of 

an object as a face (Bassili 1978; 1979), with subjects even recognising 

emotions! Bruce and Valentine used this technique to investigate whether 

individuals could be recognised only on the basis of their facial motion 

(Bruce & Valentine 1988), and they found that above chance results were 

achieved by subjects in recognition of emotions and of individuals from a 

small set, but the performance was still very poor. However, with point light 

displays however a lot of the motion is lost, so Knight and Johnston created 

the stimuli by degrading image sequences through photographic negation, 

arguing that this maintains the full motion field, and their subjects did 

indeed find famous faces in moving sequences of negated images 

significantly easier to recognise than in stills, reinforcing the hypothesis that 

motion cues do provide useful information in face processing tasks (Knight 

& Johnston 1997). Furthermore, the view that a dynamic sequence simply 

provides more views of the face thus improving recognition was discredited 

by comparing performance on similarly degraded dynamic sequences to 

performance on the same frames simultaneously presented (Lander et al 

1999). Here too subjects did better in recognising famous faces from 
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moving sequences. Motion cues were also successfully used to test sex and 

identity judgements. When an androgynous 3D face was animated with 

facial movements of actors (Hill & Johnston 2001), subjects were able to 

successfully discriminate sex and identity. Motion is indeed shown to have 

an important role in facial recognition and categorisation by later studies by 

O’Toole et al. (2002) and Knappmeyer et al. (2003). 

 

Chapter 1 summary 

The human face is an astonishing organ of communication, able to transmit 

a wide spectrum of social signals and messages. Its structure is specialised 

and the signals it conveys can contribute to perceptions of the bearer’s facial 

identity, expression, sex and more. The perception of these signals is 

achieved by a system with multiplicity of components processing separate 

signals, and there is ample evidence to suggest that both the component 

processes and the location of early processes of face recognition (FFA) are 

face-specific. Psychophysical and neuropsychological experiments also seem 

to suggest that while object recognition is analytic and part-based, face 

perception and recognition is holistic and configural. Looking at other 

psychophysical evidence, it appears that a viewpoint or lighting invariant 

representation of faces is not present in our visual system (although possibly 

size-invariant representations are), and that most importantly, we seem to 

store faces in a two-dimensional manner. Thus a two-dimensional, image-

based approach could be very effective in encoding facial identity, 

expressions and sex. Candidate methods for computer-generating image-

based models of faces, with movement dimensions extracted from the 

experience of the face in motion will be discussed in the next chapter of this 

thesis. 
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Chapter 2 

 

COMPUTATIONAL MODELLING OF THE FACE 

In the previous chapter, faces were shown to be complex, multidimensional, 

and informative objects capable of large deformations. As a result, in order 

to build a good quality computational model of the face it is important to 

choose a representation of the face that is powerful enough to realistically 

reproduce the full range of variation and movement that faces display, and 

generate facial animation capable of fooling the top expert system in face 

processing – our own visual system. 

 

Three-dimensional representations 

Artificial facial animation is mainly viewed from some two-dimensional 

projecting or reflecting surface, like a screen of some kind. However, the 

face is really a 3D structure, so some approaches have involved representing 

it in 3D. The scene is later projected from 3D to a 2D image for viewing, a 

process commonly known as rendering, by setting up virtual light sources and 

a viewpoint and tracing the path of light to that viewpoint. 

Polygonal mesh representations of faces 

The simplest 3D approach is probably a representation of the face surface 

by a set of polygons, usually triangles, connected at each vertex. This surface 

is known as a polygonal mesh. The use of flat polygons to represent 

smoothly varying surfaces inevitably leads to errors, which can be made 

arbitrarily small by increasing the number of polygons, at the cost of 

increasing the rendering time and storage requirements. Most graphics 
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cards, however, now have fast, efficient, inbuilt polygon rendering routines 

especially for this purpose. 

Polygonal models of the head for face animation purposes were introduced 

by Parke (1972). His polygonal meshes were derived rather crudely by first 

hand-painting a mesh on one side of a subject’s face which was then 

photographed from frontal and profile viewpoints. Vertex coordinates were 

measured in 2D, the 3D co-ordinates were geometrically recovered, the 

mesh was then constructed and the faces of polygons were coloured. Later, 

Williams used a laser to scan a plaster cast of a human model’s head 

(Williams 1990). The scanned data was in cylindrical co-ordinates. 

Photographs were taken of the model’s head and painstakingly aligned and 

registered with the scanned data to map onto the computer head, while 

today it’s possible to scan real heads with custom-made laser scanners, such 

as those produced by CyberwareTM (www.cyberware.com), and 

simultaneously capture the localised texture map as the scanner rotates 

around the head, eliminating the need for the time-consuming alignment 

stage (see fig.2.1). 

 

 

Figure 2.1 - Range data (left) and texture map (right) obtained with a CyberwareTM laser scanner 

 

Other surface representations include implicit surfaces, defined by a single 

equation, ( , , ) 0f x y z = . Any point satisfying that equation will be on the 

surface. A simple example of this would be a sphere of radius r, centred at 

(a,b,c) . 
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( ) ( ) ( )2 2 2 2
( , , ) 0f x y z x a y b z c r= − + − + − − =  

While useful with simple shapes, these equations become unwieldy for 

complex surfaces, such as the face, and require much more processing, 

hence such representations are not such a good choice for modelling of the 

head. Parametric surfaces are similar to implicit surfaces, but are defined 

instead by three functions of two parametric variables, typically based on 

cubic equations, with one for each spatial dimension, x, y and z (Forsey 

1990). Parametric surface patches are much more efficient for 

approximating a curved surface than polygons, with far fewer needed to 

satisfy a particular error threshold and they do not suffer from polygonal 

edge effects. However, they are much more computationally expensive to 

process than the simpler polygon. 

Volumetric & muscle-modelling representations 

3D objects can also be represented by a volumetric approach, by combining 

building block primitives such as spheres, cylinders, cuboids, etc. These 

primitives can be deformed and merged to build elaborate three-

dimensional structures, a process known as constructive solid geometry (CSG). 

Often CSG presents a model or surface that appears visually complex, but is 

actually little more than a set of cleverly combined or de-combined objects 

(fig.2.2). While this is perfectly acceptable for simple face models, difficulties 

arise when trying to model the detail required for realistic faces. 

 

Figure 2.2 - Primitives can be combined into compound objects using set operations, like in examples a) boolean 

union, b) boolean difference or c) boolean intersection (image taken from Wikipedia) 
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But with aspirations to more accurately model the control of the face, 

research moved on to modelling facial muscles. This is now a common 

approach in facial animation and improves on Parke’s first parameterised 

head model by simulating muscle actions rather than hard-wiring 

performable actions. Since muscle models are still parameterised, they can 

easily be controlled by adjusting a small number of parameters, and 

movement can be restricted to reasonable muscle actuations. The first such 

model was introduced by Platt and Badler (1981), where muscles acted as 

simple springs.  

 

 

Figure 2.3 - Terzopoulos and Waters' model with dermal tissue analogue (taken from Terzopoulos & Waters 1993) 

 

Waters further developed the muscle model (Waters 1987) by using a 

simplified model from research on facial muscles, based on the FACS 

system (Ekman & Friesen 1978). This scheme for coding facial movement 

describes movement in terms of 50 specified action units (AU’s), each 

representing a muscle or a small group of muscles. Waters modelled ten of 
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these to control a polygonal model, moving a particular muscle by moving 

its nodes of attachment maximally and the neighbouring points with 

diminishing strength as distance from the node increased. Terzopoulos and 

Waters enhanced Water’s original model with human facial tissue modelled 

as a deformable lattice of point masses connected with biphasic elastic 

springs (Terzopoulos & Waters 1993). In analogy to real dermal tissue 

(fig.2.3), the biphasic springs allowed the synthetic surface tissue to initially 

readily extend under low strain up to some threshold (1st phase), and then 

exert rapidly increasing restoring forces beyond this (2nd phase).  

Advanced 3D morphable face models 

However, models such as that of Terzopoulos and Waters, where the 

parameters are highly subjective and uncorrelated, achieving photo-realistic 

face synthesis or animation is a hard task that requires substantial expert 

human intervention and with very limited results to show for it. Using 

context-free parameters derived by statistical modelling methods is one 

approach that began to emerge as a good candidate for achieving photo-

realism in 3D face modelling.  

Pighin et al. (1998) developed a system that allowed manual specification of 

correspondences across multiple images and then use vision techniques to 

compute 3D reconstructions. A 3D polygonal mesh model is then fitted to 

the reconstructed 3D points. The face models were highly realistic but also 

required a manually intensive procedure for their production. 

Roy-Chowdhury and Chellappa (2003) introduced a technique of 3D 

reconstruction from short monocular sequences taking into account the 

statistical errors in reconstruction algorithms. They use stochastic 

information to fuse incomplete information from multiple views and this 

technique was applied to various applications including face modelling. 

Blanz and Vetter (1999) also used a context-free parameter approach and 

this time came up with an automated technique for the synthesis of photo-
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realistic 3D faces. They use a linear combination of 200 3D face scans 

extracted via the previously mentioned CyberwareTM laser scanner to build a 

morphable face model. They first vectorised the geometry of the 3D face 

data into a shape-vector 3
1 1 1( , , ,..., , , )T n

n n nX Y Z X Y Z= ∈S ¡  containing all 

the X, Y, and Z coordinates of its n vertices. Similarly they represented the 

texture of the face by a texture vector 3
1 1 1( , , ,..., , , )T n

n n nR G B R G B= ∈T ¡  

containing all the R, G and B colour values of the corresponding n vertices. 

An average of shape and texture of the face (S and T ) was calculated and 

the main modes of variation in the dataset were computed as parameters 

using well-known technique for data compression called Principal components 

analysis (PCA). This gave an orthogonal coordinate system formed by the 

eigenvectors iS  and iT  for both the shape and texture models ( modelS  and 

modelT ): 

1

1

m

model i i
i

sα
−

=

= +∑S S  and 
1

1

m

model i i
i

tβ
−

=

= +∑T T  

where 1, m−∈α β ¡  represent the respective coefficients for the shape and 

texture eigenvectors or principal components (PCs). 

They then came up with an algorithm that adjusts the weights of the linearly 

combined PCs for an optimal reconstruction of a new face either from a 2D 

image or a new 3D exemplar, with minimal manual initialisation required.  

To avoid generating an unlikely face a probability distribution is imposed on 

linear combination results. The reconstructions using their model are very 

realistic, almost reaching the quality of the laser scans themselves (fig 2.4). 
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Figure 2.5 – After manual initialization, the algorithm automatically matches a coloured morphable to the 2D 

image of Audrey Hepburn. Rendering the inner part of the 3D face on top of the image, new shadows, facial 

expressions and poses can be generated using the model (taken from Blanz and Vetter 1999). 

  

Apart from single pose generation of a 3D face from another 2D or 3D 

example face, Blanz and Vetter extended and used their model in a variety 

of other tasks, such as face recognition across poses and illuminations by 

fitting the above 3D morphable model (Blanz et al 2005; Blanz et al 2002; 

Blanz & Vetter 2003) and even photo-realistic animation that can be applied 

to any face shown in a single image or a video (Blanz et al 2003). The 

methodology of the 2003 paper provided the theoretical basis for the image-

based performance driven mimicry model used in this thesis, which will be 

described in more detail in the next chapter. 

The PCA representation of shape and texture information forms the basis 

of another generative model used for faces, the Active Appearance Model 

(AAM). It uses another type of iterative algorithm to learn the relationship 

between a training image and a synthesised model example and then 

generate an approximation within the model (Cootes et al 1998). It is worth 

mentioning that Cootes et al. face images marked at key points to outline 

the main features and achieve a good correspondence between the subject 

faces while Blanz et al. used optic flow techniques to extract a dense flow 
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field matching the faces. The original AAM method was later extended into 

a 3D version (Jing et al 2004). 

A two-dimensional facial representation 

What all these high-res polygonal mesh surface and other 3D models have 

in common is that they all have to be generated either with the help of 

extremely skilled artists or with expensive equipment such as laser scanners, 

and the sheer number of vertices makes them effectively uncontrollable, 

needing complex hard-coded underlying muscle models to constrain and 

parameterise movements. 

It seems that a more practical representation would be one that takes into 

account the evidence described in the previous section, which suggests that 

our visual system seems to process faces in a two-dimensional manner. Thus 

a more global, configural approach is proposed, one that chooses the 

parameters to account for essential sources of variance. Principal components 

analysis (PCA) provides a means of implementation.  

 

PCA and eigenfaces 

PCA is a mathematical technique, a vector space transform, used to reduce 

multidimensional data sets to a lower dimensional space with axes chosen to 

maximally describe the variance in the set. Depending on the field of 

application, it is also named the discrete Karhunen-Loève transform, the Hotelling 

transform or proper orthogonal decomposition (POD). 

PCA was invented in 1901 by Karl Pearson (Pearson 1901). It involves the 

calculation of the eigenvalue decomposition of a data covariance matrix or singular 

value decomposition of a data matrix, usually after mean-centring the data for 

each attribute. The results of PCA are usually discussed in terms of 

component scores and coefficients, or weights. The data is thus transformed 

into a new coordinate system such that the greatest variance by any 
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projection of the data comes to lie on the first coordinate (called the 1st 

principal component), the second greatest variance on the second 

coordinate, and so on. Lower order components can be discarded as noise, 

thus reducing the original dimensionality of the data. PCA is theoretically 

the optimum transform for a given dataset in least square terms and will be 

discussed in more detail in chapter 3. 

Biological motivations for using PCA 

After converting two-dimensional arrays of facial images into long vectors, 

Sirovich and Kirby showed that PCA could be used to extract the principal 

components of this face set, so-called eigenfaces (Sirovich & Kirby 1987). 

PCA effectively reduces the amount of information that needs to be stored 

in order to recognise individuals, since only one weight for each principal 

component is needed. The result is a representation parameterised in terms 

of the largest sources of variance (figs. 2.5 & 2.6).  

 

      

V1 V2 V3 V4 V5 V6 

      

V7 V8 V9 V10 V11 V12 

Figure 2.5 – The first 12 principal components (eigenfaces) extracted from a database set of 80 faces. Any face 

from that set can then be reconstructed (with some residual error) as a linear combination of the first N 

eigenfaces, with increasing precision for larger N. 
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Original Reconstruction  Original Reconstruction 

Figure 2.6 – Two novel faces constructed with 80 eigenfaces. For large face databases, reasonable reconstructions 

can be made of faces outside of the training set 

 

Recognition experiments with eigenfaces show impressive results for faces 

captured under the same conditions as the training set, but slight variations 

in lighting, orientation, scale and position quickly degrade performance, 

although this is consistent with some psychophysical results discussed 

earlier. 

The principal components of natural image patches have already been 

shown to closely resemble receptive fields of cells in the visual cortex 

(Hancock et al 1992) and it seems reasonable that cells should be tuned to 

the natural dimensions of variation inherent in the input concerned. The 

neural mechanisms behind the encoding of facial identity have previously 

been modelled with PCA on static images of faces and encouraging parallels 

have been found. O’Toole et al. (1994) found that how well a face could be 

reconstructed using eigenfaces could predict how memorable it was for 

human subjects. They also found that eigenfaces were much less efficient in 

the encoding of faces of race not contained within the generative database, 

mirroring the other-race effect (Valentine & Bruce 1986). Giese et al. (Giese 

& Leopold 2004; Giese et al 2004) presented further support for a 

prototype-based encoding like PCA from electrophysiological studies in 

primate visual cortex by exploiting a morphable 3D model of the face 

(Blanz & Vetter 1999). Neurones increased their firing rate to caricatured 

faces as a function of distance from the average face in the model space.  
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PCA has almost entirely been applied for encoding identity in faces, rather 

than facial movements. A rare exception is the work by Calder et al. (2001) 

in analysis of facial expressions. Principal components analysis was applied 

to Ekman and Friesen’s face database (Ekman & Friesen 1976), containing a 

variety of people, demonstrating a variety of expressions. They found that 

their PCA-based system was capable of supporting facial expression 

recognition and noted a natural separation of identity and expression, with 

components tending to code for either just expression, or just identity.  

 

Motion capture and facial animation 

With an image-based model that uses PCA, the problem of hard-wiring 

complex muscle structures and actions is evaded. Furthermore, if a model is 

to be used interactively, it should include mechanisms that allow the user to 

manipulate or animate the faces described by it. So given a computer model 

of a face, a procedure is required for animating it. However, if realistic facial 

motion is required, where better to get it than from a true face. Such 

performance-driven animation requires tracking an actor’s movements and 

relating those movements to the model. 

Optic flow 

Motion capture is done using a variety of techniques. Dot, contour and 

feature tracking can be used to capture movement at a small set of locations 

on the face but all require manual registration of these points within the 

model, using some type of marker or highlighting. Optic flow techniques, on 

the other hand, require no markers or highlighting. 

In psychology, optic flow is referred to as the retinal velocity field induced 

by a moving observer (Marr 1982). A more precise definition describes it as 

apparent motion of local regions of the image brightness pattern from one 

frame to the next while preserving intensity patterns during frame-to-frame 

transitions (Simoncelli 1993). Optic flow algorithms (Barron et al 1992) 
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provide estimates of speed and direction for locations in a frame of an 

image sequence. Mase (Mase 1991; Mase & Pentland 1991) was the first to 

introduce the method of tracking action units using optical flow. In this 

work no physical model is employed but the face motion is formulated 

statically rather than formulated within a dynamic optimal estimation 

framework. However, the results of this work confirmed the validity of 

optic flow computation for observing facial motion. 

One such algorithm is the Multi-channel Gradient Model (McGM), modelled on 

the processing of the human visual system (Johnston et al 1999). This 

algorithm calculates a basis set of spatio-temporal derivatives by convolving 

the image sequence with derivative of Gaussian filters, and then combines 

them to form derivatives of the Taylor expansion in space and time. Ratios 

of the resulting terms then yield robust estimates of image motion for every 

pixel of every frame. 

2D facial animation 

Even when the movements have been successfully extracted using an optic 

flow algorithm, the process of animation is still non-trivial. While 3D 

models are still unable to produce animations that can deceive a human 

observer into believing that they are real faces, 2D animation techniques 

seem to fare better in this respect. 

As an illustration of so-called example-based modelling, there’s the work by 

Beymer, Shashua and Poggio where they demonstrated how novel views of 

objects varying rigidly and non-rigidly can be generated from an image-

based model by interpolating between example images registered by 

application of an optic flow algorithm (Beymer et al 1993). Fidaleo and 

Neumann (2002) generated an example based virtual puppet from images. 

The face was first split into a small set of local regions (co-articulated 

regions or CRs) which represent small groups of facial muscles. Then a set 

of basic facial movements that activated movements independently in each 
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CR was chosen. Sequences were recorded in which an actor performed each 

of these movements individually, with markers attached to an empty frame 

in order to warp the sequences onto a standard position. Muscle actuations 

were separated using Independent Component Analysis (ICA), which maximises 

independence between components rather than variance, as in PCA (Bell & 

Sejnowski 1995). The face could then be parameterised and new footage of 

the same actor could then be analyzed in real-time to extract the high-level 

parameters, which could then be used to drive that model, or any other 

model handcrafted under that same parameterisation. This effectively 

enables photo-realistic performance driven facial animation, but it is limited 

to the one actor. 

Such a limitation is removed if the example-based generation of puppets or 

avatars is done by way of PCA. All that is required is an example sequence 

of the target face in motion, where each frame of the sequence is considered 

to be an example configuration that can be provided in any vectorised 

format.  

 

Chapter 2 summary 

Building a good computational model of the face is not an easy business by 

any means. Due to the fact that the face is essentially a 3D structure, a 

number of 3D facial representations have been used in realistic head and 

face modelling, like polygonal mesh, implicit, and parametric representations 

of the surface of the face. Volume representations were also employed, 

together with the more complex dynamic representations of facial muscles. 

However, the greatest drawback of this class of models is that they require 

huge resources, be it in computational or human terms, to achieve any 

sufficiently compelling results to fool the human visual system. By 

considering the internal processes involved in the perception of faces, a 

more practical class of representations is introduced that takes into account 



 

 

51 

the evidence which suggests that our visual system seems to process faces in 

a two-dimensional manner. A more global, configural approach is proposed, 

one that chooses the parameters to account for essential sources of variance, 

i.e. PCA. By reviewing this statistical modelling approach and the biological 

motivations for its use in this context, this section completes the formal 

literature review element of this report and leads onto the empirical study 

section in which PCA will be used to generate example-based avatars and 

use them in investigating problems such as the reconstruction of missing 

motion information due to facial occlusion. 
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Chapter 3 

 

PCA-BASED PERFORMANCE-DRIVEN FACIAL MIMICRY  

Example-based models of the face can be animated by projection of facial 

actions from another driving face (Cowe, 2003). All that is required is an 

example sequence of the target face in motion and an example sequence of 

the driving face in motion. Individual sequence frames represent example 

configurations and must be provided in a vectorised format; the better the 

quality of the vectorisation, the better the quality of the resulting model. 

Principal component analysis (PCA) is then applied to these example 

vectors in order to extract a smaller set of orthonormal vectors forming a 

basis that closely spans the set. A generative model of the target face can be 

produced, based on these principal components. 

 

 

 

Figure 3.1 – In two dimensions, the set of principal components (b1, b2) accounting 
for more variance than the original set of variables (φ1, φ2) 
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Principal components for encoding facial actions 

Principal component analysis is a mathematical technique that seeks to 

linearly transform a set of correlated N - dimensional variables, 

1 2
{ , ,..., }

N
=Φ φ φ φ  (assumed without loss of generality to have zero mean), 

into an uncorrelated set that better describes the data, termed principal 

components or basis vectors, {b1,b2,…,bN} (fig.3.1). Any point X in our 

original dataset can then be described as a linear combination of these 

principal components bi, where i = 1,…, N. In general, most of the 

variation in ΦΦΦΦ will be accounted for by M principal components, where 

M N= , thus giving: 

1

M

i i
i

c
=

≅∑X b  

It can be shown that these principal components, sequentially chosen to 

maximise the variance thus far accounted for, subject to the constraints of 

orthonormality, turn out simply to be the eigenvectors of the covariance 

matrix for the set 
1 2

{ , ,..., }
N

φ φ φ  (Joliffe 1986). 

Even though PCA has often been used in the encoding of identity, it has 

rarely been considered as a tool for encoding facial actions and motion. 

Some speech-related research, however, has involved the application of 

PCA to facial motion, with markers physically attached to the face and 

tracked while phonemes are uttered. The positional information of the dots 

over time was subjected to PCA as a means of dimensionality reduction for 

building codebooks relating acoustic data to mouth movements (Arslan & 

Talkin 1998; Kshirsagar et al 2001). This information is, however, sparse, 

and has not previously been used for the purpose of analysis. 

PCA has also been applied to optic flow data around the mouth for 

extracting basis motion fields for motion recognition (Fleet et al 2000; 
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Yacoob & Black 1999). Their results were used to parameterise the 

movements of the mouth, but synthesis of facial motion was not a goal of 

the work and the resulting principal components were not discussed.  

Calder et al. did apply PCA in the analysis of facial expression. They 

analyzed static images of faces posing a variety of expressions in order to 

acquire the statistical properties of the set (Calder et al 2001). The faces 

were taken from a database of photographs of several people performing 

several facial expressions. Landmarks were manually located on each 

picture, and all were warped onto the mean shape. PCA was applied to the 

shape and shape-free (texture) information. The methods involved were 

similar to that of the morph vectorisation discussed later in this chapter. 

However, Calder et al. calculated the principal components from a set of 

posed static images represented in the equivalent of the morph 

vectorisation, but these are not necessarily typical of natural experience of 

faces. The Cowe technique discussed here allows principal components to 

be obtained from natural sequences of facial motion. 

Vectorisation of faces 

The most basic vectorisation would probably be a list of the frame’s grey-

level pixel values (fig.3.2). An image of width w  and height h  can be 

considered to be an h w×  matrix X  of grey level intensity values - one 

value for each pixel of the image - where 
ij

X  represents the value in the ith 

row and jth column. This can be converted into a vector, x, by simply 

concatenating the rows and transposing (Sirovich & Kirby 1987; Turk & 

Pentland 1991). This vector (of length N w h= × ) can be thought of as 

representing a point in an N − dimensional space. Now consider a set of 

P  frames from a continuous recorded sequence of a face vectorised in this 

manner, 
1 2
, ,...,

P
x x x . 
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Figure 3.2 – Vectorising an image by its pixel-wise intensity values (from Cowe 2003) 

Since frames from a continuous recorded facial sequence tend to vary 

smoothly, these images will generally be clustered together in this space, 

centred approximately on their mean, 
1

P

i

iP =

∑µ x
1

= . Considering µ  as a 

reference, each face, x , in the set can be considered as a linear translation, 

φ , from this, φ = x - µ . RGB colour images are vectorised similarly, by 

simply concatenating the three colour planes (fig.3.3). 

 

1st row 

2nd row 

row h  
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+ 

 

= 

 

µ   φ   x  

Figure 3.3 – Original frame x  is broken down into its sequence 
mean µ  and a change vector φ  (from Cowe 2003) 

Simple linear combination of images results in an inherent blur, so a 

warping procedure is used in order to remove this blur. This procedure 

works by choosing an arbitrary frame to be a reference and defining all 

other frames in terms of warps from this single frame. A flow field relating 

each pixel in the target frame T to its source location in the reference R 

needs to be extracted in order to warp the reference to its target frame, and 

this is achieved using the McGM optic flow algorithm, modelled on the 

processing of the human visual system (Johnston et al 1999). Thus, all 

images in the sequence can be represented as warps from R and the entire 

sequence can be reconstructed by warping this one reference frame. Each 

vector field [U,V] - U and V are matrices containing the horizontal and 

vertical components of the field respectively, for each location (x, y) - can 

be vectorised, by concatenating each row of U and V, joining them and 

transposing to form one long vector. The whole sequence can thus be 

encoded by storing the one reference frame, R, and the vectorised flow field 

for each frame. 

 

However, warping alone fails to capture iconic changes or lighting changes. 

These problems can be overcome by additionally encoding the image 

information for the target frame. This motivates a vectorisation based on 

morphing, a combination of warping and image blending. Specifically, by 

warping and simultaneously fading from the reference to the target, a better 
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quality transition will result, with realistic synthesis of facial movement 

without blur, but without losing iconic or lighting changes (fig.3.4). 

 

a) 

 

 0 =I R  1I  2I  3I  4 =I T  

 

b) 

0 =F R  1F  2F  3F  4 =F T  

 

c) 

0B  1B  2B  3B  5 =B T  

 

d) 

0 =M R  1M  2M  3M  4 =M T  

Figure 3.4 – Morphing: a) blending from image R  to image T  by weighted 

image addition; b) warping from R  to T  (left to right); c) warping from T  to 

R  (right to left); d) morphing – a combination of warping and blending 
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The frames are thus encoded by concatenating the shape information and 

texture information into one long vector (fig.3.5) 

 

 

Figure 3.5 – Morph vector of face. On the right, 1st four PCs from a sequence of facial motion, vectorised as morphs. 

Top and bottom rows show the component morphs, -2 and +2 standard deviations from sequence mean (middle row) 

 

By application of PCA on the covariance matrices of these face morph 

vectors, we can define a new improved orthonormal co-ordinate system 

centred on µ , which more efficiently spans this subspace, with axes chosen 

in order of descriptive importance, i.e. basis vectors are defined sequentially, 

each chosen to point in the direction of maximum variance, unaccounted 

for so far by their predecessors, due to the constraint of orthonormality. 

Since noise tends to be uncorrelated, vectors describing this will be of low 

importance in the hierarchy and can be later discarded by truncation to a 

lower dimensionality. With a generative model of the target face based on 
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principal components constructed, facial movements performed by an actor 

can now be transferred onto the computer generated model. 

Facial mimicry by projection 

With this new co-ordinate system representing an individual’s face space, 

any facial movement ξ  from a sequence of any individual can be projected 

onto this basis, provided it’s aligned & filmed from a similar view-point, 

vectorised in the same manner and centred on its own sequence mean. 

Given a set of Mtrain training vectors from individual one (the face we wish 

to drive), 
1 2
, ,...,

trainM
x x x , and a set of Mdrive driving vectors from individual 

two (the face that will be doing the driving), 
1 2
, ,...,

driveM
y y y , both sets are 

centred on their means and put into matrices Φ  and Ψ , such that 

1 2
{ , ,..., }

trainM
=Φ φ φ φ , where 

i i train
= −φ x µ , and 

1 2
{ , ,..., }

driveM
=Ψ ψ ψ ψ , 

where 
i i drive

= −Ψ y µ . PCA extracts a set of basis vectors 
1 2
, ,..., Pb b b  

from the training set, where 
train

P M≤ . To project into the new lower 

dimensional co-ordinate frame provided by the principal components, the 

basis transformation matrix 
1 2 P

B = {b ,b , ...,b }  is used, with the basis 

vector columns normalised to unit length. So, to project a N-dimensional 

vector, 
i
ψ , into the P-dimensional subspace described by the principal 

components basis, apply: 

 
T

i i=c B ψ   

Elements of 
i

c  now represent weightings on the respective basis vector. In 

order to transform the projection, 
i

c , back to N-dimensional space 

translated to the standard origin, the inverse transformation is applied and 

the training mean is added. In the case of principal component bases, the set 
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Figure 3.6 – Block diagram of the mimicry generation process 
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is orthonormal, so 
T =B B I , which implies that B  is the inverse 

transformation, thus 

 i i train= +z Bc µ   

In the case of the morph vectorisation, the new 5N ×  vector, 
i

z , is then 

rearranged into h  rows of w  elements, to form a w h×  image frame of the 

sequence of facial motion, and the sequence of those frames represents the 

result, an avatar driven by the facial actions of another.  

a) 

b) 

 

Frame: 30 79 162 183 354 

Figure 3.7 – Results from the mimicry with morph vectorisation: a) Selected frames from a sequence of facial 
motion; b) frames from a) are morph-vectorised, then projected into the male face space (from Cowe 2003) 

Figure 3.7 demonstrates typical results from this process for the morph-

vectorisation defined previously. A 15-dimensional face space was defined 

for face a since these first 15 components account for approximately 90% 

of the variance in the original sequence. Faces that are more expressive may 

require more principal components in order to capture the same amount of 

variance. The top frames in fig.3.6 are from a real image sequence of a 

person telling a joke which constituted the driving sequence. An affine 
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transform was applied to all frames from the driving sequence. The two eyes 

and two mouth corners of the mean frames were used as references, in 

order to ensure that the centres of the eyes and edges of the mouth in face a 

were aligned with the respective points in face b. These frames were then 

vectorised in the same manner as face b and then projected onto face b 

space using the procedure defined at the beginning of this subsection. The 

resulting vectors were then transformed back to image space and are shown 

in the above figure, below their corresponding frames. 

It should be mentioned that the generative phase of the process, in which 

the avatar is created, is computationally intensive due to the extraction of 

very dense optic flow information and principal components. For sequences 

of around 300 frames, 160 by 240 pixels, the morph vectorisation and PCA 

extraction can take up to half an hour on a 3.6GHz Pentium D processor. 

The EM-algorithm for PCA scales most favourably in complexity, scaling 

linearly both with number of components and dimensionality of the data 

(Roweis, 1998).   

The driving stage, however, requires only the multiplication of a M N´  

matrix by an N - dimensional vector, followed by the multiplication of an 

N M´  matrix by a M - dimensional vector (recalling that N  is the 

dimensionality of the vectorisation and M  is the number of basis vectors 

used). Matrix arithmetic can be calculated extremely fast on modern 

computers and even with the conversion of the resulting projection into a 

viewable image, driving can be comfortably achieved at frame rate (i.e. at 

under 40 ms), using the above vectorisation and configuration. Since 

features overlap well, the vectors of the driving face project strongly onto 

the target basis set. The procedure constrains movement, forcing it to be 

consistent with those movements which face b is capable of making. It also 

allows for further manipulation of the mimicries, such as exaggerating or 

rescaling of projected actions, by simply multiplying their respective mean-
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centred vectors by some factor, k , in order to magnify or reduce the 

departure from the mean. This last property of the model was proved to be 

fairly useful in enhancing the retrieval of occluded facial information, as 

described in ch. 5. 

Chapter 3 summary 

In chapter 3, a method for automatically creating computer-generated 

avatars was described. The model can be driven by real actors, simply by 

aligning features and projecting vectorised sequences of their motion into 

the target space. Novel footage can then be produced of the computer-

generated avatar mimicking the actor’s movements, all in reasonable amount 

of time despite quite high computational costs of the generating and driving 

procedures. 

Resulting animations are confined to vary as a linear combination of 

movements from the example set, so the generated footage is realistic. This 

may seem to be a limitation, but is advantageous in preventing the avatar 

from doing anything that the original face was incapable of doing. Provided 

a sufficiently rich set of motion is captured for the generation of the model, 

these constraints do not pose a problem. The coefficients for a sequence 

can be transformed in the target face space, in order to exaggerate, or 

rescale movements to be consistent with the example footage. This is a 

useful processing step in conditions where the facial geometry is such that 

the novel vectors do not project strongly onto the target basis set, such as 

for example in the case of a driver with occluded facial regions. 
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Chapter 4 

 

IDENTIFYING IMPORTANT REGIONS FOR HIGH 

FIDELITY PCA-BASED FACIAL MIMICRY  

Most human observers perform very well in object classification tasks. 

Depending on the expertise of the observer, an object of interest can be 

classified in different levels of detail or generalization as a car, a vehicle or as 

some specific make of that car (Rosch et al 1976). Such a classification is 

achieved based on the same visual input, but intuitively it is clear that 

specific features within this visual input enable observers to succeed in 

performing such tasks. For instance, the badge and brand markings will 

enable an expert observer to place a car in a specific subordinate level 

category such as Ford or Renault. Other features could enable new 

categorizations and/or support existing ones. Similarly, visual information 

from different areas of the face does not appear to contribute equally to 

human observer’s ability to process faces (Buchan et al 2007).  

 

Diagnostic information for categorisation 

In categorization tasks such as gender recognition and expression detection, 

subjects were shown to use different visual information from the same 

visual input (Gosselin & Schyns 2001). They went about revealing the 

diagnostic information for the above categorization tasks by introducing the 

so-called bubbles method. This method is now used for identification of 

diagnostic stimuli for a great variety of categorization tasks, such as infant 

perceptual categorization (Humphreys et al 2006), perception of ambiguous 

figures (Bonnar et al 2002), categorization of natural scenes (McCotter et al 
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2005), spatio-temporal dynamics of face recognition (Vinette et al 2004) and 

even pigeons' visual discrimination behaviour (Gibson et al 2005).  

In the majority of these works, the stimuli consisted of static images of 

faces, the tested subjects were human or animal and the tasks were binary 

categorisation tasks, i.e. “is face male or female, expressive or non-

expressive?” 

Here, in order to produce dynamic facial stimuli, the model described in the 

previous chapter was used. Actor’s facial movements were extracted and 

automatically projected onto another person’s face model, or avatar, without 

any need for markers. The test subject is the computer system itself, with 

reproduction fidelity as a simple diagnostic criterion for comparison with a 

ground-truth mimicry. It essentially constitutes an ideal observer type set-up 

that can investigate whether any regions of a face in motion are more 

important for performance-driven, photo-realistic mimicry, generated using 

our computer model of the face.  

During preliminary experiments, where performance-driven mimicries using 

driver faces with arbitrary rectangular occlusions placed over specific facial 

features were generated, it became clear by way of visual inspection that 

visual information from certain areas of the face was more important for hi-

fidelity driving of our face model and overall recovery of actions from those 

occluded facial features. Here we try to locate these areas more precisely 

using a principled method such as bubbles. 

 

The bubbles method 

The original bubbles method introduced by Gosselin and Schyns (2001) 

involves partly occluding the facial stimuli using masks that are punctured 

by a number of randomly located Gaussian windows, or bubbles. Across 
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trials, masks that revealed enough facial information for their human 

subjects to correctly categorise the occluded face were added up and divided 

by the sum of all masks, resulting in the so-called ProportionPlane. The 

averaged ProportionPlane is a measure of the relative importance of the 

image areas for the given task (fig. 4.1).  

 

 

Figure 4.1 - This figure is taken from the original bubbles paper (Gosselin & Schyns 2001). Section (a) shows the 

bubbles leading to a correct categorisation added together to form the CorrectPlane (the rightmost greyscale 

picture). In (b), all bubbles (those leading to a correct and incorrect categorisations) are added to form TotalPlane 

(the rightmost greyscale picture). Section (c) shows examples of faces as revealed by the bubbles of (b). It is 

illustrative to judge whether each sparse stimulus is expressive or not. ProportionPlane (d) is the division of 

CorrectPlane with TotalPlane. Note the whiter mouth area found to be important for this categorisation 

(expressive or non-expressive) task.  

 

Our face model, or avatar, was driven by instances of the same sequence (31 

frames, 120x80px), processed in the same way, but occluded with 5000 

random bubble-masks (fig. 4.2). These masks contained 23 bubbles each, 

with standard deviation of 5 pixels. A ground-truth mimicry was generated 

by driving the avatar with a non-occluded sequence.  
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Figure 4.2 - Applied bubble-mask. This is one 

example of the 5000 random bubble-masks applied 

to the moving face driving sequence. The 

sequences were then processed and used to drive 

the avatar, resulting in 5000 mimicries. 

 

Diagnostic criterion in bubble-occluded facial mimicry 

The resulting occlusion-affected mimicries were compared to the ground-

truth mimicry using a Pearson correlation metric. Initially, this metric was 

used to make image-based comparisons of actual mimicries, comparing 

RGB values between ground-truth and bubble-masked mimicry, frame by 

frame and pixel by pixel. This method failed to pick up on the 

comparatively subtle image changes in mimicry caused by the occlusions. It 

was presumably heavily biased by the inherent similarity of the images 

compared, i.e. all faces of the same person. Thus the resulting correlation 

values between the ground-truth and other mimicries were all in the interval 

between 0.988 and 0.99, and were not corresponding well with visual 

inspection results.  

With this in mind we decided to measure the Pearson correlation between 

principal component weightings ic
v
 extracted from the 5000 occluded driver 

sequence vectors iψv , and those from the ground-truth. The correlation 

values obtained this way ranged between 0.16 and 0.91 in value (fig. 4.3). 

They corresponded very well with visual inspection results thus turning out 

to be a good metric for our categorization task.  
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Figure 4.3 – Mimicry generation. a) The bubble-mask occluded driver sequence (left-most faces, occluded) was used to drive the avatar and produce the mimicries 

(middle faces). These were compared using our correlation metric to the ground-truth mimicry (right-most faces), which was produced by a non-occluded driver. It 

can be seen that the model recovers the facial expressions quite successfully despite the occlusions, albeit in a somewhat muted form.  b) Points denote PC 

coefficient similarity between ground-truth and bubble-masked mimicries. Take for instance the mimicry generated by applying random mask number 728 (the 

circled point). Its generating PC coefficients are shown in the graph to have very low correlation with those of the ground-truth (corr = 0.16169) and upon visually 

inspecting the produced mimicry 728 there was hardly any facial movement reproduction, due to the applied occlusion mask. c) The histogram view of section b). 

Only the masks that produced the mimicries with PC coefficients highly correlated with ground truth coefficients (over the red line in section b), or represented by 

darker green colours in our histogram in c)) were classified as “good” and used to derive the proportion plane. 

 

Face-map generation 

We used the original bubbles method described in the previous section to 

derive a ProportionPlane for both our test sequences. We chose the masks 

resulting in the top 10% correlational values to be our “good” masks. It 

should be mentioned that, quite remarkably, visual inspection of the 

mimicries produced by drivers occluded with these “good” masks 

confirmed a high fidelity of the reproduction of facial actions, despite the 

massive occlusions. This demonstrated that the PCA face model 

successfully recovers aspects of expressions in those areas occluded in the 

driver sequence; however, the reproduced expressions in the avatar are 

slightly muted (fig. 4.3a).  

A standard MATLAB k-means clustering routine was employed to partition 

the full set of masks into k clusters by using their corresponding coefficient 
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correlation to the ground-truth as a criterion. So for example, when k = 2 

the full set of masks was partitioned in two, with the partition containing 

masks corresponding to the top-tier of correlational values representing the 

“good” masks. Adding only these “good” masks together and dividing them 

with the TotalPlane yielded a rather noisy ProportionPlane image, i.e. the 

face-map (fig. 4.4). For a diagram of the whole procedure see fig.4.5. 

 

However as k approaches 10, a much clearer face-map depicting facial areas 

important for photo-realistic animation of our face model was gradually 

emerging. This face-map can be seen as a measure of the relative 

importance of the regions of the 2D image for the task at hand. These were 

the facial regions of the mouth and the eyes. 

 

 

 

Figure 4.4 – Face-map. As we gradually selected out the bubble-masks corresponding to low correlation values 

brighter areas emerged from the noisy image. At this stage they are a rough representation of facial areas important 

for photo-realistic animation of our face model and not just the maximum pixel-value variance areas. 
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Figure 4.5 – Block diagram of the face-map generation process using bubblemasks  
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Results 

The face-map regions seem to overlap with the areas of maximum pixel-

value variance, but importantly, they are not identical to them. This suggests 

that the method is not simply locating parts of the face that display most 

movement in our test sequences. 

To derive the statistical significance of diagnostic regions, we used an 

accurate statistical test for smooth classification images (Chauvin et al., 

2005). This test is based on the probability that, above a threshold t, a 

certain pixel-size cluster in our Z-scored classification image has occurred 

by chance. The derivation of the significant regions in our face map was 

done with a standard cluster test technique from the Stat4Ci MATLAB 

toolbox, with p ≤ .05, σ = 5px, and threshold = 3.1. Figure 4.6 displays the 

thresholded classification images from both sequences. The areas that 

attained statistical significance are shown using the red pixels and the actual 

face used in the experiment was overlaid to facilitate interpretation. These 

areas are indeed the ones suggested by the face map. 

 

Figure 4.6 – Statistically significant diagnostic regions – Red areas denote the regions that attained statistical 

significance using our cluster test. 

 

To demonstrate the actual importance of these areas we generated 

mimicries by using only the information from these statistically significant 
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diagnostic regions in order to drive the avatar. As expected, the resulting 

mimicries were, visually, of very high fidelity. The correlation between these 

face-map driven mimicries and the ground-truth was very high (0.88438 and 

0.89984, well within the top 1% of original bubble-mask coefficients). 

 

Conclusions 

The bubbles technique has been used as a way to identify regions of a 

stimulus that are important to perceptual discrimination. However here we 

show by studying the quality of image reconstruction, using a machine 

learning technique with no explicit knowledge of faces, that regions are 

significant because they reflect the important sources of variation in the 

facial image. Thus these areas are not necessarily important because of their 

functional roles (e.g. in visual speech or non-verbal communication) or 

because they are encoded by specialised neural modules but because these 

regions carry most information about the facial configuration.  

There is growing evidence that faces are represented in terms of their 

deviation from a prototype. Leopold revealed high-level after-effects for 

static faces in tests involving stimuli like “anti-faces” (Leopold et al 2005). 

Curio also showed similar after-effects for dynamic facial expressions, by 

using “anti-expressions” as stimuli, created by a 3D morphable model for 

facial expressions based on laser scans (Curio et al 2007). These experiments 

indicate that a viable representation system for faces could be based on 

some mean prototype with axes of deviation radiating from this mean, 

which is the basis of the face model used in our experiment. 

Peterson also studied the information distribution of face identification and 

its relation to human strategies in this task. This was done using a Bayesian 

ideal observer analysis. They found that both the ideal observer and the 

human subjects consistently use the visual information around the eye and 
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mouth regions of the face when identifying individuals. This suggests that 

the human strategy of using the information from these regions for such 

tasks is commensurate with the concentration of visual information in real 

world faces (Peterson et al 2007). 

We can ask what advantages does this form of representation offer. We 

identified significant regions by occluding them and then determining how 

effectively one could recover the original PCA based description of the face. 

Firstly this shows that PCA allows whole face information to be recovered 

from partial data. Secondly knowledge of important regions can improve the 

efficiency of encoding by only encoding critical information. Thirdly it 

shows that facial features (mouth and eyebrows) can be distinguished from 

the whole face in terms of their information content by spatially sampling a 

global PCA, thus linking features and configurations. 

 

Chapter 4 summary 

Our ability to process faces is known to depend on the spatial location of 

visual facial information we receive. A good method for revealing such 

diagnostic facial information for different categorisation tasks is the bubbles 

method. Here it succeeds in revealing diagnostic information for a 

performance-driven mimicry task carried out by a computer model of the 

face, built to a degree on biologically motivated principles. The face model 

was generated by vectorising a sequence of images of a talking face, 

extracting motion fields via an optic flow algorithm and calculating a set of 

basis actions using principal component analysis. The standard bubbles 

technique revealed the areas around and including the mouth and eyes as 

the most important ones for our task. These regions overlapped with but 

were not identical to areas of maximum pixel-value variance. Visual 

inspection also showed that the PCA face model recovers aspects of 

expressions in those areas occluded in the driver sequence. Until now 
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bubbles were only used as a human search for diagnostic features in faces. 

Here, a system using reconstruction fidelity as diagnostic criterion and 

indifferent to the content of the stimulus, mimics the behaviour of human 

observers in face discrimination tasks. This information could be also very 

useful in further analysing and retrieving non-randomly occluded facial 

information, which is considered in more detail in the following chapter. 
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Chapter 5 

 

FACIAL OCCLUSION PROCESSING  

Randomised occlusions of the face such as those seen in the previous 

chapter are dealt with satisfactorily by the PCA face model, with global 

facial behaviour reproduced best when the areas around the mouth and eyes 

are not occluded. However, such randomised occlusions do not readily 

replicate real-life examples of facial occlusion. These are important since in 

many instances there is a need to identify subjects or facial behaviour from 

faces that are occluded with realistic occluders, placed in strategic positions 

around the face, such as the mouth and the eyes.  

Psychologists have studied such occlusions - which fall in the category of 

non-systematic appearance variation - a lot less than systematic appearance 

variation. This latter type of variation comprises changes in viewpoint, 

expression or illumination direction and intensity. These types of changes 

can all have as a result occlusion of areas of the face which in turn causes a 

drop in identity recognition rates in human subjects.  

Existing computer vision approaches 

The few papers that have touched upon the face occlusion problem are 

motivated by the effect of occlusions in conventional face processing tasks 

such as face recognition and tracking. The majority of the face recognition 

literature presents data and results obtained under highly controlled 

scenarios with little variance in pose, illumination or set of expressions, but 

some have applied artificial and natural occlusions and tested the 

performance of their models with these impaired inputs. All of the papers 

described here use PCA and the information contained in the eigenface 
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subspace to compensate for the details lost due to partial occlusions of the 

face. 

The effect of occlusions on the performance of automatic face tracking 

models was investigated by Gross et al. (2006). They used Active 

Appearance Models (AAM) to track a face non-rigidly in a video. This, as 

mentioned in chapter two, requires a placement of markers on the face in 

order to extract the shape of the AAM by passing a triangular mesh through 

the marker vertices. Then the AAMs are constructed by applying PCA from 

a collection of such training images and they are fitted to input videos to 

track the face(s). Their main goal in this paper was to construct AAMs from 

occluded training images and then find the best-fit model parameters for 

face tracking in video. They managed to show empirically that AAMs 

computed from up to 45% occluded data were very similar to non-occluded 

data AAMs and to demonstrate successful video tracking of faces affected 

by various degrees of occlusion. They were also concerned with 

algorithmical issues within their approach and investigated speed vs 

performance trade-offs in different algorithms used in the construction and 

fitting of the AAMs. However, having to work with hand-placed markers to 

construct the AAMs is a major disadvantage of this method. It also has 

additional drawbacks with all the calibration and self-occlusion difficulties at 

the training stage, when all feature points have to be visible.  

A method that doesn’t use markers and that performs face recognition 

under partial occlusion is suggested by Tarres and Rama (Tarres & Rama 

2005). This method consists of acquisition of the training images of full 

frontal faces, applying five different occlusions to them (fig. 5.1) 
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Figure 5.1 – Examples of training images showing various occlusion types from the Tarres and Rama database 

 

Thus they created six different training subsets. PCA was then computed 

for each subset, together with the weights for each subject in the database 

which was done by projecting the six different images on the respective face 

subspace. The recognition stage consisted of the computation of the PC 

weights by projecting the image to be tested onto each face subspace, then 

classifying the subjects by verifying the weights of each face subspace and 

computing the reconstruction error. And finally they combine the different 

eigenface subspaces using a minimum reconstruction error strategy. This 

methodology yields good results in recognition of partially occluded faces, in 

fact better than the classical eigenfaces recognition method (O'Toole et al 

1994). However, the main drawback is the fact that this combined method 

obviously carries a six times higher computational cost than the simple PCA 

recognition method. 

Another automatic recognition system that uses PCA of local regions of the 

face for correct recognition of partially occluded faces was presented by 

Aleix Martinez (Martinez 2002). The faces are all divided in k  local parts 

and an eigenface subspace is found for each of the training image parts. 

Then the occluded test face (divided in same number of parts) is projected  

respectively onto the eigenface subspaces and the closest match is found by 

means of Mahalanobis distance. Martinez demonstrates experimentally that 

occlusion of 1/6th of a face does not decrease recognition accuracy. Even 

for cases where 1/3rd of the face is occluded the identification results are 

shown to be very close to those obtained in the non-occluded case. 
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A final paper worth mentioning is that of Lanitis (Lanitis 2004). The model 

presented in this paper completes a number of tasks, such as: 

• localisation of the face using AAMs 

• creation of the face model using PCA of all training examples 

• detection of occluded area by calculating the residual difference of 

the occluded test face image and PCA reconstructed face obtained 

by projecting image onto eigenface subspace. 

• implementation of face recognition algorithm  that makes use of 

information only from the non-occluded facial regions. 

The experimental results published in this paper suggest that this model 

outperforms standard minimum distance classifier recognition methods 

such as Martinez’s. However, this approach is computationally more 

expensive due to the additional localisation and occlusion detection steps. 

 

Effect of occlusions on the PCA-based face mimicry model 

The above mentioned approaches do not deal with dynamic facial 

behaviour. However, they all use PCA and the information contained in the 

eigenface subspace to compensate for the details lost due to partial 

occlusions of the face. Principal components tend to track global changes, 

and are therefore ideal for retrieving facial motion lost due to occlusion 

since facial muscles rarely function independently. Indeed, the photo-realism 

of the PCA performance-based mimicry model shows that they capture well 

the correlations between various muscles of the face. They seem to be able 

to encode with good precision a large number of high level facial 
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movements and systematic variance in the face, such as constituent mouth 

shapes for speech, or the appearance and disappearance of a smile. 

But what will happen if the driving information is incomplete, due to some 

non-random occlusion of a region of the face? Since the PCA-based 

mimicry system described in this thesis constrains movement by forcing it 

to be consistent with movements the training face can produce, and because 

this type of input yields a strong correlation between rigid and non-rigid 

motion, will the model be able to build a representation of the missing 

information based on the rest of the information it receives? 

The following sub-sections explore these questions and attempt to measure 

the performance of the model in dealing with occlusions. 

Test stimuli: the database of occluded sequences 

In order to test the model, a set of facial motion sequences was created. 

One serves as the ground-truth and represents a capture of the face in 

natural motion in clear frontal view while the others include occlusions, but 

are captured from the same view-point and in same lighting conditions. This 

control over lighting conditions, pose and occlusion types was the main 

reason for creating this new database and not using an existent one. Types 

of occlusions to be used were selected on the basis of real-life occurrence 

frequency and recognition difficulty (Murphy and Bray 2003) and 

appearance in other databases, like the AR Face Database, Computer Vision 

Center, University of Barcelona. They were captured using a JVC GR-DVL 

9600 digital video camera, at a rate of 25 frames per second, resolution 160 

by 240 pixels. The sequences were of an expressive face telling a one-liner 

joke and they lasted around 8 seconds. The sequences included: 

• mouth area occlusion (by a pointing finger and by a hand over 

mouth) 

• lower face occlusion (by a scarf) 
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• eye occlusion (by dark wraparound sunglasses) 

• top of head and hair occlusion (by scarf/hat) 

• side of face occlusion (by newspaper sheet) 

• and combinations thereof 

 

Figure 5.2 – Examples of natural occlusion types from the database 

 

In addition to these natural occlusions, an identical set of occlusions was 

added onto the ground-truth sequence thus creating a database with perfect 

temporal alignment since it was produced from only one actual sequence 

(fig. 5.3). 

 

Figure 5.3 – Examples of artificial occlusion types from the database 
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Finally, two sequences with dynamic occlusions were also captured (fig. 5.4), 

one with a face moving from side to side and the other with an object 

entering and leaving the scene (in this case a waving hand). 

 

 

Figure 5.4 – Examples of dynamic occlusion types from the database 

 

Occlusion-affected face mimicry results 

The sequences were all morph vectorised as described in 3.1.1. The non-

occluded sequence was processed using PCA and basis vectors were 

extracted, forming thus the generative model of the target face based on 

principal components. The facial movements from the vectorised occluded 

sequences can now be projected onto the computer generated model. 

The results show that the motion information from the occluded mouth 

area can indeed be correctly reproduced by the system, albeit in a weaker 

and somewhat muted form. The non-occluded areas are reproduced almost 

perfectly, as can be seen from the examples in the figure 5.5. 
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Figure 5.5 – Selected frames showing the occluded “driver”-face (left column), the ground-truth (right column), 

and the avatar mimicking occluded mouth motion weakly, but correctly 

The PCA mimicry’s frames shown in fig.5.5 seem to do relatively well and 

provide a realistic reproduction of occluded facial behaviour, as compared 

to the avatar sequence obtained by the non-occluded driver face, i.e the 

ground-truth. The relatively good success rate of this automated model in 

retrieving missing facial information was to an extent expected since the 

artificial mouth-occlusion driving example is the one with the smallest 

occlusion area and since there’s a great deal of correlated information from 

the visible areas in the immediate vicinity of the mouth that is projected 

onto the basis vectors of the avatar. On the other hand, the motion from 
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the sequence with a scarf around the lower face area, for example, results in 

almost no mouth movement reproduction in the avatar, and this is because 

there’s hardly any mouth-area-correlated information coming from that 

input. The performance evaluation was done by visual inspection of the 

reproduced facial behaviours and its comparison with the ground-truth 

mimicry.  

Exaggerating actions through basis coefficient scaling 

Since all sequences of facial motion used here are vectorised and mean-

centred, each vector can be considered to be a departure from the mean for 

that sequence. Frames from the original sequences can thus be exaggerated, 

or made subtler, by simply multiplying their respective mean-centred vectors 

by some factor k  in order to magnify, or reduce, the departure from the 

mean. Adding back the mean, then converting back into images, results in 

the exaggerated frame. This effectively increases, or decreases, the distance 

of the point in face-space from the origin along the vector from the origin 

to the point’s original position. 

This can similarly be applied to performance-driven animations. Resulting 

sequences in which the driving vectors do not project strongly onto the 

basis, for example, can be corrected or exaggerated by applying a scaling 

factor to the coefficients in face-space in order to compensate. This can also 

be applied in order to make facial motion more coherent in situations where 

subtle or weak movements would otherwise be missed. Crucially, it is this 

capability of the model that allows for an enhancement of the muted facial 

behaviour retrieved from the occluded areas of the face. 

Simple pixel-wise intensity vectorisations encode facial movements as 

changes in brightness, so an exaggeration will necessarily make regions that 

become darker even darker and regions that become lighter even lighter. 

This does not correspond particularly well to exaggerated gestures, but 

accentuates the image changes. The warp and morph vectorisations capture 
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changes in a more realistic manner, so exaggeration will result in more 

extreme positional changes away from the reference. 

Thus, the facial behaviours can be exaggerated by introducing a scaling 

factor k  to the coefficients applied to our avatar basis set: 

Ω ( )k= B C  

where columns of Ω  represent mean-centred mimicry frames, B  the basis 

vector (or principal components) set and C  the set of coefficients of 

principal components, obtained by projecting mean-centred driving vectors 

onto B , as explained in subsection 3.1.2 of this thesis. 

This will compensate for the occlusion-affected, weakly projecting driving 

vectors. In the important mouth occlusion case seen earlier, this makes the 

mouth movement more realistic and recognisable. It almost allows lip-

reading an avatar driven by a face with a “masked” mouth area! But since 

this operation multiplies the whole coefficient matrix by some factor k , 

there’s an inherent risk of an anomalous exaggeration of the other facial 

areas, which become rather like caricatured animation when the multiplier is 

too high (x4.5 in fig.5.6). Such exaggerations also accentuate colour changes 

in the three colour planes in the case of morph vectorisation used by the 

PCA face model described here. 
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Figure 5.6 – The example frame can be seen here in its occluded and original form, together with its mouth-

occlusion mimicry  reproductions with scaling factors k = {1, 1.5, 3.0, 4.5}. Visual inspection confirms that out of 

these examples, multiplying the coefficients by 1.5 seems to give the best reproduction quality of the missing 

mouth motion information, but higher ones, like k = 4.5, create grotesque caricatures! 

 

It’s worth noting that in contrast with the results obtained using static 

occlusions of the face, the system failed to generate satisfactory mimicries 

when driven by dynamic occlusion sequences. This is because such a set of 

facial motion and deformation was never captured in the generation of the 

avatar, rendering it impossible to reproduce with only linear combinations 

of movements from the existing example set. Also, iconic changes caused by 

the hand entering and leaving the view and the head turning from side to 
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side (fig.5.4) are probably too large or too fast for the optic flow algorithm 

to successfully extract the flow fields necessary for warping. 

Performance metrics 

In all occlusion-affected mimicries described in this chapter, the quality of 

the mimicries, i.e. their similarity with the ground-truth produced by a non-

occluded driver sequence, was evaluated using visual inspection. Such a 

subjective evaluation method brings with it a multitude of inconveniences 

and doesn’t quantify the performance of the model. This is why it is 

necessary to devise a performance metric that will provide objective 

evaluation and the basis for an optimization of the model. 

Two basic metrics that can be used for this purpose are the mean and 

standard deviation of respective pixel intensity differences between two 

corresponding frames from the reconstructed sequence and the ground-

truth. This mean difference represents a special form of the widely used 

Minkowski error metric, which for images x (say the frame to be tested) and 

y (the corresponding ground-truth sequence frame) is defined as: 

1/

1

ppn

p i i
i

E x y
=

 
= −  
 
∑  

where ix  and iy  are the i-th pixels in images x and y respectively and n  is 

the number of pixels, i.e. height times width in pixels of pre-processed 

(scaled, aligned, filtered, etc) images x and y. The constant exponent p , 

which can vary in the range [ )1,p ∈ ∞ , typically takes values between 1 and 

4. For our mean difference metric we just use p as 1 and multiply the above 

Minkowski metric equation with
1

n
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This metric represents the difference of the luminance of images x and y, 

since the mean pixel intensity estimates the luminance of an image. For the 

standard deviation difference we have: 

1
2

2
, ,

1

1
(( ) )

n

x y i i x y
i

x y
n

σ µ
=

 = − − 
 
∑  

This metric represents the difference of the contrast of images x and y, since 

the standard deviation of the pixel intensity estimates the contrast of an 

image.  

A C++ routine was developed to visualise (see fig.5.7) and calculate the 

mean and standard deviation of these pixel value differences. 

 

reconstruction                   ground-truth                   Pixel value difference 

Figure 5.7 – This example visualizes a map of the pixel value difference between the intensity values of a mimicry 

frame reconstructed using an occlusion-affected driver and the ground-truth. 

 

The routine is then used to test the model’s performance on mimicking the 

mouth occlusion sequences, i.e. make a comparison of an animated avatar 

from the sequence inputs with no occlusion (ground-truth), with artificially 

placed mouth occlusion and no scaling factor (mouth-occlusion-to-face, 
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‘mo2f’), scaling factor 1.5 (‘mo2f x1.5’), 3.0 (‘mo2f x3.0’) and 4.5 (‘mo2f 

x4.5’). 

The luminance and contrast metrics seem to perform well in comparing the 

performance of the model, insofar as they show quite clearly which 

mimicries are further away from the ground-truth (fig.5.8). The results seem 

to agree with the visual inspection of the performance of the model in 

mimicking the mouth-occluded sequence. It confirms that the non-scaled 

and the ×1.5 scaled mimicries are doing best (a perfect reconstruction 

would be equal to the ground-truth and would lay flat on the x-axis). It even 

detects that on frame 134, the animation produced by applying a 1.5 scaling 

factor should be closer to the ground-truth than the one with no scaling 

factor, which is what was detected perceptually in fig.5.6. 

 

Figure 5.8 – This shows that the mimicry with no scaling factor and the one with a small 1.5 scaling factor are 

closest to the ground-truth (x-axis), seemingly agreeing with the visual inspection results. 
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The standard deviation error graph looks very similar to the mean error one 

but with accentuated differences between the respective frames (fig.5.9). 

 

Figure 5.9 – Standard deviation differences 

 

A single numerical value for these errors can be obtained by taking the 

mean values of both luminance and contrast differences across frames of 

the produced occlusion-affected mimicries: 

 mo2f mo2fx1.5 mo2fx3.0 mo2fx4.5 

Mean of all ,x yME  3.4639 4.3966 11.5584 17.5835 

Mean of all ,x ySD  6.4410 8.5793 22.8282 31.5885 

 

Table 1 The table indicates that the mimicry produced without rescaling the PC coefficients (mo2f) has the 

smallest mean value of mean errors and standard deviations per frame. This doesn’t correspond with visual 

inspection results, which seem to indicate that the mo2fx1.5 mimicry is closer to the ground-truth! 
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However, the results of table 1 show the mimicry produced without 

rescaling the PC coefficients as the closest one to the ground truth, which is 

not what was perceived by visual inspection by human subjects. So even 

though the graphs 5.8 and 5.9 seem to suggest that the mean and standard 

deviation of the frame differences could work as good bases for image 

quality metrics, averaging (or summing for that matter) these values in order 

to obtain single-numerical quantitative measures of reproduction quality 

doesn’t produce an accurate prediction of perceived quality of the mimicry, 

as compared with the ground-truth. 

A good explanation for the failure of this class of metrics is given by Wang 

et al. (2004). They point out that while these types of quality metrics are 

simple to calculate and have clear physical meanings they do not take into 

account the fact that the human visual system is highly adapted to extract 

structural information from the visual scene. The mean and standard 

deviation just don’t do that. In fact, these metrics implicitly assume that all 

pixel intensities are independent, which means that the ordering of the pixel 

intensities should have no effect on the overall distortion measurement. 

This is in sharp contrast to the fact that natural image signals are highly 

structured and that the ordering and pattern of the signal samples carry 

most of the visual information in the image. Therefore, an accurate metric 

of image quality should be able to capture the structural information and/or 

sense the structural changes in the image signals. 

A simple demonstration can show why these metrics are unsuitable to 

predict image quality as perceived by the human visual system. It is quite 

possible to take an image and distort it by operations of mean shifting, 

contrast stretching, Gaussian blurring and compressing, while keeping the 

ME value constant. However, visual inspection of the resulting images 

clearly shows great variation in perceived quality (fig.5.10) 
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Figure 5.10 – Images are represented here as points (or vectors) in this n-dimensional image space. A is the original 

image, B the blurred image with ME = 15.4, C the JPEG compressed image with ME = 15.6, D the contrast 

stretched image with ME = 15.3, and E the mean shifted image with ME = 15.3. Despite the fact that these 

images are points on virtually the same hypersphere they display noticeably different visual quality.  

 

What Wang et al. suggest is a metric that combines the luminance and 

contrast estimates, together with an estimate of the normalised signals. So if 

the luminance of an image x was defined as: 

1

1 n

x i
i

x
n

µ
=

= ∑  

then the luminance comparison function l(x, y) is defined as l( ,x yµ µ ). The 

mean intensity values are then removed from the image signals (zero-
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centring) and the contrast is defined as an unbiased estimate by the standard 

deviation: 

1
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The contrast comparison c (x, y) is then defined as c ( ,x yσ σ ). Then, the 

signals are normalised by their own standard deviation, thus forming the 

third component of the metric: 
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Finally the three elements of the metric are combined to form an overall 

similarity measure: 

( , ) ( ( , ), ( , ), ( , ))S f l c s=x y x y x y x y  

They complete the definition of their similarity measure by defining the 

three functions ( , ), ( , )l cx y x y  and ( , )s x y , as well as the combination 

function f. Details can be found in Wang et al. (2004). The result is a class of 

image similarity measures which they call collectively as Structural SIMilarity 

(SSIM) Indices between signals x and y: 

1 , 2
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1 2
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where 1C  and 2C  are constants introduced to avoid instability when 

x yµ µ+  or x yσ σ+  are very close to zero. The design of this metric ensures 

symmetry, ( , ) ( , )S S=x y y x ; boundedness, ( , ) 1S ≤x y ; and a unique 

maximum, where ( , ) 1S =x y  iff =x y . 
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Applying the SSIM metric to faces from figure 5.10 we get results that 

correspond very well with human visual inspection results, as can be seen in 

fig.5.11. 

 

Figure 5.11 – SSIM values for E (mean-shifted) and D (contrast-stretched) images are a lot higher than those for B 

(blurred) and C (JPEG-compressed), which is consistent with the perceptual quality of the images. The smaller 

boxes show SSIM index maps of the respective images, where brighter indicates better quality. 

 

The same correspondence is observed when applying SSIM to the mimicry 

sequences (single frame SSIM indices are added up and divided by the 

number of frames, giving mean SSIM, or MSSIM). This is described in table 

2. 
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 mo2f mo2fx1.5 mo2fx3.0 mo2fx4.5 

ME 3.4639 4.3966 11.5584 17.5835 

MS 6.4410 8.5793 22.8282 31.5885 

MSSIM 0.7936 0.8399 0.5621 0.2375 

 

Table 2 – MSSIM indicates that the mo2fx1.5 mimicry is closest to the ground-truth, followed by mo2f, then 

mo2fx3.0 and finally by mo2fx4.5. This corresponds with visual inspection results. 

 

Wang et al. expanded the testing of the SSIM metric by comparing the 

results of the metric with the visual evaluations of a number of JPEG 

compressed images by 25 human subjects. They repeated this experiment 

with other metrics. SSIM came top vs every other metric tested (Wang et al 

2004). This, together with our results, validates the use of this metric in 

quantitative evaluation of mimicry quality and in optimising the parameter 

settings of the PCA face model for even more photorealistic retrieval of 

occluded information. The metric was applied to all other types of artificial 

occlusion mimicries from the database and correctly predicted the best 

perceived mimicries. 

So this metric performs well in comparisons between artificially-occluded 

sequence mimicries and the ground-truth from which the artificially-

occluded sequences were generated. But what happens if the drivers are 

naturally-occluded sequences? In such cases there will be some temporal 

misalignment, since no actor can repeat saying a sentence in exactly the 

same time as they did during the capture of the non-occluded ground-truth 

sequence. 

In tests using the luminance and contrast differences alone, this 

misalignment caused the lower end of mean errors and standard deviation 

values to more than double, suggesting that the animation from natural-
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occlusion drivers is much worse (fig.5.12). However, on visual inspection of 

the mimicries there is very little difference, in fact if we compare like for 

like, an animated avatar driven by a sequence with a computer generated 

mouth occlusion with one driven by a sequence with a natural mouth 

occlusion, like a hand over the mouth, is virtually impossible to tell apart. 

 

 

Figure 5.12 – This shows no clear separation between the mimicries with a considerable number of frame mean 

error comparison results not agreeing with the visual inspection results. 

 

MSSIM performed better yet again, but the similarity measures are a bit 

lower than the artificial occlusion ones, which can be attributed to the 

dissimilarity contributed by the temporal misalignment of the natural 

occlusion-affected mimicries and the ground-truth (table 3). 
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 mo2f mo2fx1.5 mo2fx3.0 mo2fx4.5 

ME 7.9584 10.2336 15.3504 21.0026 

MSSIM 0.6654 0.7596 0.4005 0.2068 

 

Table 3 – MSSIM indicates that the mo2fx1.5 mimicry is closest to the ground-truth, followed by mo2f, then 

mo2fx3.0 and finally by mo2fx4.5. This corresponds with visual inspection results. 

 

Chapter 5 summary 

Effects of non-systematic facial appearance variation such as partial 

occlusions on face perception and analysis have not been studied to the 

same extent as the effects caused by changes in viewpoint, expression or 

illumination direction and intensity. However most studies of facial 

occlusion that have been conducted have indeed tended to make use of 

PCA and the information contained in the eigenface subspace to 

compensate for the details lost due to partial occlusions of the face. This 

property was demonstrated using the PCA-based mimicry system in chapter 

4, where occlusions were randomised. In this chapter, a database of video 

sequences affected by non-random occlusions (artificial, natural and 

dynamic) was created. These sequences were used to drive a PCA-built 

avatar and the mimicries obtained in this way were compared to the ground-

truth mimicry which in turn was produced using a non-occluded driver.  

Visual inspection of the resulting mimicries results show that the motion 

information from the occluded areas can indeed be correctly reproduced by 

the system, albeit in a weaker and somewhat muted form as compared to 

the ground-truth (the occluded mouth-area results were used throughout as 

a representative case in this chapter, mainly due to the superior complexity 

of behaviour stemming from this area and its importance in human 

communication and interaction). To amplify the muted reproductions of 

facial behaviour, the facial actions were exaggerated through principal 
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component coefficient scaling by arbitrary scalars. Visual inspection again 

showed that certain factors did indeed appear to increase the similarity of 

the occlusion-affected mimicries as compared to the ground-truth. In order 

to provide an objective evaluation and a basis for an optimization of the 

model, a number of performance metrics were suggested. Simple error 

quantisation metrics such as mean error (frame luminance difference) and 

standard deviation error (frame contrast difference) didn’t seem to 

correspond well to visual inspection results due to their inability to take into 

account any structural information with the images compared. However, a 

metric - suggested by Wang et al. and named Structural Similarity Index 

(SSIM) - that combined these two measures together with a normalisation 

component did indeed succeed in predicting perceived image, and 

consequently, mimicry quality in all occlusion cases. 

All improvements by coefficient scaling described in this chapter were 

achieved by arbitrary and heuristic scaling of the whole matrix of 

coefficients.  The side-effect of such an approach was an anomalous 

exaggeration of the other facial areas, which became rather like caricatured 

animation when the multiplier is too high. To combat these shortcomings 

ways of manipulating specific PC coefficients, together with other methods 

of component analyzes, are developed in the next chapter. 
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Chapter 6 

 

INDEPENDENT COMPONENT ANALYSIS FOR IMPROVED 

FACIAL MIMICRY 

PCA carries out a decorrelation of the input data, but does not deal with 

dependencies of the higher order (Joliffe 1986). What decorrelation means is 

that the variables cannot be predicted from each other using a simple linear 

predictor. This means that there can still be nonlinear dependencies between 

them that PCA would not be able to analyse. A clear example of this is, for 

instance, a trigonometric function, say cosine. In cos( )y x= , x  and y  are 

clearly related and highly dependent of each other, but their correlation 

value would still be zero! In image processing, edges are another example of 

a high-order dependency, as are elements of curvature and shape. 

Independent component analysis (ICA) is a generalization of PCA that separates 

the high-order dependencies in the input, in addition to the second-order 

dependencies. PCA encodes second-order dependencies in the data by 

rotating the axes to correspond to directions of maximum covariance. It 

models the data as a multivariate Gaussian and places an orthogonal set of 

axes such that the two distributions are completely overlapping. ICA does 

not constrain the axes to be orthogonal, and attempts to place them in the 

directions of statistical dependencies in the data (fig.6.1). Each weight vector 

in ICA attempts to encode a portion of the dependencies in the input, so 

that the dependencies are removed from between the elements of the 

output (Comon 1994). This characteristic of ICA is advantageous for the 

purposes of this study because in the context of face behaviour it promises 

to produce a set of statistically independent basis actions which encode local 

rather than global changes.  
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Figure 6.1 – A 2-D data distribution and corresponding PC and IC axes (Lewicki & Sejnowski 2000). 

 

IC representations of face information vectors 

As mentioned in the previous chapter, any exaggeration of specific principal 

components has unwanted side-effects in the mimicry results because PCs 

don’t describe single localised facial actions but combinations thereof, i.e. 

more global changes. Since this behaviour generally and inherently consists 

of combinations of localised unit actions, it is these combinations that will 

be encoded by single principal components. So as a result, when an 

amplification of the action of the mouth and lips was attempted by 

exaggerating the relevant PC, it also amplified the actions and behaviour of 

eyes and eyebrows in the resulting mimicry. This was an unwanted side-

effect that invariably deteriorated the quality of the mimicry. 

ICA, in the other hand, offers a way of encoding more local basis actions 

that are independent from each other and thus can be manipulated 

individually without the above mentioned side-effects. Just as with PCA, a 

set of Mtrain training vectors containing both shape and texture information 

from the morph-vectorised sequence of the individual whose the face we 

wish to drive, 
1 2

{ , ,..., }
trainM

=X x x x , is zero-centred. This is then put into 
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matrix Φ  such that
1 2

{ , ,..., }
trainM

=Φ φ φ φ , where
i i train

= −φ x µ . ICA then 

extracts a set of independent basis vectors 
1 2
, ,..., }PU = {u u u  from the 

training set, with 
train

P M≤ .   

The task of finding these independent components is formulated as an 

estimation of the source signals S and identification of a mixing matrix H  

assuming only the statistical independence of the primary sources, i.e. 

independent components, and the linear independence of columns ofH . 

The generative model can be represented in batch or matrix form as: 

Φ = HS  

The inverse form used to find the source signals isS = WΦ , where one 

estimates the pseudo-inverse un-mixing (or separating) matrix Wwhich 

then yields the source independent components on matrix multiplication 

with the input matrix. The unknown matrices are estimated so that the rows 

of S  and columns of W are as independent as possible. This independence 

is measured by an information-theoretical cost function such as the 

Kullback-Leibler distance or other criteria like sparseness or linear 

predictability.  

So the face vectors in Φ  were all assumed to be a linear combination of an 

unknown set of statistically independent source images S  mixed by an 

unknown mixing matrixH . The sources were then recovered by a matrix of 

learned filters W  which produced the statistically independent outputs 

U (fig.6.2) 
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Figure 6.2 – Vectors in Φ  were all assumed to be a linear combination of an unknown set of statistically 

independent source images S mixed by an unknown mixing matrix H. The sources were then recovered by a 

matrix of learned filters W which produced the statistically independent outputs U. 

 

Application of ICA to occlusion-affected PCA-based 

mimicries 

Can these independent component outputs be used firstly to produce 

mimicries and secondly to improve the quality of the occlusion-affected 

mimicries? The full mimicry method used in this thesis was described on 

chapter three. After completing the morph-vectorisation of both the 

training and the driving set and the extraction of the PCs from the training 

set, there was the key step of projecting the N-dimensional vector 

containing the vectorised driver information, 
i
ψ , into the P-dimensional 

subspace described by the principal components basis 
1 2 P

B = {b ,b , ...,b } : 

T
i i=c B ψ  
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which produced the coefficients ic  that were used with the PCs to 

construct the mimicry. 

However, this method only works in the case of principal component bases, 

because this basis set is comprised of eigenvectors that are orthonormal by 

definition, so 
T =B B I , which implies that B  is the inverse transformation 

and: 

i i train= +z Bc µ  

thus giving the image vectors iz , representing the result, an avatar driven by 

the facial actions of another. In the case of ICA, the resulting basis vectors 

or independent components are not mutually orthonormal and form a 

subspace totally different from that formed by the driving vectors, thus 

rendering the orthogonal projection step, and consequently the 

performance-based mimicry, impossible. Simply put, projecting the driving 

vectors onto U wouldn’t make any sense because these spaces are neither 

mutually orthonormal nor equivalent as they are in the case of PCA.  

There is also the additional problem of component ordering. In PCA the 

components are ordered automatically based on their corresponding 

eigenvalues, starting with the one with the highest eigenvalue. This way the 

top few PCs encode a very high percentage of the variation in the data, thus 

a projection onto those first few PCs provides a good reproduction of the 

data. ICA doesn’t automatically provide a way of ordering the resulting ICs 

so arbitrary measures have to be used to create some type of ordering. This 

means that even if projection was feasible, selecting the correct necessary 

ICs is a much more difficult task. 
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Manipulating the ICs of facial mimicries 

This doesn’t mean however that ICA cannot be used to improve the quality 

of occlusion-affected mimicries. The PCA produced mimicries could be 

morph-vectorised post-production and at that point ICA could be 

performed on them. This should generate the ICs of the mimicry which 

could then be manipulated by exaggerating their coefficients without the 

drawbacks displayed by the equivalent manipulations of PCs. 

So firstly, a PCA-based performance-driven mimicry was produced using a 

driver with an artificially occluded mouth area. To strengthen the case, a 

driver of a different identity from the avatar was used (Glyn as driver, Fatos 

as avatar). This, as described in chapter 5, results in a mimicry displaying 

rather muted mouth area actions. The morph-vectorised frames of this 

mimicry are then processed using the ICALAB toolbox for Matlab 

(Cichocki et al 2003). The Fast or Fixed Point algorithm (Hyvärinen & Oja 

1997) was used as standard throughout the experiments, due to its superior 

speed. No pre-processing was done and the mixing matrix H was selected 

to be an identity matrix, which is standard procedure for real-world data. 

Results 

As expected, ICA produced components that generally describe more 

localised facial behaviour and actions. Results looked very promising, since 

behaviour seemed to be encoded across the ICs, as opposed to 95% of 

variance usually encoded in first 4 or 5 PCs (figs.6.3, 6.4 and 6.5). The fact 

that individual components were now encoding more straightforward, local 

actions and less complex, global behaviour meant that manipulation of these 

components should allow for a more precise recovery of occlusion-affected 

facial behaviour and actions. 
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The relevant ICs (in this case, the ones that encode mouth movements) 

were identified by applying a complementary occlusion to the original 

occlusion onto the ICs and then calculating a simple SSIM value between 

the visible facial fragment from each of the ICs and their +2SD version. ICs 

with SSIM values below an arbitrary threshold were selected and scaled to 

produce a movie containing ICA-enhanced frames (see figure 6.6 for a 

diagram of the full ICA-enhancement procedure). 

This scaling was done heuristically by settling on a scaling combination that 

produced the frames displaying smallest error as compared with the ground-

truth mimicry frames. Component or basis coefficients cannot be compared 

this time, so a metric calculating the warp field (WF) between the respective 

image frames of the resulting ICA-enhanced mimicry and the ground-truth 

was used to evaluate the quality of the reproduction. Note that MSSIM 

works just as well; WF was used as a possible alternative in this experiment 

and because the procedure was already coded in the morph vectorisation 

routines used throughout this thesis. 

Both visual inspection and the WF metric show good improvement in ICA-

enhanced mimicries (figs.6.7 and 6.8) 

The experiment was then expanded to include 10 more subjects plus Glyn 

as drivers, with Glyn as the avatar. This is to strengthen the case and prove 

that even facial behaviour that is not at all identical to that of the avatar can 

be quite successfully reproduced and enhanced using this ICA method.  
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Figure 6.6 – Block diagram of the ICA-enhancement of occlusion-affected mimicries  
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Figure 6.7 – The left-most frame displaying a mouth-occlusion is the driver used to produce the mimicry. The 

second frame from the left represents the PCA-based mimicry frame reproduction, without any enhancements. 

The third frame from the left is the ICA-enhanced reproduction while the right-most frame is the ground-truth, 

obtained by using a non-occluded driver. It can be just seen that the mouth area in the ICA-enhanced 

reproduction is more similar to the ground-truth than to the PCA-based mimicry. 

 

 

 

Figure 6.8 – It is clear that in both cases (Glyn driver -> Fatos avatar and Glyn driver -> Glyn avatar) ICA-

enhanced mimicry does much better than a simple PCA-based mouth-occlusion driven mimicry, as compared with 

the ground-truth. 
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The results show a clear improvement when compared with the PCA-based 

mimicry (figs. 6.8, 6.9, 6.10). Dependent sample t-test also shows that the 

probability of obtaining such an increase in quality of mimicries by pure 

chance is well below the p = 0.05 limit (table 4). Thus we can safely 

conclude that the results support the experimental prediction that ICA post-

processing significantly improves warp-field correlation of mimicries with 

the ground truth, corresponding to a perceptual increase in quality of 

mimicry. 

 

 

Figure 6.9 –.The green bars show the correlation as found by means of WF calculation between respective frames 

of the tested ICA-enhanced occlusion-affected mimicry and the ground-truth. Red bars display the correlation 

between the non-ICA occlusion-affected mimicry and the ground-truth. 
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Figure 6.10– Mean values of the correlations displayed in fig.6.9. 
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Summary of chapter 6 

Coefficient scaling of PCs was shown to cause some unwanted side-effects 

in the attempts to enhance muted occlusion-affected mimicries. This is 

because PCA tends to describe more global changes, thus grouping together 

basic facial actions that occur together during normal facial behaviour. PCA 

seems to pick this global correlated activity, with the added benefits of 

natural ordering and orthogonality. ICA on the other hand encodes into its 

components more local actions that are mutually independent, even though 

in reality a lot of these movements are correlated and go together.  

So ICA seems very suitable for “adding manual strings to the puppet” that 

can clearly enhance affected mimicries, but it was shown in this chapter that 

it is not suitable at all for purely automatic, performance-driven mimicry. 

This is due to two factors that are intrinsic to the way ICA works. The first 

one is the fact that ICs are not mutually orthonormal, which given the 

length of the vectors makes it virtually impossible to project onto this 

subspace and extract the weights needed to drive the mimicry. The second 

factor is the lack of a natural ordering of the ICs. This makes it difficult to 

keep and discard important ICs in a principled way. 

However, because behaviour seems to be encoded across the ICs in a rather 

uniform way, as opposed to having 95% of variance encoded in first few 

PCs, ICA is as a much more powerful tool in post-processing enhancements 

of PCA-based mimicries. The ability to localise actions meant this method 

could be used successfully to enhance occlusion-affected mimicries. The 

ICA-enhanced reproductions are of high quality and far superior than the 

simple occlusion affected PCA-based mimicry. This claim is backed up by 

both visual inspection and warp field calculation against the non-occluded 

ground-truth mimicry. The results prove that this method is a good 

candidate for post-processing enhancement of occlusion-affected mimicries. 
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Chapter 7 

 

CONCLUSIONS 

Summary of thesis 

The human face is a complex organ of communication that is used to 

transmit a wide spectrum of social signals and messages. Its structure is 

specialised and the signals it conveys can contribute to perceptions of the 

bearer’s facial identity, expression, sex and more. The perception of these 

signals is achieved by a system with multiplicity of components processing 

separate signals, and there is ample evidence to suggest that both the 

component processes and the location of early processes of face recognition 

(FFA) are face-specific. Psychophysical and neuropsychological experiments 

also seem to suggest that while object recognition is analytic and part-based, 

face perception and recognition is holistic and configural. Looking at other 

psychophysical evidence, it appears that a viewpoint or lighting invariant 

representation of faces is not present in our visual system (although possibly 

size-invariant representations are), and that most importantly, we seem to 

store faces in a two-dimensional manner. Thus a two-dimensional, image-

based approach could be very effective in encoding facial identity, 

expressions and sex.  

Due to the fact that the human face is essentially a 3D structure, a number 

of 3D facial representations and computational models have been used in 

realistic head and face modelling, like polygonal mesh, implicit, and 

parametric representations of the surface of the face. Volume 

representations were also employed, together with the more complex 

dynamic representations of facial muscles. Advanced morphable 3D models 

of Blanz and Vetter also produce good results and show a lot of promise in 
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the context of face modelling. However, the greatest drawback of this class 

of models is that they require huge resources, be it in computational or 

human terms, to achieve any sufficiently compelling results to fool the 

human visual system. By considering the internal processes involved in the 

perception of faces, a more practical class of representations is introduced 

that takes into account the evidence which suggests that our visual system 

seems to process faces in a two-dimensional manner. A more global, 

configural approach is proposed, one that chooses the parameters to 

account for essential sources of variance, i.e. PCA. This statistical modelling 

approach and the biological motivations for its use in this context are 

reviewed. 

In chapter 3, a method for automatically creating computer-generated 

avatars was described. The model can be driven by real actors, simply by 

aligning features and projecting vectorised sequences of their motion into 

the target space. The target space itself is nothing but a basis set extracted 

by performing PCA on a video footage of the target face in action. Novel 

footage of the computer generated avatar can thus be produced, mimicking 

the driving actor’s movements, all in reasonable amount of time despite 

quite high computational costs of the generating and driving procedures. 

Resulting animations are confined to vary as a linear combination of 

movements from the example set, so the generated footage is realistic, 

seemingly without ever drifting into the “uncanny valley” (Mori 1970). This 

confinement of the set of possible animation elements may look like a 

limitation, but in fact it is largely advantageous in preventing the avatar from 

doing anything that the original face was incapable of doing, this possibly 

being the very factor that prevents the “uncanny valley” effect from 

occurring here. And provided a sufficiently rich set of motion is captured 

for the generation of the model, these constraints do not pose a problem. 

The coefficients for a sequence can be transformed in the target face space, 

in order to exaggerate, or rescale movements to be consistent with the 
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example footage. This is a useful processing step in conditions where the 

facial geometry is such that the novel vectors do not project strongly onto 

the target basis set, such as for example in the case of a driver with occluded 

facial regions. 

Our ability to process faces is known to depend on the spatial location of 

visual facial information we receive. A good method for revealing such 

diagnostic facial information for different categorisation tasks is the 

“bubbles” method. Here it succeeds in revealing diagnostic information for 

a performance-driven mimicry task carried out by a computer model of the 

face, built to a degree on biologically motivated principles. The face model 

was generated by first vectorising a sequence of images of a talking face 

affected by a total occlusion interspersed with a number of randomly spaced 

Gaussian windows and then by extracting motion fields via an optic flow 

algorithm and calculating a set of basis actions using principal component 

analysis. This standard bubbles technique revealed the areas around and 

including the mouth and eyes as the most important ones for our task. 

These regions overlapped with but were not identical to areas of maximum 

pixel-value variance. Visual inspection also showed that the PCA face model 

recovers aspects of expressions in those areas occluded in the driver 

sequence. Until now bubbles were only used as a human search for 

diagnostic features in faces. Here, a system using reconstruction fidelity as 

diagnostic criterion and indifferent to the content of the stimulus, mimics 

the behaviour of human observers in face discrimination tasks. This 

information could be also very useful in further analyzing and retrieving 

non-randomly occluded facial information. 

Effects of non-systematic facial appearance variation such as partial 

occlusions on face perception and analysis have not been studied to the 

same extent as the effects caused by changes in viewpoint, expression or 

illumination direction and intensity. But most studies of facial occlusion 
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have tended to make use of PCA and the information contained in the 

eigenface subspace to compensate for the details lost due to partial 

occlusions of the face. This property was demonstrated using the PCA-

based mimicry system in chapter 4, where occlusions were randomised. In 

this chapter, a database of video sequences affected by non-random 

occlusions (artificial, natural and dynamic) was created. These sequences 

were used to drive a PCA-build avatar and the mimicries obtained in this 

way were compared to the ground-truth mimicry which in turn was 

produced using a non-occluded driver. Visual inspection of the resulting 

mimicries results show that the motion information from the occluded areas 

can indeed be correctly reproduced by the system, albeit in a weaker and 

somewhat muted form as compared to the ground-truth (the occluded 

mouth-area results were used throughout as a representative case in this 

chapter, mainly due to the superior complexity of behaviour stemming from 

this area and its importance in human communication and interaction). To 

amplify the muted reproductions of facial behaviour, the facial actions were 

exaggerated through principal component coefficient scaling by arbitrary 

scalars. Visual inspection again showed that certain factors did indeed 

appear to increase the similarity of the occlusion-affected mimicries as 

compared to the ground-truth. In order to provide an objective evaluation 

and a basis for an optimization of the model, a number of performance 

metrics were suggested. Simple error quantisation metrics such as mean 

error (frame luminance difference) and standard deviation error (frame 

contrast difference) didn’t seem to correspond well to visual inspection 

results due to their inability to take into account any structural information 

with the images compared. However, a metric - suggested by Wang et al. 

and named Structural Similarity Index (SSIM) - that combined these two 

measures together with a normalisation component did indeed succeed in 

predicting perceived image, and consequently mimicry, quality in all 

occlusion cases. 
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All improvements by coefficient scaling described in chapter 5 were 

achieved by arbitrary and heuristic scaling of the whole matrix of 

coefficients. The side-effect of such an approach was an anomalous 

exaggeration of the other facial areas, which became rather like caricatured 

animation when the multiplier is too high.  

To combat these shortcomings other ways of manipulating specific PC 

coefficients, together with other methods of component analyses, are 

developed in chapter 6. ICA represents a generalised form of PCA that 

encodes into its components more local actions that are mutually 

independent, even though in reality a lot of these movements are correlated 

and go together. It is a very suitable method for “adding manual strings to 

the puppet” that can clearly enhance affected mimicries, but it is not suitable 

at all for purely automatic, performance-driven mimicry due to two factors 

that are intrinsic to the way ICA works. The first one is the fact that ICs are 

not mutually orthonormal, which given the length of the vectors makes it 

virtually impossible to project onto this subspace and extract the weights 

needed to drive the mimicry. The second factor is the lack of a natural 

ordering of the ICs. This makes it difficult to keep and discard important 

ICs in a principled way. Nevertheless, because behaviour seems to be 

encoded across the ICs in a rather uniform way, ICA is as a much more 

powerful tool in post-processing enhancements of PCA-based mimicries. 

The ability to localise actions meant this method could be used successfully 

to enhance occlusion-affected mimicries and ICA-enhanced reproductions 

are of high quality and far superior than the simple occlusion affected PCA-

based mimicry. This claim is backed up by both visual inspection and warp 

field calculation against the non-occluded ground-truth mimicry. The results 

prove that this method is a good candidate for post-processing 

enhancement of occlusion-affected mimicries. 
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Discussion of contributions 

Most current methods of animating a face from an actor’s movements have 

focussed mostly on modelling the face as a 3D polygonal surface. Realism is 

then attained through many hours of work by a talented artist, or through 

capturing the geometry of a real face with equipment such as a laser scanner. 

A complex underlying muscle model is then usually added, in order to make 

the model moveable and a lot of skill is still required on the part of the 

operators of such models to achieve photorealism. Still, with addition of 

movement and behaviour such synthetic models begin to usually look very 

unrealistic and less than natural, rolling quickly into Mori’s “uncanny valley”. 

The Cowe PCA-based face mimicry model used in this work discards the 

complexities of 3D and adopts a simpler 2D representation, which could 

also be a closer match with our own brain’s representation of faces. With 

this tool photorealism is achieved automatically because the resulting 

animations are confined to vary as a linear combination of original 

movements from the example set, so the generated footage is always 

realistic. 

PCA was shown to be a form of auto-associative memory (Valentin et al 

1994). A few years previous to that, Cottrell demonstrated that in auto-

associative networks a whole face can be recovered from a partial, static 

facial input (1990). Motivated by these findings, the PCA-based mimicry 

model was used for the first time to attempt photorealistic reconstruction of 

missing dynamic facial information from occlusion-affected faces. This task 

was successfully achieved for the same reasons Cowe’s non-occlusion PCA-

based mimicry was successful - because again the reconstruction is 

essentially a linear combination of the shape and texture vectors on which 

PCA was performed. The PCA eigenvectors are linear combinations of the 

original data. So given that the occlusion is generally distant from the 

portion of image space spanned by the PCs, the projection of the face 

vectors onto the component axes will be dominated by the face portions of 
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the vector, and will reconstruct images and actions that are very similar to 

the images and actions of the original face. 

Similarity, or reconstruction quality, depends on a number of factors. Visual 

inspection showed that some of these factors, such as the size and especially 

the position of the face occlusion, are very important for PCA-based 

mimicry. In this thesis, a novel experiment was designed that employs a 

principled method previously only used with human subjects as evaluators. 

The task of this experiment was to locate the pertinent areas of the face for 

high fidelity mimicry. This bubbles experiment in an ideal-observer, in-silico 

set-up was successful in mapping out areas of the face that convey the best 

information used in automatic PCA mimicry, with reproduction fidelity as a 

simple diagnostic criterion for comparison with the ground-truth mimicry. 

These areas convey the best information about global facial configuration. 

This fact was confirmed when mimicries created with dynamic driving 

information emanating only from these areas of the face produced very high 

quality mimicries. The high quality of these reproductions was observed by 

way of visual inspection, but also by using a Pearson correlation metric to 

compare the set of respective PC coefficients used in the generation of 

those same reproductions vs the ground-truth coefficients. 

Scaling the same PC coefficients by a constant can increase or decrease the 

amplitude of facial actions in the mimicry. This thesis manages to use this 

scaling method to improve occlusion affected mimicries. It also carries out a 

detailed analysis to identify an image-based metric that can be used with 

dynamic facial image and action data and reliably evaluate the quality of the 

mimicries. 

Scaling PCs though can cause a lot of unwanted effects and artefacts in the 

produced mimicries. This is because PCs encode global facial behaviour, 

thus their scaling too will affect the reproduced facial behaviour globally. In 

order to overcome this drawback, this thesis provides a novel way of using 
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ICA to enhance or modify facial actions recorded in video footage. The idea 

involves vectorising the shape and texture information of all the sequence 

frames and then extracting a set of statistically independent components 

from that dataset. These components encode local facial behaviour and thus 

are more suitable for applying specific modifications of the image/sequence. 

They were then used as a novel method for enhancing generally all types of 

footage but specifically and most importantly for this thesis, enhancing 

muted occlusion-affected mimicries without causing unwanted side-effect in 

the reconstruction of facial behaviour. A new metric based on calculations 

of the warp field between two corresponding images was proposed and 

successfully used. As a final result, it was shown that this method, post-

processing ICA-enhancement of footage, can be successful in improving 

occlusion-affected mimicries by heuristic manipulation of the IC 

coefficients. 

Future work  and applications 

In the future, a number of of opportunities is available for testing more 

powerful and versatile vectorisations, such as encoding multiple camera 

views into one long vector. This type of vectorisation could help the PCA-

model dealing better with the types of dynamic occlusions like a moving 

hand or a head turning from side to side. As mentioned in chapter 5, such 

dynamic iconic changes cause the system to fail and produce mimicries that 

are rather flawed. A vector containing 3D info would offer a solution to 

such problems. 

The procedure of coefficient scaling is currently heuristic, i.e. a user selects 

arbitrary scaling values for the relevant IC (or PC) coefficients according to 

the visually assessed quality of the mimicries. An automated procedure 

could be implemented that deploys possibly a gradient-descent-type 

algorithm with a SSIM cost function in order to arrive at an optimal 

combination of scaling values, producing thus even better mimicry 

reproductions in a much more principled and efficient way. 
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Overall, the combination of performance-driven PCA-based mimicry and 

ICA-enhancements produces good results in the retrieval of occluded facial 

information. The technology can be seen, in its present form, to have the 

capabilities to improve animation quality, and speed up an expensive 

process in the film and entertainment or computer games industry. Two-

dimensional models may not be appropriate for the current needs of these 

industries, but the performance-driven techniques could be used to animate 

handcrafted models.  

Facial animation in these industries, however, is considered to be an artistic 

activity and animators are wary of full automation. An automated first-pass 

animation could provide time savings, but it would not be easy introducing 

such a product into an industry with such a strong culture of manual 

production. Where the ICA-enhancement manual methods could come in 

handy is in post-production roles. It could be possible to extract ICs from 

any type of footage, sound or a combination thereof, thus offering endless 

possibilities of further manipulation. 

Together with the general findings about the structural importance of the 

face for photorealistic mimicry this thesis could provide a set of tools and 

information that could find applications also security, telecommunications 

and image processing software industries. Finally, there could be 

applications in psychological research, for instance to create and manipulate 

facial stimuli in order to generate specific facial configurations and 

expressions. 
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