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Abstract

We analyze the value of being better informed than one’s rival in a two bidder, second

price common value auction. In order to do so, we must pare down the continuum of

equilibria that typically exists in this setting. We propose selecting an equilibrium that is

robust to perturbing the common value of the object with small private value components.

Under this selection, we show that having better information about the common value will

frequently hurt rather than help a bidder and that the ratio of private value to common

value information held by a bidder has a significant effect on the value of information.

1 Introduction

Auction theory is largely silent on what to expect when some bidders are better informed

than others about the common value of an object for sale. This is due in part to the fact

that second-price common value auctions often present multiple equilibria. When bidders are

equally well informed, selecting the symmetric equilibrium appears reasonable, but when some

bidders know more than others, there is no obvious or compelling way to choose the “right”

equilibrium. This paper resolves the problem by introducing small private value perturbations

to the bidders’ common value for the object. As these perturbations vanish, bidding converges

to a unique equilibrium of the unperturbed model. The value of being better informed than

one’s rival takes a subtle form in this equilibrium: it is not having more precise information

per se that is valuable, but rather, having information that is difficult for rivals to free ride on.

In certain cases, this reduces to a fairly simple criterion: bidders whose private information

contains a higher ratio of private value to common value information do better.

The analysis focuses on two bidder, second price common value auctions with a “sum of

independent signals” specification of the common value. In this framework, the variance of the
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common value is the sum of the variances of the two bidders’ signals, so the noise in Bidder 1’s

estimate of the common value after observing her signal is related to the variance of Bidder 2’s

signal, and vice versa. In this sense, a bidder with a higher variance signal can be thought of

as having relatively more information about the common value.

In an unperturbed second price auction, the value of better information is unclear because

of a strong free-riding effect. Because the winning bidder’s price is set by the losing bidder’s

bid, the losing bidder’s private information will typically be fully revealed by the auction price.

Thus, when a bidder, in formulating a best response to her rival’s strategy, considers the event

of winning with a particular signal at a particular price, she is effectively conditioning on full

information about the common value. Given this, there is no particular reason that a poorly

informed bidder needs to bid cautiously. On the other hand, her inference about the common

value upon winning at a particular price will be more pessimistic when her rival’s strategy is

more aggressive, and this will lead her to bid more cautiously. By simultaneously making one

bidder’s strategy more aggressive and the other’s more cautious, one can trace out a continuum

of equilibria in the unperturbed model, and none of these equilibria depend on the informational

asymmetry between the two bidders.

In contrast, when there is a private value component to each bidder’s signal, free-riding off

a rival’s bid becomes more difficult. When a bidder conditions on paying a particular price, she

must infer what portion of that price reflects a “premium” for her rival’s private value for the

object. She should be prepared to win at this price if and only if her own private value for the

object exceeds that premium. This leads to a more stringent equilibrium condition: at any

price at which the bidders might tie, the expected share of private value reflected in the two

bidder’s bids must be the same. Under some regularity conditions on the signal distributions,

this robust to private values (RPV) condition pins down a unique equilibrium.

We focus on the situation in which the bidders’ private value components have the same

mean, so ex ante, neither bidder is expected to have a higher value for the object than the

other.1 We develop intuition for the RPV condition with a few simple examples. The examples

illustrate the importance of the slope of the probability density function for a bidder’s signal

about the common value. When this slope is negative, the bidder has access to the truth about

a component of the common value that is commonly thought more likely to be low than to be

high. High bids by such a bidder are relatively likely to reflect a high private value rather than

a high common value, so this bidder’s rival must be particularly cautious. In contrast, a bidder

with access to signals drawn from a density function with positive slope is at a disadvantage,

as his rival will tend to assume that a high bid confirms the ex ante belief that this component

of the common value is more likely to be high.

Most of the general results are developed for the case in which both signal density functions

are decreasing. Section 5 discusses some of the reasons that this case may be of interest; just
1The case in which one bidder has a small, ex ante, private value advantage has been analyzed in Klemperer

(1998). Here we want to focus on the effect of differences in information rather than differences in value.
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to mention one, we might imagine that prior (unmodeled) stages of competition have selected

for bidders in the right tails of otherwise unimodal signal distributions. The first result shows

that giving a bidder more information about the common value makes her relatively less likely

to win the auction (Proposition 2). Essentially, this is because the common value to private

value ratio in her bid goes up, allowing her rival to bid more aggressively. Conversely, giving

a bidder more private value information makes her more likely to win. However, there is a

sense in which a bidder benefits from better information — if the bidders share the same ratio of

private value to common value information, then the bidder with more information wins more

often (Corollary 2) and earns a larger surplus (Proposition 3).

We can also say something about the incentives of a seller who has some control over the

information released to each bidder. If the seller can control the amount of private value

information released to each bidder, it should release information in such a way that the bidder

with less information about the common value is more likely to win the auction (Propositions 5

and 6). (Loosely, this is because this bidder claims a smaller information rent.) Alternatively,

if the seller can reduce even further the amount of common value information held by this

less informed bidder, it can gain by doing so (Proposition 7). Standard results on revenue

equivalence allow us to consider whether the seller might do better with a first price auction. It

turns out that the answer is linked to whether the less informed bidder wins more or less often

than the more informed bidder in the second price auction, and there are situations in which

each format does strictly better than the other (Proposition 9).

My paper draws on two strands of the auction literature. The first relates to common

value auctions with asymmetrically informed bidders. Here most of the work has focused

on first price auctions, often looking at the case in which a single informed bidder competes

with several relatively uninformed bidders whose information is in some sense a coarsening of

the informed bidder’s information (Wilson (1967), Englebrecht-Wiggans, Milgrom, and Weber

(1983), Hendricks, Porter, and Wilson (1994), among others). More recently, Laskowski and

Slonim (1999) and Kagel and Levin (1999) characterize approximate first price equilibria in

models in which better information corresponds to a lower variance signal about the common

value. Campbell and Levin (2000) explicitly solve a parametric model and provide examples in

which having better information hurts a bidder.

For second price auctions, Milgrom and Weber (1982) and Einy, Haimanko, Orzach, and

Sela (2000) show that as in the first price auction, when one bidder has information that

encompasses everything known by another bidder, the latter bidder cannot make a profit.

Krishna and Morgan (1998) and Mares (2000) deal with asymmetries that arise when ex ante

symmetric bidders pool their information and bid jointly. Both papers resolve a multiplicity

of equilibria by imposing some type of symmetric bidding despite the fact that the bidders

are not symmetric. Perhaps the closest paper to mine is Parreiras (2002), who also uses a

perturbation approach to select an equilibrium of a second price auction with asymmetrically

informed bidders. However, his approach is based on the assumption there is a small first price
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component to the auction (rather than a private value component), and his results are quite

different.

I also build on past work on auctions with both private and common values. In a sem-

inal paper, Milgrom and Weber (1982) treat the case of symmetric bidders when a bidder’s

information about its private and common value can be summarized by a one-dimensional sig-

nal. Relaxing these assumptions has proved difficult, in large part because the basic toolbox

of auction theory relies heavily on finding a natural ordering of bidders’ signals. The lack of

such an ordering when signals are multi-dimensional can cause problems for the existence and

characterization of equilibrium as shown by Jackson (1999). In order to avoid this difficulty, I

rely on a relatively special model of private and common values that also been used by Goeree

and Offerman (1999) among others. The next section describes the model and partially char-

acterizes equilibria. Section 3 looks at the limit in which private values are small and develops

the equilibrium selection result. Section 4 illustrates some implications of the selection result

with examples, and Section 5 provides general results. Section 6 concludes with a discussion of

possible extensions.

2 The Model

There is a single object to be sold to one of two buyers, 1 and 2, in a second price auction with

a reserve price of 0. A buyer’s valuation for the object is vi = v + εzi where εzi is a private

value component and v is common to both bidders. The common value is modeled as the

sum of two independent signals: v = x1 + x2 where x1 and x2 are distributed independently

with continuously differentiable densities f1 and f2 (with common support X ⊂ <+)2. The
private value terms z1and z2 are also random variables drawn independently from continuously

differentiable densities g1 and g2, while ε is a constant scale factor. We assume that zi has

mean µi and variance σ
2
i . Our principal focus will be on the case in which the scale factor ε is

small, so that the private component of valuations is small relative to the common value. The

only information available to a bidder is a signal si = xi + εzi = vi − x−i. In other words, a

bidder receives information about his value that is incomplete because it does not reveal part

of the common value v. Furthermore, a bidder does not observe the common and private value

elements of his own signal individually, but just the composite signal.3

As a prelude to examining equilibrium in the full model, it is helpful to briefly review the

set of Nash equilibria of the model with pure common values; we do this in Section 2.1. Then,

in Section 2.2, equilibria of the full model are characterized. The following preliminary result

will be helpful for both cases.

Lemma 1 Equilibrium bidding strategies are weakly increasing in signals.
2Assuming common supports is not strictly necessary, but it will avoid some tedious steps later.
3Actually, the equilibria we will identify would be unchanged if a buyer observed xi and zi rather than just

si. Essentially, this is because xi and zi provide no information about x−i, so the buyer’s belief about his own
value vi does not change.
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Proof. Fix a bidding strategy for buyer 2. By bidding b, buyer 1 earns π1(b | s1) = Pr(b2 ≤
b)E[v1− b2 | b2 ≤ b] = Pr(b2 ≤ b)s1+Pr(b2 ≤ b)E[x2− b2 | b2 ≤ b]. The cross-partial derivative

∂
∂b∂s1

π1(b | s1) = d
db Pr(b2 ≤ b) is weakly positive, so standard results guarantee that buyer 1’s

optimal bid weakly increases in his signal.

2.1 The Common Value Benchmark

Here we assume that ε = 0, so the setting is one of purely common values, with v = s1 + s2.

For convenience, we assume that the support of the signal distributions is compact: X = [0, x̄].

The following lemma and its proof provide a sense of why multiple equilibria arise in this

setting. Before proceeding to the lemma, let us introduce some terminology. A bidding function

maps signals to bids: bi : X → <+. We restrict attention throughout to strictly increasing,
continuously differentiable bidding functions. The set of bids used by a bidder — that is, the

image of bi — is denoted Bi ≡ bi(X), and the inverse bidding function is denoted φi : Bi → X.

We will focus on equilibria for which B1 ∩ B2 is nonempty so that each bidder has a positive
chance of winning the auction. We can also define a bidder’s surplus function Yi(p ; si,φ−i).
This is the expected surplus earned by a bidder i with signal si who wins at a price p, given

that her rival’s (inverse) bidding strategy is φ−i. In the case of pure common values, the surplus
function is

Yi(p ; si,φ−i) = E(v | si, s−i = φ−i(p))− p
= si + φ−i(p)− p

In what follows, we will sometimes write Yi(p ; si) or just Yi(p) when the missing arguments are

clear from the context.

Lemma 2 Any pair of increasing inverse bidding functions (φ1,φ2) that satisfy φ0i < 1 and

φ1(p)+φ2(p) = p ∀p ∈ B1 ∩B2 constitute a Nash equilibrium of the auction with pure common

values.

Proof. Suppose that φ1 and φ2 satisfy the conditions of the lemma and consider whether

φ1 is a best response to φ2 for an arbitrary signal s
0
1. There are two possibilities: either

b0 = b1(s
0
1) ∈ B2 (Bidder 1 sometimes ties with Bidder 2 given signal s01), or b0 /∈ B2 (Bidder

1 always wins or always loses with signal s01). If b0 ∈ B2, then Bidder 1’s expected surplus
conditional on winning and paying a price equal to her bid is

Y1(b
0 ; s01,φ2) = s1 + φ2(b

0)− b0

= φ1(b
0) + φ2(b

0)− b0

= 0
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Furthermore, Y1(p ; s01,φ2) is strictly decreasing in p (because φ
0
2 < 1), so Bidder 1’s surplus

function is positive (negative) when she wins at prices less than (greater than) b0. By bidding
b0, she wins if and only if her expected surplus is positive, so this is a best response.

Alternatively, suppose that b0 < b2 ∀b2 ∈ B2 (so Bidder 1 never wins with signal s1). Let
b∗ = inf{b ∈ B1 ∩B2} = inf{b ∈ B2} > b0 be the lowest price at which Bidder 1 could win. (b∗
exists because we have assumed B1 ∩ B2 nonempty, and the second equality follows from the

continuity of b1.) Of course, φ1(b
∗) > s1. By assumption, we have

Y1(b
∗ ;φ1(b

∗),φ2) = φ1(b
∗) + φ2(b

∗)− b∗

= 0

Thus Bidder 1’s surplus at any price p ≥ b∗ for which it has a positive chance of winning is
strictly negative:

Y1(p ; s1,φ2) < Y1(p ;φ1(b
∗),φ2)

≤ Y1(b
∗ ;φ1(b

∗),φ2)

= 0

It follows that bidding b0 < b∗ and never winning is a best response. The argument for the case
in which b0 > b2 ∀b2 ∈ B2 (so that Bidder 1 always wins with signal s1) is virtually identical
and is omitted. Since the choice of s1 was arbitrary, φ1 is a best response to φ2. An identical

argument establishes that φ2 is a best response to φ1.

While the equilibria characterized above are not the only equilibria of the auction, they share

certain features are worth highlighting. First, an increase in the price a bidder pays is partially,

but not fully, compensated for by an increase in the rival signal that can be inferred (φ0 < 1).
This is what ensures that when a bidder likes winning at one price, she also likes winning at

all lower prices, simplifying the evaluation of optimal strategies. Second, equilibrium requires

that Bidder 1’s expectation of the common value conditional on tying Bidder 2 at some bid p

must be the same as Bidder 2’s expectation conditional on that event, and both expectations

must be equal to p. This is implied by φ1(p) + φ2(p) = p. However, equilibrium does not put

any conditions on the signals s1 = φ1(p) and s2 = φ2(p) for which they tie other than that the

signals must sum to p. This leaves substantial scope for one bidder to bid more aggressively

than the other.

As an example, consider equilibria in strategies that are linear in signals: bi = kixi. Such

equilibria must satisfy the constraint that 1
k1
+ 1

k2
= 1. One such equilibrium is the symmetric

one, with b1 = 2x1, b2 = 2x2. However, there is a continuum of asymmetric equilibria in which

one buyer bids more aggressively than under the symmetric strategy (ki > 2) and the other

bids less aggressively (k−i < 2). In these equilibria, aggressive bidding by the “strong” bidder
creates a more severe winner’s curse for the weak bidder who knows that if he has won, his
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rival’s signal must have been quite low. This encourages the weak bidder to bid cautiously. But

this in turn alleviates the winner’s curse faced by the strong bidder, as winning against a more

cautious rival conveys less bad news about the rival’s signal. Thus asymmetric bidding can be

self-sustaining.

So far, nothing has been said about the distributions of the bidders’ signals; this is because

the equilibrium set does not depend on those distributions. Of course, this means that the

set of equilibrium outcomes does not depend on the relative amount of information about the

common value held by each bidder. This is a (perhaps perverse) consequence of the second

price format. A less informed buyer need not bid more cautiously than its better informed

rival because it never pays more than its rival’s bid, which fully reveals its rival’s (superior)

information. Thus, free-riding renders any informational advantage moot. This will no longer

be the case when private values are introduced.

2.2 Private Value Perturbations

Now I turn to the case in which valuations have a private value component (ε > 0). In this case,

upon winning, a bidder must worry about how much of the price he is paying reflects his rival’s

private benefit from winning the object rather than common value to both of them. In what

follows, I will assume that the bidders’ values are ex ante symmetric (that is, µ1 = µ2 = 0) in

order to focus on the effects of asymmetries in bidder information (When values are ex ante

asymmetric, one can demonstrate a strong advantage for the stronger bidder as suggested in

Klemperer (1998).) In the rest of this section, we will develop a characterization of equilibrium

with private values.

As before, we consider bid functions that are strictly increasing in signals, and hence, invert-

ible. Suppose that Bidder 2’s bid function and inverse are given by b2 and φ2, and once again,

consider Bidder 1’s best response. His expected value for the object conditional on winning at

a price b is given by

E(v1 | s1, s2 = φ2(b)) = s1 +E(x2 | s2 = φ2(b))

and his expected net surplus upon winning and paying b is now equal to

Y1(b ; s1) = s1 +E(x2 | s2 = φ2(b))− b

Notice that because φ is increasing, it doesn’t matter whether we write these expressions as

conditioning on Bidder 2’s bid b or her signal φ2(b). While in the pure common values case, the

middle term in this expression, E(x2 | s2 = φ2(b)), is simply equal to Bidder 2’s signal φ2(b),

with private values, Bidder 1 must infer how much to discount Bidder 2’s signal to account for

her private value component.

As before, we are interested in conditions that ensure that Y1(b ; s1) is decreasing in b,

because this in turn will ensure that there is a single b∗ that separates the prices at which
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Figure 1: Expected value and price for Bidder 1 as a function of s2.

Bidder 1 would like to win (p < b∗) from the prices at which it would prefer to lose (p > b∗). In
this case, determining Bidder 1’s optimal strategy will be relatively straightforward. With pure

common values, it sufficed to constrain the slope of φ2, but with private values, the situation

can be more complicated, as illustrated by Figure 1.

If the situation is as in (a), Bidder 1 can win at every price for which his expected surplus

is positive by bidding b∗. However, if the situation is as in (b), Bidder 1 would like to win
whenever the price is less than biii but not between bi and bii. This is impossible, so he will

have to assess the relative likelihood of prices in [bi, bii] and [bii, biii] in order to determine

whether it is better to bid bi or biii. Situations like (b) can occur if there are regions for which

the slope of E(x2 | s2) is larger than the slope of b2 with respect to s2. Such situations can arise
naturally under private values; for example, suppose that the common component x2 is believed

to be either low, U(0, 1), or high, U(2, 3), and the private value component is either −12 or 12
with equal probability. Then for small δ > 0, the expected value of x2 when s2 = 1.5 − δ is

1. (The private value must be high, because the prior rules out x2 = 2 − δ). However, when

s2 = 1.5 + δ, the expected value of x2 jumps up discontinuously to 2 + δ. (Here, the prior

rules out x2 = 1 + δ, so the private value must be low.) In this example, a higher signal for 2

is particularly good news for 1 because it implies a dramatic shift between the common and

private portions of 2’s signal. In order to rule out “extreme” swings in beliefs like this one, the

following condition is imposed.

A1. d(E(xi | si)/dsi < 1 (Good news is not too good.)

Given the monotonic relationship between signals and bids, we can write Bidder 1’s surplus

as a function of Bidder 2’s signal: Y1(s2 ; s1) = s1 +E(x2 | s2)− b2(s2). Given A1, this surplus
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function Y1(b ; s1) will be decreasing in s2 if b02 > 1. Existence of equilibrium bidding functions

with b0i > 1 is not automatic; we need an additional assumption.

A2. dE(xi | si)/dsi > 0 (Good news is not bad news.)

The following example helps to illustrate the need for A2. Suppose x2 ∼ U(0, 1) and

εz2 = −ε or ε with equal probability. Then E(x2 | s2) drops from s2 to s2 − ε as s2 increases

through 1− ε, because a signal higher than 1− ε means that the possibility that the common

value is underestimated (rather than overestimated) can be ruled out. In other words, a higher

rival signal can be bad news about the common value. When this is the case, Bidder 1 may find

it optimal to raise his bid more slowly than his signal in order to compensate for the bad news

implied by (possibly) defeating a higher rival signal. But this would mean that bid functions

could have slope less than one, and we would like to rule this out.

Although assumptions A1 and A2 convey some helpful intuition, they make joint demands

on the distributions of the common and private values, so it would be useful to have more

primitive conditions on the distributions f and g. The next lemma provides these conditions.

Lemma 3 .
i. If xi and si have the monotone likelihood ratio property (MLRP), then A2 is satisfied.

ii. If zi and si have the monotone likelihood ratio property, then A1 is satisfied.

iii. If fi and gi are strictly log-concave, then A1 and A2 are satisfied.

Proof. Appendix
In light of Lemma 3, the following assumption will be used frequently in the sequel.

A3. fi is strictly log-concave.

If Bidder 1’s surplus does decrease monotonically with the price at which it wins, then its

optimal bid is given by the unique solution to

E(v1 | s1, s2 = φ2(b)) = s1 +E(x2 | s2 = φ2(b)) = b

which can be rewritten as

s1 + φ2(b)− εE(z2 | s2 = φ2(b)) = b

or equivalently

φ1(b) + φ2(b)− εE(z2 | s2 = φ2(b)) = b

That is, he is willing to pay up to the sum of his signal and 2’s signal (which he can infer),

minus the expected private value component of 2’s signal. Of course, the same argument is
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valid for Buyer 2 whose inverse bid function should therefore satisfy

φ1(b) + φ2(b)− εE(z1 | s1 = φ1(b)) = b

Combining these two expressions yields the following equilibrium conditions

λ(b) = E(z1 | s1 = φ1(b)) = E(z2 | s2 = φ2(b)) (1)

φ1(b) + φ2(b) = b+ ελ(b) (2)

Proposition 1 Suppose that A1 and A2 are satisfied. Then,

i) Any pair of increasing inverse bidding functions (φ1,φ2) that satisfy φ
0
i < 1 and (1) and (2)

for all b ∈ B1 ∩B2 constitute a Nash equilibrium.
ii) A Nash equilibrium satisfying φ0i < 1 exists.

Proof. i) Each bidder’s surplus function can now be written as

Yi(p ; si,φ−i) = si +E(x−i | s−i = φ−i(p))− p

Differentiating with respect to p indicates that this surplus function is strictly decreasing:

d

dp
Yi(p ; si,φ−i) = φ0−i(p)

d

ds−i
E(x−i | s−i = φ−i(p))− 1

< 0

The inequality follows from A1 and φ0−i < 1. At this point, the proof proceeds analogously to
Lemma 2.

In words, because each buyer bids its expected value conditional on tying with its rival, if

there is a bid at which the buyers sometimes tie, then they must have the same expected value

for the object at that bid. Subtracting off the common value component, this means that the

portion of its rival’s bid that each bidder rationally expects to represent private value must be

the same for the two bidders. This will restrict the scope for either bidder to be arbitrarily

aggressive, as each must assess how likely it is that its rival’s willingness to drive up the price

reflects a private rather than a common benefit.

3 The Common Value Limit

In this section, we focus on characterizing equilibrium in the limit as private values vanish.

This analysis leads to the robust to private values condition, which must hold in any limiting

equilibrium. Under some regularity conditions, there is a unique equilibrium satisfying the
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RPV condition; this equilibrium can be thought of as the most reasonable prediction for the

unperturbed common value model.

The strategy will be to develop a more explicit formulation of the equilibrium condition (1),

and then take Taylor series approximations of this condition. Taking limits as ε goes to zero

leads to the RPV condition. First, the expected private value component of a rival’s signal

from (1) can be expressed:

E(z1 | s1 = s) =
R
z f1(s− εz)g1(z) dzR
f1(s− εz)g1(z) dz

We will take Taylor series expansions in the numerator and denominator of this expression as

follows. First the numerator:Z
z f1(s− εz)g1(z) dz = f1(s)

Z
z g1(z) dz

−εf 01(s)
Z
z2 g1(z) dz

+o(ε)

= −εσ21f 01(s) + o(ε)

As is usual, o(ε) indicates terms that vanish at a strictly faster rate than ε, and the assumption

that µ1 = 0 is used twice. Next, for the denominator:Z
f1(s− εz)g1(z) dz = f1(s)

Z
g1(z) dz

−εf 01(s)
Z
z g1(z) dz

+o(ε)

= f1(s) + o(ε)

Combining these steps, we have

E(z1 | s1 = s) = −εσ21
f 01(s)
f1(s)

+ o(ε)

and in a similar fashion, for the private component of Buyer 2’s signal we have

E(z2 | s2 = s) = −εσ22
f 02(s)
f2(s)

+ o(ε)
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Therefore, we can rewrite the equilibrium condition (1) as

σ21
f 01(s1)
f1(s1)

= σ22
f 02(s2)
f2(s2)

+ o(ε0) where

s1 = φ1(b)

s2 = φ2(b)

In the limit, as private information becomes negligible, the equilibrium bidding functions must

satisfy

σ21
f 01(s1)
f1(s1)

= σ22
f 02(s2)
f2(s2)

(3)

for any s1 and s2 for which Buyers 1 and 2 submit the same equilibrium bid.

Definition 1 A pair of Nash equilibrium bidding strategies (b1, b2), with inverses (φ1,φ2) is said
to be robust to private values (RPV) if for every pair of signals such that b1(s1) = b2(s2),
(3) is satisfied.

Figure 2 illustrates the intuition underlying (3) for an example in which the private value

component is either ε∆ or −ε∆ with equal probability. A bidder who learns its rival’s signal to
be s can infer that the common component of its rival’s signal is either x∗ or x∗∗. Given the equal
likelihood of a high or low private value, the posterior likelihood placed on x∗ relative to x∗∗ is
the same as the prior: f(x∗)/f(x∗∗). The posterior probability of x∗ is f(x∗)/(f(x∗)+f(x∗∗))
and the expected deviation of x from s, given s, is

E(x | s)− s =
f(x∗)

f(x∗) + f(x∗∗)
(s− ε∆) +

f(x∗∗)
f(x∗) + f(x∗∗)

(s+ ε∆)− s

=
f(x∗∗)− f(x∗)
f(x∗) + f(x∗∗)

ε∆

≈ 2ε∆f 0(s)
2f(s)

ε∆

∝ f 0(s)
f(s)

σ2z

In this case, f 0(s) is negative, so the common component is likely to be lower than s. The effect
of a larger variance for z is to spread out the possible values of x. This in turn has two effects:

it increases the disparity in likelihood between low and high values of x, and it increases the

standard deviation of the difference between the common value and the signal. Each of these

effects is of order σz.

Although (3) restricts possible equilibria, it may not pin down a unique equilibrium. For

some distributions f1 and f2 there may be multiple solutions to (3). Furthermore, the RPV

condition has no impact on bids that always lose or always win. The former issue disappears

if we are willing to assume that f1 and f2 are sufficiently regular. In particular, if fi is strictly
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Figure 2:

log-concave, then σ2i f
0
i(s)/fi(s) is strictly decreasing. In this case, (3) uniquely identifies the

equilibrium (except for bids that win with probability 0 or 1).

4 Examples

In order to develop intuition for the way in which the RPV condition operates, we present three

examples.

4.1 “Almost Uniform” Priors

Suppose that the distribution of the common value components is given by

f1(x) = 1 + (12 − x)m
f2(x) = 1 + (x− 1

2)m , x ∈ [0, 1]

for m small, as illustrated in Figure 3.

Then (3) can never be satisfied for any s1 and s2 in (0, 1) because f 01 = −m < 0 < m = f 02
on this range. In words, Bidder 2 always expects its rival’s signal to underestimate x1, while

the opposite is true for Bidder 1, regardless of their signals. Consequently, 2 is always prepared

to outbid 1 whenever they are tied. The only case in which this is not true is at the maximum

and minimum signals, 1 and 0, where f 01 and f 02 are not defined. Thus the only equilibrium
that survives private value perturbation is the one in which the bidders tie only at the highest
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Figure 3:

(lowest) signal for Bidder 1 (2) and Bidder 2 wins the auction with probability 1:

b1(s) = s

b2(s) = s+ 1

This is true regardless of the distributions of private values and for all m > 0, so even as m

approaches zero and both prior distributions converge to identical uniform distributions, the

auction outcome remains completely asymmetric.

4.2 Truncated Normal Priors (1)

Here we assume the common value components to be distributed according to truncated normal

distributions. That is,

fi(x) =

(
f̃i(x)/

³
1− F̃i(0)

´
if x ≥ 0

0 otherwise

where F̃i and f̃i are the c.d.f. and p.d.f. of a normal random variable with distributionN(x̄i,α2i ),

where x̄i > 0. We suppose that x̄i is large relative to αi so that the effect of the truncation at

zero is minimal. For this distribution, f 0i(s)/fi(s) takes the relatively simple form (s− x̄i)/α2i ,
so (3) reduces to

(s1 − x̄1)
µ
σ1
α1

¶2
= (s2 − x̄2)

µ
σ2
α2

¶2
for all signals s1 and s2 for which the bidders tie. If we write γ1 =

³
σ1
α1

´2
Using the fact that if

the bidders tie at s1 and s2 then b1(s1) = b2(s2) = s1 + s2, we can restate this as follows: for
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any bid b at which the bidders might tie, we must have

φ1(b) =
γ2b+D

γ1 + γ2

φ2(b) =
γ1b−D
γ1 + γ2
where

D = γ1x̄1 − γ2x̄2,

γi =

µ
σi
αi

¶2
Suppose b is the smallest bid at which the two bidders might tie.4 Then one of the bidders

must be at her minimum signal — either φ1(b) = 0 or φ2(b) = 0. (If this were not true — if, for

example, b1(0) ≤ b2(0) < b — then continuity of b1 and b2 would guarantee that there would be
some s1 such that b1(s1) = b2(0), contradicting the minimality of b.) The identity of the bidder

at her minimum signal depends on the sign of D: if D > 0, then s2 = 0 ties with s1 = D/γ1
at b = D/γ1. On the other hand, if D < 0, then s1 = 0 ties with s2 = −D/γ2 at b = −D/γ2.
To sum up, the RPV bidding functions are given by

b1(s) =

(
x̄1 + x̄2 + (s− x̄1)(1 + κ1) for s ≥ max{0,D/γ2}

s otherwise

b2(s) =

(
x̄1 + x̄2 + (s− x̄2)(1 + κ2) for s ≥ max{0,−D/γ1}

s otherwise

where κ1 = 1/κ2 = γ1/γ2. That is, each bidder bids x̄1 + x̄2 (for large x̄i this is approximately

the ex ante expected value of the good) plus a “correction” for having a higher or lower than

expected signal. This correction comprises the full value of the deviation of the own signal plus

an estimate, (s− x̄i)κi, of the deviation of the rival’s signal, conditional on tying. The overall
responsiveness of each bid function to the signal depends on the parameter κi. A bidder’s κi is

larger if the ratio of publicly relevant (αi) to privately relevant information (σi) in his signal is

smaller than for his rival. The underlying logic is that a bidder raises its bid for two reasons

as its signal increases — first to account for the increase in value indicated by its own signal,

and second to account for the increase in value implied by tying with a higher rival signal. If

the relative importance of private value — which is effectively noise to the first bidder — in the

rival’s bid is large, then the bidder will tend to discount this secondary effect. Conversely, if the

ratio of private information in its rival’s signal is low, the secondary effect will be large, and

the bidder will be justified in raising its bid more as its signal rises.

It is worth elaborating on what is not implied by this equilibrium. It is not true that

the bidder with relatively more private information bids higher, on average, than his rival —

both bidders bid approximately x̄1 + x̄2 on average. It is also not true that the bidder with
4Technically, this should be the infimum, but the more rigorous argument would be essentially the same.
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more private information bids higher relative to his signal. Rather, he bids relatively more

aggressively when he has a high signal, and relatively more weakly when his signal is low.

As an illustration, consider the case in which Bidder 2 has a small private value component

but Bidder 1’s signal is purely common value. Formally, we look at the limit as σ21 goes to zero,

holding σ22 fixed. Then κ1 goes to zero and κ2 goes to infinity. Bidder 1 simply bids his signal

plus x̄2. Bidder 2 bids her signal when it is less than x̄2 and bids unboundedly high when her

signal exceeds x̄2. Thus, the outcome of the auction is determined entirely by Bidder 2. When

Bidder 2’s signal is low, Bidder 1 wins the auction and pays s2. When Bidder 2’s signal is high,

she wins and pays s1+x̄2. For large x̄1 and x̄2, the chance that s2 exceeds x̄2 is approximately 1
2 ,

and expected auction revenues are approximately 1
2(E(s1)+ x̄2)+

1
2E(s2 | s2 < x̄2) . x̄1/2+ x̄2.

Contrast this with the standard symmetric equilibrium when α1 = α2 = 1 and x̄1 = x̄2 = 10.

The average common value is 20 but in the RPV equilibrium, revenues are approximately 14.60.

In the symmetric equilibrium, each bidder bids twice its signal and so the bidder with the

higher signal wins. The average revenue is at least the expected second highest bid which

is roughly equal to 18.87.5 Notice that the bidders do not share at all equally in the extra

surplus generated by the small private value asymmetry. In the symmetric equilibrium, each

earns a surplus of 0.56 on average. In the RPV equilibrium, Bidder 2 nets s2 − 10 whenever
s2 > 10 and zero otherwise, yielding an expected surplus of approximately 0.40. On the other

hand, Bidder 1 nets s1 whenever s2 < 10, for an expected surplus of approximately 5. Bidder

2 suffers because the private value perturbation induces Bidder 1 to bid more aggressively with

low signals, and all else equal, Bidder 2 tends to win when Bidder 1 has a low signal. Bidder 1

gains dramatically because Bidder 2 bids much less aggressively when his signal is low, which

is when Bidder 1 tends to win. This is intended in part as a cautionary example — even when

bidders are symmetrically informed about the common value, small differences in private value

information can tip the auction outcome far away from the symmetric equilibrium.

4.3 Truncated Normal Priors (2)

In this example, each common value component is assumed to be distributed as the right tail

of a normal distribution. Formally, xi = |yi| where y ∼ N(0,α2i ). The analysis of bids is as
above, and we have

b1(s) = (1 + κ1)s

b2(s) = (1 + κ2)s for all s ≥ 0

In contrast to the previous example, the priors here always place greater weight on low common

values than on high common values, so when uncertainty about the private value component of

a rival’s bid induces greater reliance on priors, the result is always a shift toward less aggressive

bidding. To make the example concrete, take α1 = 1 and α2 = 2, so 2’s signal explains four
5At least, because we assume that no sale takes place if both bids are negative.
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1

2

1 2 3 4σ1 / σ2

Bidder 1’s surplus

Bidder 2’s surplus

Revenue

Figure 4:

times as much of the variation in the common value as 1’s does. Table 1 and Figure 4 show

the expected surplus for each bidder and the expected auction revenue for selected ratios of the

private information held by the two bidders.

Table 1

σ1/σ2 1’s Surplus 2’s Surplus Revenue Prob. 1 wins
1
2 0.18 0.98 1.22 0.30
1√
2

0.33 0.66 1.40 0.50

1 0.49 0.38 1.52 0.71√
2 0.62 0.20 1.57 0.85

2 0.70 0.10 1.58 0.92

4 0.75 0.05 1.59 0.96

The first row, σ1/σ2 = 1
2 , is the case in which each bidder has the same amount of private

information relative to public information (κ1 = κ2), but Bidder 2 is more completely informed

than Bidder 1. The two bidders bid symmetrically as a function of their signals, but 2 wins

more often because its signal is on average higher. In the second row, the distribution of bids

is the same for the both bidders which means that Bidder 1 is bidding more aggressively; it

is induced to do so because it has relatively more private value information than Bidder 2.

Nonetheless, Bidder 1 still earns less surplus than Bidder 2. It is not until Bidder 1 catches up

in terms of the absolute amount of private information (σ1/σ2 = 1).that he begins to earn more

than Bidder 2. As Bidder 1’s private value information advantage grows, both his surplus and

auction revenue continue to grow as well.

Note that in contrast to the previous example, holding more private information is unam-

biguously good for Bidder 1. This is true because in the right tails, uncertainty about a rival’s
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bid unambiguously induces the other bidder to shade down its expectation of the common value,

whereas in Example 4.2, bidders with low signals tended to find such uncertainty encouraging

rather than discouraging. Note also that the seller does better when there is relatively more

uncertainty ex ante about the private value of the bidder who is more poorly informed about

the common value (that is, higher σ1/σ2). That is because (with small private value compo-

nents) this is the bidder who commands the smaller information rent, so it is in the seller’s

interest for him to bid more aggressively and win more often. This has implications for optimal

information release by the seller, which we explore in the next section.

5 General Results

This section is devoted to formalizing some of the results that were illustrated in the previous

section. We begin by defining one particular notion of what it means for one bidder to to

have better information about the common value than another. The definition will allow us to

compare signals when one signal distribution is essentially a compressed or dispersed version of

the other.

Definition 2 We say that distributions F1 and F2 are comparable if a random variable y ∼ F2
has the same distribution as ax+ c, where x ∼ F1 and a and c are real numbers. If a ≷ 1 we
say that F2 contains more (less) information than F1.

An alternative formulation of this definition is that F2(s) = F1((s − c)/a) for some a and
c. This may seem to run counter to the standard intuition that a more concentrated signal

is more informative, but one must recall that in the sum of independent signals model, the

residual uncertainty in Bidder 1’s assessment of the common value is reflected by F2, so when

F2 is relatively more dispersed, 1 is relatively worse informed, and vice versa.

In most of what follows, we impose the following additional assumption.

A4. fi is strictly decreasing.

A4 ensures that the sign of the inference effect is negative — the presence of private value in

a rival’s signal means that the other bidder must be more be more cautious. The main reason

for focusing on this case is practical; with an unambiguous sign on the inference effect, it is

possible to say a great deal about the comparative statics of revenue and the bidder surpluses.

However, there are other reasons that A4 may represent a relevant class of distributions. One

reason is prior competition. As we alluded to in the introduction, one might think of the two-

bidder auction as the final stage of a competitive process in which agents with low signals about

the common value have already dropped out. In this case, it may be a reasonable shortcut to

suppose that the two surviving agents have “right tail” signals for which A4 applies, even if

the underlying signal distribution is more general. Alternatively, suppose that agents have

some control over their information sources. As illustrated in 4.1, agents have little incentive
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to acquire precise information about aspects of the common value for which prior beliefs are

optimistic (i.e., increasing density), as this will tend to handicap them in the bidding. Instead,

agents should seek information on features for which the common priors ascribe more weight

to low versus high values.

Proposition 2 Suppose the bidders have comparable common value signals that satisfy A3 and
A4. Fix F1 and the private value perturbation parameters σ21 and σ22. Then in an RPV

equilibrium,

i. As Bidder 2’s common value signal grows more informative, its probability of winning

declines.

ii. If σ21 = σ22, then the bidder with the less informative common value signal is more likely

to win the auction.

iii. Fixing the common value signals, Bidder 2’s probability of winning increases with its

private value information.

iv. If the bidders have identical common value signals, then the bidder with more private

value information is more likely to win.

Proof. For simplicity, we assume that c = 0 so F2(s) = F1(s/a)̇. (The proof would not

change with a non-zero c.) The RPV equilibrium condition is given by

1

a

f 01(s2/a)
f1(s2/a)

σ22 =
f 01(s1)
f1(s1)

σ21

Define the function h(u) = f 01(F
−1
1 (u))/f1(F

−1
1 (u)) which is the value of f 01/f1 at the signal

corresponding to percentile u of F1. The assumptions ensure that h is negative and strictly

decreasing. Then we can write the equilibrium condition as

h(u2) = a
σ21
σ22
h(u1)

where u1 and u2 are the percentiles (from F1 and F2 respectively) of the signals for which the

bidders tie. We will write u1 = γ(u2) for the mapping implied by this condition. To show

i., observe that as a increases, each value of u2 must tie with a strictly smaller value u1; that

is, γ (u2) decreases for every u2. But 2’s probability of winning the auction is just
R 1
0 Pr(win

|u2) du2 =
R 1
0 γ(u2) du2, so we are done. For step ii., we have

h(u2)

h(u1)
= a

so γ(u2) ≷ u2 iff. a ≶ 1. If γ(u2) > u2 then 2’s probability of winning is
R 1
0 γ(u2) du2 >R 1

0 u2 du2 =
1
2 , and conversely if γ (u2) < u2. Steps iii. and iv. are essentially identical to steps

i. and ii. and are omitted.
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The intuition is just as in the example of 4.3. When higher levels of the common value are

believed to be relatively less likely, the prospect that an opponent’s high bid could reflect his

high private value is unambiguously bad news. The news gets worse as the relative influence

of that private value on the opponent’s bid grows. However, the bad news is mitigated if the

opponent’s signal resolves relatively more uncertainty about the common value. If we define

α2i to be the variance of si, relative bidding can be characterized as follows.

Corollary 1 Under the conditions of Proposition 2, the bid distributions of the two bidders are
identical (and so each bidder is equally likely to win) when α2/α1 = σ22/σ

2
1. Otherwise, the

bidder with relatively more private value information (less common value information) is more

likely to win.

Proof. Note that α2/α1 = a and when ασ21/σ
2
2 = 1, the equilibrium condition is h(u2) =

h(u1), so γ(u2) = u2. This means that each bidder uses the same mapping from the percentile

of his signal to his bid, so the distribution of bids is identical. If aσ21/σ
2
2 > 1 then we have

γ(u2) < u2 as in the previous proof, and so 1 is more likely to win. When this inequality is

reversed, 2 is more likely to win.

This corollary indicates that as we give one bidder more information, we must give him

private value information at at least half the rate of common value information in order to

prevent his chances of winning from eroding.

Corollary 2 Assume the conditions of Proposition 2. If the bidders have the same relative

variance of private value to common value information, then the better informed bidder is more

likely to win.

Proof. This follows directly from Corollary 1.

In this narrow sense, bidders with better information outperform those with worse informa-

tion.

It is more difficult to say anything conclusive about relative payoffs, but the following

proposition provides a partial result.

Proposition 3 Suppose A3 and A4 hold and in the RPV equilibrium the better informed bidder
wins at least half of the time. Then the better informed bidder has the higher average payoff.

Proof. Suppose that 2 is better informed than 1 and that the bidders are equally likely
to win the auction. Consider an arbitrary bid b. The bidders tie at b when s1 and s2 share

the same percentile in F1 and F2 and s1 + s2 = b, i.e., when s1 = sb1 = (b − c)/(1 + a) and
s2 = s

b
2 = as1 + c. Conditional on the winning price being b, it is equally likely that s1 = sb1

and s2 ≥ sb2 (2 has won) or s2 = sb2 and s1 ≥ sb1 (1 has won). In the latter case, 1 earns an

expected surplus of EF1(s1 | s1 ≥ sb1) + sb2 − b = EF1(s1 | s1 ≥ sb1) − sb1. In the former case, 2
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earns

EF2(s2 | s2 ≥ sb2) + sb1 − b = EF2(s2 | s2 ≥ sb2)− sb2
= a(EF1(s1 | s1 ≥ sb1)− sb1)
> EF1(s1 | s1 ≥ sb1)− sb1

where the second step follows from the comparability of the two distributions. Since this

inequality holds at every possible winning bid, we conclude that 2’s overall expected surplus

from the auction is higher.

Now suppose that 2 wins more than half of the time. Then it will be true that the bidders

tie at b for some sb01 and sb02 such that sb01 + sb02 = b and sb02 < ŝ = asb01 + c. Then, conditional

on a winning price of b, 2 is more likely to be the winner. By the same arguments as above,

1’s surplus conditional on being the winner is EF1(s1 | s1 ≥ sb01 )− sb01 , 2’s surplus conditional on
being the winner is EF2(s2 | s2 ≥ sb02 ) − sb02 , and EF1(s1 | s1 ≥ sb01 ) − sb01 < EF2(s2 | s2 ≥ ŝ) − ŝ.
Then because EF2(s2 | s2 ≥ k) − k is decreasing in k for log-concave distributions, we have
EF2(s2 | s2 ≥ sb02 )− sb02 > EF2(s2 | s2 ≥ ŝ)− ŝ, and hence EF2(s2 | s2 ≥ sb02 )− sb02 > EF1(s1 | s1 ≥
sb01 )−sb01 . Because 2 is more likely to be the winner, we have a fortiori that 2’s expected surplus
conditional on the price being b is greater than 1’s, and so we are done.

Furthermore, we can state conditions under which more private value information improves

a bidder’s payoff.

Proposition 4 Suppose A3 and A4 hold and the bidders’ signals are comparable. Then a

bidder’s expected payoff is increasing in its level of private value information.

Proof. Consider an increase in Bidder 1’s private information level from σ21 to σ
2∗
1 . This

implies a decrease in γ(u2) to some γ∗(u2) < γ(u2); that is, 1 ties 2 with lower percentile bids

than previously. Consider 1’s payoff conditional on an arbitrary signal percentile u2 for 2.

Under σ21 and σ2∗1 1 earnsZ
γ(u2)

F−11 (u1) + F
−1
2 (u2)− (F−11 (γ(u2)) + F

−1
2 (u2)) du1 =

Z
γ(u2)

F−11 (u1)− F−11 (γ(u2)) du1

andZ
γ∗(u2)

F−11 (u1)+F
−1
2 (u2)− (F−11 (γ∗(u2))+F−12 (u2)) du1 =

Z
γ∗(u2)

F−11 (u1)−F−11 (γ∗(u2)) du1

respectively, where F−11 (γ(u2)) + F
−1
2 (u2) is 2’s bid when its signal percentile is u2 and the

tying function is γ. The change in 1’s payoff under σ2∗1 isZ
γ(u2)

F−11 (γ(u2))− F−11 (γ∗(u2)) du1 +
Z γ(u2)

γ∗(u2)
F−11 (u1)− F−11 (γ∗(u2)) du1
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Observe that γ∗(u2) < γ(u2) guarantees that both integrals are positive, so 1’s payoff increases

under σ2∗1 , conditional on u2. Since u2 was chosen arbitrarily, 1’s unconditional payoff must

increase as well.

Next, we turn to the incentives of the seller. Suppose the seller can release information

to each bidder that is relevant to its private value for the object; I will take the reduced-form

interpretation that this means the seller can affect σ21/σ
2
2. Who would the seller prefer to

inform? The next two propositions indicate a sense in which it is better to release information

to a more poorly informed bidder.

Proposition 5 Assume A3 and A4. Consider the seller’s choice between manipulating σ21/σ
2
2

so that the bidders are equally likely to win and manipulating σ21/σ
2
2 so that the bidder with less

information about the common value always wins. If information about the common value is

sufficiently asymmetric, the seller will prefer to have the less informed bidder always win.

Proof. As before, assume a > 0 so that 2 is better informed about the common value. Write
t2 = s2/a and note that t2 and s1 have the same distribution. When σ21/σ

2
2 is such that the

bidders are equally likely to win, the condition for which signals s1 and s2 tie is s1 = s2/a = t2.

The corresponding bid functions are b1 = (1 + a)s1 and b2 = (1 + 1
a)s2 = (1 + a)t2, and so the

seller’s revenue is just (1 + a)E(min(s1, t2)).

On the other hand, when σ21/σ
2
2 →∞ so that 1 wins with arbitrarily low signals, the price

is set with probability → 1 by 2’s bid. This is simply s2 + E(s1 | s1ties with s2) → s2, so the

seller’s revenue approaches E(s2) = aE(t2). This is better for the seller if

aE(t2)− (1 + a)E(min(s1, t2)) > 0

or

(1 + a)E(t2 −min(s1, t2))−E(t2) > 0

But E(t2 − min(s1, t2)) and E(t2) are positive constants, so the inequality holds for a large
enough.

This echoes the example in 4.3. Again, the idea is that the better informed bidder has

a larger information rent when he wins, so the seller does better by encouraging his rival to

win more often. For some examples, the policy of allowing the less informed bidder to always

win appears to be optimal, but in other cases there is an interior optimum in which the less

informed bidder wins with probability greater than 1/2 but less than 1.

Proposition 6 Assume A3 and A4 and consider the situation in which the two bidders are
equally likely to win. The seller can always do better (worse) by providing slightly more (less)

private value information to the bidder with the less informative common value signal.

Proof. The strategy is to sign the slope of expected revenues with respect to the ratio σ21/σ
2
2

at the point where the bidders are equally likely to win. The details are in the appendix.
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Next I ask what can be said about the seller’s preferences over the common value information

held by the bidders. Suppose that the seller can release more or less information about the

common value to one of the two bidders exclusively (say Bidder 2); I model this by assuming

that the seller can manipulate a. Here I must be somewhat careful, as changing a will generally

change the mean of Bidder 2’s common value signal, but I do not mean to assume that the

seller can change the average common value of the object. The solution is somewhat crude:

I assume that there is a third component of the common value about which the two bidders

are both uninformed, although they know its distribution and mean. As the seller increases

(decreases) a, the changes in the average signal observed by 2 are absorbed by opposite changes

in the mean of the third component. The idea is that the additional information supplied to

Bidder 2 is incremental information about this third component.6 In this environment, we

have a companion result to the previous proposition.

Proposition 7 Assume A3 and A4 and consider the situation in which the two bidders are
equally likely to win. The seller can always do better (worse) by providing slightly less (more)

common value information to the bidder with the less informative common value signal.

Proof. Appendix.
There are two factors at play in this result. The seller has a bias against releasing common

value information exclusively to one of the bidders because it increases that bidder’s information

rent without eroding the exclusivity of the information held by the other bidder. This is a

feature of the additive independent signals model, and presumably if the seller could release

information to 2 that would induce more overlap between his information and that of Bidder

1, this effect might be reversed. The second factor is the now familiar effect in which giving

a bidder more common value information relative to private value information makes him a

weaker bidder.

The multiplicity of equilibria in the unrefined second price auction contrasts with the corre-

sponding first price auction, for which there is a unique equilibrium. With the goal of comparing

the seller’s revenue across the two auction formats, I introduce a result adapted from Parreiras

(2002).

Proposition 8 If in the second price auction, the buyers’ bids are distributed identically in
equilibrium, then the expected revenue from the first and second price auctions is the same.

Given Corollary 1, this means that the comparison of first and second price auctions can

be reduced to a comparison of second price auction revenues across different relative levels of

private values. As indicated by the example in 3.2.3, these revenues may be higher or lower

than those of the first price auction. More formally, we have the following.
6 I sidestep substantial technical issues in assuming this information structure to be feasible. The main

difficulty is in preserving the comparability of F1 and F2 while adding information to F2; this seems likely to
impose very strong restrictions on the form of F1 and F2.
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Proposition 9 Assume A3 and A4. If one common value signal is sufficiently more infor-

mative than the other, then there exist levels of private information such that

i. The bidder with the less informative common value signal wins more often, and expected

revenue is greater than in a first price auction.

ii. The bidder with the more informative common value signal wins more often, and expected

revenue is lower than in a first price auction.

Proof. For i., apply Propositions 5 and 8. For ii., we can adapt the proof of Proposition 5 to
show that when the bidder with the less informative common value signal also has sufficiently

little private value information relative to its rival, revenue is lower than it would be if the

bidders were equally likely to win. Then we apply Proposition 8 again.

While I suspect that a stronger result holds, I have been unable to prove it.

Conjecture 1 Under A3 and A4, second price expected revenue exceeds first price expected
revenue if and only if the bidder with the less informative common value signal is more likely

to win in the second price auction.

6 Concluding Remarks

The model has potentially interesting implications for information acquisition in auctions. For

example, one implication of Proposition 2 is that there may be relatively general conditions

under which the marginal benefit to a bidder of acquiring more information about the common

value is negative. Conversely, there are fairly general conditions under which acquiring private

value information is beneficial. To be more precise, these effects arise when a bidder is known

to have acquired more information, as in each case it is the strategic reaction of rivals that

is important. One may conjecture that bidders will attempt to adopt a strong posture by

putting disproportionate research into aspects of the object that other bidders are unlikely to

care about, even if these aspects are relatively insignificant relative to the overall value of the

object. Meanwhile, research about the common value aspects may be relatively minimal. This

need not have serious consequences for efficiency in the current framework, but if there were a

chance that the object could fail to sell (due to a reserve price, perhaps), or if private values

were small but not negligible, then underinvestment in common value information could be

more of a problem.

There are also implications for the kind of information sources that bidders will seek out.

The analysis shows that a bidder is better off drawing a signal for which f 0 is negative because
this discourages her rivals from tagging along on her high bids. As a practical matter, we

may expect firms to skew their research toward learning about “lottery ticket” features of the

common value — that is, features that are expected to reveal modestly bad news about the

common value most of the time and very good news occasionally. (Or if they don’t skew their

research in this way, they should at least try to give the appearance of doing so publicly.)
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One possible complaint against the model is that it does not provide a true selection result

because the set of equilibria that are robust to some private value perturbation σ1/σ2 is typically

still large. In order to get a precise equilibrium prediction, one must know which private value

perturbation best represents the situation. There are two responses to this criticism. First, even

if the appropriate ratio σ1/σ2 is not known, the RPV condition still puts relatively stringent

restrictions on the form of equilibrium bidding functions. For example, “sunspot” equilibria in

which the bidders switch from cautious to aggressive strategies (and vice versa) at arbitrary

prices and arbitrarily often will not survive. This may be valuable for empirical work, as the

number of free parameters to estimate is reduced from a continuum to just one. Second, a

selection that does not depend on the relative amounts of private value information held by

the bidders runs the risk of throwing out information that is actually important in determining

auction outcomes.

Finally, a note of caution. A theme that emerges from this paper as well as several others

in the theoretical literature (e.g., Klemperer (1998), Parreiras (2002)) is that second price

auction outcomes can be very sensitive to small asymmetries among bidders when values are

“almost” common. Here it is small asymmetries in the amount of private value information

that modulate the effect of much larger asymmetries in information about the common value.

However, empirical and experimental work consistently reveals that bidders account for the

information held by others, but not as fully as they should. One hopes that the effects of

differential information identified in the theory would show up qualitatively, if perhaps less

powerfully, in the data; experimental work on auctions with differential information would be

valuable in determining whether this is true.

Appendix: Proofs

Lemma 3
i. We will drop unnecessary subscripts. Choose arbitrary s and s0 > s. There exists some

x∗ such that f(x∗ | s) = f(x∗ | s0). Then because the MLRP holds for x and s, we have

f(x | s0)
f(x∗ | s0) >

f(x | s)
f(x∗ | s)

for all x > x∗, and hence f(x | s0) > f(x | s) for all x > x∗. Similarly, we have f(x | s0) < f(x | s)
for all x < x∗. But this suffices to show that F (x | s0) < F (x | s) from which it follows that

E(x | s0) > E(x | s).
ii. Because E(x | s) = s− εE(z | s), it will be enough to show that E(z | s) is increasing in

s, which can be proved just as for i.

iii. We will show that g log-concave implies that f(x0 | s)/f(x | s) is increasing in s whenever
x0 > x. First, note that

f(x0 | s)
f(x | s) =

f(x0)
f(x)

g( s−x
0

ε )

g( s−xε )
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so if s0 > s,

f(x0 | s0)
f(x | s0) >

f(x0 | s)
f(x | s) ⇔ g(

s0 − x0
ε

)g(
s− x
ε
) > g(

s− x0
ε

)g(
s0 − x
ε

)

But s
0−x0
ε + s−x

ε = s−x0
ε + s0−x

ε and s− x0and s0 − x bracket s− x and s0 − x0, so the inequality
holds by log-concavity of g. Finally, we can apply i. to show A2. The proof that log-concavity

of f implies A1 is very similar and is omitted.

Proposition 1(ii) (Existence)
The proof is by construction. A1 ensures that λi(si) = E(zi | si) is strictly increasing in si.

Let Zi be the image of λi and let Z be the closure of Z1 ∩ Z2. For signals s1 and s2 such that
λ1(s1) ∈ Z and λ2(s2) ∈ Z we implicitly define the maps Q1 and Q2 :

λ2(Q2(s1)) = λ1(s1)

λ1(Q1(s2)) = λ2(s2)

That is, Q2 = Q−11 links pairs of signals that map to the same value of E(zi | si); λi increasing
ensures that Qi exists and is increasing. The domain of Q−i is denoted Si = λ−1i (Z). Let
Ui = λ−1i (Zi\Z) be the set of signals for i that cannot be paired with a signal for −i mapping
to the same value of z. In our construction, a signal in Ui will either be non-competitive (if

λi(si) < inf{z ∈ Z}) or will always win (if λi(si) > sup{z ∈ Z}). Continuity ensures that if U1
includes non-competitive signals, then U2 does not (and similarly for signals that always win).

Let the bidding functions be defined by

bi(s) =

(
b̃i(s) s ∈ Ui

s+Q−i(s)− ελ−i(Q−i(s)) s ∈ Si

where the only constraint on b̃i is that it has slope greater than one and satisfies smooth

pasting conditions at the boundaries of Ui and Si. Notice that for s ∈ Si the bidding function
can be written bi(s) = s + E(x−i | s−i = Q−i(s)). Therefore, A2 and Q−i increasing ensure
that b0i(s) > 1. By construction, the bid functions overlap precisely for B1 ∩ B2 = b1(S1) =

b2(S2). Note that b1(s1) = b2(Q2(s1)). Furthermore, because the bid functions are strictly

increasing, b1(s1) = b2(s2) only if s2 = Q2(s1). Thus for any s1 and s2 that tie, we have

λ1(s1) = λ2(Q2(s1)) = λ2(s2), so (1) holds. For tying signals s1 and s2 with b1(s1) = b2(s2) = b

and λ1(s1) = λ2(s2) = zb, we have

b = s1 + s2 − εzb

= φ1(b) + φ2(b)− ελ(b)

so (2) holds. Therefore the constructed bidding functions satisfy the conditions in i) for a Nash

equilibrium.
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Proposition 6

We can write expected revenue as the sum of expected revenue from the two bidders:Z
Pr(u2 > γ−1(u1))(F−11 (u1)+F

−1
2 (γ−1(u1)) du1+

Z
Pr(u1 > γ(u2))(F

−1
1 (γ(u2))+F

−1
2 (u2)) du2

The first integrand is just the bid made by 1 when his signal falls in percentile u1 times the

probability that this bid determines the price. The second integrand is the equivalent expression

for 2. We can rewrite this asZ
(1− γ−1(u1))(F−11 (u1) + F

−1
2 (γ−1(u1)) du1 +

Z
(1− γ(u2))(F

−1
1 (γ(u2)) + F

−1
2 (u2)) du2

Differentiating with respect to the ratio of private value information, we have

d(Expected Revenue)
d(σ21/σ

2
2)

= (4)

−
µZ

Z(u1)(F
−1
1 (u1) + F

−1
2 (γ−1(u1)) du1 +

Z
Y (u2)(F

−1
1 (γ(u2)) + F

−1
2 (u2)) du2

¶
+

µZ
(1− γ−1(u1))

Z(u1)

f2(F
−1
2 (γ−1(u1)))

du1 +

Z
(1− γ(u2))

Y (u2)

f1(F
−1
1 (γ(u2))

du2

¶
where Y (u2) = d(γ(u2)/d(σ21/σ

2
2) and Z(u1) = d(γ

−1(u1)/d(σ21/σ22). Using the implicit defini-
tion of γ, h(u2) = kh(γ(u2)), k = a

σ21
σ22
, we have

Y (u2) = − 1
k2

h(u2)

h0(h−1(h(u2)/k))
Z(u1) =

h(u1)

h0(h−1(kh(u1)))

We intend to evaluate this derivative for the value of σ21/σ
2
2 at which the bid distributions are

symmetric, i.e., for σ21/σ
2
2 = 1/a. In this case, k = 1 and γ(u2) = u2. Substituting in above,

we have Y (u) = −Z(u) = −h(u)/h0(u). Using this, we relabel the integration variables in (4)
to combine the integrals, giving us

d(Expected Revenue)
d(σ21/σ

2
2)

¯̄̄̄
σ21/σ

2
2=1/a

=

−
µZ

Z(u)(F−11 (u) + F−12 (u) du+

Z
Y (u)(F−11 (u) + F−12 (u)) du

¶
+

µZ
(1− u) Z(u)

f2(F
−1
2 (u))

du+

Z
(1− u) Y (u)

f1(F
−1
1 (u))

du

¶
=

Z
(1− u)Z(u)

µ
1

f2(F
−1
2 (u))

− 1

f1(F
−1
1 (u))

¶
du

The first two terms in the integrand are positive (Z(u) > 0 because h and h0 are negative by
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A3 and A4). The third term is positive whenever a > 1: because f2(x) = 1
af1(x/a) and

F−12 (u) = aF−11 (u), we have f2(F−12 (u)) = 1
af1(F

−1
1 (u)). (This is just a consequence of f2

being more spread out than f1 at every percentile.) Thus it is always to the seller’s benefit

to skew the ratio of private value information in favor of the bidder with less common value

information when the bidders would otherwise be equally likely to win.

Proposition 7

As above, we look at the derivative of expected revenue with respect to the proposed change

at the point aσ21/σ
2
2 = 1. It should be clear that the derivative with respect to a is almost

identical to the derivative with respect to σ21/σ
2
2 calculated above. The only difference is an

additional term that arises because of the change in the distribution F2 and the corresponding

change in the mean of the third common value component. Using F−12 = aF−11 , this term is

given by

∂

∂a

Ã R
(1− γ−1(u1))(F−11 (u1) + aF

−1
1 (γ−1(u1)) du1

+
R
(1− γ(u2))(F

−1
1 (γ(u2)) + aF

−1
1 (u2)) du2

!
− s̄1

=

Z
(1− γ−1(u1))F−11 (γ−1(u1)) du1 +

Z
(1− γ(u2))F

−1
1 (u2) du2 − s̄1

where s̄1 = E(s1) = dE(s2)/da is the amount by which the mean of the third component needs

to be adjusted. Combining the integrals and evaluating at aσ21/σ
2
2, this term becomes

2

Z
(1− u)F−11 (u) du− s̄1

or by making the change of variables s = F−11 (u)Z
2f1(s)(1− F1(s)) s ds− s̄1

= E(min(x, y) | x, y ∼ F1)− s̄1

which is negative. This simply reflects the fact that if there is a component of the value about

which both bidders are symmetrically uninformed, both bidders will bid up to the full expected

value for that component. As the seller transfers information about this component to Bidder

2, he creates an information rent for 2 that ceteris paribus reduces revenues. To get the total

effect of a change in a, we must add this to the derivative calculated in the previous proof

(which reflects the changes in revenue due to changes in bidding behavior). For a < 1, this

derivative is negative as well. Thus, the overall effect on revenue of releasing more common

value information to Bidder 2 is negative when Bidder 2 has worse common value information

than Bidder 1.
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