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AbstractAbstractAbstractAbstract    

 

The derivation of novel programming methods for the generation of aperiodic tiling 

patterns, predominantly in 2d space, has attracted considerable attention from both 

researchers and practicing architects. So far L-Systems and quasicrystals are the only tools 

which can be used for the creation of aperiodic tiling patterns. This project attempts to 

create a self organizing particle spring system for aperiodic tiling formation on a 2d 

surface. The proposed method simulates natural dynamic procedures and applies a 

generative particle spring system for tiling formation. The initial inspiration of the thesis 

is the realization of tiling patterns for non-planar geometries, by using the previously 

stated method. The architectural reasoning behind that would be to use a minimal 

number of types of prefabricated units (e.g. Penrose rhombuses) to create an irregular 

and complex pattern or geometry.  
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1. Introduction1. Introduction1. Introduction1. Introduction    

 

Tessellation of non-planar curved surfaces with aperiodic tiling patterns is a challenging 

but formidable task, which necessitates the derivation and use of elaborated and efficient 

algorithms and is still an open research topic. The derivation of novel programming 

methods for the generation of aperiodic tiling patterns, predominantly in 2d space, has 

attracted considerable attention from both researchers and practicing architects (Hwang 

et al, 2006) over the past three decades.  

 

In 1961 Wang (Wang, 1961) asserted that aperiodic tiling patterns cannot be created 

(and hence cannot exist) by aggregating tiles of specific geometry. This would suggest 

that local-rule based systems are inappropriate for aperiodic tiling generation. Several 

researchers succeeded in to contradicting this assertion from a mathematical point of 

view (Penrose, 1974; Senechal, 1990; Robinson, 1971). It was not until recently that 

algorithms employing the logic of L-Systems and of quasicrystals, which succeeded in 

producing aperiodic tilings, were developed. So far L-Systems and quasicrystals are the 

only tools which can be used for the creation of aperiodic tiling patterns. 

 

This project attempts to create a self organizing particle spring system for aperiodic tiling 

formation on a 2d surface. The proposed method simulates natural dynamic procedures 

and applies a generative particle spring system for tiling formation. The initial inspiration 

of the thesis is the realization of tiling patterns for non-planar geometries, a not yet 

achieved approach, by using the previously stated method. The architectural reasoning 

behind that would be to use a minimal number of types of prefabricated units (e.g. 

penrose tiles) to create an irregular and complex pattern or geometry. 
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1.1 Overview of the natural inspirations to architecture1.1 Overview of the natural inspirations to architecture1.1 Overview of the natural inspirations to architecture1.1 Overview of the natural inspirations to architecture    

 

Nowadays, the natural processes are structured and simulated by virtual multiplicities 

and head for a never achieved actual state. As Deleuze and Guattari mention in “a 

Thousand Plateaus” (Deleuze, Guattari, 2004) , it is all about the process; systems tend 

to move either towards reality or towards virtuality, consequently, processes can either be 

more or less stable with diverse possibilities. Neither the structures of such processes, nor 

their completed products “merit the same ontological status as processes themselves” 

(Deleuze, Guattari, 2004).  Subsequently, these systems are capable of including the 

concepts of coding, which is the process of ordering matter as it is drawn into a body, 

stratification, that is the process of creating hierarchal bodies, and territorialisation or, in 

other words, the ordering of those bodies in “assemblages,” an emergent unity joining 

together heterogeneous bodies in a “consistency”.   

 

This theory is applied within the framework of the current project, in the sense that 

natural theories and equations are infused within coding so that a virtual dynamic 

simulation decides about the tiling formation; different parts, nodes, springs, forces and 

mathematical theories, are assembled for generating a desired formation. Thus, the 

project’s constrains lie in the dynamic and generative notion, the absence of stability 

results into the incapability of having a certain final result.  

 

The real and digital fusion is signified by the way structures, buildings, and cities evolve, 

transform and dissolve and it is becoming feasible through the generation, imagining, 

evolution and control means (Bentley, 2003). On the one hand, nature’s programming 

approach, which combines natural and artificial methods, produces new architectural 

organisms, new environments and new natures through dynamic processes. On the other 

hand, technology animates space and users and programs animate matter; “architectural 

concepts are expressed as generative rules so that their evolution may be accelerated and 
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tested” (Fraser, 1995) and the rules are described in a programming language which 

produces a code script of instructions for form-generation. In other words, the perfection 

and variety of natural forms is the result of the relentless evolutionary experimentations 

and of systems’ elaborations in all the possible matter’s scaling; hence, programmable 

nature is a source of inspiration for architectural concept in coded form. 

 

Architecture has frequently drawn inspiration from nature, either from forms and 

structures, by using analogies and metaphors, or more recently from the inner logic of its 

morphological processes by using some form of algorithmic procedures, analogous to 

nature’s genetic scripting. Examples of the first kind include  Frei Otto’s fibre 

experiments that led to branched constructions (Otto, 2006, figure 01) and Gaudi’s 

particle systems applied to Colonia Guell Church, while examples of the second kind can 

be found in include the Watercube (the National Swimming Center in Beijing (figure 

02), with the randomized appearance of the structure but with a strict, rational geometry 

that is found in natural systems such as crystals, cells and bubbles (Hwang et al, 2007)), 

in Anthony Gormley’s sculpture and in the algorithmic idea underlying the application 

of different types of diagrams (e.g. Voronoi diagrams) applied in order to describe the 

form of the ‘Body Space Frame’ project.  

 

          

      Figure 01:    Frei Otto’s branched construction     Figure 02: Watercube, Beijing’s national Aquatic Centre, 

           (Otto, 2006)                    (Hwang et al, 2007)  
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1.2 Tilings  1.2 Tilings  1.2 Tilings  1.2 Tilings      

    

Tilings or tessellations of a plane are firstly an art, initiated early in the history of 

civilization. Tilings are repeated patterns or motifs in a more or less systematic manner, 

and various cultures seem to have emphasized on different aspects of art production 

(figure 03), either as a human portraits’ or landscapes representation tool or as complex 

and colorful geometric designs (Grunbaum, Shephard, 1989). The tilings created by 

ancient civilizations are made of stone, ceramic or similar materials which fit together 

without appreciable gaps to cover the plane of some other surface. Famous examples are 

to be seen in the Alhambra at Granada in Spain, which were an inspiration for a famous 

tilings’ artist, M. Escher (Senechal, 1990, figure 04). Tessellation techniques are used 

nowadays in computer graphics, in order to manage sets of polygons by dividing them to 

create complex surfaces.  

 

          

 

Figure 03: Detail of Alhambra’s periodic tilings, a source          Figure 04: M. Escher, Circle Limit III, 1959,   

 of inspiration for Escher (Grunbaum, Shephard, 1989        a tessellation of a hyperbolic plane (Senechal, 1990)

         

A certain tiles’ set, in the Euclidean space and especially plane, ‘admits’ a tiling if 

nonoverlaping copies of the tiles in the set can be fitted together to cover the entire 

space. Periodic tilings are those that remain invariant after being shifted by a translation 

(Wieting, 1982). On the other hand, “a set of tiles (closed topological disks) is called 
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aperiodic if the plane can be tiled with tiles congruent to those in the set, but without 

any translational geometry” (Ammann et al, 1992). These aperiodic tilings have 

applications starting from recreational mathematics up to solid-state physics.  

 

To explain the term “aperiodic tiling” it is necessary to review the definitions “tiling” and 

“aperiodic”. Tiling is a family T= {T1, T2,...} of sets (the tiles) which cover the plane 

without overlaps or gaps. If all the tiles are congruent (oppositely or directly) to a 

minimal set P= {P1, P2,…, Pn} of tiles, then these are called the prototiles of the tiling T, 

and they ‘admit’ the tiling T (Ammann et al, 1992). The symmetries of T are the 

isometries of the plane that map T onto itself, and T is nonperiodic if it does not have 

any translation as symmetry. A set of P of prototiles is called aperiodic if every tiling that 

P admits is nonperiodic (Ammann et al, 1992, figure 06). The first known aperiodic set 

was developed by Berger R. (Berger, 1966), and consisted of 20426 tiles’ shapes which 

were afterwards reduced to 104 tiles. In the early 70’s R. Robinson (Robinson, 1971) 

devised a relatively simple aperiodic set of six square-shaped tiles with various notches 

and extensions on their edges to prevent periodic arrangements (figure 05), and R. 

Penrose (Penrose, 1974) found even simpler sets, with the most popular one consisted of 

two shapes, named kites and darts (figure 07). 
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Figure 05: Robinson Tilings, the six simple tiles are based on Wang’s work, who achieved tiling a plane with 

different-coloured edges, called Wang dominoes (Wang, 1961). 

 

 

Figure 06: Ammann R. also  discovered a number of aperiodic tilings 

 

 

Figure 07: In 1974, Roger Penrose discovered an aperiodic tiling that uses only two shapes, nicknamed kites and 

darts. 
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Penrose tilings are named after Roger Penrose, who investigated these sets of tiles in the 

1970s. Penrose found a way of tiling a plane with pentagons and avoiding any gaps by 

attaching three other shapes, called a star, a boat and a diamond. Afterwards, certain 

rules were formed in order to match the different pieces in an effective way, without 

leaving any gaps while covering a plane. Penrose found later two more sets of aperiodic 

tilings, the previously mentioned, kites and darts, and a third one consisted of two 

different rhombuses, a thin one and a thick one. Most of the tiling sets obtained with 

Penrose tiles are aperiodic, with an exception of two that involve a fivefold symmetry and 

a mirror symmetry. Penrose tilings’ properties are non-periodic and do not include 

translational geometry. Furthermore, any finite region in a tiling appears infinitely many 

times in that tiling despite the non- periodicity property. Last but not least, Penrose 

tilings can simulate quasicrystals, since they include fivefold symmetry and long range 

order. 

 

Penrose tilings of the third kind can be described by rhombus tiling, with equal sides but 

different shapes. There are two different rhombuses; the thin one has four corners with 

angles of 36, 144, 36, and 144 degrees and it can be bisected along its short diagonal to 

form a pair of acute Robinson triangles. The thick rhombus has angles of 72, 108, 72, 

and 108 degrees and it can be bisected along its long diagonal to form a pair of obtuse 

Robinson triangles. A Penrose tiling cannot be constructed simply beginning with a 

single tile and adding tiles, one at a time, on a fixed scale, based purely on local 

translation methods, making random choices when there is freedom of choice (Wang, 

1961).  Experimentations proved that this method produces a configuration with 

imperfections, clashes, and inconsistencies.  Nevertheless, it appears that some physical 

substances actually do form into non-periodic quasi-crystals with rotational but not 

translational symmetry, in a pattern which resembles this aperiodic tiling.  Such quasi-

crystals are typically quite small, their size probably being limited by how far they can 

proceed by simple local growth before engendering a clash with the pattern. 
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1.3 Quasicrystals1.3 Quasicrystals1.3 Quasicrystals1.3 Quasicrystals    

 

The ways in which human mind understands nature and is inspired from its processes, 

depend on the scales of both distance and time used for the phenomena being studied, 

i.e. micro scale up to mega scale, and on the possible connections between the different 

scales (figure 08). Starting from micro scale, the “autopoietic”1 systems of chemical 

transformations “pull themselves up by their own bootstraps and become distinct from 

their environment through their own dynamics, in such a way that both things are 

inseparable”, (Maturana and Varela, 1998). Similarly to that, Penrose mentions 

(Penrose, 2000) that there is an abstract but inherent connection between different 

scales, from the relativity theory to quantum mechanics2, a connection which depends on 

parameters’ modifications (figure 09). 

 

                                                 
1 “An autopoietic machine is a machine organized (defined as a unity) as a network of processes of 

production (transformation and destruction) of components that produces the components which (i) 

through their interactions and transformations continuously regenerate and realize the network of 

processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in the 

space in which they (the components) exist by specifying the topological domain of its realization as such 

network”. (Maturana, Varela, 1980) 

2 Penrose regards consciousness as “a feature of human brains, and probably of many animals as well, 

which must be accommodated in our overall picture of reality. Human beings can produce arguments that 

cannot be run on a computer. There must be some physical correlate to this ability to beat even an ideal 

computer (Turing machine). Quantum processes are taking place in the brain, involving entangled states. 

Consciousness consists in becoming aware of something definite, so it must involve the OR process 

(Objective Reduction is an instantaneous event- the climax of a self-organizing process in fundamental 

space-time (www.Quantumconsciousness.org/penrose-hameroff/consciousevents.html)). Hence the OR 

process must be non-computational.” (Penrose, 2000)  
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Figure 08: on left-hand side of the diagram, time scales are shown and on the right hand side are the 

corresponding distance scales, initiating from the very shortest time-scale which is physically meaningful and 

continuing with the days the years and on the top of the diagram, the present age of the universe. On the right 

hand side, distances corresponded to time-scales are depicted. The length corresponding to the Plank time is the 

fundamental unit of length, called the Plank length and is derived from the combination of Einstein’s General 

Relativity with quantum mechanics. “The translation from the left to the right-hand axis of the diagram is via 

the speed of light, so that times can be translated into distances by asking how far a light signal can travel in that 

time” (Penrose, 2000). 
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Figure 09: illustration of Penrose’s theory including the necessary distortions 

 

Furthermore, the different ways of understanding nature affect the possible inspirations; 

finding global patterns in locally determined physical processes, i.e. parallelisms in the 

research scale, is an example of such an approach. Tilings can be found in that way in 

micro scale natural formations. Aperiodic tilings, especially Penrose tilings, make feasible 

the atomic quasicrystals’ visualization and study, which is a recent discovery about the 

crystalline atomic structure formations, and they provide explanations for the complex 

matter’s structure. 

 

Quasicrystals are formed in nature by certain alloys under extreme conditions of pressure 

and temperature, e.g. annealing, or quenching. Most of the known chemical substances, 

of all the compounds and condensed matter in general, have an energy state which is 

represented by a periodic crystal structure. The discovery of quasicrystals fundamentally 

changed the understanding of structural order on atomic scale because of their aperiodic 

structure. Moreover, tiling patterns and especially Penrose ones provide a means of 

representation for quasi-crystalls, since the sliced quasicrystal surfaces exhibit an 

aperiodic tiling pattern.  
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Traditionally, the atomic structures of pure solids have been divided into two classes, the 

crystal structures and the glassy structures, with the first ones being highly ordered, 

having a long-range translational order characterized by a periodic spacing of unit cells, 

long-range orientational order and a rotational point symmetry. On the other hand, a 

glassy structure has none of the long range correlations of the crystals but is modelled by 

spheres that are densely and randomly packed together (Levine et al, 1985). Quasicrystal, 

a quite recent notion of a new kind of ordered atomic structure and an in-between 

condition of the previous two, is introduced the last twenty years and can represent a 

new phase of solid matter which is found in nature.  

 

Quasicrystals are structured forms, which are non-periodic but also ordered. Recent 

studies in that topic entail that a structure of perfect quasicrystals can be interpreted in 

terms of a single quasi-unit and simple energetics as shown on experiments on 

Al72Ni20Co8 as shown in figure 10 (Steinhardt, 2000). Specifying or determining the 

atomic structure is made simple since the only degrees of freedom are the atom types and 

the atom positions within the quasi-unit cell. The new paradigm implies a close physical 

relationship between quasicrystals and crystals. Both can be described in terms of the 

close-packing of a single low-energy cluster. The key difference is that the atomic 

arrangement in the case of quasicrystals is constrained to allow atom sharing among 

neighbouring clusters. Since atom sharing works for only special arrangements, the quasi-

unit cell picture naturally explains why quasicrystals are less common than crystals.  
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Figure 10: Simulated images of the atomic models in Fig. 2 are shown in (a) and (b), respectively. Differences 

between the observed and simulated image contrasts of the rectangle regions in (c) and (d) show that the model in 

Fig. 2(a) with a central triangle of sites in the center (broken symmetry) fits better. A contribution to the 

difference is the central triangle of sites in (a) vs. a 10-fold symmetric ring of sites in (b) (see arrows) (Steinhardt, 

2000). 

 

The quasiperiodic structures by coverings are described as quasi-unit cell approach 

(Steinhardt, 1996) and regard a process where a single structure motif is sufficient to 

construct a quasiperiodic structure, while for a tiling at least two different unit cells are 

needed. Quasiperiodic structures are created in metallurgy when annealing alloys, i.e. 

warming them at high temperatures (up to a significant fracture of the alloys’ melting 

point) and then letting them slowly cool by air. Alloys get a crystal structure, which 

depends on the temperature, the alloying elements and their mixture and the annealing 

process (Grushko, Holland-Moritz, 1997). An example of that can be found in alloys 

containing Aluminium, Nickel or Cobalt. “The high quality of the basic Ni-rich phase 

was reflected in a SAED pattern with almost no diffuse background and in HRTEM 

images showing a highly perfect pentagon Penrose tiling decorated with _20 _A clusters 

with decagonal symmetry. In a narrow temperature range around 900 _C, the Ni-richest 
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d-phase was found to be stable for a composition d-Al70.2Co5.4Ni24.4. Quasilattice 

parameters were reported to increase with decreasing Ni-concentration while the lattice 

parameter along the tenfold axis increases less then 1%” (Steurer, 2004). 

 

The certain quasi-unit cell derives from overlapping rules as it is shown from the 

decagonal Al70Ni15Co15    example (Steurer et al, 1993). A decagon with overlap rules 

forcing a covering fully equivalent to a Penrose tiling, that contains the maximum 

possible number of these decagons, was discovered by Gummelt (Gummelt, 1996). 

There are many theoretical research papers on tilings, especially on the ones serving as 

quasilattices of decagonal phases; the most famous one is on the Penrose tiling (Ingalls, 

1992&1993). The associated models are mainly based on diffraction data and/or on bulk 

and surface microscopic images (figure 11, 12 & 13). 
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Figure 11: The projected electron density is shown in this contour plot. A pentagonal Penrose tiling is shown with 

green lines. A group of five Gummelt decagonal clusters is drawn in, labeled by Greek letters. The centre of the 

clusters α, γ, β, appear clearly asymmetric, while clusters β, δ, appear approximately 

 decagonal. (Steurer, 2004) 

 

Figure 12: The projected electron density on a resolution comparable to that of the HAADF image (High Angle Annular 

Darkfield imaging) from a sample with composition Al72Co8Ni20 (Abe, Tsai, 2001) copied upon the place of Gummelt 

decagon α. Black corresponds to zero density and white to maximum density. 

 

Figure 13: Schematic drawing of the planar basic structural unit of a columnar cluster (monopteros). A crucial 

role is played by the triangle inside the decagons which can adopt three different equivalent positions as indicated. 

Open circles correspond to Al and closed circles to Ni/Co atoms. 
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1.4 Problem’s Definition and Thesis Aim1.4 Problem’s Definition and Thesis Aim1.4 Problem’s Definition and Thesis Aim1.4 Problem’s Definition and Thesis Aim    

 

The representation of quasicrystal or aperiodic crystalline structures on 2d surfaces is 

based on aperiodic tilings, which were discovered during the 1960s; the programming 

simulation techniques utilize particularly the Penrose tilings. Even though the process 

which takes place in nature is not completely knownto date, the existing computer 

simulations apply either L-system methods or cut-and project quasicrystals’ methods in 

order to visualise the tiling’ s formations. The basic conceptual difference between these 

two methods, lies in the closed, rule-based nature of L-systems, which therefore fall in 

the broader class of bottom- up approaches, contrary to the cut and project method, 

which is essentially a top- down generation approach. 

 

An example of a top- down, quasicrystal cut and project method on a 2d surface was 

utilized for the design of the Watercube Aquatic Centre in Beijing. The approach 

essentially consists of breaking down a system to gain insight into the subsystems, which 

comprise it. An overview of the system is first formulated, specifying but not detailing 

any first-level subsystems. A Weaire- Phelan Foam “base cluster” subsystem is composed 

of 8 irregular tetrahedral, two with hexagonal and pentagonal faces and six with only 

pentagonal faces, and can be repeated infinitely in the form of nested polyhedra to 

compose a system. Each subsystem is then refined in yet greater detail, sometimes in 

many subsequent subsystem levels, until the entire specification is reduced to base 

elements.  When this structure is rotated by a particular angle and then sliced, an 

irregular 2d surface pattern emerges. These tiled surfaces are used to cover a cube, which 

is the shape of the Centre (figures 14 & 15). “Though the foam is regular and only 

composed of two different tetrahedral polygons, the slicing of infinite geometry produces 

a block of incredible tiling variation” (Hwang et al, 2007). This method is called “cut 

and project method”, since the structure is cut and then projected on a 2d plane, which 
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in this particular case consists of the cube’s sides. For structural purposes, the number of 

the resulting tilings has been limited to seven variants in the roof and sixteen in the walls.  

 

 

Figure 14: Entire geometry , the idea behind the 

Watercube( (Hwang et al, 2007) 

 

 

Figure 15: Sliced geometry, the actual 

Watercube (Hwang et al, 2007) 

 

L-systems are a theoretical bottom- up framework for studying the development of 

simple multicellular organisms which develop into more complicated ones 

(Lindenmayer, Prusinkiewicz, 2004); in other words it is a parallel rewriting system 

composed of a set of rules and symbols that allow for the morphological description of a 

variety of organisms and complicated structures. L-systems are introduced so as to 

simulate development, with all their subunits or symbols being transformed 

simultaneously into a subsystem. Adding together systems gives rise to greater systems, 
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which are in turn linked, sometimes at many levels,  therefore making the original 

systems sub-systems of the emergent and complete L-system. (Lindenmayer, Jurgensen, 

1992). Since Penrose tiling can be obtained from L-systems either with the method of 

inflation or deflation (figure 16), this means that aperiodic tiling and Penrose tiling are 

characterized by self-affinity, therefore that the tiling is fractal in nature (Gardner, 1977). 

The recursiveness simulated with L-systems starts developing from the initial state and 

continues with as many rules as possible are applied simultaneously per iteration; the 

application to the Penrose tiling is initiated with an amount of certain tilings. The L-

systems resemble the algorithms used for generation of fractal objects such as Peano 

curve, Koch’s recursion curve, etc. and allow for considering the tilings as cluster growth 

and as natural fractal phenomenon.  

 

Figure 16: Algorithmic generation of Penrose tilings by using L-systems 
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A question that emerges, which later defines the topic of this study, is whether these 

processes, the natural ones or the programming ones can be replaced by an easier 

geometric and programming one; in other words, whether a Penrose tiling pattern can 

emerge in a bottom- up way by allowing a particle spring system to rearrange nodes in 2-

d space. Therefore, the project aims in developing a self-organizing system, starting from 

an initially given number of nodes which comprise a spring system that attracts, repels 

and re-arranges these nodes to create Penrose tiling patterns. The system can be set to be 

either free to expand in the 2d space or  constrained by linear boundaries, thereby 

defining a quadrilateral which has to be tiled. 

 

The idea of this thesis is inspired by the ways Anthony Gormley’s sculptural problems 

are faced; Gormley’s sculpture “Body/ Space/ Frame” is composed by a 25 meter high 

steel lattice, which resembles the shape of human body in a crouching position and is 

located on the coast Zuiderzee.  The problem in Gromley’s case was to fill the idealised 

shape of the human figure, with a structurally stable space frame network (figure 17). 

“Within this framework, algorithms have been devised specifically for the project to assist 

in placing the structural members and their connections in a manner that both describes 

the form of the body in space and provides structural integrity” (Hanna, 

http://www.sean.hanna.net/bodyspaceframe.htm). Top- down geometry and bottom- up 

self organisation are examined in this project. The 'rules' examined at the beginning are 

aesthetic demands on final form, whereas the spring system actually produces these 

requirements naturally without explicitly stating them. The aforementioned problem can 

be rephrased as a search for a panelling structure, either 2d or 3d which is either a flat 

surface or a complex curved surface that is comprised of aperiodic tiling patterns and in 

particular, Penrose Tiling.  
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Figure17:  Anthony Gormley’s “Body/Space/Frame”, “The geometric concept that evolved in design was that of 

an external skin of open polygons, a sort of tensile net resembling bubbles or sea foam, surrounding a triangulated 

interior of 'starbursts' of structural members. In addition to the differing structural implictions of rigid and pin 

jointed nodes, the coupling of the two systems required several approaches to member placement” (Hanna, 

http://www.sean.hanna.net/bodyspaceframe.htm). 

 

The project’s main limitations are those that set the boundaries for the research; first of 

all, the integration of all the characteristics of an aperiodic tiling pattern is the most 

important part. In other words, the creation of aperiodic tiles in such a way that they 

agree with the chosen structural process, that is the self-organized system. This system 

consists of a fixed number of nodes within certain boundaries within the 2d space; it tries 

to connect these nodes with strings and at the same time evenly distribute the nodes 

within certain distances. The tiles’ topology is intended to approximate the form of the 

given boundaries in the best possible way. 
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1.5 Thesis Outline1.5 Thesis Outline1.5 Thesis Outline1.5 Thesis Outline    

    

The purpose of this project is to generate 2d surfaces comprised of aperiodic and 

especially Penrose tiling patterns using a bottom-up approach within the framework of a 

self-organising particle spring system. Within these borders, certain parameters are added 

afterwards to optimize the result. In Section 2 the basic algorithmic methods used are 

described, while in Section 3 the proposed method is further analyzed and the basic 

components of the algorithm are explained. Section 4 focuses on the experimentations 

with the algorithm and its variations and some interesting results, while Section 5 

summarises the conclusions and makes some suggestions for future research and analysis. 

The basic components of the code are presented in the appendices. 
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2222    ReviewReviewReviewReview    ofofofof    RelatRelatRelatRelatedededed    WorkWorkWorkWork    

 

In this section, particle- spring systems, dynamic relaxation and self- organization, which 

constitute different parts of the experimented code, are reviewed. The proposed method 

for dealing with the problem of tiling generation utilizes a numerical method of an 

algorithm that dynamically simulates a particle-spring system (Kanellos, 2007). These 

particles are positioned on a surface and are connected with linear elastic springs and are 

assigned an initial velocity and damping coefficient; their response (oscillation about 

their initial configuration) is traced by means of a dynamic relaxation algorithm. The 

particle spring system continuously tries to organize itself into more complex structures 

under the influence of external forces. 

 

 

2.1 Particl2.1 Particl2.1 Particl2.1 Particle Systemse Systemse Systemse Systems    

 

A Particle System is a collection of points in 2d space or point masses in 3d space which 

are connected with springs, are affected by external forces and obey the laws of physics. 

They are particularly used in computer graphics as rendering techniques for simulating 

and visualising chaotic natural and artificial phenomena like fire, water, explosions, etc. 

  

The algorithms usually applied to particle systems are called ‘Force directed algorithms’; 

space is discretised into a number of nodes, which represent bodies of the system, with 

forces acting on or between them. These forces are often based on physical laws, and 

therefore have a natural analogy, such as magnetic or electrical attraction or repulsion or 

gravitational attraction. It is also possible for the system to simulate forces acting on the 

bodies with no direct physical analogy, e.g. the usage of logarithmic distance measure 

rather than the Euclidean one.  
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The ‘Force directed algorithms’ are essentially an iterative procedure to derive 

equilibrium configurations for the nodes, on which the forces act, regardless of the 

nature of the applied forces. The algorithms are applied in discrete time steps, with the 

respective nodal forces being adapted at the end of each step according to the new nodal 

configuration (Kaufmann, 2001). They can also be viewed as an iterative procedure for 

minimising the potential energy associated with the forces acting within the field of the 

nodes, since stable equilibrium configurations correspond to local minima of the 

potential energy function.  

 

The particle spring systems can be also utilized to find structural forms on which only 

axial forces act and to specify the equilibrium position corresponding to a specific set of 

actions while allowing user’s interaction within the simulation process. These solutions 

are helpful when searching for an equilibrium position of a structural system, which can 

be a membrane structure, a roof system or a lightweight structure. Kilian and 

Ochsendorf (2005) applied this concept by considering a chain of weightless, axially stiff 

springs connecting certain masses inside a simulated 3d space; for specific values of the 

springs’ length, stiffness and specific masses the equilibrium configuration changes. 

Gaudi’s physical hanging chain models for Colonia Guell Church (figure 18 & 19), 

which are based on the theory ‘reversion of the catenary’3, work in a similar manner to 

the certain simulation. This resulted in vaulted forms that require less material and 

therefore smaller mass” (Otto, Rasch, 2006). 

                                                 
3 “Catenary is the theoretical shape of a hanging flexible chain or cable when supported at its ends and 

acted upon by a uniform gravitational force (its own weight) and in equilibrium. The chain is steepest near 

the points of suspension because this part of the chain has the most weight pulling down on it. Toward the 

bottom, the slope of the chain decreases because the chain is supporting less weight.” 

(http://en.wikipedia.org/wiki/Catenary)  
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Figure 18 & 19: Gaudi’s hanging model, a system of threads represents columns, arches, walls and vaults. Sachets 

with lead shot resemble the weight of small building parts (http://me-wserver.mecheng.strath.ac.uk/group2003  

/groupl/Inspirational%20people/Antoni%20Gaudi_files/Antoni%20Gaudi.htm) 

 

 

2.2 Dynamic Relaxation2.2 Dynamic Relaxation2.2 Dynamic Relaxation2.2 Dynamic Relaxation    

    

Dynamic Relaxation is an algorithmic method for finding the deformed configuration of 

a cable or fabric structure subjected to a set of forces. It is based on discretising the 

continuum into nodes on which the total mass of the structure is lumped and tracing the 

pseydo-dynamic response (oscillation) of the structure to the applied forces (Topping, 

Khan, 1994). This method is used in structural analysis to derive the solution of a static 

problem by using a fictitious damped dynamic analysis. In this way a static problem may 

be solved with explicit vibration analysis, thereby eliminating the need for forming and 

inverting the structure’s stiffness matrix which can result in reduced computational times 

for finely discretised structures (Hibbitt, Karlsson & Sorensen 2006). It is essentially a 

direct application of Newton’s Second Law, where “A force ‘F’ acting on a body gives it 

an acceleration ‘a’ which is in the direction of the force and has magnitude inversely 

proportional to the mass m of the body”: 

 α×= mF   

The Dynamic Relaxation system is comprised by particles which are positioned on a 

surface and are connected with linear elastic springs, with an initial length and a 
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damping coefficient. It has been used extensively for analysis and design of cable and 

membrane structures, or tensile structures, which can carry only tension. Tensile 

structures are membranes with high tensile but practically zero compressive stiffness. 

Therefore, no compressive (and hence no bending and shear) stresses can be developed 

and they resist loads solely by transforming their geometry, in a way that their tensile 

stiffness is activated. The origins of the design of contemporary tensile roof-structure are 

based on physical modelling techniques, which are inspired by natural forms and self-

formation techniques like the aforementioned Gaudi’s example; the research in the 

sphere of this subject lies in the operative forces that can bring about synthesis, change 

and transformation (Otto, Rasch, 2006). These modelling processes have a life on their 

own; they are set in motion and the results are not always predictable. 

 

The dynamic relaxation method has been applied to the British Museum Great Court 

Roof, where a “combination of analytic and numerical methods were developed to satisfy 

architectural, structural and glazing constrains” (Williams, 2001). The roof covers a 70 

by 100 meters area containing the 44 meter Reading Room (figure 20). The roof is 

comprised of triangular grid of steel members welded to node pieces with one flat panel 

of double glazing for each triangle of the structural grid. These nodes of the 

mathematical model are allowed to float freely on top of the surface of the shape, to slide 

on it without friction, so as to control the maximum size of the triangles to some 

structurally difficult areas, like towards the centre of the construction or towards the 

borders of it. 

 

Another example of an application of dynamic relaxation on the analysis of a roof 

structure is the Montreal baseball stadium which is a lightweight structure of the cable-

stayed system type, with a double curvature membrane covering an ellipse-shaped 

opening of 200 by 140 meters. Membrane shape is obtained by a uniform elliptic 

pretension with seventeen anchorage points all around the perimeter and twenty six 
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internal suspension points. Due to the flexibility of the roof of the Montreal Olympic 

Stadium (figure 21), “fluid acts on the directly exposed outer surface of roof as well as on 

its internal surface depending on the internal volume changes. The roof encloses a fluid 

volume that can be classified as an appendage of external fluid where the connection is 

due to exchange surfaces, such as stand access openings, etc. In case of large openings, the 

fluid field produces point-to-point variable internal pressures, acting on the internal side, 

which are rather small but not negligible when measured against external pressure level. 

Conversely, such pressures are not generated when the volume is closed” (Lazzari et al, 

2008).  

 

              

    Figure 20: British Museum Great Court Roof                 Figure 21: Montreal Olympic Stadium roof   

         (William, 2001)            (Lazzari et al,2008) 

    

    

2.3 Self2.3 Self2.3 Self2.3 Self---- Organizing Systems  Organizing Systems  Organizing Systems  Organizing Systems     

 

Self organizing systems are used as an inspiration reflected in various complex 

phenomena and paralleled with global patterns; they are regarded as an environmentally 

driven evolution process understood on the basis of the same variation and natural 

selection and are normally triggered by internal variation processes, which are usually 

called "fluctuations" or "noise".  
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 “Self organization is a spontaneously formed higher-level pattern of structure or 

function4 that is emergent5 through the interactions of lower-level objects” (Flake, 1998).  

The emergent behavior or self-organization is about simple processes leading to complex 

results; it’s about the whole being more than the sum of its parts. Self-organizing systems 

usually exhibit what appears to be spontaneous order (Beer, 2004); it results from the 

system’s continuing efforts to organize itself into more complex structures under the 

influence of external forces. Additionally, the system is considered to exhibit emergent 

properties, and the different parts that compose the system tend to organize themselves 

according to local information, processes that work near the ‘edge of chaos’ (Kennedy, 

2001). In other words, self-organization is a process where the organization of a system 

increases in complexity without being controlled by the environment or an encompassing 

or external system.  

 

Examples of such self- organized systems can be found in germs, bugs, varmints and 

widgets societies. “Termite builders, for instance, are one kind of self-organizing system. 

There is no central control, the intention of the population is distributed throughout its 

membership—and the members themselves are unaware of the ‘plan’ they are carrying 

out. Actors in the system follow simple rules and improbable structures emerge from 

lower-level activities, analogous to the way gliders emerge from simple rules in a cellular 

automaton” (Kennedy, 2001). The same applies to insects; different hormones are 

responsible for different types of messages as an output of gland secretion in response to a 

stimulus.  

                                                 
4 Function is a mapping from one space to another. This is usually understood to be a relationship between 

numbers. 

5  Emergence refers to a property of a collection of simple subunits that comes about through the 

interactions of the subunits and is not a property of any single subunit. For example, the organization of an 

ant colony is said to “emerge” from the interactions of the lower level behaviors of the ants, and not from 

any single ant. Usually the emergent behavior is unanticipated and cannot be directly deduced from the 

lower-level behaviors.  
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Society is another more complex example of a self-organizing system with global 

properties that cannot be predicted from the properties of its individual members. A 

computer simulation called ‘the Warsaw Simulation System’ contributed significantly to 

the determination of the extent to which group-level phenomena result from individual-

level processes. “The program simulates the changes of attitudes in a population resulting 

from the interactive, reciprocal, and recursive operation of a theory regarding social 

impact, which specifies principles underlying how individuals are affected by their social 

environment. Surprisingly, several macrolevel phenomena emerge from the simple 

operation of this microlevel theory, including an incomplete polarization of opinions 

reaching a stable equilibrium, with coherent minority subgroups managing to exist near 

the margins of the whole population” (Nowak, et al, 1990).  

 

Latané calls the current incarnation dynamic social impact theory, and his findings have 

developed beyond simple polarization. Dynamic social impact theory results, whether in 

simulations or studies with human subjects, are seen to possess four characteristics, as 

described by Latané in numerous publications (Nowak, et al, 1990). These are 

consolidation, clustering, correlation and continuing diversity.  
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3 3 3 3 GenerGenerGenerGeneric methodology of the codeic methodology of the codeic methodology of the codeic methodology of the code    

 

 

3333.1 Algorithm’s overview .1 Algorithm’s overview .1 Algorithm’s overview .1 Algorithm’s overview     

 

The methodology followed in the current project is comprised of three basic algorithmic 

components: the particle- spring system, dynamic relaxation and self- organization; these 

have been discussed in detail in Section 2 and are combined herein within the framework 

of the current project, in order to deal with the geometric problem of generating an 

aperiodic Penrose tiling pattern. Their main characteristic is the bottom- up approach for 

the creation of the self- organized tiled surface, where dynamic global and local rules of 

particle- node interaction and correlation are applied.  

 

The main concept is to start from a node-spring system and subsequently generate a 

tiling-like surface with the aid of application of suitable nodal forces. Despite the 

conceptual simplicity of the followed methodology, some significant problems arise, 

which prevent the successful generation of Penrose tiling patterns.  These problems and 

some potential solutions are discussed in Section 4. 

 

The programming language Processing (Reas, 2007) has been extensively utilized 

throughout the project for the application of the algorithms. The surface to be tiled is 

bound in a way that the nodes are obliged to settle and to achieve an equilibrium state 

within well-defined boundaries as explained in §3.2.6. 
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3333....2222    Description of the algorithmDescription of the algorithmDescription of the algorithmDescription of the algorithm    

    

In the remainder of this Section, a breakdown of the algorithm in its basic components is 

attempted. Each component as well as their interaction is discussed in detail. 

    

3.2.1 3.2.1 3.2.1 3.2.1 NodesNodesNodesNodes    

A cluster of points or nodes is generated within 2d space. These include three main 

characteristics, which are updated in each time-step: velocity, position and direction, as 

can be seen in §A1. Later on, an identity (ID) will be labelled to each one of them, in 

order to confront the problem of ‘line crossing’ as discussed in Section 4. The nodes are 

assumed initially to have zero mass for simplicity; it should be noted that the original 

inspiration for the particle spring system, namely Gaudi’s analogical experiments applied 

to 3d space, which was discussed in §2.1, did not include this assumption.  

 

Initially (first iteration) the nodes have a random position, within a priori specified 

boundaries; they are also assigned a small and random initial velocity and a damping 

coefficient. Subsequent iterations lead to changes in the nodal position in an attempt to 

achieve (global) equilibrium throughout the whole system. The position of each node is 

derived from the sum of its current position and its equivalent velocity (as specified at 

the end of the previous increment) for each time step. The equivalent velocity is 

determined by the interaction of the node with its neighbouring ones. Hence, the 

updated position is derived from the previous position and the particles interactions. 

Since each node affects its neighbouring ones, the position of the nodes is continuously 

updated, upon each iteration, until all nodes are in equilibrium under the nodal forces 

they are subjected to. In some cases, this process results in a never ending loop, since the 

boundaries, spring forces, initial number of nodes and specified drive (as defined in the 

subsequent subsection), are not necessarily compatible with each other and hence the 

determination of an equilibrium nodal configuration may not always be feasible. 
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Therefore, an artificial damping coefficient is introduced (see §3.2.4) and it is in this way 

it is ensured that a static (yet not necessarily in equilibrium) nodal configuration will be 

obtained within a finite number of iterations.  

 

3.2.2 3.2.2 3.2.2 3.2.2 Creation of springsCreation of springsCreation of springsCreation of springs    

This subsection focuses on the establishment of spring connections between adjacent 

nodes, which depends on the nodes’ proximity.  In every increment and for the current 

(in that increment) instantaneous position of the nodes, the program checks the 

possibility of establishing a spring connection (and thereby defining a nodal pair), based 

on the proximity of the nodes comprising the potential nodal pair; i.e. it checks whether 

the distance d between two nodes is smaller than a specified threshold, which is a 

multiple of a user-defined parameter called ‘drive’, and if it is less than that, then a 

connection between these two nodes is established and a line connecting these two is 

depicted on screen. The magnitude of the drive can be increased or decreased by pressing 

the “q” and “a” buttons respectively.  More on this subject is discussed in §3.2.5. 

 

After all appropriate spring connections have been created, the algorithm subtracts a 

user-defined length l0,, smaller than the drive (l0<drive), from the distance d. If d- l0<0, a 

repelling force is applied between the two nodes, whereas if d- l0>0, an attractive force is 

applied on the node pair (figure 22). The repulsion’s and attraction’s direction is set 

parallel to spring’s direction. The sum of all nodal forces, to which each node is 

subjected, is derived from the spring interactions and is stored as a vector, which is 

subsequently added to the velocity vector at the beginning of the next increment. The 

algorithm is repeatedly applied for each time step and it recalculates the new nodes 

positions along with the spring links that have been drawn, until global equilibrium is 

obtained, or until the damping (§3.2.4) applied to the velocity vector leads to a 

premature termination of the iteration procedure.  
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Figure 22: possible nodes relations 

(4) the pair of nodes is close enough to establish a spring connection, but their distance d is less that the l0, as 

a result, the two nodes are repelled 

(5) the pair of nodes is close enough to establish a spring connection but their distance d is greater that the 

l0, as a result, the two nodes are attracted 

(6) the pair of nodes are too far away from each other, as a result, there is no spring connection is 

established 

 

3.2.3 3.2.3 3.2.3 3.2.3 Spring forcesSpring forcesSpring forcesSpring forces    

The spring forces are vectors parallel to the line connecting each pair of nodes i.e. the 

subtraction of their position vectors. Experimentations proved that the most important 

forces for the fastest and computationally most efficient determination of the system’s 

equilibrium configuration are the repulsion ones. When having both repulsion and 

attraction forces, other important features of the code, like self- organization and tiling 

creation, are downgraded and a chaotic system emerges after a few iterations. As a result, 

the initial choice of having both repulsion and attraction forces is abandoned and only 

the repulsion forces are kept, in order to obtain the desired length. Hence the l0 

parameter referred to in §3.2.2 is also discharged. 

 

3.2.3.2.3.2.3.2.4444    Damping Damping Damping Damping of nodal velocityof nodal velocityof nodal velocityof nodal velocity    

Nodal velocity is damped from each time- step (each iteration) to the next one, so that a 

static nodal configuration can be assumed in a finite number of increments. The 

damping coefficient is set to a default value of 0.95, i.e. the nodes preserve 95% of their 
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initial velocity magnitude which is later added to the new applied forces in the 

subsequent step. It should be noted that in this way the desired nodal distances (§3.2.5) 

may not always be obtained. By setting the damping coefficient to unity, the damping 

effect can be removed and preservation of the nodal velocity holds.    

 

3.2.3.2.3.2.3.2.5555    Formation Formation Formation Formation of tiling patternsof tiling patternsof tiling patternsof tiling patterns    

Since the main target of this project is to create Penrose tiling patterns, some geometric 

relations between the drive parameter and the tiles’ dimensions have to be specified. 

Three basic lengths, namely d0, d1 and d2, are defined in figure 23. 

Two different types of rhombuses are used as Penrose tiles in the current project as 

depicted in Figure 24. Relations yielding rhombuses’ small diagonal lengths d1 and d2 as 

a function of their side d0 and angles are defined by equations (1) and (2). 
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Figure 23: The three lengths involved in the desired  Penrose Tiling pattern. 

 

Figure 24: The two Penrose rhombuse:, the first one (1) with angles of 360 and 1440  and the second one (2)  

with angles of  720  and 1080. 

 

Since each rhombus is made up of two symmetric triangles, each of which has two sides 

equal to d0, the spring system attempts to create those triangles rather than the whole 



MSc AAC _ Marianthi Leon_ Aperiodic Tessellation: a self-organising particle spring system approach 42 

rhombus. It is however acknowledged that a random combination of the sides d0, d1 and 

d2 can generate ten different triangles out of which only two have the desired geometry as 

shown in figure 25. Furthermore, it can not be guaranteed that the resulting triangle 

pattern will necessarily include the rhombuses. However, within the framework of 

particle- spring system only a triangulated tiling pattern can emerge. Otherwise, a 

fundamentally different approach which would consist of placing building blocks 

(rhombuses) within a bounded rectangle and ensuring that no overlapping or gaps occur, 

should be pursued. As stated by Wang (1961) such an approach does not lead to penrose 

tiling formation.  

 

Figure 25: All the possible combinations of the three different sides with the last two ones being those that regard 

the Penrose tiling.   

 

The rhombuses’ side d0 (and hence d1 and d2 as well) is defined with respect to the user-

defined drive parameter and hence its magnitude can be controlled by the user. The 
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application of Equations (1) and (2) imposes geometric constraints on the spring 

formation process  and forces the nodal connections of the desired length proportions to 

be formed, resulting in tiling patterns. It is noted that it is the ratio of lengths and not 

the lengths themselves that are of interest, since all actual lengths can be scaled up and 

down according to the drive parameter.  However, controlling the frequency of 

occurrence of each of the three lengths necessitates the introduction of further user-

defined parameters. 

 

The drive parameter is set equal to d0 which is the largest of the three lengths. Hence a 

spring connection between adjacent nodes is established when their respective distance d 

is smaller than d2=1.1755×drive. Four cases can arise according to the magnitude of the 

distance d with respect to the drive parameter: 

• if d> 1.1755×drive  

no spring connection is established 

• if d< (0.618+0.389×f) ×drive 

the minimum spring connection d1 is established 

• if d< (1+0.1755×h) ×drive and d> (0.618+0.389×f) ×drive 

the medium length spring connection d0 is established 

• if d> (1+0.1755×h) ×drive 

the largest spring connection d2 is established. 

The “f” and “h” are additional parameters, which implicitly affect the relative frequency 

of occurrence of each of the three spring connection as will be demonstrated in Section 

4. 

 

    

3.23.23.23.2.6.6.6.6    Surface’s boundariesSurface’s boundariesSurface’s boundariesSurface’s boundaries    

The node-particle system is developed within certain boundaries, in order to achieve a 

tiling formation within a plane of specific dimensions. The initial nodal position is set 
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within rectangular boundaries and the algorithm calculates for every increment the nodal 

position and checks whether they are positioned outside the boundaries. The boundaries 

are rigid (i.e. non-deformable) and the particles are not allowed to cross them. When in 

contact with the boundaries, an additional velocity, perpendicular to the boundaries and 

facing inwards, is applied on the nodes. In this way, it is ensured that the movement of 

the nodes remains within the specified boundaries. The vector operations for node-

boundary contact detection and response are depicted in figure 26.If the node collides to 

more than one border (i.e. corner of the bounded rectangle), then the new position 

vector is the sum of the previous nodal position vector and the two additional due to 

contact with both boundaries. However, it is possible to disregard the influence of the 

boundaries on the spring system, by pressing the “f” button during the execution of the 

program; this activates a Boolean function which renders the boundaries ineffective. By 

pressing the “b” button, the boundaries can be reapplied. 

.  

 

 

Figure 26: Vector calculations to detect contact with the boundaries and determine the nodal response once the 

contact has occurred. 
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4 Experimentation and results4 Experimentation and results4 Experimentation and results4 Experimentation and results 

 

This section summarises the various experimentations with the basic code features and 

their variations and depicts some illustrative results. It focuses on the influence of the 

most important user-defined parameters on the generated results. These are the f and h 

parameters, which affect the frequency of occurrence of the three basic spring lengths, 

the damping coefficient and the activation/deactivation of the boundaries. Furthermore, 

the need for adjusting the main code in order to minimise overlapping of the spring 

connections is explained.   

 

It should be noted that the number of nodes, the dimensions and geometry of the 

bounded region and the drive parameter all affect essentially same thing, namely the 

dimensions of the resulting tiling patterns with respect to the bounded region, which is 

an inherent part of the tiling problem itself rather than the current code. Therefore all of 

these parameters are set to specific values and hence their individual influence on the 

results has not been considered, in order to obtain comparable results and assess the 

effect of the inherent parameters of the code (f and h parameters, damping coefficient, 

etc). For all figures depicted in this Section, the bounded region is square with all sides 

equal to 250, the number of the nodes is 16 and the drive parameter is set equal to 45. 

 

 

4444.1 .1 .1 .1 Controlling the frequency of occurrence of Controlling the frequency of occurrence of Controlling the frequency of occurrence of Controlling the frequency of occurrence of dddd0000,,,,    dddd1111 and and and and    dddd2222 

 

As stated in §3.2.5 two additional parameters, “f” and “h” have been introduced in the 

code so that the relative frequency (i.e. number of occurrence of each length of spring 

connection normalised by the total number of spring connections established) within the 

particle system of the three basic lengths d0, d1 and d2 can be controlled. The code forces 
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spring connections to be established between adjacent nodes (d<d2=1.1755×drive). Once 

a connections is established, equal and opposite forces are applied to each node of the 

node pair, which force the spring connection length to assume one of the three basic 

lengths, namely d0, d1 and d2, depending on the distance on the nodes of the node pair 

(as calculated for the given iteration): 

 

• if d> 1.1755×drive  

no spring connection is established 

• if d< (0.618+0.389×f) ×drive 

the minimum spring connection d1 is established 

• if d< (1+0.1755×h) ×drive and d> (0.618+0.389×f) ×drive 

the medium length spring connection d0 is established 

• if d> (1+0.1755×h) ×drive 

By adjusting the values on f and h parameters, the generation of generation of some 

connection lengths increased or decreased, or even excluded. For f=h=0.5, the spring 

connection length tends to the closest of the three basic lengths, whereas for f=1 and h=0 

the generation of d0 lengths is excluded. On the contrary, most d0 lengths can be 

generated for f=0 and h=1. Figure 27 depicts the effect of these parameters on the 

generated results. 
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Figure 27: effect of the “f” and “h” parameters on the generated results (the damping coefficient is set to unity) 

 

From the previous figure it can be seen that some overlapping of nodal connections (line 

crossings) takes place in certain cases, which can lead even to the collapse of the whole 

algorithm as illustrated for the cases (f=a, h=0.5) and (f=1, h=1). This problem is dealt 

with an adaptation of graph theory equations where mathematical structures are used to 

model pairwise relations between objects from a certain cluster. The additional pieces of 

code test whether the generation of a new spring connection should be avoided in case of 

overlapping springs. The code sorts the nodes, gives them an identity and afterwards 

compares the two nodes of each pair so as to judge if a new connection could be 
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established. Having sorted the overlapping issue, the effect of f and h parameters is 

revisited in figure 28. 

 

 

Figure 28: effect of the “f” and “h” parameters on the generated results 

including additional code to overlapping of spring connections (the damping coefficient is set to unity) 

 

It can be seen that the additional code strings greatly minimize (but do not completely 

solve the problem) the occurrence of line crossings (overlapping of spring connections). 

In some cases aperiodic pentagonal tiling patters emerge. It is also demonstrated that the 

incorporation of the additional “f” and “h” parameters can affect the occurrence of the 

desired lengths, yet not in an explicit way (i.e. we cannot assign a specific probability of 
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occurrence to a specific combination of f and h values). In the remainder of this Section 

both “f” and “h” are set equal to 0.5 and the effect of other parameters is examined. 

 

 

4.24.24.24.2    The influence of dampingThe influence of dampingThe influence of dampingThe influence of damping 

 

In the previous subsection the damping coefficient was set to unity, hence no damping 

was incorporated into the models. The lack of damping resulted in a never-ending 

oscillation of the particle spring system about a quasi-stable configuration. In some cases 

this oscillation was hardly noticeable indicating that a stable configuration was reached.  

All figures in §4.1 depict an instantaneous image of a moving system, rather than a stable 

equilibrium configuration. This subsection focuses on the effect of the damping 

coefficient and attempts to propose an optimal damping value (if any) which results in 

both the desired triangular tiling pattern and a stable equilibrium configuration. 

  

The damping coefficient produces a stabilising effect, by decreasing the magnitude of the 

velocity vector upon each iteration. With decreasing damping coefficient global 

equilibrium can be rapidly reached. However the desired lengths of the nodal 

connections may not have been obtained, since the system may cease to oscillate due to 

the damping effect and not due to the attainment of a stable configuration. In such cases, 

the increase of the drive parameter is necessary so that oscillation may reinitiate. On the 

other hand, the absence of damping, may lead to a continuous oscillation of the particle 

system.  It is a compromise between accuracy and runtime since any damping coefficient 

significantly smaller than unity alters the application of the main concept and introduces 

artificial ‘stability’ to the system. Figures 29, 30, 31 and 32 depict the generated results 

for varying damping coefficient and a drive parameter=30. 
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         Figure 29: damping coefficient =0.5                                      Figure 30: damping coefficient =0.9 

    

 

              

         Figure 31: damping coefficient =0.99,                        Figure32: damping coefficient =1 (no damping)  

 

For low values of the damping coefficient (0.5 and 0.9), the particle system ceases to 

oscillate prior to the attainment of a tiling pattern, whereas for high values of the 

damping coefficient (0.99) more spring connections are established. For the case of no 

damping, a triangular tiling pattern is always reached, since the system’s oscillation does 

not cease unless a stable configuration is reached. It should be noted that figures 29, 30, 

31 depict a non-moving nodal configuration, whereas figure 32 is a snapshot of a moving 

one. Since it is the formation of tiling patterns rather than the minimization of the 

program’s running time that this project is concerned with, it is proposed that no 
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damping should be incorporated (damping coefficient set to unity) if a tiling pattern is to 

be reached in all cases (regardless of the drive parameter).   

    

    

4.34.34.34.3    Activating/Deactivating the boundaryActivating/Deactivating the boundaryActivating/Deactivating the boundaryActivating/Deactivating the boundary constraint constraint constraint constraint 

 

As mentioned in §3.2.1, the boundaries within which the node particle system is placed 

can be deactivated by pressing the “f” key during the execution of the program. They can 

be reactivated by pressing the “b” key. Releasing the constraints imposed by the 

boundaries, results in the nodes escaping the screen, due to the repelling forces acting on 

the nodes, as can be seen in figures 33 and 34. Hence no tiling patterns can emerge.  

    

    

    

    

    

    

    

    

    

    

                      Figure 33 & 34: deactivation of boundary constraints and failure to generate tiling patterns    
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5 Conclusions and suggestions for future research5 Conclusions and suggestions for future research5 Conclusions and suggestions for future research5 Conclusions and suggestions for future research 

 

Having described the basic features of the code implemented within the current project, 

studied the affect of the various parameters and demonstrated what are believed to be 

interesting results, this Section summarises the conclusions and suggests potential 

improvements and/or extensions of the project.  

 

The current project has utilised a particle spring system approach to derive Penrose tiling 

patterns. Specific lengths corresponding to the desired tiles’ geometry have been specified 

and the code generates triangular tiling patterns with the desired lengths. However no 

Penrose tiling arises (except by chance) due to the fact that the combinations of the 

desired lengths constitute a total of 10 possible triangle out of which only 2 correspond 

to the rhombuses of the desired Penrose tiling. Furthermore, it is believed that no 

Penrose tiling pattern can emerge by enforcing a particle spring system approach, unless 

additional constraints are identified and enforced to the code, complementary to the 

geometric ones described in §3.2.5. The current code does produce triangular tiling 

patterns of specific proportions very efficiently, by using 10 different triangles as tiles. If 

two different lengths are specified, a total of 4 tiles can be generated. 

 

 The incorporation of the damping coefficient in the current problem greatly affects the 

feasibility of solution. The damping coefficient essentially reduces the effect of spring 

forces with increasing number of iterations; that should not pose a problem for a 

sufficiently large drive parameter with respect to the bounded region, but leads to an 

effectively premature termination of the algorithm when a small drive parameter is 

specified. Therefore it is concluded that preservation of the nodal velocity is a 

prerequisite if the desired nodal distances (tiling patterns) are to be obtained regardless of 

the number of nodes and/or the desired lengths within a given bounded region. On the 

other hand, if accuracy is not the main issue but a quick and effective way of connecting 
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nodes is pursued (as was the case in the project of Kanellos, 2007), damping is a helpful 

but artificial stabilising technique to achieve that goal within a small number of 

iterations.   

 

The definition of a bounded region is of vital significance for the successful application 

of the code. The absence of boundaries in conjunction with the application of repelling 

forces leads to failiure of the code; no spring connections connecting all nodes can be 

established. Moreover, the actual treatment of the boundaries by the code, i.e. whether 

the boundaries themselves can form a part of the tiling patterns, instead of just providing 

a framework for a tiling pattern is believed to depend on the depend on the geometry of 

the bounds and is a subject that could be investigated in the future. Furthermore, the 

tessellation within planar or non-planar curved boundaries or even non-orientable 

surfaces would also provide a challenging research project. 

 

 

One further main future objective within the current algorithm is to determine the 

necessary and sufficient conditions under which a valid solution is obtained, in other 

words, to determine the sets of the main parameters (number of nodes, dimensions of the 

bounded rectangle, drive etc.) for which the problem is well defined and a solution is 

feasible. Furthermore, since there is some randomness associated with the initial location 

of the nodes a more probabilistic approach could be followed, according to which a 

probability for the feasibility of the solution could be assigned to any combination of 

initial parameter values, or, vice versa maximum permissible limiting values could be 

assigned to each parameter for a given probability of a feasible solution. Of course in this 

case the interaction between the various parameters has to be studied in more detail.  
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AppendixAppendixAppendixAppendix    

 

PseudocodPseudocodPseudocodPseudocode (Processing Programming Language)e (Processing Programming Language)e (Processing Programming Language)e (Processing Programming Language)    

 

AAAA.1 Particle class .1 Particle class .1 Particle class .1 Particle class     

 

class Node   

{ 

  int id; 

  Vec pos; 

  Vec dir; 

  Vec tdir;   

  Node(int i, float x, float y, float x_dir, float y_dir) 

  { 

    pos = new Vec(x,y); 

    dir = new Vec(x_dir, y_dir); 

    tdir = new Vec(); 

    id = i; 

  } 

  void move() 

  {  pos = add(pos,dir); 

  }   

  void draw()  

  { 

    stroke(0); 

    stroke(0,255); 

    pushMatrix(); 

    strokeWeight(0.1); 

    translate (pos.vec[0],pos.vec[1]); 

    … 

    popMatrix(); 

  }   

} 
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AAAA.2 .2 .2 .2 Particle Particle Particle Particle –––– spring syst spring syst spring syst spring systemememem    

 

int particles= 81; 

float spring_thr = 1.3;// the edge of chaos or the beggining, too 

tight clusters 

(…)    

Node [] nodes= new Node[particles]; 

TreeSet springs = new TreeSet();                

Vector points = new Vector();              

(…)     

float d;  // distance between each pair of nodes 

float side=250f; // square’s side 

int connections=0; // connections between the particles when the 

program starts 

float drive; // the maximum distance; below that number new 

connection is established  

 

void setup() 

{ 

  for (int i=0; i<nodes.length; i++) 

  {   

    nodes[i] = new Node (i,random(-side/2, side/2), random(-side/2, 

side/2),random(-10f,10f),random(-10f,10f)); // nodes with random 

initial position and random velocity 

  } 

} 

void draw() 

{ 

  for (int i=0; i<nodes.length; i++) 

  { 

    for (int j=i+1; j<nodes.length ; j++) 

    {  

      Spring a = new Spring (nodes[i],nodes[j]); // creating spring 

connection 

      if (!springs.contains(a)) {   

        Vec nowi = add (nodes[i].pos,nodes[i].dir); 

        Vec nowj = add (nodes[j].pos,nodes[j].dir); 
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        d = disto (nowi, nowj); 

        if (d<=drive*spring_thr)  

        { 

          if (!crossing(nodes[i],nodes[j])) // checking if the 

springs are crossing and if the answer is positive then avoid it 

          {           

            springs.add(a); 

            connections++; 

          } 

        } 

      } 

    } 

  } 

  for (int i=0; i<nodes.length; i++) 

  { 

    nodes[i].dir = add (nodes[i].dir, nodes[i].tdir); // adding the 

existing applied forces with the new ones, coming from springs’ 

application 

    nodes[i].tdir = new Vec(); 

    nodes[i].move(); // adding velocity with each time- step and 

each iteration 

    nodes[i].draw(); //drawing the nodes 

    nodes[i].dir.scale(0.95);// dumping coefficient 

  } 

(…) 

} 

 

 

AAAA.3 Spring.3 Spring.3 Spring.3 Spring class class class class    

 

class Spring implements Comparable 

{ 

  Node node1; // node_1 

  Node node1; // node_2, the pair of them is checked by the program 

in each iteration to create a spring 

  float d; // the distance between the nodes 

    Spring(Node nodex, Node nodey) 
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  { 

    if (nodex.id < nodey.id) { // sorted nodes 

      node1 = nodex; 

      node2 = nodey; // every other node apart from the two 

consisting the pair  

    } 

    else { 

      node1 = nodey; 

      node2 = nodex; 

    } 

  } 

  int compareTo(Object o) 

  (…) 

 

  void go() 

  { 

    Vec now1 = add (node1.pos,node1.dir); // temporary node_1 

position 

    Vec now2 = add (node2.pos,node2.dir); // temporary node_2 

position 

 

    d = disto (now1,now2); // the temporary distance between node_1 

and node_2  

    Vec tdir_1 = sub(now1,now2); // new node_1’s direction, parallel 

to the spring and with a repulsing result 

    Vec tdir_2 = sub(now2,now1); // new node_2’s direction, parallel 

to the spring and with a repulsing result 

 

    (…)    

    if (d<(0.61803 + 0.3892*f)*drive)    

    { 

      scalar = (drive-d)* 0.61803; //  

    }      

     if (d< (1 + 0.1755 * h)*drive && d >(0.61803 + 0.3892*f)*drive)     

    { 

     scalar =drive-d; 

    } 

      if(d>(1 + 0.1755 * h)*drive )       
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    { 

      scalar = (drive-d)*1.1755;                       

    } 

    scalar = scalar/10; 

    tdir_1.scale(scalar); // 

    tdir_2.scale(scalar); 

 

    node1.tdir = add(node1.tdir,tdir_1); 

    node2.tdir = add(node2.tdir,tdir_2); 

 

    boolean compress=false; 

(…) 

    if (!visual )  

    { 

      line (node1.pos.vec[0], node1.pos.vec[1], node2.pos.vec[0], 

node2.pos.vec[1]); // drawing the spring line 

    } 

  } 

} 

 

 

AAAA.4 Particles relation to boundaries.4 Particles relation to boundaries.4 Particles relation to boundaries.4 Particles relation to boundaries    

 

Node keep_in(Node nod) 

{ 

  Vec new_pos = add (nod.pos,nod.dir); 

  if (free) // by pressing “f” the nodes are without any borders 

  { 

    nod.dir=nod.dir; 

  }   

  if(rect) // by pressing “b” the nodes are going back within 

borders  

//the following code regards the various positions outside the 

borders and the ways they lead the nodes back inside the rectangular  

  {  

boolean outside=false;  

    if (nod.pos.vec[0]+nod.dir.vec[0] <= centre.vec[0]-side/2) 
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    { 

      Vec bound = new 

Vec(nod.pos.vec[0]+nod.dir.vec[0]+(side/2f),0); 

      nod.dir = sub (nod.dir, bound);     

    } 

    if (nod.pos.vec[0]+nod.dir.vec[0]>=centre.vec[0]+side/2f) 

    { 

      Vec bound = new Vec(nod.pos.vec[0]+nod.dir.vec[0]-

(side/2f),0); 

      nod.dir = sub (nod.dir, bound);    

    } 

    if (nod.pos.vec[1]+nod.dir.vec[1]<=centre.vec[1]-side/2f)  

    { 

      Vec bound = new Vec(0,nod.pos.vec[1]+nod.dir.vec[1]+(side/2)); 

      nod.dir = sub (nod.dir, bound); 

    } 

    if (nod.pos.vec[1]+nod.dir.vec[1]>=centre.vec[1]+side/2f) 

    { 

      Vec bound = new Vec(0,nod.pos.vec[1]+nod.dir.vec[1]-(side/2)); 

      nod.dir = sub (nod.dir,bound);    

    } 

 

  } 

  return nod; 

}    


