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Abstract

In cricket, the right to make an important decision (bat �rst or �eld

�rst) is assigned via a coin toss. These "randomised trials" allow us to

examine the consistency of choices made by teams with strictly opposed

preferences, and the e¤ects of these choices upon game outcomes. Random

assignment allows us to consistently aggregate across matches, ensuring

that our tests have power. We �nd signi�cant evidence of inconsistency,

with teams often agreeing on who is to bat �rst. Choices are often poorly

made and reduce the probability of the team winning, a surprising �nding

given the intense competition and learning opportunities.
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While the assumption of rational behaviour underlies most economic theory,

this is being questioned by the recent rise of behavioural economics. Since

Kahneman and Tversky�s pioneering work, many experiments demonstrate that

subjects have a variety of biases when they deal with uncertainty. Experimental

subjects also do not perform well when playing simple games �O�Neill�s (1987)

experiments on games with a unique completely mixed equilibrium are a case

in point. The interpretation of these results is however debatable. Subjects in

experiments are placed in an unfamiliar and somewhat arti�cial situation, and

usually have insu¢ cient opportunities to learn how to choose optimally. Their

incentives to do so may also be limited.

Professional sports provide several instances of alternative real life experi-

ments, which are not subject to some of these criticisms. Professional players

spend their prime years learning how to play optimally, and are repeatedly in-

volved in familiar situations. They also have high-powered incentives. The rules

of the game are clear cut, as in experiments, even though they have not been

designed with academic economists in mind. An emerging literature has ex-

ploited this data source. Walker and Wooders (2001) study the serve behaviour

of professional tennis players, and �nd that behaviour corresponds closely to

the mixed strategy equilibrium of the associated game. Similar support for the

mixed equilibrium is found in the case of penalty kicks in soccer (Chiappori et.

al. (2002) and Palacios Huertas (2003)). These results contrast rather sharply

with the negative experimental results on games with a unique mixed equilib-

rium. Given the incentive e¤ects and the opportunities to learn, violations of

optimality in professional sports also need to be taken seriously by economists.

Thus Romer (2006) uses dynamic programming to analyze strategy in American

football, and �nds that decisions are not made optimally. 1

This paper investigates the rationality of strategic decisions in the game of

cricket. Cricket is a game played between two teams, one of which must bat

�rst, while the other team �elds. The roles of the teams are then reversed. The

decision, as to whether a team bats �rst or �elds �rst, is randomly assigned to the

captain of one of the two teams, via the toss of a coin. From a decision theoretic

point of view, this strategic decision combines several important qualities. First,

the batting or �elding is not assigned by the coin toss, but must be chosen

1Relatedly, Duggan and Levitt (2002) examine collusion in sumo wrestling, while Ehrenberg
and Bognano (1990) have studied the incentive e¤ects of golf tournaments. While there is
also a popular literature that suggests that decisions are not optimally made (e.g. Michael
Lewis�s book, Moneyball, these claims have not been scrutinized rigorously.
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by the winner. Second, this choice is recognised by cricket players to be an

important decision, since the conditions for batting or �elding can vary over

time, with variation in the weather and condition of the natural surface on

which the game is played. Choosing correctly is non trivial, since the optimal

choice depends upon natural conditions � in the matches we consider, the

team winning the toss has chosen to bat on roughly half the occasions. From an

economist�s standpoint, the right to decide is assigned via a coin toss thereby

providing a randomised trial par excellence, and allowing us to test for the

rationality of choices. Finally, international cricket is intensely competitive,

and decisions made by the captain are the subject of endless discussions in the

media, presumably providing incentives for making the right decision.

Our tests of rationality are of two types, internal consistency and external

validity. The intuition underlying our empirical test of consistency in decision

making is straightforward. We start from the presumption that all the multi-

farious considerations that in�uence the decision, including the nature of the

pitch, the strengths of the respective teams and the weather (i.e. the state of

the world), are only of relevance through their e¤ect on two probability dis-

tributions � the probability distribution over the outcomes of the game when

team 1 bats �rst, and the probability distribution over outcomes when team 2

bats �rst. If team 1 wins the toss, it will choose to bat if it prefers the former

probability distribution to the latter probability distribution. If this is so and

if the interests of the teams are perfectly opposed, this implies that team 2 will

prefer the latter probability distribution to the former, and must choose to bat

�rst if it wins the toss.2 Thus at any state of the world, 1 chooses to bat �rst if

and only if 2 chooses to bat �rst. Of course in any match, we only observe one

of these decisions, since only one of the teams wins the toss. However, since

identity of the winner of the toss is a random variable which is independent of

the state of the world, this allows us to aggregate across any subset of the set of

possible states, to make the following probabilistic statement: the probability

that team 1 bats �rst given that it wins the toss must equal the probability that

it �elds �rst given that its opponent wins the toss. Thus our test of rationality

is a test of the consistency of the decisions made by a team and its opponents.

This is akin to tests of revealed preference theory �while revealed preference

theory tests the consistency of a single decision maker who is assumed to have

2This does not presuppose any symmetry of abilities between teams, but assumes that
teams have symmetric information regarding the state of the world. Section 4 discusses the
modi�cations that must be made in the case of asymmetric information.
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stable preferences over time, we test the consistency of decisions of pairs of

agents whose interests are perfectly opposed.

The assignment of decision rights via a coin toss implies that our tests are

valid under aggregation. That is, one can pool a team matches against all its

opponents, thereby ensuring considerable power. The reason for this is that in

any match, the event that team 1 wins the toss is independent of identity of its

opponent. In contrast, the tests of mixed strategy equilibria (e.g. in the case of

penalty kicks in soccer, as Chiappori et. al. (2002) observe) are not valid under

aggregation �although the probability of scoring is equal for kicks to the right

and kicks to the left for any kicker-keeper pair, they are no longer equal when

we aggregate across pairs, since the probability of scoring di¤ers across pairs

and may be correlated with the equilibrium mixing probability.

Our basic �nding is that the consistency of decisions is violated for an impor-

tant class of cricket matches � one day internationals which are played in the

day-time � since some teams systematically choose di¤erently from their op-

ponents. This rejection is based on a sample of over 1300 matches. We explore

di¤erent explanations for this lack of consistency, including asymmetric informa-

tion, but conclude that the best explanation is in terms of teams overweighting

their own strengths (and weaknesses) and underweighting the strengths of their

opponents in making decisions.

These randomised trials also allow us to infer the external validity of deci-

sions since we can infer the e¤ects of the choices upon the outcome of the game.

Consider a state of the world ! where batting �rst is optimal, and where team

1 garners an advantage �(!) > 0 from choosing to bat, where � is the di¤erence

between win probabilities when team 1 bats �rst and when it �elds �rst. Then

at this state of the world, its opponent team 2 has an identical advantage �(!)

from batting �rst. Thus one has a randomised trial where the winner of the

toss is assigned to the treatment group and its �twin�, the team losing the toss,

is assigned to the control group. Our substantive �ndings are intriguing since

there is strong evidence that teams are making decisions sub-optimally in one

day international day matches, since the e¤ect of choosing to bat �rst is esti-

mated to reduce the probability of winning. The results are robust to allowing

for asymmetric information, and controls for the relative abilities of di¤erent

teams. This raises intriguing questions, since sub-optimal behaviour seems to

have persisted over an extremely long period of time, despite the competitiveness

of the environment and relative simplicity of the statistical inference problem.

We should also mention that for one class of matches �day-night matches (i.e.
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matches which are partially played at night-time), both consistency and exter-

nal validity are not rejected �teams have a strong preference for batting �rst

in daylight, a strategy that is empirically found to be sound.

The layout of the remainder of the paper is as follows. Section 2 sets out

our model of the basic strategic decision, and derives its empirical implications.

Section 3 reports the empirical results. Section 4 explores various explanations

for anomalous results such as asymmetric information and agency problems.

The �nal section concludes.

1 Modelling decisions

We set out our model of decision making in cricket. First we set out some back-

ground information, before proceeding to the implications of rational decision

making between a pair of teams. We then show that the results we derive are

valid under aggregation.

1.1 Background

The focus of this paper is on one day international matches, which are played

at the highest level, between representative national teams. A team, consisting

of eleven individuals, bats once, during which time its opponent �elds. The

batting team�s aim is to score runs, and the winner of the game is the team

that scores more runs while batting. Batting, and the scoring of runs, is subject

to two constraints. First, the batting team has a �xed maximum number of balls

(or scoring opportunities), usually 300. Second, in attempting to score runs, a

batsman may lose his wicket and no more runs can be scored once ten batsmen

lose their wickets. One day matches have essentially only two outcomes, win or

loss, making risk preferences irrelevant, and implying an immediate zero sum

property on preferences so long as each team prefers to win. This makes one

day matches ideal for our analysis.3

The sequence in which the teams bat is decided via the toss of a coin. The

captain of the team that wins the toss has to choose whether to bat �rst or to

�eld �rst. This decision is acknowledged to be of strategic importance by cricket

players and observers, since the advantage o¤ered to the bowlers of the �elding

3There is a second important class of international matches, test matches. In test matchees,
a draw occurs a signi�cant fraction of the time, so that players�risk preferences are relevant.
Bhaskar (2007a) analyzes decisions in test matches.
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team varies with the weather, and the condition of the pitch (the natural surface

on which play takes place). Unlike baseball, the ball usually strikes the pitch

before it reaches the batsman, and may bounce or deviate to di¤erent degrees

depending upon the pitch. The ability to exploit the pitch and conditions also

depends upon the type of bowler. Fast bowlers bene�t when there is moisture in

the pitch, early in the match, since this increases the speed and bounce o¤ the

pitch. Fast bowlers also like overcast conditions. On the other hand, bowlers

who spin the ball are more e¤ective later in a game, after the pitch has been

worn out through play. The pitch may also deteriorate, so that it becomes

rather di¢ cult to bat towards the end of a match. Playing conditions are also

rather di¤erent between matches which are played entirely in the day (which we

call day matches), and matches which are played partially at night (day-night

matches). In day-night matches, the team batting second bats at night under

�oodlights, and may be at a disadvantage.

One possible advantage in batting second (i.e. �elding �rst) arises from

knowing the exact number of runs you need to make in order to win the game.

The team batting �rst seeks to score as many runs as possible subject to two

constraints �the number of balls it has available, and the number of wickets. If

it attempts to score too quickly, it may lose wickets and be unable to utilise all

the balls available. On the other hand, a more cautious strategy may result in a

moderate score. Dynamic programming analysis (see Clark (1988) and Preston

and Thomas (2000)), which assumes that a batting team can choose the scoring

rate, at the cost of losing wickets stochastically more quickly, suggests that this

gives the team batting second a signi�cant advantage.

1.2 A no-agreement result

We set out the following simple model of decision making in the game of cricket.

Let the two teams be i and j, and let us describe the outcome from the stand-

point of team i: We will not make any assumptions of symmetry of ability or

strengths across the two teams. Consider the decision of the team, as to whether

bat �rst or to �eld �rst. This decision is made by the captain who wins the

toss, and many factors will in�uence this decision. To model this, let ! denote

the state of the world �this includes a complete speci�cation of all the circum-

stances which a¤ect the outcome of the cricket match, including the quality and

type of bowlers in each side, the quality of the batsmen, the weather, the state

of the pitch, etc. Let 
 denote the set of all possible states of the world. Thus
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! determines a pair ( p(!) , q(!) ); where p(!) denotes the probability that

team i wins given that it bats �rst, and q(!) denotes the probability of a win

when it �elds �rst. We shall assume symmetric information, i.e. that the state

! is observed by team i and by team j before they make their decision. Let

�(!) = p(!)�q(!):Figure 1 graphs � as a function of !; where 
 is depicted as a
compact interval, with states arranged in order of decreasing �: It is immediate

that team i will choose to bat �rst at states ! where �(!) > 0. Similarly, team

i will choose to �eld �rst if �(!) < 0: Finally, we assume that the set of states

! such that �(!) = 0 is negligible, i.e. this set has zero prior probability.

Turning to team j; it will choose to bat �rst on winning the toss if its

probability of winning is higher than when �elding, i.e. if 1� q(!) > 1� p(!);
i.e. if p(!) � q(!) = �(!) > 0: We deduce that the set of states where i bats

�rst is the same as the set of states where j bats �rst, so that the two teams can

never agree on who is to bat �rst, a no agreement result. Let 
B(resp. 
F )

denote the set of states where batting �rst (resp. �elding �rst) is optimal.

At any state, we only observe the decision of one of the two players. However,

the right to take this decision is via a coin toss, which is independent of the

state of the world. To an outside observer, the probability that team i bats �rst

conditional on winning the toss equals the probability that ! 2 
B ; Pr(
B):
Similarly, the probability that team j chooses to bat �rst also equals the Pr(
B):

Thus if we consider any two teams, the observed decisions of team i when

it wins the toss are realizations of a Bernoulli random variable with success

probability Pr(
B): Similarly, under no agreement, the decisions of team j

are also realizations of the same Bernoulli random variable. Under the null

hypothesis induced by the no agreement result, the proportion of times that i

bats �rst on winning the toss is equal to the proportion of times that j bats

�rst on winning the toss.

The no agreement result relies on the fact that the teams have strictly op-

posed von-Neumann Morgenstern preferences over the set of outcomes. Such

an opposition of preferences is immediate when the game has only two pos-

sible outcomes, win and loss, and where each team prefers to win. However,

the match can also have �no result�when bad weather drastically curtails play.

Since this outcome largely depends upon exogenous factors such as the weather,

its probability is unlikely to be a¤ected by who bats �rst, and our analysis can

be straightforwardly extended to allow for this. A match can also be tied when

the scores of the two teams are exactly equal �this occurs with probability less
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than 0.01, which suggests that the marginal e¤ect of the batting/�elding choice

upon this probability is minuscule. Thus the assumption of zero sum preferences

appears to be well founded.

The no-agreement result is straightforward, and follows from the Harsanyi

doctrine, that di¤erences in beliefs must re�ect di¤erences in information. How-

ever, it does not seem straightforward to professional cricketers, who often sug-

gest that a team might choose in line with its strengths. Thus they �nd it

entirely reasonable that a team with a strong batting line up could choose to

bat �rst, while its opponent with good fast bowlers might choose to �eld �rst.4

This suggests a natural alternative hypothesis: that teams overweight their

own strengths or weaknesses when making a decision, while underweighting

the strengths/weaknesses of their opponents. Consider for example a situation

where team i has a strong fast bowling attack, while team j does not have such

a strong attack of fast bowlers, but has good batsmen. Thus team i may choose

to �eld �rst since it feels that its bowlers may be able to exploit the conditions

early in the match. On the other hand, team j may prefer to bat �rst, since it

has less con�dence in its fast bowlers. If teams did have asymmetric strengths,

and if they overweight their own strengths, then the null hypothesis would be

systematically violated �in this example, team i would bat �rst less frequently

than team j did. 5

Our tests of the no-agreement result can be viewed of tests of the consistency

of the decisions made by the captains of the two teams. As such, these tests are

similar to tests of single agent decision theory (e.g. tests based on individual

consumption data or experiments), the novelty here being that we are able to

use the decisions made by di¤erent agents.

4 In his famous book, The Art of Captaincy, former England captain Mike Brearley (1985)
devotes a chapter to the choice made at the toss, and recounts several incidents where both
captains seem to agree. This includes one instance where the captains agreed to forgo the
toss, since they agreed on who was to bat �rst, and another instance where there was some
confusion on who had won the toss, but this was resolved since the captains agreed on who
should bat �rst. This constitutes a serious violation of Aumann�s (1976) result that two
decision makers cannot �agree to disagree�, even with asymmetric information.

5Even if teams�behavior is in line with the alternative (overweighting) hypothesis, the null
will not be rejected as long as teams have symmetric strengths. Also, since the strengths of
various teams change over time, the alternative suggests that one should condition on �ner
partitions of 
 while testing of the null. As we shall demonstrate, the null hypothesis is valid
at any level of aggregation.
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1.3 Treatment e¤ects: decisions and outcomes

We now turn to the e¤ects of the choices made upon the outcome of the game.

What is the advantage conferred by batting �rst, on winning the toss? The

decision to bat �rst is clearly endogenous, unlike the winning of the toss. Using

the terminology of the literature on treatment e¤ects (e.g. Heckman et. al.

(1999)), let batting �rst be the treatment. Clearly, batting �rst is optimal only

for a subset of states, 
B : Our interest is in the average e¤ect of the treatment

when the treatment is optimal, i.e. E(�(!)j
B). This is more interesting

than the unconditional expectation of �; or the average treatment e¤ect. A

medical analogy may be useful here. Think of two procedures, surgical and

non-surgical, which may be chosen by a doctor. One is interested in the e¤ect

of surgery upon some outcome when surgery is optimal, not the average e¤ect

of surgery, including states where surgery is clearly suboptimal. The di¢ culty

in the medical context is that for any patient who is treated, one does not have

a corresponding control. However, in the cricket context, whenever 
B occurs,

the team that wins the toss is assigned the treatment (under our assumption

of rational decision making), while the team that loses the toss is assigned to

the control group. Furthermore, this assignment of teams (to the treatment or

control groups) is random and independent of team characteristics, since it is

made via the coin toss. Indeed, it is striking that at any state ! 2 
B ; the
winner of the toss is assigned to the treatment group, and has advantage �(!)

from this assignment, whereas the loser of the toss who is assigned to the control

group has an identical disadvantage from this assignment. Thus the di¤erence

in performance between the teams that win the toss and bat �rst and those

that lose the toss and �eld �rst, provides an unbiased estimate of the treatment

e¤ect when the treatment is optimal.

More formally, consider a match between teams i and j. Recall that team

i bats �rst on winning the toss if and only if ! 2 
B : Thus the probability of
the event that team i wins the toss and bats �rst and wins the game is given by

Pr(i wins toss & bats & wins game) =
1

2

Z

B
p(!)f(!)d!; (1)

where f(!) is the probability density function of !: Similarly,
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Pr(j wins toss & bats & wins game) =
1

2

Z

B
[1� q(!)]f(!)d!: (2)

So the conditional probability that a team wins, given that it wins the toss

and bats �rst, is given by the sum of the above two expressions, divided by the

probability of the event 
B :

Pr[Winj(win toss & bat) =
0:5
R

B
[1 + �(!)]f(!)d!

Pr(
B)
(3)

= 0:5[1 +E(�(!)j
B)] > 0:5;

where the last inequality follows from the fact that �(!) > 0 for any ! 2 
B :
In other words, if both teams choose optimally, the estimated treatment e¤ect

� of batting �rst when batting is optimal �must be greater than 0:5:Similar

reasoning establishes that

Pr[Winj(win toss and �eld) = 0:5[1�E(�(!)j
F )] > 0:5; (4)

since �(!) < 0 for any ! 2 
F : Finally, the advantage conferred by winning
the toss is a weighted average of the two treatment e¤ects:

Pr[Winj(win toss) = 0:5+Pr(
B)E(�(!)j
B)�Pr(
F )E(�(!)j
F ) > 0:5: (5)

Rational decision making, in conjunction with the assignment of decision

rights via the toss implies that the proportion of wins by the team winning the

toss and batting �rst must exceed 0:5: Similarly, the proportion of wins by the

team winning the toss and �elding �rst must exceed 0:5: This prediction is

consistent with teams having di¤erent abilities, since the assignment of decision

rights is independent of ability.

1.4 Aggregation

We now show that our null hypotheses are valid under aggregation, since the

assignment of decision rights is via a coin toss. Consider two disjoint sets of

teams, I and J; and restrict attention to the set M of matches played between

i 2 I and j 2 J: Let �ij be the proportion of total matches that are between
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teams i and j; and index subsets of states that pertain to the team pair by ij:

That is, 
ij is the set of possible states of the world when team i plays team

j; and 
Bij is the set of states where batting �rst is optimal, with 

F
ij being the

complement. The no agreement result implies that in a game involving the pair

ij

Pr(i wins toss and bats �rst) =
1

2
Pr(
Bij) = Pr(j wins toss and bats �rst):

(6)

Let us select a match in M at random, so that each match has equal prob-

ability of being chosen. The probability of the event E, that some team in the

set I wins the toss and bats �rst, is given by

Pr(E) =
X

ij2I�J
�ij

�
1

2
Pr(
Bij)

�
: (7)

Similarly, in this randomly selected match, the probability of the event F

that some team in J wins the toss and bats �rst is given by

Pr(F ) =
X

ij2I�J
�ij

�
1

2
Pr(
Bij)

�
: (8)

In this randomly selected match, the probability that a team in I wins the

toss is 0:5; and furthermore, this event is independent of any other event. Thus

the conditional probability that in this randomly selected match, some team in

I bats �rst, given that it has won the toss is given by

Pr(I bats �rstjI wins toss) =
X

ij2I�J
�ij Pr(


B
ij): (9)

While the conditional probability that some team in J bats �rst given that

it has won the toss is given by

Pr(J bats �rstjJ wins toss) =
X

ij2I�J
�ij Pr(


B
ij): (10)

Since the right hand sides of equations (9) and (10) are identical, we have

demonstrated that the no-agreement result aggregates. In any randomly se-

lected match from the set M , the conditional probability that a team in I bats

�rst, given that this team has won the toss must equal the conditional proba-

bility that a team in J bats �rst, given that it has won the toss. In particular,
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this is also true when I is a singleton set while J has many elements. It is also

true if we consider a team from a single country to come in many variants.

To see that our results on treatment e¤ects also aggregate, consider a ran-

domly selected match from the set M . The probability that the team that wins

the toss wins given that it bats �rst is a weighted average of the conditional

probabilities from equation (3)

Pr[Winj(win toss& bat) = 0:5
X

�j2I�J
�ij [1 +E(�(!)j
Bij)]

= 0:5 +
X

�j2I�J
�ijE(�(!)j
Bij): (11)

The right hand side of the expression is a weighted average of terms, each

of which is greater than 0:5: It follows therefore that this expression is greater

than 0:5: We have therefore veri�ed the validity of the second hypothesis, that

the estimated treatment e¤ects are greater than 0.5, when we aggregate across

matches.

Similarly, the advantage from �elding �rst given that �elding is optimal is

given by

Pr[Winj(WT &Field)) = 0:5�
X

�j2I�J
�ijE(�(!)j
Fij) > 0:5: (12)

Finally, the advantage from winning the toss is a weighted average of the

mean advantage from batting �rst when batting is optimal, and the advantage

from �elding �rst when �elding is optimal, i.e.

Pr(WinjWT) = 0:5+
X

�j2I�J
�ij
�
Pr(
Bij)E(�(!)j
Bij)� Pr(
Fij)E(�(!)j
Fij)

�
> 0:5:

(13)

The intuition behind our aggregation results is straightforward. No agree-

ment implies that in any pair (i; j) of teams, the probability that i bats �rst

given that it wins the toss equals the probability that j bats �rst if it wins the

toss. The probability of batting �rst may well be di¤erent when we consider a

distinct pair (i0; j0): Nevertheless, when we aggregate across teams, the condi-

tional probability that a team in I bats �rst given that its wins the toss equals

the conditional probability that a team in J bats �rst given that it wins the

toss. The reason for this is that in any match, the event that a team in I wins

the toss is independent of the precise identity of the pair (i; j); i.e. it does not
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depend on whether we have the pair (i; j) or the pair (i0; j0): In contrast, the

tests of mixed strategy equilibria (e.g. penalty kicks in soccer) are not valid

under aggregation �although the probability of scoring is equal for kicks to the

right and kicks to the left for any kicker-keeper pair, they are no longer equal

when we aggregate across pairs, since the probability of scoring may di¤er across

pairs and may be correlated with equilibrium mixing probability.

In empirical implementation, in testing the no agreement hypothesis, we

shall �x the identity of one team (say to be a speci�c country, e.g. Australia),

and consider its matches against all its opponents.6 In our tests of the treatment

e¤ects, we will aggregate across all matches. The ability to aggregate implies

that our tests have considerable power �for example, in day matches we have a

sample of 1334 matches. In contrast, in their analysis of serve decisions in grand-

slam tennis, Walker and Wooders (2001) must only pool observations where the

underlying game can be plausibly assumed to be unvarying, and their sample

sizes are usually around 70.

2 Empirical results

Our data includes all one day international matches played between the nine

major international teams, since the inception of international one day games

in 1970. 7 We make a distinction which are played entirely in daylight (day

matches) and day-night matches where the team batting second does so at

night under �oodlights. In day-night matches teams have a strong preference

for batting �rst in daylight, and the team winning the toss bats �rst 70% of the

time, whereas in day matches this proportion is only 40%.

2.1 Testing no agreement

Table 1 presents our results on testing no-agreement for day matches. For each

of the nine teams, we consider matches played against any of the other eight

opponents. The �rst column shows the proportion of times that the team bats

6Recall the alternative hypothesis on decision-making, that teams possibly overweight their
own strengths in choosing whether to bat or �eld. This suggests that one should not aggregate
across teams with di¤erent strengths, since we may then fail to reject the null when behavior
is in line with the alternative. This is why we test the no agreement hypothesis for each
country.

7These teams represent the countries which have been granted the highest (test-playing)
status by the International Cricket Council � we exclude Bangladesh, which only recently
acquired such status. The last match in our data set is number 2037, played in July 2003.
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�rst on winning the toss, and the second column shows the proportion of time

that the team �elds �rst on losing the toss. The penultimate column show the

value of the Pearson test statistic for the equality of these two probabilities �this

is distributed as a �2 with one degree of freedom. The �nal column shows the

probability of getting this value of the test statistic under the null hypothesis.

The table shows that for six of the nine teams, the proportions in the �rst two

columns are close to each other, so that the null hypothesis cannot be rejected.

However, for three of the nine teams (West Indies, Pakistan and Sri Lanka), the

null hypothesis is rejected at 5% level. We �nd that the West Indies and Sri

Lanka have a higher probability of �elding �rst as compared to their opponents,

whereas Pakistan has a higher probability of batting �rst as compared to its

opponents. The fact that consistency is violated in matches involving a speci�c

team, say the West Indies, does not imply that the West Indies are making the

wrong decision. It does imply, prima facie, that either the West Indies or their

opponents are choosing incorrectly.

Table 1: Decisions at the Toss, Day Matches8

Pr(Bat/WT) Pr(FieldjLT) # matches Pearson p value

Australia 0.51 0.47 319 0.54 0.46

England 0.34 0.36 277 0.10 0.75

India 0.36 0.35 383 0.09 0.77

New Zealand 0.43 0.41 307 0.16 0.69

Pakistan 0.48 0.35 414 7.96��� 0.005

South Africa 0.60 0.52 162 1.13 0.29

Sri Lanka 0.24 0.36 280 5.05�� 0.03

West Indies 0.28 0.44 362 9.72��� 0.002

Zimbabwe 0.45 0.45 164 0.01 0.93

It is possible that the rejection results in table 1 for one team (say Pakistan)

are being driven by the rejection results of another team, say Sri Lanka. To

check this, in table 2 we consider each of the three teams for whom the null

is rejected, exclude any bilateral matches between teams belonging to the set

fPakistan, Sri Lanka, West Indiesg). We still �nd that the null hypothesis is
rejected at 5% level for Sri Lanka and the West Indies and rejected at 10% level

for Pakistan.
8We systematically use the following abbreviations: WT �Win Toss, LT �Lose Toss. Sig-

ni�cance levels:�10%,�� 5%, ��� 1%.
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Table 2: Decisions against "Normal" Opponents, Day Matches
Pr(Bat/WT) Pr(FieldjLT) # matches Pearson p value

Pakistan 0.51 0.38 260 4.23�� 0.04

Sri Lanka 0.24 0.42 176 6.05�� 0.014

West Indies 0.27 0.42 255 6.84��� 0.009

To explore this further, we test whether the entire data is consistent with

the null. To do this, we consider all 1334 day matches, and estimate a probit

model where the dependent variable equals one if and only if the team that

wins the toss bats �rst. Our controls consist of 35 indicator variables, one for

each pair of teams minus one. In addition, we include eight indicator variables,

one for each of eight teams winning the toss. Under the null, the coe¢ cients on

the eight indicator variables should be zero, since the identity of the winner of

the toss is irrelevant. A �2 test shows that the null is rejected at the 5% level,

with a p�value of 0.02 (see the �rst row in table 3). For day matches, we �nd
a clear rejection of the no agreement result.

Table 3: Joint Test of Irrelevance of Identity of Toss Winner
#matches �2(8) test statistic p value

Day Matches 1334 17.6�� 0.02

Day Matches, neutral venues 433 17.0�� 0.03

Day-Night Matches 537 7.5 0.48

All Matches 1871 15.5�� 0.05

Table 4: Decisions at the Toss, Day-Night Matches
Pr(Bat/WT) Pr(FieldjLT) # matches Pearson p value

Australia 0.78 0.68 211 2.50 0.11

England 0.79 0.79 96 0.0 0.98

India 0.65 0.68 130 0.13 0.72

New Zealand 0.66 0.58 118 0.46 0.50

Pakistan 0.77 0.83 124 0.58 0.45

South Africa 0.61 0.75 116 2.38 0.12

Sri Lanka 0.69 0.72 131 0.20 0.66

West Indies 0.65 0.72 100 0.55 0.46

Zimbabwe 0.83 0.63 48 2.18 0.14

Turning to day-night matches in table 4, we �nd that teams have a much

stronger preference to bat �rst � indeed, every team bats �rst on winning

15



the toss more frequently in day-night matches as compared to day matches.

Although there are some di¤erences between the frequency of batting when

winning the toss and the frequency of �elding on losing the toss, the Pearson

tests show that null hypothesis cannot be rejected at conventional levels of sig-

ni�cance for any of the teams. Note that the sample sizes are much smaller �the

mean number of day night matches per team is 120 as compared to 274 in day

matches. Table 3 also shows that the null implied by the no-agreement hypoth-

esis cannot be rejected in the sample of day-night matches as a whole. However,

when we combine all matches, day and day-night, the null is rejected, since the

indicator variables for the identity of the toss winner are jointly signi�cant.

To summarise, the results are mixed across di¤erent classes of matches. In

day-night matches, where teams appear to agree on the advantage of batting

�rst in daylight, no-agreement cannot be rejected. In day matches, the null is

rejected, with three teams � Pakistan, Sri Lanka and West Indies �choosing

di¤erently from their opponents. Overall, the results show that the West Indies

demonstrate a clear tendency to �eld �rst, as compared to their opponents,

in both classes of matches. This is reinforced by the analysis of test matches

(Bhaskar, 2007a), where the West Indies �eld �rst signi�cantly more often than

their opponents. This is noteworthy �for a large part of this sample, the West

Indies were the strongest team on the international stage. Their dominance

was due in large part to a battery of fast bowlers, who were renowned for

their pace and hostility, and their ability to intimidate opposing batsmen. Our

result suggest that the West Indies favored �elding �rst as an aggressive tactic,

based on their fast bowling strength. The no agreement hypothesis suggests

that their opponents should respond to this by �elding �rst themselves, in order

to neutralise the West Indian fast bowling advantage. However, this may

have been perceived as a defensive tactic, especially if the opponents did not

have a strong fast bowling attack. Thus teams may have overweighted their

own strengths, and underweighted the strengths of their opponents. While

the overweighting hypothesis appears to be the most plausible explanation for

our results, we need to also consider more conventional explanations, such as

asymmetric information.

2.2 Treatment e¤ects

Let us now turn to the e¤ect of the chosen decision upon outcomes. Table

5 presents win probabilities as a function of the chosen decision, aggregated
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across all teams. Under optimal decision making, the probability of a win by

the team that wins the toss and chooses to bat must be greater than 0:5; since

the assignment of decision rights is independent of team abilities Similarly, the

probability of a win by a team that wins the toss and chooses to �eld �rst

must also be greater than 0:5: In day-night matches, the team that bats �rst

on winning the toss has a signi�cant advantage, winning on 55.5% of occasions.

On the other hand, the advantage of �elding �rst is not signi�cantly di¤erent

from zero. In day matches, the team choosing to bat �rst appears to have

a signi�cant disadvantage, winning on only 43.7% of the occasions, while the

winning frequency of a team choosing to �eld �rst is not signi�cantly di¤erent

from 50%. Thus in day matches, teams appear to be choosing sub-optimally,

by batting �rst at states where this confers a disadvantage. These results are

re�ected in our estimates of the advantage of winning the toss � in day-night

matches, the team winning the toss wins on 53.7% of occasions, an advantage

that is statistically signi�cant at 5% level, while in day matches the team that

wins the toss wins only 47.6% of the time, a statistically signi�cant disadvantage.

We can therefore reject the null that teams are making decisions optimally in

day matches, since the estimated treatment e¤ect from batting �rst is negative.

Table 5: Decisions and Win Probabilities9

Pr(Win) # matches p value

Win Toss & Bat, Day Matches 0.437�� 513 0.002

Win Toss & Field, Day Matches 0.503 768 0.57

Win Toss, Day Matches 0.476�� 1281 0.047

Win Toss & Bat, Day-Night Matches 0.555�� 366 0.02

Win Toss & Field, Day-Night Matches 0.493 148 0.47

Win Toss, Day-Night Matches 0.537�� 514 0.05

3 Explanations

We now explore alternative explanations for our �ndings. These include asym-

metric information, the overweighting hypothesis and agency problems due to

which the captain of the team may have concerns other than winning.

9Tied matches and no results excluded. The null is that the win probabilities are greater
than or equal to 0:5:

17



3.1 Asymmetric information and no agreement

One explanation for violation of the no agreement theorem is asymmetric in-

formation. Consider �rst the possibility that a team may have less information

about the basic characteristics of opposing players. This is unlikely to be an

important factor, since most international teams have a relatively stable core

of well established players, whose characteristics are well known. Video footage

of international matches is also regularly studied by opponents. For example,

in the 2003 world cup tournament, the median number of prior international

appearances of players in the team was over one hundred, for each of the nine

major teams. Indeed, very few players had made less than 30 appearances.

However, a team may not be aware of idiosyncratic factors which a¤ect the

other team, e.g. that an individual is player is not fully �t on the day of the

match.10 Idiosyncratic shocks can explain agreement between team decisions

one some occasions. However, our formal empirical test �equality of the pro-

portion of times that a team bats �rst when it wins the toss and the proportion

of times that it �elds �rst when it loses the toss � only requires that at any

state of the world, the probability that a team chooses to bat �rst when it wins

the toss equals the probability that its opponent bats �rst when the opponent

wins the toss. Thus idiosyncratic shocks do not seem a good explanation for the

systematic biases we �nd. To explain systematic biases, one needs to invoke the

possibility that one team is systematically better informed than the other. This

is possible, since the pitch (the natural surface on which the game is played)

plays an important role, and the home team is likely to have better information

about the nature of the pitch than the visiting team. This is likely to be true

for venues in the home country which are not as well known or internationally

10Each captain is required to announce the selected players before the toss, so a team will
be aware if its opponent leaves out a player, but it is some chance that a player might be
chosen to play without being 100% �t.
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established. 11

We now set out a simple model of asymmetric information. Let 
 denote

the set of states 
; which assumed to be a compact interval: The information

of player i; i 2 f1; 2g; is represented by a partition 
i of 
: Thus if state ! is
realised, and if ! belongs to the k-th element of i�s information partition, 
̂ki ,

then player i is informed only of the fact that ! 2 
ki : If team 1 is informed

that ! 2 
k1 ; the probability it assigns to winning from batting �rst is given by

pk1 =

Z

k1

p(!)f(!)d!: (14)

While the probability assigned by team 1 to winning from �elding �rst is given

by

qk1 =

Z

k1

q(!)f(!)d!: (15)

Thus it is optimal for team 1 to bat �rst if pk1 > 0, i.e. if E(�(!)j
k1) > 0;
and to �eld �rst otherwise: Similarly, for team 2, it is optimal to bat �rst at

! 2 
k2 if E(�(!)j
k2) > 0; and to �eld �rst if E(�(!)j
k) � 0:
Let 
̂12 be the meet of the two information partitions, 
1 and 
2; i.e. the

coarsest partition that is �ner than both 
1 and 
2: It is easy to construct

examples where 
̂12 contains elements (subsets of the state space) where one

team chooses to bat while the other chooses to �eld, and we shall provide one

shortly.

To investigate whether asymmetric information about pitches can explain

no agreement, we �rst consider one day matches at neutral venues, where supe-

rior information is unlikely to be a factor. Table 6 reports our results for day

matches involving Pakistan, Sri Lanka and the West Indies, where we had found

violations of no agreement. We �nd that no agreement is rejected for neutral
11The following anecdote related by Mike Atherton, former captain of England, is illustra-

tive. "At St. Vincent I made an error of judgement at the toss, putting the West Indies in.
We went down to a then record defeat for England in one-day internationals. The day before
that game I had been, literally, sitting on the dock of the bay watching the time go by, and
pondering the team for the next day. A Rastafarian smoking a huge spli¤ came by and we
got chatting. �Man,�he said, �you always got to bat �rst in St. Vincent and then bowl second
when the tide comes in.� The pitch the next day look mottled and uneven and I looked at
it uncertainly. Geo¤ Boycott was also on the wicket and I asked his opinion. �I think you�ve
got to bowl �rst,�he said, �just to see how bad it is before you bat.� In fact it was very good
and the West Indies plundered 313, and then, when the tide came in, it was very bad and
we were skittled for 148. I learned my lesson. When it comes to pitches you had never seen
before, local knowledge, rather than the Great Yorkshireman�s, was eminently preferable. �
(Atherton, 2002, p.85). St. Vincent is one of the lesser known veneues in the West Indies.
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venues for two of the three teams (Pakistan and West Indies). Next we consider

all teams, and restrict attention to matches played at neutral venues. We con-

duct a �2-test for the irrelevance of the identity of the winner of toss, in this

context, and �nd that this is decisively rejected, despite the considerably lower

sample size. This is reported in Table 3, in the second row. We conclude that

violation of no agreement persists in neutral venues where one team is unlikely

to have superior information as compared to its rival.

Table 6: Day Matches, Neutral Venues
Pr(Bat/WT) Pr(FieldjLT #matches Pearson pvalue

Pakistan 0.54 0.33 177 7.90��� 0.005

Sri Lanka 0.31 0.41 112 1.22 0.27

West Indies 0.21 0.46 121 8.12��� 0.004

Let us turn to matches on venues that are not neutral and explore further

the pattern of biases that are likely to emerge when the home team is better

informed than the away team. Assume that the home team, team 1, observes

!: Assume that with some probability � the away team (team 2) also observes

!; while with probability 1� � team 2 has no information. When team 2 has

no information, its optimal choice is given by the average value of �, i.e. by

E(�) = Pr(
B)E(�(!)j
B) + Pr(
F )E(�(!)j
F ): (16)

Let us suppose, for the moment, that E(�(!)j
B) � �E(�(!)j
F ); i.e. the
average advantage from batting �rst when batting is optimal approximately

equals the average advantage from �elding �rst when �elding is optimal. In this

case, when uninformed, team 2 will choose to match the expected decision of

team 1. So if the informed team �elds �rst more often, i.e. Pr(
F ) > 0:5; the

probability that team 2 �elds �rst is given by Pr(
F )+ (1� �) Pr(
B): Thus if
the informed team is more likely to �eld �rst, the uninformed team �elds �rst

even more often. The informed team bene�ts from its superior information at

states where it is optimal to bat �rst. This conclusion �ts very well the incident

related by Atherton, where England made the �wrong� choice by deciding to

�eld �rst against a team (West Indies) which chooses to �eld �rst in most

situations.

We now explore whether the di¤erences in decisions across home and away

venues is consistent with the biases implied by the above model of asymmetric

information. Speci�cally, we considered the three teams where no agreement
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fails (Pakistan, Sri Lanka and West Indies), and see how their decisions di¤er

from their opponents on home and away venues. Table 7 reports the batting

frequencies of the home team and away teams, and the third column reports

whether the bias is in the right direction (i.e. consistent with the home team

being better informed) or not. The two teams for whom no-agreement is violated

at home venues are Sri Lanka and West Indies. Sri Lanka chose to bat �rst only

8% of the time when playing at home. If Sri Lanka had better information, we

would expect their opponents to respond to this by choosing to bat �rst even

more infrequently. Instead we �nd that they bat �rst substantially more often

than Sri Lanka, with a discrepancy on 29% of the occasions. The magnitudes

involved also imply that the approximation E(�(!)j
B) � �E(�(!)j
F ) used
for this argument is quite loose, since it su¢ ces that E(�j
B) < �11E(�j
F )
for our conclusions to hold. A similar argument applies to the West Indies �

although they bat �rst only 28% of the time at home, their opponents respond

by batting �rst substantially more often, at 50%. This reinforces our general

conclusion, that asymmetric information can explain speci�c departures from

no-agreement, but cannot plausibly explain the systematic departures we �nd

in the data. 12

To summarise, asymmetric information about the pitch could conceivably

explain the rejection of no-agreement. However, we �nd this explanation is

not entirely plausible. No agreement is rejected when we restrict attention to

neutral venues. On non-neutral venues, the pattern of biases are not consistent

with the way the uninformed away team behaves relative to the decisions of the

home team.

Table 7: Pr(Batj Win Toss), Day Matches
Home Team Away Team Bias #matches Pearson13 p value

Pak. Home 0.54 0.33 WRONG 102 0.25 0.62

Pak. Away 0.36 0.43 WRONG 125 0.59 0.44

SL home 0.09 0.40 WRONG 62 7.92��� 0.005

SL away 0.31 0.26 RIGHT 94 NA NA

WI home 0.28 0.50 WRONG 105 5.40�� 0.02

WI away 0.36 0.35 RIGHT 125 NA NA

12Bhaskar (2007b) shows that this conclusion is robust to alternative information patterns
for the less informed team, when one views the information structure as being stochastically
generated. For example, if the uninformed team, team 2, has a two-element information
partition, then it is possible that team 2 �elds �rst less often than team 1 for some realizations
of the information structure, but this cannot be true in general, when averaged across possible
information structures.
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3.2 Asymmetric information and treatment e¤ects

We now show that asymmetric information may bias the simple estimates

of treatment e¤ects reported in table 5. However, we also show that it easy

to correct for this bias, and this does not a¤ect our basic conclusions. Bias

arises under asymmetric information since a team may bat �rst with a greater

frequency than its opponent, and it may also be more able. However, given any

pair of teams, the di¤erence between the win frequency of team i when it wins

the toss and bats �rst, as compared to its win frequency when it loses the toss

and �elds �rst, provides an unbiased estimate of the treatment e¤ect of batting

�rst, given that batting �rst is assessed to be optimal.

Let zij index the relative abilities of the two teams, i and j, and let the

probability that team i wins given that it bats �rst be given by

p(!; zij) =
1 + �(!)

2
+ zij : (17)

Let the probability that team i wins given that j bats �rst be given by:

q(!; zij) =
1� �(!)

2
+ zij : (18)

Let � = Pr(
Bi )

Pr(
Bi )+Pr(

B
j )
, the proportion of the time that the team choosing to

bat �rst is team i: The probability of winning, conditional on a team choosing

to bat; is given by

Pr[WinjWT &Bat) =

0:5

0B@Z

Bi

p(!; zij)f(!)d! +

Z

Bj

[1� q(!; zij)f(!)d!

1CA
0:5[Pr(
Bi + Pr(


B
j ]

= 0:5 + (2�� 1)zij + 0:5
�
�E(�(!)j
Bi ) + (1� �)E(�(!)j
Bj )

�
:

(19)

Now since E(�(!)j
ki ) � 0 at every information set where team i chooses

to bat �rst, the term in square brackets is positive. This term can still be

interpreted as the average treatment e¤ect when the treatment is optimal, with

the caveat that the two teams do not always agree at all states that the treatment

is optimal. However, if � 6= 0:5; the probability of winning also depends upon
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relative ability. This implies that the winning probabilities in table 5 are not

unbiased estimates of treatment e¤ects, since ability may be correlated with the

propensity to bat �rst.

There is however a simple way of dealing with this. Consider the set of

matches between i and j. The probability that i wins given that i wins the toss

and chooses to bat equals:

Pr(i winjWT & Bat) = 0:5 + zij +E(�(!)j
Bi ): (20)

The probability that i wins, given that i loses the toss and �elds, equals

Pr(i winjLT & Field) = 0:5 + zij �E(�(!)j
Bj ): (21)

The di¤erence between these two probabilities therefore equals

Pr(i winjWT & Bat) �Pr(i winjLT & Field) = E(�(!)j
Bi )+E(�(!)j
Bj ) > 0;
(22)

where the last inequality follows from the fact both teams are choosing opti-

mally, so that E(�(!)j
Bi ) > 0 and E(�(!)j
Bj ) > 0: Consider matches between
i and j where the team winning the toss chooses to bat �rst, and regress the

binary variable for the outcome (from the point of view of team i) upon a con-

stant and an indicator variable for team i winning the toss. The coe¢ cient on

this indicator variable provides an unbiased estimate of the average advantage

from batting �rst, when batting �rst is assessed to be optimal.

Consider now the set of matches played between any pair of teams, ij; where

for any given pair ij; the relative ability is constant and given by zij : In any

pair, let us describe outcomes from the point of view of one �xed team. Restrict

attention to matches where the team winning the toss bats �rst, and regress the

outcome upon indicator variables for team pairs and upon an indicator variable

which takes value one if the reference team has won the toss. The coe¢ cient

on this last variable provides an estimate of the weighted average advantage

from batting �rst when batting �rst is assessed to be optimal. More precisely,

this coe¢ cient is a weighted average of [E(�(!)j
Bi ) + E(�(!)j
Bj )] across
ij pairs, where the weight for pair ij is �ij

�
Pr(
Bi ) + Pr(


B
j )
�
divided by the

sum of �ij
�
Pr(
Bi ) + Pr(


B
j )
�
across all ij pairs. Since each of the terms in

this average is strictly positive, so must the coe¢ cient be positive. A similar
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argument applies to an analysis of the treatment e¤ect of �elding �rst when

�elding is optimal.

In our empirical implementation, we pool across all matches, both where

the team winning the toss chooses to bat �rst and where it chooses to �eld

�rst, since we have assumed that the ability controls are team pair speci�c. We

estimate probit models, where the dependent variable equals one if the reference

team wins the game. Our key explanatory variables are indicator variables

corresponding to each of the four situations (WT&Bat, LT & Field, WT &

Field, LT & Bat), and these variables are in turn interacted with indicator

variables for the nature of the match, day or day-night. Thus the treatment

e¤ect of batting �rst when batting is optimal (the coe¢ cient on Toss & Bat in

table 8) is given by the di¤erence in marginal e¤ects between the dummy for

winning the toss and batting and that for losing the toss and �elding. Similarly,

the e¤ect of �elding �rst when �elding is optimal is given by the di¤erence in

marginal e¤ects between the dummy for winning the toss and �elding and that

for losing the toss and batting.

We experimented with a number of di¤erent ways of controlling for ability,

and our results are robust across speci�cations. In the speci�cation reported in

Table 8, our ability indicators are team and time-period speci�c. That is, we

construct indicator variables for four di¤erent time periods and interact these

with team indicator variables. 14 We also include a "home advantage" dummy

�this is a categorical variable which takes value 1 if the game is played at home

(i.e. in the country of the reference team), value �1 if the game is played in the
country of reference team�s opponent, and zero if played at a neutral venue. The

estimates reported in column one of table 8 are very similar to the raw �gures

in table 5. For example, the estimated advantage when choosing to bat �rst in

day matches is �0.13 from table 5 (i.e. Pr(winj win toss & bat) �Pr(winjlose
toss and �eld)), while the estimate with ability controls is �0.14. Similarly,

the advantage when choosing to bat �rst in day-night matches is 0.11 from

table 5, while with ability controls this advantage is 0.12. The estimation with

controls has the advantage that the standard errors are considerably reduced. It

is noteworthy that the point estimate of the disadvantage from choosing to bat

�rst in day matches is substantial �indeed, it is larger than the advantage that

a team gains from playing at its home venue as compared to a neutral venue.

14 It was necessary to reduce the number of time dummies for Zimbabwe and Sri Lanka �
since these teams were late entrants to international cricket, there were too few observations
in the earlier periods.
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Similarly, the advantage that a team gains on choosing to bat �rst in day-night

matches is also substantial, although this is less surprising, since teams seem to

be choosing optimally in this case. In column 2, we allow a team�s ability to

di¤er between home and away games, i.e. we do not restrict the home advantage

to be the same across teams. The estimated treatment e¤ects are very similar to

those estimated in column 1. We also estimated the equation separately for the

sample of day matches and the sample of day-night matches, thus allowing the

ability coe¢ cients to vary across type of match, but again this did not make any

di¤erence to the results. Finally, we experimented with di¤erent periodisations

of the time speci�c dummies, but this again did not make any di¤erence. Thus

our basic conclusions, that teams had a signi�cant advantage from choosing

to bat �rst in day-night matches, and a signi�cant disadvantage from choosing

to bat �rst in day matches, is unaltered by allowing for controls for ability,

and is robust across a variety of speci�cations. Finally, note that even if we

are unable to completely control for ability, this in itself is not a problem �

the estimated treatment e¤ects are only biased if the uncontrolled variation in

ability is correlated with the propensity to bat �rst.

Table 8: Treatment E¤ects with Ability Controls
(1) (2)

Win Toss & Bat, Day -0.14��� (-4.1) -0.15��� (4.2)

Win Toss & Field, Day 0.0 (0.0) -0.01 (0.2)

Win Toss & Bat, DN 0.12�� (2.3) 0.13��� (2.6)

Win Toss & Field, DN -0.08 (0.8) -0.08 (1.1)

Home Advantage 0.11��� (5.7) �

Time speci�c team dummies15 YES YES

Home/Away Team dummies NO YES

sample size 1795 1795
Note: standard errors clustered by team pair.

Overall, our results con�rm that allowing for asymmetric information does

not change the basic conclusion, that teams do not make decisions very well

when they win the toss. In day-night matches, where cricket commentators

recognise the advantage from batting �rst, teams tend to bat �rst (over 70% of

the time) and appear to derive a signi�cant advantage when they choose to bat.

In one day internationals which are played in the day, teams which choose to

bat �rst seem to have a signi�cant disadvantage from this choice.

25



3.3 Heterogeneous priors

An alternative explanation for our results is that agents have di¤erent prior

beliefs, contrary to the Harsanyi doctrine. That is, team i could have beliefs

such that it assesses the advantage from batting �rst at state ! as �i(!); which

may di¤er from team j0s assessment, �j(!): Furthermore, these beliefs may be

quite di¤erent from the true value of �: Heterogeneous priors can explain why no

agreement fails, since one team may systematically think that �i(!) is positive

while its opponent thinks that �j(!) is negative. They can also explain why

teams take suboptimal decisions, i.e. their beliefs are well calibrated. While the

assumption of common priors has hitherto been almost universal in economic

modelling, this has been relaxed in some recent papers �see Morris (1995) for a

discussion of the common prior assumption. The assumption of heterogeneous

priors is more palatable in a one-shot situation, where agents have had limited

opportunities to learn: In the context of cricket, agents have ample opportunities

to learn about �(!), not merely in international matches as those analysed here,

but also in numerous domestic matches. Standard learning models show that as

long as agents beliefs contain a "grain of truth", learning by observation would

result in priors that are well calibrated and also close to being the same.

3.4 Overweighting strength

We have argued that asymmetric information does not provide a convincing

explanation for the failure of no-agreement in day matches. Instead, it seems

that teams overweight their own strengths (or weaknesses), and underweight the

strengths or weaknesses of their opponents. This is reinforced by the �nding

that one team in particular � the West Indies �chose to �eld �rst more often

than their opponents in all forms of international cricket since the 1970s (see

Bhaskar (2007a) for an analysis of decisions in test matches). The West Indies

were the undisputed champions of the world for a large part of this period, until

the mid 1990s. Their dominance was based on a hostile fast bowling attack,

which was unparalleled in cricketing history, and capable of intimidating their

opponents �unlike baseball, it is a legitimate cricket tactic for a bowler to hit

the body of the batsman with the ball. Indeed, the West Indies would usually

play with four fast bowlers, and without any spin bowler at all. Thus the West

Indies would often choose to �eld �rst, allowing their fast bowlers to exploit

the early moisture on the pitch. This suggests that it would be optimal for

their opponents to �eld �rst, in order to deny the West Indies this advantage.

26



Nevertheless, we �nd that the opponents often batted �rst, since they did not

have a fast bowling attack as capable as that of the West Indies. In other

words, faced with the aggressive tendency of the West Indies to �eld �rst, their

opponents did not respond defensively by �elding �rst, but instead chose to bat

�rst on many occasions. Table 1 provides suggestive evidence in favor of this

hypothesis � the variance of the numbers in �rst column exceeds that of the

numbers in the second column, implying that the identity of the team that wins

the toss in�uences the probability of batting �rst more than the identity of the

team that loses the toss.

3.5 Non-maximizing behavior and agency problems

One explanation for our results is that captains do not seek to maximise the

probability of winning, but are concerned about other factors. For instance, a

captain may conceivably be concerned not only with the outcome, but may also

be keen to avoid too severe a defeat. It is hard to see how this could conceivably

explain our results, since at the toss, a decision that maximises the probability

of winning is also likely to minimise the size of any defeat. More serious is the

match-�xing scandal that a­ icted parts of international cricket in the 1990s,

when several leading cricketers accepted money from book-makers. We re-did

the analysis excluding all matches where there are allegations of match-�xing �

Polak (2000) provides a comprehensive listing of these matches. We �nd that

this makes no signi�cant di¤erence to our results, and two anomalies we �nd

for day matches persist. Similarly, one can redo the empirical analysis leaving

out the weaker teams (for example, Zimbabwe or Sri Lanka in the early period

before 1983) and this does not alter our results.

The historical background of cricket and the way in which the decision maker

(the team captain) is evaluated may result in his having somewhat di¤erent

interests than simply maximizing the probability of winning, thus resulting in

an agency problem. This could explain the tendency to bat �rst excessively often

in day matches, and consequent estimated negative treatment e¤ect. Traditions

play an important role in cricket, and test cricket was the only form of the game

at international level, till 1970. Test match pitches used to be left uncovered

when play was not in session, hastening their deterioration over the �ve days of

play. This meant a recognizable advantage to batting �rst 16 and in test matches
16The legendary W.G. Grace once said: �When you win the toss � bat. If you are in doubt,

think about it �then bat.If you have serious doubts, consult a colleague �then bat.�
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before 1975, captains chose to bat on 87% of occasions. This had a signi�cant

positive e¤ect on their winning probability � Bhaskar (2007a) �nds that the

team choosing to bat �rst wins 55% of the time in matches with a result. In

more recent times, the practice of covering pitches when play is not in session

has reduced this advantage signi�cantly. The technology of making pitches has

also improved, increasing their durability, and making batting last less di¢ cult.

In one day matches, the scope for deterioration is more limited. Finally, in one

day matches (as opposed to test matches), the team batting second has the

advantage of knowing precisely what score needs to be made to secure victory �

the dynamic programming analysis of Clarke (1999) and Preston and Thomas

(2000) �nd this to be quantitatively signi�cant.

Cricket was faced with a new innovation �one day cricket �where the relative

gain from �elding �rst was high compared to test cricket. This is particularly

so in one day matches played in the day time. However, the data shows that

captains have not learned very well to make decisions in this new environment.17

One explanation is as follows: the captain�s decision is evaluated by cricket com-

mentators (usually former cricketers), and in the �nal analysis, by the selectors

of the team, who are usually also former cricketers. These evaluators may have

outdated information, with a consequent bias against batting �rst. This bias

appears to exist, certainly in the context of test matches �as the former Eng-

land captain Brearley writes, �it is irrationally felt to be more of a gamble to

put the other side in (to bat)... decisions to bat �rst, even when they have

predictably catastrophic consequences, are rarely held against one� (Brearley,

1985, p. 116). Thus a variant on the management adage �no one ever got �red

for buying IBM�, may well partially explain the persistence of suboptimal deci-

sions. Given the relatively short time horizon over which captains are evaluated,

captains who choose to bat when there is a small advantage to �elding �rst may

well survive longer than those who choose optimally. This explanation mirrors

explanations for the phenomenon of short-termism by managers of �rms. For

example, Brandenburger and Polak (1996) set out a model where managers who

are concerned about the current share price of their �rm make choices in line

with market opinion, rather than those suggested by their own superior private

information. This suggests that the competitiveness of the environment �the

fact that the captain is externally assessed �may have militated against optimal

decision making.

17Nor does there appear to be a signi�cant improvement in performance in more recent
matches, as would be the case if there was learnng.
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Why are cricket commentators unable to learn that batting �rst in day

matches is often sub-optimal? One reason maybe that even the more statisti-

cally minded of commentators do not consider the correct counter-factual. The

typical statistical exercise considers a team�s performance when it bats �rst as

compared to when its �elds �rst. However, when one allows for heterogeneity

in states, it is not clear what the sign of this e¤ect would be, even with optimal

decision making. Our analysis has hinged on interactive decision making, i.e.

our hypotheses are generated under the assumption of optimality of decision

making by pairs of teams.

It would be interesting to see if decision making has improved over time due

to learning. However, we �nd that there is no improvement in the estimated

treatment e¤ects, and nor is there a greater tendency for captains to �eld �rst

in day matches. In view of the fact that very simple learning rules (such as

reinforcement learning) give rise to optimal decision making in the long run, it

would be worthwhile exploring further why such anomalies persist. To this end,

we intend to estimate learning models in the cricket context, to see why the

failure to learn persists over such a long period of time.

4 Conclusions

While tests of decision theory have examined the consistency of decisions of a

single decision maker with stable preferences, the innovation of our study has

been the examination of the consistency of decision makers whose interests are

opposed. For this purpose, we are able to exploit �randomised trials�which are

inherent in the rules of the game. We �nd signi�cant violations of consistency

and optimality in decision making. These violations are best explained by a

tendency for teams to overweight their own strengths, and underweight those

of their opponents. Our randomised trials also allow us to identify average

treatment e¤ects, conditional on the treatment being optimal. Here again we

�nd evidence that choices are not made optimally, with agents choosing actions

that reduce their win probability. This later �nding is signi�cant since the

magnitude of the loss from choosing badly is large, and its estimated value is

robust to the possibility of asymmetric information.

Cricket, like most professional sport, is extremely competitive. The set of

possible outcomes of a game is binary, and as simple as it could conceivably
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be. This simplicity should, in conjunction with the randomised trials, make

decisions easy to evaluate. Nevertheless, sub-optimal decision-making seems to

have persisted over a long period of time, possibly due to the desire of captains

to "cover their posteriors" (Brandenburger and Polak, 1996). Our �nding com-

plements that of Romer (2006), who �nds that American football teams do not

maximise their winning probability. These �ndings have important implications

for economists, since they suggest that non-maximizing behaviour survives in

extremely competitive environments where performance evaluation by external

observers is relatively simple. This suggests that in more complex environments

�such as those where most �rms operate �competition would not necessarily

weed out sub-optimal behaviour. Thus Milton Friedman�s �as-if�� paradigm

may not be empirically valid. The challenge remains to identify anomalies in

behaviour in these more complex situations. In the meantime we suggest that

professional sports provides ample opportunities to test the e¤ect of competition

on the optimality of decision-making.
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