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Abstract

A definition of sampling equilibrium was introduced in (Osborne and

Rubinstein 1998). A dynamic version of the model was introduced in

(Sethi 2000). However, a descriptive simulation based on the above idea

of procedural rationality (i.e. using the same algorithm of behavior) gave

different results, than those achieved in (Osborne and Rubinstein 1998)

and (Sethi 2000). The simulation was a starting point for new definitions

of both sampling dynamics and sampling equilibrium. Keywords: bounded

rationality, sampling procedure, evolution.
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1 Introduction

A definition of sampling equilibrium was introduced in (Osborne and Rubinstein

1998). It relies on a procedure comprising two distinct phases. In the first one,

a player uses in a sequence all available pure strategies. Afterward, it chooses

the strategy that has yielded the highest payoff, and then, it switches to the

second phase. In the second phase, a player uses the chosen strategy.

A dynamic version of sampling equilibrium was postulated in (Sethi 2000).

The proposed dynamics, called sampling dynamics, is typical “evolutionary

style” dynamics. A distribution of strategies in a population is sampling equi-

librium if and only if it is a stationary point of the sampling dynamics.

The sampling dynamics defined in (Sethi 2000) was postulated. We start

with a descriptive simulation (cf. (Chattoe 1996), (Gilbert 1996)), and then,

we derive dynamics from the exact underlying model of interactions. Only

after we have the appropriate dynamics, we define equilibrium as a stationary

point of it, and not the other way around. The new sampling dynamics has

different properties as it includes random delays and endogenous noise. As a

consequence, a set of equilibria is also different to the original one. We provide

basic invariance and existence results.

Section 2 provides a brief summary of the original results on both sampling

equilibrium and sampling dynamics. In Section 3 we discuss a simulation and

its results. Section 4 contains the main results. Discussion is contained in

Section 5. We conclude in Section 6.

2 Sampling equilibrium

A two-player, symmetric, normal form game G is a triple G = (I,S,U), where

I = {1, 2} is a set of players, S = {1, 2, . . . , S} is a set of pure strategies and

U = (u1, u2) is a vector of payoff functions. We will drop the indices referring

to players as is usual in the context of symmetric games. A payoff function u is

defined through a symmetric S × S matrix G.
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We assume the usual “random-matching” evolutionary scenario. The distri-

bution of players among pure strategies is denoted by α = (α1, . . . , αS) ∈ 4S ,

where αj is a fraction of players using a pure strategy j ∈ S.

The sampling procedure is the following. A player uses each pure strategy

once, and then adopts the strategy that has given the highest payoff. The

probability of adopting a strategy j given a distribution α is denoted by w(j, α)1.

A distribution α is called sampling equilibrium if and only if it satisfies αj =

w(j, α) for all j ∈ S (cf. (Osborne and Rubinstein 1998)). For any normal form

game, there exists sampling equilibrium.

The static notion of the sampling equilibrium is accompanied by a notion of

sampling dynamics. The dynamics of the form

α̇j = w(j, α)− αj , for all j ∈ S, (1)

is called sampling dynamics (cf. (Sethi 2000)). There are two important results.

First, a simplex 4S is forward invariant under the sampling dynamics (1).

Second, there exists a bijection between the set of sampling equilibria and the

set of stationary points of the sampling dynamics (1), i.e. a distribution α is

sampling equilibrium if and only if it is a stationary point of (1).

It is useful to see the above definitions at work. Let G be a two player

symmetric game with two pure strategies, S = {1, 2}. Let G be a payoff matrix

of the game G

G =
[

5 0
2 4

]
. (2)

There are two Nash equilibria in pure strategies in the game G. The first one,

(1, 1), is payoff dominant. The second one, (2, 2), is risk dominant.

The winning probability of the first strategy equals w(1, α) = α1. Con-

sequently, the sampling dynamics reads α̇1 = 0 and any distribution α =

(α1, 1− α1), α1 ∈ [0, 1] is (Lapunov) stable sampling equilibrium.

In the above game, if α1(0) = 1, then α1(t) = 1 for any t > 0. At the same

1This procedure is called 1-sampling. The probability w is called a winning probability.
We consider here only games without tied payoffs, hence we do not assume any tie-breaking
rules (cf. (Osborne and Rubinstein 1998)).
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time, some fraction of players is using the second pure strategy because of the

sampling procedure. This implies that the probability of getting a higher payoff

while using the second pure strategy should be positive, which is not the case

in the mathematical model.

This awkward behavior of sampling dynamics (1) was the starting point

for a development of a descriptive simulation of the population of procedurally

rational players using sampling procedure.

3 Simulation

The simulation comprises two classes: an “environment” class and a “player”

class. There are n objects of a class player and a single object of a class envi-

ronment (i.e. there are n players within one environment).

The sole purpose of the “environment” class is to provide a usual “random-

matching” evolutionary scenario. It matches k/2, k ≤ n, pairs of player at each

time step t, calculates payoffs and sends them back to the chosen players. Players

are anonymous to the environment. It neither tracks nor stores any information

about players. Any such information is not used in a process of choosing and

matching players, i.e. we assume an absolutely anonymous environment.

The behavior of the “player” class consists of two phases: an active one and

a passive one. The active phase is the sampling procedure (cf. (Osborne and

Rubinstein 1998)). During the passive phase the previously chosen strategy is

played until the next sampling procedure starts. The only information a player

ever gets is its payoff. The sampling procedure is used to build an association

between pure strategies and payoffs. Players are anonymous to each other and

to the environment. In particular for a game with two pure strategies, it is

possible for a player to start the sampling procedure at time t (i.e. to play the

first pure strategy) and continue the procedure at some later time t + l1, l1 > 1

(i.e. to play the second pure strategy). The final decision (i.e. the choice of the

best strategy) may be taken at some time t + l1 + l2, l2 > 1. Any two players

may be matched. In particular, two sampling players may play against each
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other.

We now turn to see the results of the simulation for the game given by

the payoff matrix (2). Figures 2 and 3 show results of the simulation for the

extremal values of k. The average path of a fraction of passive players using

the first pure strategy converges to α = 1/2. Although the pace of convergence

is heavily influenced by the relation of k and n, the limit itself seems not to

depend on it.

The results of the simulation are quite different from the results suggested

by the mathematical model. According to the mathematical model, any dis-

tribution is Lapunov stable equilibrium. The simulation suggests, that there is

single globally asymptotically stable equilibrium.

4 Mathematics behind the simulation

It is necessary to build a mathematical model in order to achieve general results

concerning the above simulation. The starting point is a single player. Its

behavior comprises two phases: an active one and a passive one. The active

phase corresponds to the mechanical part of a procedure, namely sampling

subsequent pure strategies. The passive phase consists of playing previously

chosen pure strategy. This behavior is summarized in a Markov chain P depicted

on Figure 1.

  

1 2 S 0



1−
111



1−

active state passive state

Figure 1: Markov chain corresponding to the behavior of a player.

Proposition 1 The Markov chain P corresponding to the behavior of a player
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is aperiodic and irreducible and its invariant measure π is given by:

π0 =
1− δ

1 + δ(S − 1)
, and πj =

δ

1 + δ(S − 1)
, for all j ∈ S. (3)

Proof: The first part is obvious. The formulas for the invariant measure π result

from simple algebra.

The invariant measure π will be denoted by π = (π0, πa), where πa =

(π1, . . . , πS). The whole population is a system of n Markov chains P. At any

given time t, only k out of n Markov chains are chosen. Therefore, the Markov

chain describing the behavior of a single player within such an environment has

to be modified, namely its transition matrix is of the form

P̃ =
k

n
P +

(
1− k

n

)
IS+1,

where IS+1 is (S + 1) × (S + 1) identity matrix. The Markov chains P̃ are

correlated. In order to derive a system of equations describing the average

behavior of a population on an aggregate level (i.e. the distribution of strategies

in a population), it is necessary to know a distribution of players among the

nodes {0, 1, . . . , S}.

Proposition 2 Let there be n Markov chains P, but at each time step t only

k out of n are picked. In such a system, the distribution of players among the

nodes j ∈ S ∪ {0} equals π.

Proof: In fact, the only thing we have to show, is that π is the invariant measure

of P̃. We have

πT P̃ = πT

(
k

n
P +

(
1− k

n

)
IS+1

)
=

k

n
πT P +

(
1− k

n

)
πT IS+1 =

k

n
πT +

(
1− k

n

)
πT = πT

This completes the proof.

Let α(t) = (α1(t), . . . , αS(t)) denote a distribution of pure strategies among

passive players at time t. At any time we have α(t) ∈ 4S , where 4S = {α ∈
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∑
j∈S αj = 1}. The difference equations, describing average behavior of

the system of players, are typical inflow–outflow equations. They read

π0nαj(t + 1) = π0nαj(t) +
k

n
(1− δ)πSnw(j,Φt)︸ ︷︷ ︸

inflow

−

outflow︷ ︸︸ ︷
k

n
δαj(t),

where Φt = (φ0, . . . , φt−1, φt), φt = π0αt + πa. Dividing both sides by π0n,

taking into account formulas (3) and rearranging leads to

αj(t + 1)− αj(t) =
kδ

n
(w(j, Φt)− αj(t)) . (4)

Proposition 3 Simplex 4S is forward invariant under the dynamics (4).

Proof: The proof falls naturally into two parts. First, we can rewrite (4) as

αj(t + 1) =
(

1− kδ

n

)
αj(t) +

kδ

n
w(j, Φt),

that is, αj(t+1) is a convex combination of αj(t) and w(j, Φt). Since they both

belong to the interval [0, 1], it follows that αj(t + 1) ∈ [0, 1] for any j ∈ S.

Second, assume that
∑

j∈S αj(t) = 1. Then∑
j∈S

αj(t + 1) =
∑
j∈S

(
αj(t)−

k

n
δαj(t) +

k

n
δw(j, Φt)

)
=

=
∑
j∈S

αj(t)−
k

n
δ
∑
j∈S

αj(t) +
k

n
δ
∑
j∈S

w(j, Φt) = 1

This completes the proof.

Equilibrium is defined as a “stationary” point of the dynamics (4). It is a

consequence of the dynamics (4) and it comes after it, not before.

Definition 1 A distribution α� ∈ 4S is called sampling equilibrium if and only

if it is a “stationary” point of the dynamics (4), i.e. for any t it is α(t) = α�.

There are static conditions defining sampling equilibrium α�. These condi-

tions are derived from the dynamics (4).

Proposition 4 Let α� ∈ 4S be sampling equilibrium. Then it satisfies the

following conditions

α�j = w(j, π0α
� + πa) for all j ∈ S. (5)
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Proof: Let α� ∈ 4S be sampling equilibrium. By definition of α� we know,

that for any t, there is α(t) = α�. This implies, that φt = π0α
� + πa for any t.

Therefore we have

α�j = α�j −
k

n
δα�j +

k

n
δw(j, π0 α� + πa) for all j ∈ S

and consequently α�j = w(j, π0α
�+πa) for all j ∈ S. This completes the proof.

Proposition 5 For any symmetric two player game G there exists sampling

equilibrium.

Proof: Simplex 4S is compact and convex. The mapping w : 4S → 4S is

continuous (polynomial). Hence, by Bouwer’s fixed point theorem, there exists

α� ∈ 4S such that α�j = w(j, π0α
� + πa) for all j ∈ S. This completes the

proof.

We now turn to study the delays present in the dynamics (4). These delays

are obviously random and correlated as far as a single player is concerned. We

are interested in an average distribution θ over the set of possible delays Dt at

time t, where

Dt = {l ∈ NS :
∑
j∈S

lj < t}.

Although, it is possible to get exact, closed-form formulas for a distribution θ

in simple situations2, we are, however, interested in its asymptotic properties.

Proposition 6 Let k < n. The asymptotic distribution θ of lags l1, l2, . . . , lS

is of the form

θ(l1, . . . , lS) =
(

k

n− k

)S ∏
j∈S

(
1− k

n

)lj

.

It is a product of independent geometrical distributions.
2For example, in a situation with two pure strategies only, the general formula reads

θ(l1, l2) = −
k2
(
1− k

n

)l1+l2
δ
(

n−k(δ+1)
n

)−l1−l2
((

n−k(δ+1)
n

)l1+l2
+ δ
(

n−k(δ+1)
n

)t
)

(k − n)2
((

1− k
n

)t
−
(

n−k(δ+1)
n

)t
+

((
1− k

n

)t
− 1

)
δ

) .

It may be used to get the results of the Proposition 6 in the special case. This, however, is
quite complicated and it will not be used.
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Proof: Let [·]j denote the jth coordinate of a vector. Let A be a set of all

incoming paths up to time t + 1, i.e. paths of the form (0, . . . , 2, 0). Let B(l)

be a set of l-incoming paths up to time t + 1, i.e. paths of the form

(0, . . . , 0 or S,

l1 times︷ ︸︸ ︷
1, . . . , 1, . . . , S, . . . , S︸ ︷︷ ︸

lS times

, 0),

where l = (l1, . . . , lS) ∈ Dt+1. Obviously, for any l ∈ Dt+1 we have B(l) ⊂ A.

The distribution θ, given by the conditional probability θ(l) = P(B(l)|A) =

P(B(l))/P(A) is thus

θ(l) =

([
e1P̃t−

∑
j∈S

lj

]
S

p̃(S, 1) +
[
e1P̃t−

∑
j∈S

lj

]
0

p̃(0, 1)
)

[
e1P̃t

]
S

p̃(S, 0)
d(l),

where

d(l) = p̃(1, 1)l1−1p̃(1, 2) · · · p̃(S, S)lS−1p̃(S, 0).

In the limit, as t →∞, the above formula yields

lim
t→∞

θ(l) =
(πS p̃(S, 1) + π0p̃(0, 1))

πS p̃(S, 0)
d(l) =

(
k

n− k

)S ∏
j∈S

(
1− k

n

)lj

.

That is, the distribution of lags is a product of asymptotically independent

geometrical distributions. This completes the proof.

We now turn to see if the results of the mathematical model, given by the

dynamics (4), are consistent with the results of the simulation. Let G be the

game (2). We have the following.

Proposition 7 Let G be the game (2) and let k ≤ n, δ ∈ (0, 1). In the game G,

there is single sampling equilibrium α� = (1/2, 1/2). The equilibrium is globally

asymptotically stable.

Proof: First, we have (cf. Proposition 4)

α�1 = w(1,Φ) ⇒ α�1 = π1 + π0α
�
1 ⇒ α�1 =

1
2
.

This asserts the first claim.
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Second, the difference equation (4) reads

α1(t + 1) =
(

1− kδ

n

)
α1(t) +

kδ

n

∑
l∈Dt

θ(l)φt+1−l1−l2 .

It can be rewritten as

α1(t + 1) =
(

1− kδ

n

)
α1(t) +

kδ

n

(
π1 + π0

∑
l∈Dt

θ(l)α1(t + 1− l1 − l2)

)
. (6)

Let consider any path (α(0), . . . , α(t)) satisfying the dynamics (6). Let εt =

α1(t) − 1/2 and let γt = maxl≤t |εl|. Substituting α1(t) = 1/2 + εt and rear-

ranging leads to

εt+1 =
(

1− kδ

n

)
εt +

kδ

n
π0

∑
l∈Dt

θ(l)εt+1−l1−l2 .

Obviously, we have

|εt| ≤ γt and

∣∣∣∣∣∑
l∈Dt

θ(l)εt+1−l1−l2

∣∣∣∣∣ ≤ γt.

Using the above inequalities, we get the following

|εt+1| ≤
(

1− kδ

n

)
γt +

kδ

n
π0γt =

(
1− kδ

n
(1− π0)

)
︸ ︷︷ ︸

Γ

γt,

where the constant Γ belongs to the interval (0, 1). This completes the proof.

The constant Γ shows how the particular parameters of the model influence

the convergence. The increase of k/n will result in decrease of Γ, thus resulting

in faster convergence. The increase of the probability δ of switching to the active

phase will also increase the rate of convergence. Concluding, the results of the

mathematical model are consistent with the results of the simulation.

5 Discussion

The dynamics (4) is different from the original formulation in two aspects. First,

the players at time t are faced with a different distribution of strategies, i.e. with

a distribution φt instead of just αt. Second, the process of sampling involves de-

lays, hence the winning probability has to be based on a history of distributions

Φt rather than on a single distribution.
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The sampling equilibrium as defined in (Osborne and Rubinstein 1998) will

be called simply “sampling equilibrium” (SE). The sampling equilibrium as

defined here will be reffered to as “anonymous sampling equilibrium” (ASE).

The (in)stability results developed in (Sethi 2000), (Ramsza 2005) concern SE.

Because of the above differences it is instructive to review how the original

dynamics (1) was derived (we follow (Sethi 2000)). There is some unspecified

(possibly large) population. In each of the small time intervals h the proportion

of individuals leaving the population is 1−e−λh. The proportions of new entrants

is therefore the same to keep the size of the populations constant. It is assumed

that, according to the sampling algorithm, new entrants adopt the j-th strategy

with probability w(j, α(t)). The inflow-outflow equation reads

αj(t + h) = e−λhαj(t) + (1− e−λh)w(j, α(t)).

Rearranging to

αj(t + h)− αj(t)
h

=
1− e−λh

h
(w(j, α(t))− xj(t)) ,

taking the limit h → 0, and setting λ = 1 leads to the dynamics (1).

The environment proposed in (Sethi 2000) is in general the same as the one

considered here. The individuals leaving the environment and those coming into

the environment may be considered the same, hence making the system closed.

So, at any time there is a proportion of the population running the sampling

algorithm in order to choose the new strategy, which is basically the same sit-

uation as the one considered here. However, there is one crucial difference. In

the system considered in (Sethi 2000), the sampling fraction of the population

is matched exclusively against not sampling individuals. This may be achieved

only if the sampling players have information about the “state” of other players.

Whether it is implemented in an “environment” class or a “player“ class is not

important. This difference removes the endogenous noise π. Also, it is assumed

that the whole sampling procedure fits into the time interval h, and so there are

no delays.
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It is interesting to see whether the (in)stability results, concerning certain

pure-strategy SE (cf. (Sethi 2000), (Ramsza 2005)), carry on to the fully anony-

mous situation considered here (ASE).

The instability conditions based on the notion of inferiority3 concern border

equilibria. Also, the examples, where dominated strategies survive along con-

vergent trajectories of the system, contain border equilibria, which correspond

to strictly dominant strategies. Therefore, it is important to characterize these

equilibria.

Definition 2 Let G be any 2-player symmetric game. A strategy j ∈ S is called

certainly worse if there exists a strategy m ∈ S, m 6= j, such, that

min
v∈S

u(m, v) > max
v∈S

u(j, v).

Proposition 8 Let G be any symmetric 2-player game, and let α� be its sam-

pling equilibrium (ASE). Then, α�j = 0 if and only if j ∈ S is certainly worse.

Proof: If j ∈ S is certainly worse, then at any sampling equilibrium (ASE)

α�j = 0. Suppose that α�j = w(j, π0α
�+πa) = 0. Since πa 6= 0, then all sequences

of sampling have positive probabilities regardless of α. Because α�j = 0, the

payoff yielded by the strategy j has to be smaller than payoff for some other

strategy on any sampling sequence. This implies that j is certainly worse.

Suppose, that a profile (1, 0, . . . , 0) is sampling equilibrium (ASE). This im-

plies that all strategies, except the first one, are certainly worse. This however

implies further, that such a profile cannot be (twice) inferior4. In fact, if such

a profile is sampling equilibrium (ASE), it is the only sampling equilibrium of

the game, as well as the only Nash equilibrium of the game. Also, it is globally

asymptotically stable (cf. (Ramsza 1999)). The instability conditions formu-

lated in (Sethi 2000) consider profiles that either are not sampling equilibria

(ASE), or are not inferior.

3The twice inferior profiles are considered in 2-player games, cf. (Sethi 2000).
4Since these conditions concern only the payoff function, and not the environment.
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Similarly, the stability conditions (superiority) formulated in (Ramsza 2005),

based on the notion of stochastic dominance, are too weak to guarantee asymp-

totic stability, since they are weaker than strict dominance. Any pure strategy

sampling equilibrium (ASE) has to correspond to the unique superior strategy

of a game, but it is possible for a strategy to be superior and not be equilibrium

(ASE).

As δ → 0 the set of the sampling equilibria (ASE) defined in Proposition 4

will converge to a certain subset of the set of sampling equilibria (SE) de-

fined in (Osborne and Rubinstein 1998). Finally, as δ = 0, the equation (5)

will define exactly the same set of distributions as the one defined originally

(cf. (Osborne and Rubinstein 1998)). It is tempting to think of the model de-

veloped here as a selecting device among the equilibria (SE) defined in (Osborne

and Rubinstein 1998). However, the dynamics for δ = 0 reads x(t + 1) = x(t),

which is obvious since nobody is sampling. So, the environment modeled in

(Sethi 2000) cannot be considered a limit of the fully anonymous environment

considered here, even though the static conditions of Propostion 4 will converge

to the original definition.

It is also interesting to characterize equilibria in scenarios with large amount

of noise, i.e. where δ is close to 1. We have the following.

Proposition 9 Let G be any symmetric 2-player game with S pure strategies.

There exists δ such that for any δ > δ there is unique sampling equilibrium α�.

The unique sampling equilibrium α� is approximately α�j ≈ vj(G)(1/S)S, where

vj(G) is a number of winning sequences for the j-th strategy in a game G.

Proof: The sampling equilibrium is defined through a system of algebraic equa-

tions α = w(j, π0α+πa), j ∈ S. It is easy to see, that as δ → 1, the polynomials

w(j, π0α + πa) converge to constants vj(G)πS
j = vj(G)(1/S)S . Hence, for large

enough values of δ, there is unique sampling equilibrium α�, and its value is

approximately α�j ≈ vj(G)(1/S)S .

It is important to note, that as δ → 1 the passive fraction of population π0
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decreases to 0. Finally, as δ = 1 there is no interpretation for a solution of the

system (5). In the game (2) for δ close to 1 the unique sampling equilibrium

(ASE) is still (1/2, 1/2). In the “voluntary exchange” game, cf. (Osborne and

Rubinstein 1998), given by a matrix

G =

 2 5 8
1 4 7
0 3 6

 ,

for δ close to 1, the unique sampling equilibrium (ASE) is around

(14/27, 8/27, 5/27). In the “three-action coordination game”, cf. (Sethi 2000),

given by a matrix

G =

 2 6 6
0 7 3
1 4 8

 ,

for δ close to 1, the unique sampling equilibrium (ASE) is around

(9/27, 7/27, 11/27). It is interesting that the largest probability is attached

to the strategy constituting the payoff dominant Nash equilibrium. Also in the

former game, the largest probability is attached to the dominant strategy.

6 Conclusions

We built a descriptive simulation of an evolutionary system of players using

sampling procedure to choose between pure strategies. The results of the sim-

ulation were qualitatively different to the results of the original mathematical

model. As a consequence, a new mathematical model of average dynamics was

proposed. Equilibrium was defined as a “stationary” point of the dynamics.

The results of the new mathematical model (c.f. Proposition 7) were checked

against the results of the simulation. The results of both were consistent.

We proved some results concerning the new mathematical model of the sam-

pling dynamics. In particular, we showed the existence of the new sampling

equilibrium (c.f. Proposition 5). We also provided further details concerning

delays present in the dynamics (4) (c.f. Proposition 6).

The mathematical model developed here may be extended in various direc-

tions. One can change the sampling procedure to include many samplings or
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even a random number of samples. The order of sampling may also be differ-

ent or random. But as long as the procedure used is composed of two distinct

phases, active and passive, and the matching is anonymous, there are two ef-

fects present: random delays and endogenous noise. The results presented in

(Osborne and Rubinstein 1998), (Sethi 2000), (Ramsza 2005) may be restored

only by removing anonymity of players, e.g. through removing the endogenous

noise. This can be done in a variety of settings.

The approach presented here is to derive the aggregate average dynamics

from the underlying exact model of interactions. This method has been previ-

ously taken up by various authors for different procedures in different settings

(cf. (Björnerstedt and Weibull 1996), (Börgers and Sarin 1997), (Brenner 1992),

(Schlag 1998)). It seems, however, that it has been rarely based so closely on

descriptive simulations but rather on “mental experiments”, and as such prone

to errors resulting from neglecting the algorithmic issues.
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