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Abstract

We prove existence of mixed strategy equilibria for a class of dis-
continuous two-player games with non-compact strategy sets. As a
corollary of our main results, we obtain a continuum of mixed strat-
egy equilibria for the first- and second-price two-bidder auctions with
toeholds. We also find Klemperer’s (2000) result about the existence
of mixed strategy equilibria in the classical Bertrand duopoly.
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1 Introduction

The aim of this paper is to show the existence of Nash equilibria in mixed
strategies for a class of two-player discontinuous games with complete in-
formation in which the strategy sets are non-compact. The problem of the
existence of equilibria in discontinuous games has been already addressed by
Dasgupta and Maskin (1986a, 1986b), Maskin (1986), Simon (1987), Simon
and Zame (1990), and, more recently by Reny (1999). Unlike the existing pa-
pers, we construct Nash equilibria in mixed strategies when players’ strategy
sets coincides with the set of real numbers.
Two classes of games fit into our theoretical framework: Two-bidder auc-

tions with toeholds and the standard Bertrand game (with unit demand). In
an action with toeholds, two bidders compete for an object. Each of them
owns a (strictly positive) share of the object. Their valuations and their
shares are common knowledge. Both bidders submit simultaneously sealed
bids, the higher bidder gets the object and buys her competitor’s share at the
selling price. The relevant feature of this game is that each bidder is a buyer
and a seller at the same time. A discontinuity arises from the tie breaking
rule. If ties are broken through any random device such that a bidder gets
the object with probability strictly less than one, players’ best responses are
not well defined. We prove that, by “opening” the players’ strategy space,
equilibria in mixed strategies do exist. However, the existence of equilibria
is not guaranteed by any fixed point theorem since the strategy set is not
compact. We prove existence by construction.
Our approach allows us to derive a continuum of mixed strategy equilibria

in the classical Bertrand game. This class of equilibria coincides with what
proposed by Klemperer (2000).
The rest of the paper is organized as follows. The next section describes

our assumptions and states the main existence results. We provide some
examples in Section 3. Section 4 concludes.

2 The Model

We consider two classes of games with complete information and prove exis-
tence of mixed equilibria for each of them.
Let ΓA = ({i, j} ,R×R, (ui, uj)) be a two-player game. Assume that if
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player i chooses strategy x ∈ R and player j plays strategy y ∈ R, then
payoff functions uk : R× R → R, k = i, j, are

(ui (x, y) , uj (x, y))A =

 (vi (y) , wj (y)) , if x > y
(wi (x) , vj (x)) , if x < y

(αvi (x) + [1− α]wi (x) , [1− α]wj (x) + αvj (x)) if x = y
,

where α ∈ [0, 1] is a random tie-breaking rule. The model allows any tie
breaking rule. We make the following assumptions about functions vk (t)
and wk (t), k = i, j. Since the strategy space is the set of real numbers,
players’ strategies will be called “numbers”.

A1. wk (t) is differentiable, k = i, j.

A2. w0k (t) ≥ 0, k = i, j.
AssumptionA2 simply says that, conditional on player i choosing the “higher”
number, player j wants to pick a number as close as possible to the one cho-
sen by player i. This happens, for example in the two-bidder second-price
auction with toeholds in which each bidder is a buyer and a seller at the
same time. Thus if bidder i submits the higher bid for the object, bidder j
wants to sell his share at the highest possible price.

A3. There exists t ∈ R, such that wk (t)−vk (t) > 0, for all t ≥ t and k = i, j.

The explanation for this assumption is as follows. There exists a threshold t
such that, for all actions greater than t, each bidder prefers being the “low”
strategy player than the “high” strategy player. The example of a two-player
auction with toeholds will clarify the role of this assumption. Consider bidder
i’s valuation vi. It easy to see that bidder i prefers being the seller (loser)
for all prices greater than his own valuation. Assumption A3 “guarantees”
that the payoff functions are discontinuous if players choose the same number
t ≥ t.
We finally assume

A4.

Z +∞

t

w0k (t) dt
wk (t) − vk (t) = +∞, for k = i, j

Assumptions A1-A4 guarantee our main result.
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Theorem 1 Suppose that assumptions A1-A4 hold. Then the game ΓA ad-
mits a continuum of equilibria in mixed strategies. For any t∗ ≥ t, the
following probability distribution constitutes a mixed strategy equilibrium:

Fj (t) =

(
0, if t < t∗

1− exp
h
− R t

t∗
w0i(s)ds

wi(s)−vi(s)

i
if t ≥ t∗ , (1)

where i 6= j.
Proof. Notice first that the distribution function Fj (t) is a positive,

strictly increasing function which satisfies Fj (t
∗) = 0 and Fj (+∞) = 1,

because of assumption A4. We show now that the distribution functions
from (1) constitute a mixed strategy equilibrium. Suppose that player j,
i 6= j, uses the c.d.f. Fj (t) above, then we have to show that (a) player
i’s expected payoff uAi is constant if he chooses a number x ∈ [t∗,+∞); (b)
player i’s expected payoff if he chooses a number x ∈ (−∞, t∗) is at most uAi .
(a) If player i chooses a strategy x ∈ [t∗,+∞), then his expected payoff

writes

E [ui (x, Fj (y))] =

Z x

t∗
vi (s) fj (s) ds+

Z +∞

x

wi (x) fj (s) ds, (2)

where the first integral in the right-hand side is player i’s expected payoff
if her number x is greater than the opponent’s number y, and the second
integral is player i’s expected payoff if her number x is smaller than the
opponent’s number y.
¿From the probability distribution function Fj (t) in (1), it is immediate

to get the density function fj (t):

fj (t) =

(
0, if t < t∗

w0i(t)

wi(t)−vi(t)
exp

h
− R t

t∗
w0i(s)ds

wi(s)−vi(s)

i
, if t ≥ t∗ .

Player i’s expected payoff (2) can be rewritten as

E [ui (x, Fj (y))] =

Z x

t∗
vi (y)

w0i (y)
wi (y)− vi (y) exp

·
−
Z y

t∗

w0i (z) dz
wi (z) − vi (z)

¸
dy+

+wi (x)

Z +∞

x

w0i (y)
wi (y)− vi (y) exp

·
−
Z y

t∗

w0i (z) dz
wi (z)− vi (z)

¸
dy.
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Using assumption A4, we get

E [ui (x, Fj (y))] = wi (x)

exp
− xZ

t∗

w0i (z) dz
wi (z)− vi (z)

+

+

xZ
t∗

[vi (y)− wi (y) + wi (y)] w0i (y)
wi (y)− vi (y) exp

− yZ
t∗

w0i (z) dz
wi (z)− vi (z)

 dy.
Player i’s expected payoff becomes:

E [ui (x, Fj (y))] = wi (x)

exp
− xZ

t∗

w0i (z) dz
wi (z)− vi (z)

−
−
Z x

t∗
w0i (y) exp

·
−
Z y

t∗

w0i (z) dz
wi (z)− vi (z)

¸
dy+

+

Z x

t∗
wi (y)

w0i (y)
wi (y)− vi (y) exp

− yZ
t∗

w0i (z) dz
wi (z)− vi (z)


or

E [ui (x, Fj (y))] = wi (x)

exp
− xZ

t∗

w0i (z) dz
wi (z)− vi (z)

−
−wi (x) exp

·
−
Z x

t∗

w0i (z) dz
wi (z)− vi (z)

¸
+ wi (t

∗)−

−
Z x

t∗
wi (y)

w0i (y) dz
wi (y)− vi (y) exp

·
−
Z y

t∗

w0i (z) dz
wi (z)− vi (z)

¸
dy+

+

Z x

t∗
wi (y)

w0i (y)
wi (y)− vi (y) exp

·
−
Z y

t∗

w0i (z) dz
wi (z)− vi (z)

¸
dy,

and we finally obtain

E [ui (x, Fj (y))] = wi (t
∗) = uAi for any x ∈ [t∗,+∞) .
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(b) If player i chooses a strategy x ∈ (−∞, t∗), then i’s expected payoff is:

E [ui (x, Fj (y))] = wi (x) , (3)

because x < y in this case. From assumption A2, it follows that
wi (x) ≤ wi (t

∗) for any x ∈ (−∞, t∗). Hence, any x ∈ [t∗,+∞) is
a best reply to the probability distribution function Fj (t), from (1).

The same argument applies to player j. Hence the distribution functions
from (1) characterizes a mixed equilibrium.¥

We turn to the second possibility now. Consider the game ΓB = ({i, j} ,
R× R, (ui, uj)). Assume that if player i chooses a number x ∈ R and player
j chooses y ∈ R, then the payoff functions uk : R× R → R, k = i, j, are

(ui(x, y), uj(x, y))B =

 (vi (x) , wj (x)) , if x > y
(wi (y) , vj (y)) , if x < y

(αvi (x) + [1− α]wi (x) , [1− α]wj (x) + αvj (x)) if x = y
,

where α ∈ (0, 1). We make the following assumptions

B1. vk (t) is differentiable, k = i, j.

B2. v0k (t) ≤ 0, k = i, j.
Assumption B2 captures a feature of the first price auction (with or with-
out toeholds): the higher bidder prefers always to reduce his winning bid
(provided that no tie occurs).

B3. There exists t ∈ R, such that vk (t)−wk (t) > 0, for all t ≤ t and k = i, j.

This assumption simply says that there exists a threshold t such that, if player
i chooses a number x below t, then player j prefers to choose a number y such
that x < y < t. In a two-bidder first-price auction (with or without toeholds)
such a threshold will be the minimum of the two bidders’ valuations. Finally
we assume

B4.

Z t

−∞

v0k (t) dt
wk (t)− vk (t) = +∞, for k = i, j.

The main result for the class of games ΓB is the following
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Theorem 2 Suppose that assumptions B1-B4 hold. Then the game ΓB ad-
mits a continuum of equilibria in mixed strategies . For any t∗∗ ≤ t, the
following probability distribution constitutes a mixed strategy equilibrium:

Fj (t) =

 exp

·
−
Z t∗∗

t

v0i (s) ds
wi (s)− vi (s)

¸
, if t ≤ t∗∗

1, if t ≥ t∗∗
, (4)

where i 6= j.

Proof. Notice first that distribution function Fj (t) is a positive, strictly
increasing function which satisfies Fj (−∞) = 0 and Fj (t

∗∗) = 1, because
of assumption B4. We show now that the distribution functions from (4)
constitute a mixed equilibrium. Suppose that player j, i 6= j, uses the c.d.f.
Fj (t) above, as in the proof for Theorem 1, we have to show that (a) player
i’s expected payoff vBi is constant if he chooses a number x ∈ (−∞, t∗∗]; (b)
player i’s expected payoff if he chooses a number x ∈ (t∗∗,+∞) is at most
vBi .

(a) If player i chooses a number x ∈ (−∞, t∗∗], then i’s expected payoff is:

E [ui (x, Fj (y))] =

Z x

−∞
vi (x) fj (y) dy +

Z t∗∗

x

wi (y) fj (y) dy. (5)

¿From the probability distribution function Fj (t) in (4), it is immediate
to get the density function fj (t):

fj (t) =


v0i (t)

wi (t)− vi (t) exp
·
−
Z t∗∗

t

v0i (s) ds
wi (s)− vi (s)

¸
, if t ≤ t∗∗

0, if t ≥ t∗∗
.

The expected i’s payoff (5) can be rewritten as

E [ui (x,Fj (y))] = vi (x)Fj (x)+

+

Z t∗∗

x

[vi (y) + wi (y)− vi (y)] v0i (y)
wi (y)− vi (y) exp

− t∗∗Z
y

v0i (s) ds
wi (s)− vi (s)

 dy.
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This is equivalent to

E [ui (x,Fj (y))] = vi (x)Fj (x) +

Z t∗∗

x

v0i (y) exp

− t∗∗Z
y

v0i (s) ds
wi (s)− vi (s)

 dy+
+

Z t∗∗

x

vi (y)
v0i (y)

wi (y)− vi (y) exp
− t∗∗Z

y

v0i (s) ds
wi (s)− vi (s)

 dy,
or

E [ui (x, Fj (y))] = vi (x) exp

− t∗∗Z
x

v0i (s) ds
wi (s)− vi (s)

−vi (x) exp
− t∗∗Z

x

v0i (s) ds
wi (s)− vi (s)

+
+vi (t

∗∗)−
Z t∗∗

x

vi (y)
v0i (y)

wi (y)− vi (y) exp
− t∗∗Z

y

v0i (s) ds
vi (s)−wi (s)

 dy+
+

Z t∗∗

x

vi (y)
v0i (y)

wi (y)− vi (y) exp
− t∗∗Z

y

v0i (s) ds
vi (s)− wi (s)

 dy.
Finally we obtain

E [ui (x, Fj (y))] = vi (t
∗∗) = vBi for any x ∈ (−∞, t∗∗] .

(b) If player i chooses a number x ∈ (t∗∗,+∞), then i’s expected payoff is:
E [ui (x, Fj (y))] = vi (x) ,

because x > y in this case. From assumption B2, it follows that vi (x) ≤
vi (t

∗∗) for any x ∈ (t∗∗,+∞). Hence any number x ∈ (−∞, t∗∗] is a
best reply to the probability distribution function Fj (t) in (4). The
same reasoning applies to player j. Hence the distribution function in
(4) constitutes a mixed strategy equilibrium. ¥

3 Applications

In this section we provide three examples that fit into the classes of games
ΓA and ΓB.
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3.1 The Bertrand Model

The standard two-firm Bertrand model with unit demand and zero marginal
costs belongs to the class ΓA. The firms’ payoff functions write

(ui (x, y) , uj (x, y))A =

 (0, y) , if x > y
(x, 0) , if x < y

(0.5x, 0.5x) if x = y
,

or vi (t) = vj (t) ≡ 0, wi (t) = wj (t) = t, t = 0, and α = 0.5. It is easy to
check that all assumptions A1-A4 are fulfilled. As a corollary of Theorem 1,
we obtain an identical result to the one proposed by Klemperer (2000):

Proposition 3 There exists continuum of equilibria in mixed strategies in
the Bertrand model. For any p > 0, the following probability distribution
constitutes a mixed equilibrium:

F (p) =

½
0, if p < p

1− p

p
if p ≥ p .

Note that the expected profit of each firm in the mixed equilibrium is
p > 0. The appealing feature of this class of equilibria is that firms use
a very simple Cauchy distribution function which is parametrized by the
lower bound of the support p. The main drawback is that we can always
make firms’ expected profits arbitrarily high. This is due to the fact that
consumers’ valuation for the good can be infinitely high.

3.2 Auctions with toeholds

Another class of games that fits into the theoretical model analyzed in Sec-
tion 2 is a two-bidder auction with toeholds. Two risk-neutral bidders are
interested in acquiring an object. Bidder i (j) has a valuation vi (vj) and
owns a share θi (θj = 1− θi) > 0 of the object. Bidders’ values and shares
are common knowledge. Bidders submit bids simultaneously. The higher
bidder gets the object and pays either her bid in the first price auction, or
the opponent’s bid in the second price auction. If bids are equal, then the
object is allocated to bidder i with probability α ∈ [0, 1] and to bidder j with
probability (1− α) ∈ [0, 1]. Thus, bidder i’s payoff is vi − (1 − θi)p, if he
wins, and θip, if he loses, where p is the selling price. We consider below two
possible mechanisms: first- and second-price auctions.
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3.2.1 The Second-Price Auction

Suppose that the two bidders compete in a second-price auction. It is easy
to see that the auction game with toeholds is exactly game ΓA, where

(ui (x, y) , uj (x, y))A =

=

 (vi − (1− θi)y, (1− θi)y) , if x > y
(θix, vj − θix) , if x < y

(α [vi − (1− θi)x] + (1− α) θix,α(1− θi)x+ (1− α) (vj − θix)) if x = y
,

or vi (t) = vi − (1− θi)t, vj (t) = vj − θit, wi (t) = θit, wj (t) = (1− θi)t, and
t > max {vi, vj}. It is easy to check that all assumptions A1-A4 are fulfilled.
As a corollary of Theorem 1, we have

Proposition 4 There exists a continuum of mixed strategy equilibria in the
sealed bid second-price auction in which player i randomizes over bids in the
interval [b,+∞) according to the distribution function

Fi (b) = 1−
µ
b− vj
b− vj

¶1−θi

, i 6= j,

where b is any number greater than max {vi, vj} .

The interesting feature of this class of mixed strategy equilibria is that
the expected payoff to each bidder is b > max {vi, vj} and is independent
from each bidder’s valuation!

3.2.2 The First-Price Auction

Suppose that the selling mechanism is the first-price auction. Then, the
auction game with toeholds belongs to the class ΓB with payoff functions

(ui(x, y), uj(x, y))B =

=

 (vi − (1− θi)x, (1− θi)x) , if x > y
(θiy, vj − θiy) , if x < y

(α [vi − (1− θi)x] + (1− α) θix,α(1− θi)x+ (1− α) (vj − θix)) if x = y,

that is, vi (t) = vi − (1− θi)t, vj (t) = vj − θit, wi (t) = θit, wj (t) = (1− θi)t,
and t < min {vi, vj}. It is easy to check that all assumptions B1-B4 are
fulfilled. As a corollary of Theorem 2, we have
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Proposition 5 There exists a continuum of mixed strategy equilibria in the
sealed bid first-price auction in which player i randomizes over bids in the
interval (−∞, b] according to the distribution function

Fi (b) =

µ
vj − b
vj − b

¶θi

, i 6= j,

where b is any number lower than min {vi, vj} .

The expected payoff of bidder i in the mixed strategy equilibrium is vi−
(1 − θi)b, where b < min {vi, vj}. Note that this payoff does depend upon
bidder i’s valuation, which was not the case in the second price auction.

4 Conclusion

The main feature of the class of games studied in this paper is the presence of
externalities between players. We have pointed out that the use of a random
tie-breaking rule makes this game discontinuous. We have shown that, if the
players’ strategy space coincides with the set of real numbers, a continuum
of Nash equilibria in mixed strategies do exist.
One might wonder what would happen if we modified the game in such a

way to allow for a deterministic tie-breaking rule. In our toeholds example,
since valuations are common knowledge, one could think of breaking a tie in
favor of the bidder with the higher valuation for the object. This formulation
has been analyzed by Ettinger (2001). The author shows that the first- and
second-price auctions admit a unique equilibrium in undominated strategies.
It is easy to prove that, if bidders can play weakly dominated strategies,
the set of equilibrium outcomes both in first- and second-price auctions will
coincide with the interval between bidders’ valuations1. However, whenever
a random tie-breaking rule is introduced, the set of equilibrium outcomes
will be found outside the interval between bidders’ valuations.

1A proof of this statement can be provided by the authors upon request.
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