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Abstract

A monotone game is an extensive-form game with complete infor-
mation, simultaneous moves and an irreversibility structure on strate-
gies. It captures a variety of situations in which players make partial
commitments and allows us to characterize conditions under which
equilibria result in socially desirable outcomes. However, since the
game has many equilibrium outcomes, the theory lacks predictive power.
To produce stronger predictions, one can restrict attention to the set of
sequential equilibria, or Markov equilibria, or symmetric equilibria, or
pure-strategy equilibria. This paper explores the relationship between
equilibrium behavior in a class of monotone games, namely voluntary
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contribution games, and the behavior of human subjects in an exper-
imental setting. We find evidence of both pure- and mixed-strategy
equilibria and several key features of the symmetric Markov perfect
equilibrium (SMPE) in the data. To judge how well the SMPE fits the
data, we estimate a model of Quantal Response Equilibrium (QRE)
(McKelvey and Palfrey 1995, 1998) and find that the decision rules of
the QRE model are qualitatively very similar to the empirical choice
probabilities.

JEL Classification Numbers: D82, D83, C92.
Key Words: experiment, monotone games, equilibrium refinements,
pure-strategy equilibrium, mixed-strategy equilibrium, symmetric equi-
librium, Markov perfect equilibrium, quantal response equilibrium.

1 Introduction

A major concern of game theorists is to understand the conditions under
which self-interested behavior gives rise to cooperative outcomes. To cite
one famous example, the Folk Theorem for infinitely repeated games demon-
strates that cooperation can be sustained in long run relationships; however,
the Folk Theorem is only partly successful as a theory of cooperative be-
havior. It guarantees the existence of a large class of equilibria, some of
which are efficient and many more of which have unattractive welfare prop-
erties. One response is to introduce more structure into the game. Aumann
and Sorin (1989), Lagunoff and Matsui (1997), and Gale (1995, 2001) have
all shown different ways of adding sufficient structure to guarantee efficient
equilibrium outcomes in repeated games.

Here we follow the approach suggested by Gale (1995, 2001) in his study
of monotone games. Formally, a monotone game is a repeated game in
which players are constrained to choose stage-game strategies that are non-
decreasing over time. This restriction converts a repeated game into a sto-
chastic game in which the state is the profile of stage-game strategies from
the previous period. Because strategies are non-decreasing, a player is com-
mitting himself to maintain a given level of activity whenever he changes his
strategy. Alternatively, one can think of a monotone game as a dynamic im-
plementation of a static game in which players gradually commit themselves
to a final strategy.

In this paper, we explore the relationship between equilibrium behavior
in a class of monotone games and the behavior of human subjects in an
experimental setting. The class of games we choose to focus on are naturally
interpreted as voluntary contribution games. Suppose there is an indivisible
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public project with cost K and N players, each of whom has an endowment
of E tokens. The players make irreversible contributions to the project at a
sequence of dates t = 1, . . . , T . At the end of T periods, the public project
is carried out if and only if the sum of the contributions is large enough to
meet the cost of the project. Each player assigns the value A to the project,
so his utility if the project is completed is equal to A plus his endowment
minus his contribution. If the project is not completed, his payoff equals
his endowment minus his contribution. Although it is natural to interpret
this class of games in terms of voluntary contributions to a threshold public
good, other interpretations are possible.

The irreversibility of contributions makes this a stochastic game. The
state of the game in period t is the profile of contributions made in previ-
ous periods. Although the game cannot be solved by backward induction
(because of simultaneous moves) it is possible to use backward induction
on the number of contributions to characterize the possible equilibrium out-
comes. The central theoretical result for this class of games shows that under
certain conditions, sequential rationality ensures that they do not possess
equilibria with zero provision. More precisely, if the length of the game T is
greater than the cost of the good K and certain side constraints are satis-
fied, then any sequential equilibrium of the game must involve provision of
the good with positive probability (with probability one in a pure-strategy
equilibrium). In this sense, the theory predicts positive provision in dynamic
games. In static (one-shot) games, by contrast, there always exists a Nash
equilibrium with no provision. The assumption T ≥ K plays a key role
in the backward induction argument and highlights the difference between
static and dynamic games.

Although there are several nice results that can be proved for these
games, there are important questions that theory alone cannot answer.
First, even such a simple game has many equilibria, so the theory does
not make unambiguous predictions. It is an empirical question which of
these equilibria, if any, most closely approximates the observed behavior.
The set of equilibria can be reduced somewhat by imposing refinements,
such as sequential equilibrium, Markov equilibrium, symmetric equilibrium,
or pure-strategy equilibrium. Although these refinements are standard in
game theory, whether any of these refinements is reasonable in practice is
an empirical question.

We are not attempting to test a simple hypothesis or theoretical pre-
diction. Nor are we testing the relative merits of alternative theories. The
experiments reported here are motivated by a desire to learn more about
the empirical properties of monotone games and of the refinements that
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we use to restrict the equilibrium set. The theory is complex and subtle,
and to investigate the empirical properties of the games we have designed
experiments that produce an equally rich data set. We do not claim that
complexity is a virtue; but it is unavoidable if we want to study this class
of games. Since the games we study have multiple equilibria, we impose a
number of refinements (symmetry, sequential rationality, Markov strategies)
in order to restrict the equilibrium properties of the model. We try to use
the full spectrum of these theoretical properties in our empirical study of
monotone games.

The conclusions from our theoretical/empirical exercise can be summa-
rized as follows.

• First, we observe behavior that is consistent with both pure- and
mixed-strategy equilibria at the aggregate level. In particular, the
provision of the public good is uncertain in most treatments. We also
find some evidence that subjects use Markov strategies (strategies that
depend only on payoff-relevant variables) and several features of the
symmetric Markov perfect equilibrium (SMPE) are reflected in the
data.

• Secondly, to provide a more systematic test of the theory, we estimate
a model of Quantal Response Equilibrium (QRE) as advocated by
McKelvey and Palfrey (1995, 1998). The QRE can be thought of as a
SMPE with “mistakes.” The parameter estimates are highly significant
and positive, showing that the theory does help predict the subjects’
behavior, and the decision rules of the QRE model are qualitatively
very similar to the empirical choice probabilities.

• Thirdly, there is a very high level of provision of the public good in all
dynamic games. We find that, under certain circumstances in which
there are provision and non-provision equilibria in both static and dy-
namic games, provision falls close to zero in the static game. These
findings might suggest that backward induction plays a role in increas-
ing the provision rates in our dynamic games, although the multiplicity
of equilibria prevents us from making a precise prediction.

The rest of the paper is organized as follows. The next section provides a
discussion of the closely related literature. Section 3 describes the theoretical
model and presents some theoretical results that guided our experimental
design. Section 4 describes the experimental procedures. Section 5 describes
the experimental results. Section 6 provides the QRE analysis and Section
7 concludes. Proofs are gathered in Section 8.
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2 Related literature

There is a small theoretical literature related to monotone games. Admati
and Perry (1991) study a two-person game in which players make alternating
contributions to the provision of an indivisible public good. They show that,
under certain conditions, there is a unique (possibly inefficient) equilibrium.
Marx and Matthews (2000) extend the model of Admati and Perry (1991) in
a number of ways, including allowing for simultaneous moves. Gale (1995)
demonstrates that, in the monotone game based on an infinitely repeated
coordination game, all sequential equilibria are efficient in the limit as the
length of the time period converges to zero. Gale (2001) introduces a gen-
eral class of monotone games with positive spillovers, allowing for continuous
and unbounded action spaces. He shows conditions under which coopera-
tive outcomes can be supported as sequential equilibria in the absence of
indivisibilities.

The importance of indivisibilities in voluntary contribution games with
public goods was originally pointed out by Bagnoli and Lipman (1992) in the
context of a static game. They show that the indivisibility of the public good
makes each contributing player “pivotal” in the sense that at the margin
his contribution is both necessary and sufficient for provision. Bagnoli-
Lipman pivotal player argument solves free rider problem to the extent of
guaranteeing the existence of efficient equilibria in games of any length. It is
also consistent with the existence of inefficient or zero-provision equilibria.
The indivisibility of the public good is a crucial feature of the theoretical
model used in this paper.

Duffy, Ochs and Vesterlund (2007), henceforth DOV, report the results
of an experiment based on the model of Marx and Matthews (2000). The
payoff from the public good has two components: one is proportional to the
total amount contributed toward the completion of a project; the other is
a fixed benefit received only if the total contributions reach the threshold
needed to complete the project. Their study is based on a 2 × 2 design in
which they compare static versus dynamic games, with and without a posi-
tive completion benefit. DOV point out that in the dynamic game with com-
pletion benefit there are both pure-strategy completion and no-contribution
Nash equilibria, while there is a unique no-contribution Nash equilibrium
in the other games.1 Experimentally, DOV observe higher contributions in

1DOV illustrate the completion equilibrium with what Marx and Matthews (2000) call
the grim-g equilibrium. In a grim-g strategy profile, g is played in every period unless
the aggregate contribution level is inconsistent with g, in which case no player contributes
subsequently. Marx and Matthews (2000) show that g is a Nash equilibrium outcome
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dynamic games than in static games; however, they also observe higher con-
tributions in dynamic games even in the absence of a positive completion
benefit.2 They interpret this behavior, which is not predicted by the theory,
as resulting from irrationality or the “trembling hand”. We compare our
findings (and interpretation) with DOV in the concluding section.

3 From theory to design

This section provides a bridge between the theory and the experimental de-
sign. First, we develop a number of theoretical results about the game. Then
we define a series of simple parametric examples that serve as the treatments
in the experimental design and describe their theoretical properties.

3.1 The model

The monotone game we study can be interpreted as a voluntary contribution
game. The game is formally described using the following notation. There
are N players, indexed i = 1, ..., N . Each player is endowed with a finite
number E of indivisible tokens. The game is divided into T periods, indexed
t = 1, ..., T . In each period, the players simultaneously choose how many
tokens to contribute to the provision of the public good. The cost of the
public good is K tokens and the public good is provided if and only if the
total number of tokens contributed is at least K. If the public good is
provided, each player receives A tokens in addition to the number of tokens
retained from his endowment. The players have perfect information in the
sense that, in each period, they know the full history of the game up to
that period. Since contributions are irreversible, the player’s contribution is
monotonically non-decreasing over time.

Each game is defined by five parameters (A,E,K,N, T ). These parame-
ters are positive integers except for A, which is a non-negative real number.
Each of the parameters influences the set of equilibria of the game in a dis-
tinct way. We assume that the aggregate endowment is at least as great as
the cost of the public good (NE ≥ K) so that provision of the public good
is always feasible; and we assume that the aggregate value of the good is

if and only if grim-g profile is a Nash equilibrium. However, a grim-g strategy is not
sequentially rational after histories where it is feasible for a single player to complete the
public project.

2To investigate further possible explanations for why increasing the number of periods
increases contributions, DOV study a variant of the dynamic game with no completion
benefit where subjects are not informed about past aggregate contributions.
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greater than the cost (NA > K) so that provision is always efficient. These
assumptions are maintained throughout the rest of this section. We next
develop a number of theoretical results about the game. Proofs are gathered
in Section 8.

3.2 Coordination

The one-shot game (T = 1) provides a useful benchmark for our subsequent
analysis of the dynamic games. To avoid trivial cases, we assume that
min {A,E} < K. This condition ensures that it is either infeasible (E < K)
or individually irrational (A < K) for a single player to provide the public
good.

Proposition 1 (one-shot) Suppose that T = 1 and min {A,E} < K.
Then there exist a Nash equilibrium with no provision and a Nash equi-
librium in which the good is provided with probability one.

In the one-shot game, non-provision of the public good is explained as
a coordination failure. If a player thinks that no one else will contribute,
it is not optimal for him to contribute. Conversely, if he thinks that his
contribution is both necessary and sufficient for provision, then he will be
happy to contribute. Hence, provision of the good can be supported, in
spite of the free-rider problem, because each contributing player is pivotal
(Bagnoli and Lipman, 1992).3

Turning to dynamic games (T > 1), two features are essential for sus-
taining cooperation. The first is the requirement that strategies be non-
decreasing over time. The second is the assumption of sequential rationality.
In general, games that are infinitely repeated and/or involve simultaneous
moves, cannot be solved by backward induction, but the monotonicity as-
sumption makes it possible to use backward induction on the payoff-relevant
state of the game, rather than the stage of the game. The irreversibility of
contributions and the backward induction logic allow players to coordinate
their actions and support cooperative outcomes. The sharpest result is ob-
tained for the case of pure-strategy equilibria.

3Andreoni (1998) examines a static threshold public good game. Propositions 2 and
3 in Andreoni (1998) follow from the Bagnoli-Lipman “pivotal” player argument, which
applies to games of any length, and are similar to Proposition 1 in this paper. Adding
taxation and government grants in Andreoni (1998) is equivalent to changing the cost of
the public good (K) and the individual endowments (E) in our model.
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Proposition 2 (pure strategy) Suppose that A > E and T ≥ K. Then,
under the maintained assumptions, in any pure strategy sequential equilib-
rium of the game, the public good is provided with probability one.

The logic of the proof can be illustrated by an example. Suppose that
there are three players (N = 3) and each player has an endowment of one
token (E = 1). There are two periods (T = 2), the cost of the public
good is two (K = 2), and the value of the public good is greater than the
endowment (A > 1). In any pure strategy equilibrium, the probability of
provision is either one or zero, so it is enough to show that the zero-provision
equilibrium is not sequentially rational. Suppose, contrary to the claim in
the proposition, that there exists a pure strategy sequential equilibrium
with zero provision. Then every player’s payoff is simply the value of his
endowment E = 1. If one player contributes a token at period 1, one of the
remaining players can earn at least A > 1 by contributing his endowment
at period 2. Thus, the good must be provided at period 2 if one player
contributes at period 1. Anticipating this response, it is clearly optimal for
someone to contribute a token at period 1.

The assumption T ≥ K in Proposition 2 highlights the central role of
backward induction in the analysis of the monotone game. It takes time to
ensure cooperation and without enough time there may exist a no-provision
equilibrium. The condition A > E is needed to avoid equilibria in which
players refuse to contribute because they are afraid of contributing too much.
Proposition 5 below shows what happens when endowments are “too high.”

Although pure-strategy equilibria give us a very clean result, they do not
tell the whole story. To get a more robust result, we should take account of
mixed strategies. Mixed strategies are interesting for at least two reasons.
First, they are one way of rationalizing uncertain provision of the public
good, something that is observed in the experimental data. Secondly, they
expand the set of parameters for which there exists a no-provision equilib-
rium. The preceding example, where N = 3, A > E = 1, and T = K = 2,
can be used to illustrate this possibility. If one player contributes a token in
period 1, the continuation game at period 2 consists of two active players,
only one of whom needs to contribute a token in order to provide the good.
The continuation game possesses a symmetric mixed-strategy equilibrium
where each of the two active players contributes in period 2 with probability
0 < λ < 1.

A necessary and sufficient condition for λ to be an equilibrium strategy is
that each of the two uncommitted player be indifferent between contributing
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and not contributing. A simple calculation shows that indifference requires

λ = (A− 1)/A.

In this mixed-strategy equilibrium, the good is provided unless neither of
the two players contributes, that is, the good is provided with probability
1− (1− λ)2. Then, if the player who contributes in period 1 anticipates his
opponents will play the symmetric mixed-strategy equilibrium at period 2,
it is rational for him to contribute if and only ifh

1− (1− λ)2
i
A ≥ 1

or A2 −A ≥ 1. The critical value of A is thus A∗ ≈ 1.618. For any A < A∗

it is not optimal for a player to move first if he anticipates that the other
two will play the mixed-strategy equilibrium, whereas in the pure-strategy
case it is optimal to move first if A > 1. Thus, the use of mixed strategies in
the continuation game can discourage an initial contribution and support an
equilibrium with no provision. In the two-period game, A > A∗ is necessary
and sufficient for provision of the good with positive probability. In fact, this
condition is sufficient for positive provision for games of any length T ≥ K.
We summarize this discussion in the following proposition.

Proposition 3 (mixed strategy) Suppose the parameters of the game are
N = 3, E = 1, and T ≥ K = 2 . If 1 < A < A∗, where A∗ ≈ 1.618, then
there exists a mixed strategy equilibrium in which the good is provided with
probability zero.

A generalization of Proposition 3 is contained in Section 8 (Proposition
6).

3.3 Free-riding

Under-provision of the public good depends on two factors, coordination
failure and the free-rider problem. Coordination failure occurs most readily
in the one-shot game (T = 1), where players would all be better off if the
good were provided, but are unable to escape from the bad equilibrium.
In a dynamic game, the irreversibility of contributions and the backward
induction logic allow players to coordinate their actions. The free-rider
problem arises because each player would like someone else to contribute
on his behalf. The severity of the free-rider problem depends on the extent
to which it is possible to make unequal contributions in equilibrium. The
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games in which K = NE provide a useful benchmark because each player
must contribute his entire endowment in order for the public good to be
provided. There is no possibility of taking a free ride on the contributions
of other players.

To illustrate, suppose that N = 3, A > E = 1, and T ≥ K = 3. In
any sequential equilibrium of this game, each player can guarantee himself
a payoff equal to A > 1 tokens. To see this, suppose that two players have
already contributed by the end of period T − 1. Then the remaining player
will contribute in period T and each of the players receives A tokens. Now
suppose that one player has already contributed by period T − 2. Then by
the previous argument, either of the two other players can guarantee himself
a payoff of A tokens by contributing in period T − 1. Clearly, any of the
three players can guarantee himself A tokens by contributing in period T−2.
Our next result generalizes the preceding argument. Note that it does not
rule out the use of mixed strategies, even along the equilibrium path.

Proposition 4 (no-free-riding) Suppose that K = NE, A > E and
T ≥ K. Then the good is provided with probability one in any sequential
equilibrium of the game.

Taking the condition K = NE as as benchmark for the absence of free
riding, the free-rider problem must be worse in some sense when the total
endowment exceeds this level. If the total endowment is too large, non-
provision is consistent with sequential equilibrium, as the following result
shows. It provides a kind of converse to Proposition 2, where there is an
upper bound E < A on the size of the endowment.

Proposition 5 (free-riding) Suppose that E > A and T ≥ K. Then
under the maintained assumptions, there exists a pure strategy sequential
equilibrium of the game in which the public good is provided with probability
zero.

The essential ingredient in the construction of this equilibrium is the
self-punishing strategy employed by Gale (2001). Whoever contributes first
condemns himself to making a contribution so large that it outweighs his
benefit from the public good. After the first contribution has been made,
it is a sunk cost and the player cannot stop himself from making further
individually rational contributions. The other players are, of course, only
too happy to wait until after he has punished himself for deviating. An-
ticipating the ultimate outcome, the player will never make that first, fatal
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contribution. To illustrate, note that if E = K = 2 and 1 < A < 2, it is
clearly not worthwhile for a single player to contribute two tokens since the
value of the good is only A < 2. On the other hand, if a player is foolish
enough to contribute one token, it is rational for him to contribute a second
token later, since A > 1 and the first token is now a sunk cost. Hence, if
a player contributes one token, he is condemned to contribute the second
later in the game and that will make him worse off than if he had never
contributed at all.

3.4 Games

We next define a series of simple parametric examples that serve as the
treatments in the experimental design. The four games we consider consist
of a baseline game and three variants that are derived from the baseline by
changing one parameter in each case. Throughout, we keep the number of
players constant (N = 3) and consider two values of the public good, one
high (A = 3) and one low (A = 1.5). The dynamic games come in two
versions, a long version (T = 5) and a short version (T = 2). The set of
sequential equilibria differs across treatments, particularly with respect to
the existence of sequential equilibria with zero provision, providing a set of
testable hypotheses. In addition, varying the value of the good A and the
length of the game T provides a test of the robustness of our results. The
various games are summarized in Table 2 below.

• The baseline game uses the parameters A = 1.5, 3, E = 1,K = 2, T =
2, 5. The game has a variety of sequential equilibria. The pure-strategy
equilibria all involve provision of the good with probability one (Propo-
sition 2), whereas the mixed-strategy equilibria allow for a positive
probability that the good is not provided (Proposition 3). In the high-
value treatments (A = 3), all sequential equilibria are characterized
by a positive probability of the provision of the public good, whereas
in the low-value treatments (A = 1.5) there exists a mixed-strategy
sequential equilibrium in which the good is provided with probability
zero (Proposition 3).

• The high-cost game is identical to the baseline game except that the
cost of the public good has been increased to K = 3, so provision
of the good requires every player to contribute (K = NE). In this
game, there are two factors that affect the rate of provision of the
public good. On the one hand, because every player must contribute
in order to provide the public good, there is no possibility of taking a

11



free ride here. On the other hand, the high cost of providing the good
does allow for the existence of a non-provision equilibrium when the
horizon is short (T = 2), in contrast to Proposition 4.

• The high-endowment game is the same as the baseline game except
that the endowment is increased toE = 2. By increasing the individual
endowments, we increase the potential asymmetry of contributions to
the provision of the public good and hence the potential for free riding.
For this reason, there exists an equilibrium in which provision is zero
when the value of the good is low (A = 1.5) (Proposition 5).

• The one-shot game is the same as the baseline game except that
T = 1. The one-shot game possesses a pure-strategy equilibrium in
which the good is not provided (Proposition 1). Every game, static
or dynamic, possesses a pure-strategy sequential equilibrium in which
the good is provided, but provision of the good must be positive in
any sequential equilibrium if T ≥ K and certain other conditions are
satisfied. Thus, if we observe positive provision in the dynamic games
with T ≥ K, but not in the one-shot game with T = 1, we can take
that as a sign that backward induction is responsible for the difference.

3.5 Equilibrium properties

Because each of the games we study has a large number of equilibria, the
theory does not make strong predictions. Which equilibrium will be played
becomes an empirical question. Even if the experimental data do not con-
form exactly to one of the sequential equilibria, the data may suggest that
some equilibria are empirically more relevant than others. In order to iden-
tify the set of relevant equilibria, we use standard equilibrium refinements
to classify the equilibria. Two refinements that we choose to look at here are
the restriction to symmetric strategies and the restriction to Markov strate-
gies. These refinements are commonly used in the game theory literature
to restrict the set of equilibrium predictions, as they do in the games we
are studying here, and this is a valuable opportunity to test their empirical
relevance.

A strategy is called Markov if it depends only on payoff-relevant vari-
ables. By limiting the variables on which behavior is conditioned, the
Markov property reduces the set of sequential equilibria, sometimes sub-
stantially. When each player has an endowment of one token (E = 1), the
payoff-relevant states of the game are denoted by (n, τ), where n is the total
number of contributions and τ is the number of periods remaining after the
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current period. When each player has an endowment of two or more tokens
(E ≥ 2), the payoff relevant states for subject i are denoted by (n, τ , ni),
where n and τ have the usual meaning and ni is the number of contributions
to date by player i.

If we assume that strategies are symmetric and Markovian, we are led
to consider the class of symmetric Markov perfect equilibria (SMPE), which
take a relatively simple form. A general characterization of the SMPE is
provided in Section 8 (Proposition 7). Table 1 reports the strategies corre-
sponding to the SMPE in the baseline and high-endowment games.4

Note that a game with horizon T < T 0 is isomorphic to a continuation
game starting in period T 0−T of the game with horizon T 0. So the SMPE of
the short-horizon treatments (T = 2) are the same as the last two periods of
the SMPE in the long-horizon treatments (T = 5), assuming there have been
no contributions in the first three periods. Similarly, the SMPE of the static
treatments correspond to the last period of the SMPE in the long-horizon
treatments (T = 5), again assuming there have been no contributions in the
first four periods.

Note also that, in the high-cost game, every player must contribute but
the timing of their contributions is immaterial. As a result, the game has a
large number of pure-strategy SMPE.

[Table 1 here]

The main predictions from SMPE presented in Table 1 can be sum-
marized by four facts. First, there are no pure strategy SMPE, although
mixed strategies are only used off the equilibrium path when the value is
low (A = 1.5). Secondly, when the value of the good is high (A = 3) (top
panels), there are three mixed-strategy SMPE in which the good is provided
with positive probability. When the value is low (bottom panels), there
is a unique SMPE, in which the good is provided with probability zero.
Thirdly, within each game, the SMPE predict no provision of the public
good in early periods when the value is high and no provision at all when
the value is low. The use of mixed strategies in the continuation games at
later periods discourages an initial contribution and, especially when the
value of the public good is low enough, supports a unique SMPE with no
provision. Fourthly, the SMPE predicts that, other parameters being equal,
the contribution probability at each state when the value is high is at least

4 In the equilibria described in Table 1, we assume, as part of our definition of symmetric
equilibrium, that players use symmetric Markov strategies both on and off the equilibrium
path.
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as high as when the value is low (because the probability is always zero in
the low-value treatments).

Notice also that, for the baseline and high-endowment games, if the good
is provided with probability one, the contributions must be asymmetrically
distributed among the players in any pure-strategy sequential equilibrium.
If the good is not provided, then mixed strategies are required off the equilib-
rium path in order to discourage a deviation. By contrast, when we increase
the cost of the public good toK = 3 holding other parameters constant, pro-
vision of the good requires every player to contribute (K = NE). Thus, the
high-cost game has pure-strategy SMPE in which every player contributes
with probability one. On the other hand, the high cost of providing the good
does allow for the existence of a pure-strategy SMPE with zero provision in
the case where the value of the good is low (A = 1.5).

3.6 Summary

Table 2 summarizes the various games used in the experimental design and
the most relevant equilibrium properties for each game. The right hand
column (i) lists the propositions that characterize the most relevant proper-
ties for each treatment. Columns (ii)-(iv) list the parameters used in each
game, and columns (v)-(vii) summarize the equilibrium properties. Recall
that each game, static or dynamic, possesses both a pure-strategy sequen-
tial equilibrium with certain provision and, except the high-cost game when
the horizon is long, a mixed-strategy sequential equilibrium with a positive
probability of provision strictly less than one. Thus, columns (v) and (vi)
point out whether each game possesses a non-provision pure- and mixed-
strategy sequential equilibrium, respectively. As we have already seen, the
use of mixed strategies in dynamic games, even if they are only used off the
equilibrium path, can support equilibrium with no provision for a strictly
larger set of parameters. Finally, the right hand column (vii) reports the
probabilities that the good is provided in the SMPE.

[Table 2 here]

4 Experimental procedures

The experiment was run at the Experimental Economics Laboratory of the
Center for Experimental Social Sciences (C.E.S.S.) at New York University.
The subjects in this experiment were recruited from undergraduate classes at
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NYU. Throughout the experiment we ensured anonymity and effective isola-
tion of subjects in order to minimize any interpersonal influences that could
stimulate cooperation. After subjects read the instructions, the instructions
were read aloud by an experimental administrator. Sample instructions are
reproduced in an online appendix.

Each experimental session comprised 18 subjects (except for two sessions
in which 15 subjects were used) and 15 independent decision-rounds (except
for the one-shot game, which comprised 30 rounds). A single treatment
(A,E,K,N, T ) was used for each session and each treatment was used for
one session. In each round, the subjects were randomly formed into six
(respectively, five) three-person groups. So for each dynamic game we have
observations on 6× 15 = 90 (respectively, 5× 15 = 75) different rounds and
a total of 18× 90 = 1520 (respectively 18× 75 = 1330) individual decisions.

The three-person groups formed in each round were independent of the
groups formed in any of the other rounds. At the beginning of the round,
each subject had an endowment of E tokens. In the first period, each sub-
ject was asked to allocate his tokens to either an x-account or a y-account.
Investing a token in the y-account was irreversible. After all subjects had
made a decision, each subject observed the decisions of all the subjects in his
group. In the second period, each subject was asked to allocate the token(s)
remaining in his x-account between the two accounts. At the end of this
period, each subject again observed the decisions of all the subjects in his
group. This procedure was repeated until T decisions had been made.

When the first round ended, the computer informs subjects of their pay-
offs. Earnings in each round were determined as follows: if subjects con-
tribute at least K tokens to their y-accounts, each subject receives A tokens
plus the number of tokens remaining in his x-account. Otherwise, each sub-
ject receives the number of tokens in his x-account only. This process was
repeated until all decision rounds were completed. Subjects received their
payment privately as they left the experiment.

5 Experimental results

5.1 Provision

We begin with an analysis of the sensitivity of provision to changes in T and
then consider the sensitivity of provision to changes in the other parameters,
A, K and E. Table 3 presents the provision rates for each treatment.

[Table 3 here]
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5.1.1 The time effect (T )

The static or one-shot game differs from the baseline game only in respect
to the number of periods T . The first thing we want to check is whether
provision rates are higher in dynamic games. Referring to Table 3, when the
value of the good is high (A = 3), the provision rates are 0.76 when T = 1,
0.74 when T = 2, and 0.81 when T = 5. A joint chi-square nonparametric
test indicates that the difference in the provision rates is not statistically
significant (p-value = 0.530).5 By contrast, when the value of the good is
low (A = 1.5), the provision rate decreases sharply to 0.10 when T = 1,
while remaining at 0.47 when T = 2 and 0.678 when T = 5. These pro-
vision rates are significantly different at all conventional significance levels
(p-value = 0.000). Hence, the effect of time length on public-good provision
is significant when the value of the public good is low, but not when the
value of the public good is high.

The data summarized in Table 3 also show differences in the provision
rates corresponding to T = 2 and T = 5 for both the high-cost and high-
endowment games. When the value of the good is high (A = 3), provision
rates in the high-cost treatments are 0.88 and 0.99 when T = 2 and T = 5,
respectively. Although the provision rates are both high, they are signifi-
cantly different at the 1 percent significance level (p-value = 0.003). When
the value of the good is low (A = 1.5), provision rates decrease to 0.30 and
0.64 for T = 2 and T = 5, respectively. The difference in provision rates
is significant at the 1 percent level (p-value = 0.000). Finally, holding the
value of the good A constant, the differences in the provision rates in the
high-endowment treatments are significant at the 1 and 10 percent levels for
T = 2 and T = 5, respectively (the respective p-values are 0.008 and 0.051).
In summary, the data supports the following result.

Result 1 (time) (i) Comparing the one-shot game with the baseline game,
when the value of the good is low (A = 1.5), the provision rate is
highest when T = 5 and lowest when T = 1. When the value of the
good is high (A = 3), there are no significant differences between the
provision rates in the static and baseline treatments. ( ii) Within the
high-cost and high-endowment treatments, the provision rate is signif-
icantly higher when T = 5 than when T = 2.

5Unless otherwise noted, throughout this section, we use chi-square nonparametric tests
(see Siegel and Castellan (1988)). We treat each game that is played as an independent
observation.
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5.1.2 The value effect (A)

Since all games come in low-value (A = 1.5) and high-value (A = 3) ver-
sions, we can study the effect of the value of the good within each game.
In the low-value version of the baseline game, the provision rates are 0.47
and 0.68 for T = 2 and T = 5, respectively. These provision rates are sig-
nificantly lower than those in the high-value version of the baseline game at
the 1 and 5 percent levels for T = 2 and T = 5, respectively (the p-values
are 0.000 and 0.040). Similarly, the provision rates in the high-endowment
treatments are 0.49 and 0.63 for T = 2 and T = 5, respectively, when the
value is low. These rates are significantly lower than the corresponding rates
when the value is high. The differences are significant at the 1 percent level
(the respective p-values are 0.006 and 0.001). Finally, the provision rates in
the low-value treatments are also significantly lower than those in the cor-
responding high-value treatments in both the one-shot and high-cost games
(p-values = 0.000). Our next result summarizes these findings.

Result 2 (value) Within each game, the provision rate is significantly higher
when the value of the good is high (A = 3) than when it is low
(A = 1.5), holding the game length T constant.

5.1.3 The cost effect (K)

To explore the effects of the cost of the public good, we compare the provision
rate in the baseline game (K = 2) with that in the high-cost game (K = 3),
holding the game length T and the value of the good A constant. The
provision rates in the high-value treatments are 0.88 and 0.99, when T = 2
and T = 5, respectively, confirming that the absence of the free rider problem
(K = NE) leads to high provision. These provision rates are significantly
higher than those in the corresponding baseline treatments at the 1 and
5 percent significance levels (the respective p-values are 0.000 and 0.022).
When the value of the good is low (A = 1.5), there is no significant difference
between the provision rates in the high-cost and baseline treatments when
T = 5, and the provision rate is even significantly lower in the high-cost
treatment when T = 2 (p-value = 0.021). In summary, the data support the
following result.

Result 3 (cost) Comparing the high-cost game (K = 3) with the baseline
game (K = 2) while holding the length T constant, the provision rates
are higher in the high-cost treatment when the value of the good is high
(A = 3). When the value of the good is low (A = 1.5), the provision
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rates are not significantly different when T = 5 and lower in the high-
cost treatment when T = 2.

5.1.4 The endowment effect (E)

Finally, we compare the provision rate in the baseline game (E = 1) with
that in the high-endowment game (E = 2), holding the game length T
and the value of the good A constant. Referring to Table 3, when the
value of the good is high (A = 3), provision rates in the high-endowment
treatments are 0.69 and 0.86 when T = 2 and T = 5, respectively. When
the value of the good is low (A = 1.5), the corresponding provision rates
decrease to 0.49 and 0.63, respectively. However, none of the differences in
the provision rates between the baseline and high-endowment treatments is
statistically significant at any conventional significance level. We thus report
the following result.

Result 4 (endowment) The provision rates in the high-endowment game
(E = 2) are not significantly different from those in the baseline game
(E = 1), holding the value A and length T constant.

5.2 Properties of equilibrium

In this section we discuss the implications of the data for equilibrium selec-
tion. We first organize the data by calculating the relative frequencies of
contributions for each of the payoff-relevant states in each dynamic treat-
ment. The data are presented in Table 4. The payoff-relevant states of the
game are represented by (n, τ) when E = 1 and by (n, τ , ni) for each player
i when E = 2, where n is the total number of contributions, τ is the number
of periods remaining after the current period, and ni is the total number of
contributions to date by player i. The number in parentheses in each cell
represents the number of subjects who have an endowment left for contribu-
tion. In a few cases subjects contributed a token when the public good had
already been provided. These contributions appear to be simple mistakes of
the “trembling hand” variety, rather than a systematic misunderstanding of
the game or irrational behavior.

[Table 4 here]

5.2.1 Mixed and pure strategies

We are interested in the aggregate contribution behavior and therefore focus
on the average frequency of contributions in different states. From this point
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of view, a mixed strategy corresponds to a contribution rate that lies between
zero and one whereas a pure strategy corresponds to a contribution rate
that equals zero or one. The pattern of contributions in the experimental
data appear to confirm the use of mixed and pure strategies. In the high-
cost game (K = 3), where most contributions are made in the first two
periods, the overall pattern is consistent with the use of pure strategies.
Referring to Table 4, when the horizon is short (T = 2) and the value of
the good is high (A = 3), the relative frequencies of contributions at states
(n, τ) = (0, 0) , (1, 0) are close to zero and one respectively. These cases
approximate, on the one hand, a pure-strategy equilibrium with no provision
and, on the other, a pure-strategy equilibrium with certain provision, at
the corresponding states. Given this behavior in the continuation games,
mixing at the first period is clearly not a best response. By contrasts,
in other treatments the relative frequency of contributions in the last two
periods is similar to the probability of contributions in (symmetric) mixed-
strategy equilibria, as will be shown below. As pointed out earlier, the use of
mixed strategies can discourage contributions in earlier periods and support
equilibria with zero provision or with a probability of provision strictly less
than one.

Referring back to Table 3, in all dynamic games, apart from the high-
cost game, the provision rate is positive but significantly less than one.
Such behavior is clearly not consistent with pure-strategy equilibrium. By
contrast, in the high-cost game, when the horizon is long (T = 5) and the
value of the good is high (A = 3), the probability the good is provided is
virtually one and this is well approximated by a pure-strategy equilibrium.
Note that even in the case where provision occurs with probability one, one
cannot conclude that players are necessarily using a pure strategy. There
exist mixed-strategy equilibria, including some in which mixing occurs on
the equilibrium path, in which the good is provided with probability one.
The most that one can say is that this outcome is consistent with the use
of pure strategies. The next result summarizes the findings.

Result 5 (mixed-strategies) We find aggregate behavior consistent with
non-provision and full-provision pure-strategy equilibria and with mixed-
strategy equilibria.

5.2.2 Markov behavior

Our next question is whether subjects’ behavior is consistent with Markov
strategies, which depend only on payoff-relevant states and not on the com-
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plete history of play. We focus on the baseline and high-endowment games
where the horizon is long (T = 5), since in the high-cost game (K = 3) the
group outcomes are so highly clustered that it does not seem possible to
have a meaningful test. The procedure for testing the Markov property is as
follows. We first select each of the three states, (n, τ) = (1, 2) , (1, 1) , (1, 0),
where one token has already been contributed in the past. In the high-
endowment game (E = 2), we only consider the case where the individual
contribution variable ni = 0 in each of the three states.

There are (4− τ) distinct histories leading to each of the payoff relevant
states (n, τ) = (1, 2) , (1, 1) , (1, 0). In each of these histories, exactly one
token has been contributed at one of the previous dates t = 1, ..., 4− τ . Let
h(t, τ) denote the history at period T − τ where one token was contributed
at time period t and none at other dates. For example, when (n, τ) = (1, 2),
there are two different histories reaching the current state: one where one
token was contributed at t = 1, h(1, 2), and the other where the contribution
of one token was made at t = 2, h(2, 2). The (joint) null hypothesis at each
of the three states (n, τ) = (1, 2) , (1, 1) , (1, 0) is that the relative frequencies
of contributions are the same for all histories reaching the state (n, τ).

Table 5 below summarizes the relative frequencies of contributions from
the different histories reaching each payoff-relevant state in the baseline and
high-endowment treatments with T = 5. The number in parentheses in each
cell represents the number of observations. At the last column of Table 5, p-
values are reported under the null hypothesis. The numbers in parentheses
in each cell of the last column represent the value of the chi-square test
statistic and its degrees of freedom. In both high-endowment treatments,
we cannot reject the Markov restriction in all three states at the 10 percent
significance level. In each of the baseline treatments, we reject the null
hypothesis only in one out of the three states at the 10 percent significance
level. Thus, the data supports the following result.

Result 6 (Markov) The overall outcomes in the test of the Markov prop-
erty confirm that subjects’ behavior supports the Markov specification.

[Table 5 here]

5.2.3 Symmetric Markov perfect equilibrium (SMPE)

If we add symmetry to the Markov property, we are led to consider the
ability of the SMPE to account for the broad features of the experimental
data. In what follows, we again ignore the high-cost game (K = NE)
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where pure-strategy equilibria seem like a reasonable explanation for the
data. For the other dynamic games, we compare the empirical patterns of
contributions in Table 4 with the theoretical predictions of SMPE in Table 1.
Perhaps surprisingly, we find the qualitative features of the theory and the
experimental data very similar, although there are systematic deviations.
Referring to Table 1 above, the relative frequencies of contributions in the
first three periods are around 10 percent in both the baseline and high-
endowment games. The strategic delay in early periods reflects the theory’s
prediction of zero contributions and is clearly robust to changes in the model
parameters. Any deviation from the SMPE must increase contributions in
the early periods and this probably increases the provision of the public
good overall. The data also confirm that provision of the public good is
higher than the SMPE predict. This is most clearly seen in the treatments
where the value is low (A = 1.5).

Referring to Table 4, the SMPE predict that the contribution probabili-
ties in a low-value treatment will be lower in the last two periods than those
in the corresponding high-value treatment. It is interesting to note that the
comparative-static prediction of the SMPE holds true: in the baseline treat-
ments, the contribution probability at each state in the high-value treatment
(A = 3) is no lower than that in the low-value treatment (A = 1.5). In sum-
mary, the dynamic patterns of contribution behavior are sensitive to changes
in the parameters, especially the value of the public good. Such sensitivity
of contribution behavior is often closely related to the predictions of SMPE.
Nonetheless, the empirical contribution probabilities are often higher than
those from the SMPE in the treatments where the value is low. The devia-
tion in the subjects’ behavior from SMPE in the last two periods is toward a
lower probability of contribution. Hence, the analysis detects both successes
and failures of the SMPE in accounting for different features of the data, as
summarized in the next result.

Result 7 (SMPE) The SMPE explains the qualitative patterns of contri-
butions in the games. Nonetheless, there are systematic departures
from the predictions of the SMPE and the deviations from the equilib-
rium probabilities at earlier and later periods go in opposite directions.

We can also use the SMPE to interpret the earlier empirical results about
the sensitivity of provision rates to various parameter changes. Result 1
(time) contrasts the levels of provision in the static (T = 1) and baseline
(T = 2, 5) game. When the value is high (A = 3) there is no significant
difference in provision rates, whereas the difference is significant when the

21



value is low (A = 1.5). Table 1 shows that when the value is low the SMPE
predicts no provision, whereas it predicts positive provision when the value
is high. Thus, at least when the value is high, the empirical behavior is
consistent with the SMPE. When the value is low, by contrast, there is a
clear deviation from the SMPE that will be examined in the context of the
Quantal Response Equilibrium (QRE) in the next section.

The other results on provision rates are all consistent with the qualitative
predictions of the SMPE. Result 2 (value) shows that higher values of the
public good correspond to higher provision, ceteris paribus, and that is what
the SMPE predicts as well. Result 3 (cost) shows that the provision rate is
higher in the high-cost game (K = 3) than in the baseline game (K = 2). In
the high-cost game, when the horizon is long (T = 5), all sequential equilibria
result in provision of the good with probability one and this holds a fortiori
for the SMPE. When the horizon is short (T = 2), there are SMPE with
zero provision as well as with certain provision. Hence, the SMPE predicts
the empirical results when the horizon is long and is at least consistent
with them when the horizon is short. Result 4 (endowment) shows that
provision rates are not significantly different between the high-endowment
(E = 2) and baseline (E = 1) games. Table 1 indicates that the contribution
probabilities are very similar for corresponding SMPE, albeit slightly lower
when the endowment is high. It is fair to say that the SMPE predicts
quantitatively similar provision rates in the baseline and high-endowment
games.

6 Quantal Response Equilibrium (QRE)

The preceding analysis detects both successes and failures of the SMPE in
accounting for different features of the data. A more systematic comparison
of the theory with the data requires a model that can account for the data
in the sense of (a) reproducing important moments of the observed data and
(b) explaining the data in terms of the theory. Observed behavior inevitably
contains random mistakes, which can be interpreted, following Harsanyi and
Selten, as the effect of a “trembling hand.” We cannot expect the theory to
fit perfectly; but a version of the theory that allows for random errors may
fit the data reasonably well.

The QRE model of McKelvey and Palfrey (1995, 1998) allows for the
possibility of errors and yet retains a role for best response behavior. At
each state, a player’s contribution probability is assumed to be a function of
the difference between the payoffs from contributing and not contributing.
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The predictions of the QRE model differ from those of the SMPE for two
reasons: first, the QRE allows for the possibility of mistakes and, secondly, it
assumes that players take into account the fact that others are also making
mistakes.

6.1 Specification

To explain the subject’s propensity to choose an action different from the one
predicted by the SMPE, we assume that each player’s payoff is perturbed
by an idiosyncratic preference shock that has an extreme value distribution.
For simplicity, suppose that each player has an endowment of one token
(E = 1). Then, the contribution behavior of each uncommitted player at
state (n, τ) follows a binomial logit distribution:

λ(n,τ) =
1

1 + exp(−β(n,τ)∆(n,τ))
, (1)

where λ(n,τ) is the equilibrium probability of making a contribution, ∆(n,τ)
is the difference between the expected payoffs from contributing and not
contributing, and β(n,τ) is a coefficient to be estimated. The choice of action
becomes purely random as β(n,τ) goes to zero, whereas the optimal action is
chosen almost surely as β(n,τ) goes to infinity. For positive values of β(n,τ),
the choice probability λ(n,τ) is increasing in ∆(n,τ).

To calculate the payoff difference ∆(n,τ), we need to take account of
the stochastic behavior of other players in the current and future periods.
Specifically, it is assumed that players correctly predict the contribution
probabilities in the continuation games as well as in the current state and
use them to calculate the correct value of ∆(n,τ). In effect, we assume that
players have rational expectations about the true error rates determined by
the value of β(n,τ) and use the estimated β(n,τ) coefficients to approximate
the true β(n,τ). Furthermore, since the payoff differences ∆(n,τ) depend on
the contribution probabilities λ(n,τ) and vice versa, we need to solve for the
equilibrium values of payoff differences and contribution probabilities, taking
as given the parameters (A,E,K,N, T ) that define the game.

6.2 Solving for QRE: An example

We illustrate the method of solving for a QRE of the model using the baseline
treatment with a short horizon (T = 2). The calculation of equilibrium
proceeds by backward induction, beginning with the second and final period.
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In the second period, the contribution probability is denoted by λ(n,0)
where n is the number of contributions in the first period and τ = 0 is the
number of periods remaining. For n = 1, 2, the payoff from contributing is A
and the payoff from not contributing is 1+A

¡
λ(n,0)

¢2−n. Thus, the difference
between the expected payoffs from contributing and not contributing is given
by

∆(n,0) = A− 1−A(λ(n,0))
2−n

for n = 1, 2. Similarly, for n = 0, the payoff from contributing isA
h
1−

¡
1− λ(0,0)

¢2i
and the payoff from not contributing is 1+A

¡
λ(0,0)

¢2. Then the payoff dif-
ference is

∆(0,0) = A(1−
¡
1− λ(0,0)

¢2
)− 1−A

¡
λ(0,0)

¢2
.

The logistic formula (1) can be solved numerically for specific values of the
parameters A and β(n,τ) to yield a finite number of values of the equilibrium
contribution probabilities λ(2,0), λ(1,0) and λ(0,0).

Using these contribution probabilities λ(2,0), λ(1,0) and λ(0,0), we can
calculate the continuation payoffs at the beginning of the second period.
Let π0

(n,0)
denote the continuation payoff for an uncommitted player when

the total number of prior contributions is n. Then

π0
(0,0)

= λ(0,0)A
h
1−

¡
1− λ(0,0)

¢2i
+ (1− λ(0,0))

h
1 +A

¡
λ(0,0)

¢2i
,

π0
(1,0)

= λ(1,0)A+
¡
1− λ(1,0)

¢ ¡
1 +Aλ(1,0)

¢
,

π0
(2,0)

= λ(2,0)A+
¡
1− λ(2,0)

¢
(1 +A) .

Similarly, let π1
(n,0)

denote the continuation payoff for a committed player
when the number of prior contributions is n. Then

π1
(1,0)

= A
h
1−

¡
1− λ(1,0)

¢2i
and π1

(2,0)
= π1

(3,0)
= A.

The equilibrium contribution probability in the first period is denoted
by λ(0,1), where n = 0 is the number of prior contributions and τ = 1 is the
number of periods remaining. Having calculated the continuation payoffs
for every possible outcome in the second period, we can use equation (1) to
determine solve for λ(0,1), where the difference between the expected payoffs
from contributing and not contributing in the first period is given by

∆(0,1) =
h
(1− λ(0,1))

2π1
(1,0)

+ 2λ(0,1)
¡
1− λ(0,1)

¢
π1
(2,0)

+ (λ(0,1))
2π1

(3,0)

i
−

−
h¡
1− λ(0,1)

¢2
π0
(0,0)

+ 2λ(0,1)
¡
1− λ(0,1)

¢
π0
(1,0)

+ (λ(0,1))
2π0

(2,0)

i
.
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Equation (1) can be solved numerically for each value of the parameters
A and β and for each value of the second-period contribution probabilities
λ(2,0), λ(1,0) and λ(0,0). The solutions for λ(2,0) and λ(1,0) are unique for each
value of A and β, but there are multiple solutions for λ(0,0) when the value
is high (A = 3). Furthermore, given a single set of parameters A and β and
solutions λ(2,0), λ(1,0) and λ(0,0), the solution for λ(0,1) may not be unique.
Thus, multiple QRE cannot be avoided in general.

6.3 Econometric results

We have estimated the QRE using data from the baseline game only. In
the high-cost game (K = 3), the group outcomes are highly clustered and
seem to be well explained by the pure strategy equilibrium. In the high-
endowment game (E = 2), there are more states (n, τ , ni) and fewer obser-
vations for each state, so the estimates are bound to be less precise than in
the baseline case. We estimated the QRE under several different restrictions
on the parameters β(n,τ): (i) a single parameter β(n,τ) = β for all (n, τ); (ii) a
single parameter for each τ , that is, we impose the restriction β(n,τ) = β(n0,τ)
for all n, n0; and (iii) a single parameter for each value of n, that is, we impose
the restriction β(n,τ) = β(n,τ 0) for all τ , τ

0; (iv) unrestricted β(n,τ).

The experimental data consists of vectors of the form
n
xi(n,τ)

om(n,τ)

i=1
for

each state (n, τ), where n = 0, 1, 2 and τ = 0, 1, ..., T − 1, and xi(n,τ) ∈ {0, 1}
denotes a player’s action andm(n,τ) denotes the total number of observations
at state (n, τ). Then the log-likelihood function for the entire data set is

L
µn

β(n,τ);
n
xi(n,τ)

om(n,τ)

i=1

o
n=0,1,2 and 0≤τ≤T−1

¶
=

X
n=0,1,2
0≤τ≤T−1

m(n,τ)X
i=1

h
xi(n,τ) log λ(n,τ) +

³
1− xi(n,τ)

´
log
¡
1− λ(n,τ)

¢i
.

For each specification (i)-(iv), We seek to maximize the likelihood of the data
with respect to the parameters β(n,τ) subject to (1). The QRE restriction
can be solved numerically for any value of β. We use the maximum likelihood
(ML) method for estimating β (the program is available from the authors on
request). For each value of the parameter β, we solve the model for the QRE
contribution probabilities λ(n,τ) for n = 0, 1, 2 and for τ = 0, 1 when T = 2
(respectively, τ = 0, ..., 4 when T = 5). Then, using these probabilities,
we calculate the likelihood of the empirical data we have observed. This
procedure is repeated for each value of β as we search for the value that

25



maximizes the likelihood. If there is more than one QRE solution at some
states for a given β, we select the one that gives the highest likelihood.

The results are reported in Table 6. The parameter estimates of β(n,τ) are
positive and highly significant at each state (n, τ), showing that the theory
does help predict the subjects’ behavior. Comparing the predictions of the
most parsimonious single-parameter QRE specification with the empirical
patterns of contributions in Table 4 and the theoretical predictions of SMPE
in Table 1 shows that the QRE captures the subjects’ tendency to make early
contributions, something which the SMPE cannot reproduce. The estimated
QRE also generates a pattern of contributions that is qualitatively similar
to the SMPE and is very close in the last two periods, when most of the
action occurs.

[Table 6 here]

Finally, Figure 1 compares the empirical contribution probabilities with
the predicted logit contribution probabilities from the single-parameter model
when the horizon is long (T = 5), split by high-value (Figure 1A) and low-
value (Figure 1B) treatments. Each series is a function of the payoff differ-
ences estimated by the QRE. The predicted logit choice probabilities across
treatments are graphed using the corresponding β estimates. The horizontal
axis measures the difference between the expected payoffs from contributing
and not contributing, ∆(n,τ), and the vertical axis measures the probability
of making a contribution, λ(n,τ). These graphical comparisons give a rough
indication for goodness of fit and suggest that the logistic specification of
the QRE model is confirmed by the data.

[Figure 1 here]

7 Conclusion

We have undertaken an experimental investigation of a class of monotone
games — voluntary contribution games - and focused on using several equi-
librium refinements to interpret the data generated by the experiments. Our
approach is to let theory drive design and our results suggest that the the-
ory adequately accounts for several large-scale features of the data. Most
importantly, although the multiplicity of equilibria means the theory lacks
predictive power, several qualitative features of equilibrium match the data
surprisingly well. Additionally, in sharp contrast to the experimental results
in one-shot settings, there is a very high level of provision of the public good
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in the dynamic games. Furthermore, both pure- and mixed-strategy equi-
libria and several key features of the symmetric Markov perfect equilibrium
are replicated in the data. Finally, to interpret the data more systemati-
cally, we estimate the model of QRE. The estimation results suggest that the
QRE model does help predict the subjects’ behavior. The QRE replicates
the tendency of early contributions in games, which could not be captured
by the SMPE, and at the same time predicts the choice behavior at later
periods quite precisely.

DOV found that increasing the number of periods appears to increase
contributions, even in treatments where no contribution was the unique
Nash equilibrium outcome. These findings might suggest that pure trem-
bling plays a role in increasing the provision rates in our dynamic games.
However, our finding that the pattern of contributions differs significantly
across treatments, while holding the time length constant, implies that some-
thing other than pure trembling is needed to explain the high provision rates.
For example, in the high-cost game (K = NE), most subjects contributed
early, as if they anticipated the effect of the treatment on their opponents’
willingness to contribute. Moreover, in the high-value treatment (A = 3)
there is no horizon effect whereas in the low-value treatment (A = 1.5)
there is a significant horizon effect. Neither of these features is explained
by a tendency to “tremble.” In fact, the tendency in the baseline treatment
when the horizon is long (T = 5) is to wait until the last two periods. This
is inconsistent with an explanation based on the assumption that a certain
number will contribute in each period, and emphasizes the role of backward
induction in supporting cooperative outcomes.

8 Proofs

Let xit denote the number of tokens contributed by player i up to the end
of period t and let xt = (x1t, ..., xNt) denote the profile of cumulative con-
tributions at the end of period t. We refer to xt as the state of the game
in period t. Since a player’s choice is irreversible, the state is monotonically
non-decreasing over time, xt ≥ xt−1, ∀t. By convention, x0 ≡ 0. A player’s
payoff is a function of the terminal state xT . The payoff function for player
i is denoted by Ui(xT ) and defined by

Ui(xT ) =

½
A+E − xiT if

Pn
i=1 xiT ≥ K;

E − xiT if
Pn

i=1 xiT < K.

Proof of Proposition 1. If player i expects his opponents to contribute
nothing, the best response is to contribute nothing. If he contributes xi > 0,
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then either xi < K and his payoff is E − xi < E or E ≥ xi ≥ K > A
and his payoff is A + E − xi ≤ A + E − K < E. In either case, he is
better off contributing nothing. On the other hand, we can find at least one
outcome x∗ such that

PN
i=1 x

∗
i = K and A+ E − x∗i ≥ E for every i. Note

that a player will be worse off if he increases his contribution and a player
who makes a positive contribution in equilibrium will be no better off if he
reduces it because in that case the good is not provided. Thus, x∗ is a Nash
equilibrium.

Let k denote the number of tokens that need to be contributed in order
for the public good to be provided and let τ denote the number of time
periods remaining in the game, otherwise specified.

Proof of Proposition 2. If k = 1 and τ ≥ 1 the good will be provided in
equilibrium as long as A > 1. If not, a single uncommitted player would pro-
vide the good and increase his payoff. Since only pure strategies are allowed,
the good is provided with probability one in any sequential equilibrium of
the game with k = 1 and τ ≥ 1.

Now consider an arbitrary k < K and τ ≥ k and assume that, for
any sequential equilibrium of the game with k tokens needed and τ periods
remaining, the good is provided for certain. Then consider the game with
k + 1 tokens needed and τ + 1 periods remaining . If a player contributes
one token in the game, the good is provided for certain and his payoff will
be at least A. Suppose, contrary to what we want to prove, that there
exists a sequential equilibrium of this game in which the good is provided
with probability zero. In such an equilibrium the player’s payoff cannot
be greater than E. Clearly, the player would be better off contributing
the token and ensuring the good is provided. The desired result follows by
induction.

Proof of Proposition 3. Suppose that T = 2. We construct the necessary
mixed-strategy equilibrium. If k = 0, the best response for any uncommitted
player is to contribute nothing. If k = 1, there is only one period left (one
token has already been contributed in the first period) and there are two
uncommitted players. We assume they play the unique symmetric mixed-
strategy equilibrium of the one-shot game. If k = 2, we assume that no one
contributes. To show that this strategy profile is a sequential equilibrium, it
is sufficient to show that no player wants to deviate in the first period. But
we have already shown that if A < A∗ and the player anticipates a mixed
strategy equilibrium in the continuation game, it is not worth contributing
in the first period. Thus, we have the required equilibrium.
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The proof for T > 2 uses a variation of the argument in the proof for
T = 2. Suppose, contrary to what we want to prove, there exists a sequential
equilibrium in which provision is zero. Then the last two periods of the
game are isomorphic to the game with T = 2. Suppose one player deviates
by contributing a token in period T − 1. There is a unique continuation
equilibrium at T in which both players randomize with the probability that
makes the other indifferent. As we showed earlier, if A > A∗ the probability
that the good is provided is sufficiently high that the first player is strictly
better off by deviating. This contradicts the equilibrium conditions and
proves the corollary.

Proof of Proposition 4. If k = 1 and τ ≥ 1 not contributing is strictly
dominated by contributing a token since A > E ≥ 1. Thus, the good must
be provided with probability one in any sequential equilibrium of the game
with k = 1 and τ ≥ 1. Note that we do allow the use of mixed strategies
along the equilibrium path.

Now consider an arbitrary k < K and τ ≥ k and assume that, for
any sequential equilibrium of the game with k tokens needed and τ periods
remaining, the good is provided for certain. Then consider the game with
k+1 tokens needed and τ +1 periods remaining. If an uncommitted player
contributes one token in the game, the good is provided for certain and his
payoffs will be A. Suppose, contrary to what we want to prove, that there
exists a sequential equilibrium of this game in which the good is provided
with strictly less than probability one. In such an equilibrium, the player’s
payoff is less than the payoff A. Clearly, the player would be strictly better
off contributing the token and ensuring the good is provided. The desired
result follows by induction.

Proof of Proposition 5. We construct a pure-strategy equilibrium by
considering a number of possible situations. If no one has contributed in
the past, so that k = K, then no player contributes in the current or future
periods. Now suppose that 0 < k < K and that exactly one player has
contributed a positive amount M , say, where M < [A+ 1], the largest
integer less thanA+1. Then that player is assumed to contribute [A+ 1]−M
in the current period.

If 0 < k < K and M ≥ [A+ 1] we can construct a pure strategy equi-
librium along the lines of Proposition 2 to ensure that the good is provided
with probability 1. The efficiency of provision implies that we can do this
without requiring that any player to contribute more than [A+ 1] tokens
and we assume this property is satisfied in what follows. Finally, if k = 0
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no player contributes in the current or future periods.
To show that this is a pure strategy equilibrium, we need to prove two

facts. First, we need to show that it is optimal for the distinguished player
to contribute [A+ 1] −M when called on to do so. By construction, this
contribution is less than A and ensures that the good is provided in the
pure-strategy continuation equilibrium, so the player is clearly better off
making the contribution. Secondly, we need to show that no player wants
to deviate by contributing when k = K. By construction, any player who
deviates when k = K will end up contributing [A+ 1] ≥ A, so the deviation
cannot make him better off. This completes the proof.

Proposition 6 (provision) For any positive integers E, K, N , and T sat-
isfying K < min {NE,T} there exists a number A∗(E,K,N, T ) such that,
for any A ≥ A∗(E,K,N, T ), the probability that the public good is provided is
positive in any sequential equilibrium of the game defined by (A,E,K,N, T ).

Proof. If k = 1 and τ ≥ 1 the probability of provision in equilibrium must
be positive as long as A > 1. If not, a single uncommitted player would
provide the good and increase his payoff. Thus, the probability of provision
must be positive in any sequential equilibrium of the game with k = 1 and
τ ≥ 1.

Now consider an arbitrary k < K and τ ≥ k and assume that Ak > 1
and λk > 0 are such that, for any sequential equilibrium of the game with k
tokens needed and τ periods remaining, the good is provided with probability
at least λk if A ≥ Ak. Then consider the game with k+1 tokens needed and
τ + 1 periods remaining . If an uncommitted player contributes one token
in the game, the good is provided with probability at least λk and his payoff
will be at least A.

Suppose, contrary to what we want to prove, that there exists a sequen-
tial equilibrium of this game in which the good is provided with probability
zero. In such an equilibrium the player’s payoff cannot be greater than E.
Then choose Ak+1 =

2E
λk
. Then λkA ≥ 2E > E for any A ≥ Ak+1. By

forcing the provision of the good, the player can guarantee an equilibrium
payoff greater than E, contradicting our assumption that the good is pro-
vided with probability zero. In fact, the probability λ that the public good
is provided must satisfy

λ ≥ λk+1 ≡
λkA−E

A
≥ λk −

λk
2
=

λk
2

> 0.
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This proves by induction that there are numbers AK and λK > 0 such
that the probability of provision is at least λK in any game (A,E,K,N, T )
satisfying A ≥ AK ≡ A∗(E,K,N, T ), as required.

Proposition 7 (SMPE) A symmetric Markov perfect equilibrium (SMPE)
of the voluntary contribution game is a choice probability λ(m, τ), satisfying
the conditions:

N−1−nX
k=0

B (k;N − n− 1, λ (n, τ)) [V (1, n+ k + 1, τ − 1)−V (0, n+ k, τ − 1)] = 0,

if 1 > λ(m, τ) > 0;

N−1−nX
k=0

B (k;N − n− 1, λ (n, τ)) [V (1, n+ k + 1, τ − 1)−V (0, n+ k, τ − 1)] ≥ 0,

if λ(m, τ) = 1; and

N−1−nX
k=0

B (k;N − n− 1, λ (n, τ)) [V (1, n+ k + 1, τ − 1)−V (0, n+ k, τ − 1)] ≤ 0,

if λ(m, τ) = 0; where

V (a, n, 0) = Ui (a, n) , for a ∈ {0, 1} .

Proof. The SMPE strategy λ must satisfy the following equilibrium condi-
tion for every state (n, τ):

N−1−mX
k=0

B (k;N − n− 1, λ (n, τ)) {λ (n, τ)V (1, n+ k + 1, τ − 1)

+ (1− λ (n, τ))V (0, n+ k, τ − 1)}

≥
N−1−nX
k=0

B (k;N − n− 1, λ (n, τ)) {λV (1, n+ k + 1, τ − 1)

+ (1− λ)V (0, n+ k, τ − 1)} ,

for any λ ∈ [0, 1] and where B (k;N − n− 1, λ) represents the probability
of k successes in N − n− 1 independent Bernoulli trials with probability of
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success λ in each trial and V (a, n, τ) denotes the expected utility of a player
who has chosen a ∈ {0, 1} when the current state is (n, τ).

In order to derive the equilibrium condition, we need to apply for the
backward induction. First, it is easy to see that the value function at the ter-
minal date is the same as the payoff function. Then, at the final date T and
at the state xT where

PN
i=1 xiT = n < K, player i who has not contributed

yet should be indifferent between contributing and not contributing, given
the fact that others who have not contributed use an equilibrium choice
probability λ (n, 0):

n−1−nX
k=0

B (k;N − n− 1, λ (n, 0)) [Ui (1, n+ k)− Ui (0, n+ k)] = 0.

Since Ui (1, n)−Ui (0, n) = A−1 when n = K−1 and −1 where n 6= K−1,
we have

B (K − 1− n;n− 1− n, λ (n, 0)) =
1

A
.

And, analogously, at any date t and at the state (n, τ) where
PN

i=1 xit = n <
K, in order to get an equilibrium choice probability λ (n, τ), we can apply for
the condition of the indifference between contributing and not contributing,
which results in the equilibrium condition.
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τ / n 0 1 0 (1,0) (1,1)
4 0.00 4 0.00
3 0.00 0.00 3 0.00 0.00 0.00
2 0.00 0.00 2 0.00 0.00 0.00
1 0.56 0.55 0.00 0.00 1 0.50 0.48 0.00 0.00 0.00
0 0.00 0.21 0.79 0.67 0 0.00 0.21 0.79 0.42 0.42

τ / n 0 1 0 (1,0) (1,1)
4 0 4 0
3 0 0 3 0 0 0
2 0 0 2 0 0 0
1 0 0 1 0 0 0
0 0 0.33 0 0 0.21 0.21

A =1.5 A =1.5

Table 1. The probability of contribution in SMPE across games

Baseline

A =3

High-endowment

A =3
),/( innτ

),/( innτ



Parameters
Game E , K T A Pure Mixed SMPE

1.5 N Y 0
Baseline 3 N N .62, .62, .89

(Proposition 2, 3) 1.5 N Y 0
3 N N .62, .62, .89

1.5 Y Y 0, 1
High-cost 3 Y Y 1

(Proposition 5) 1.5 N N 0, 1
3 N N 1

1.5 Y Y 0
High-endowment 3 N N .63, .62, .89
(Proposition 6) 1.5 Y Y 0

3 N N .63, .62, .89
One-shot 1.5 Y N 0

(Proposition 1) 3 Y N 0, .51, .99

(i) (ii) (iii) (iv) (v) (vi) (vii)

1

2

5

1, 2

1, 3

2, 2

1, 2

2

5

Table 2. Summary of the equilibrium properties

Equilibrium properties

2

5



Game T A Provision Std. Err.
2 1.5 0.467 0.053

Baseline 2 3 0.744 0.046
(E =1, K =2) 5 1.5 0.678 0.050

5 3 0.811 0.041
2 1.5 0.300 0.049

High-cost 2 3 0.878 0.035
(E =1, K =3) 5 1.5 0.644 0.051

5 3 0.989 0.011
High 2 1.5 0.489 0.053

endowment 2 3 0.689 0.049
(E =2, K =2) 5 1.5 0.633 0.051

5 3 0.856 0.037
One-shot 1 1.5 0.100 0.025

(E =1, K =2) 1 3 0.761 0.032

Table 3. Provision rate by treatment



Baseline
E =1, K =2

τ / n 0 1 2 τ / n 0 1 2
4 0.09 (270) 4 0.09 (270)
3 0.08 (207) 0.11 (38) 0 (2) 3 0.05 (207) 0.03 (36) 0 (3)
2 0.11 (165) 0.07 (54) 0.25 (8) 2 0.06 (177) 0.06 (54) 0.25 (4)
1 0.37 (117) 0.07 (76) 0.10 (10) 1 0.26 (144) 0.19 (70) 0.17 (6)
0 0.36 (36) 0.60 (94) 0.08 (24) 0 0.20 (57) 0.48 (88) 0.09 (23)

τ / n 0 1 2 τ / n 0 1 2
1 0.18 (270) 1 0.18 (270)
0 0.62 (159) 0.54 (54) 0 (9) 0 0.35 (150) 0.33 (64) 0 (7)

High-cost
E =1, K =3

τ / n 0 1 2 τ / n 0 1 2
4 0.76 (270) 4 0.38 (270)
3 0.67 (6) 0.42 (24) 0.89 (36) 3 0.15 (66) 0.37 (78) 0.79 (24)
2 N/A 0.25 (8) 0.58 (12) 2 0.10 (39) 0.23 (40) 0.68 (31)
1 N/A 0.33 (6) 0.20 (5) 1 0.74 (27) 0.94 (32) 0.29 (17)
0 N/A 1 (2) 0.83 (6) 0 0.00 (21) 0.10 (30) 0.33 (15)

τ / n 0 1 2 τ / n 0 1 2
1 0.68 (270) 1 0.37 (270)
0 0.22 (9) 0.82 (38) 0.95 (39) 0 0.93 (75) 0.35 (68) 0.75 (28)

High-endowment
E =2, K =2

(0,0) (1,0) (1,1) (0,0) (1,0) (1,1)
4 0.14 (270) 4 0.06 (270)
3 0.03 (165) 0.02 (52) 0.12 (26) 3 0.05 (228) 0.09 (22) 0.00 (11)
2 0.07 (153) 0.04 (50) 0.08 (25) 2 0.13 (195) 0.05 (40) 0.15 (20)
1 0.3 (126) 0.08 (60) 0 (30) 1 0.21 (126) 0.07 (70) 0.00 (35)
0 0.53 (45) 0.46 (84) 0.26 (42) 0 0.04 (63) 0.39 (92) 0.07 (46)

(0,0) (1,0) (1,1) (0,0) (1,0) (1,1)
1 0.34 (270) 1 0.26 (270)
0 0.44 (75) 0.34 (70) 0.11 (35) 0 0.13 (111) 0.38 (70) 0.00 (35)

T =5, A =1.5

T =2, A =3 T =2, A =1.5

Table 4. The relative frequencies of contribution at payoff-relevant states across treatments

T =5, A =3 T =5, A =1.5

T =5, A =3

T =2, A =1.5

T =2, A =3 T =2, A =1.5

T =5, A =1.5T =5, A =3

T =2, A =3
),/( innτ

),/( innτ ),/( innτ

),/( innτ



Game A (n,τ ) h (1) h (2) h (3) h (4) p -value
(1,2) 0.03 (34) 0.10 (20) – – 0.63 (0.23, 1)

1.5 (1,1) 0.06 (32) 0.25 (16) 0.32 (22) – 0.05 (6.20, 2)
Baseline (1,0) 0.54 (28) 0.25 (8) 0.30 (10) 0.52 (42) 0.30 (3.67, 3)

(E =1, K =2) (1,2) 0.00 (30) 0.17 (24) – – 0.07 (3.24, 1)
3 (1,1) 0.00 (30) 0.06 (18) 0.14 (28) – 0.21 (3.15, 2)

(1,0) 0.47 (30) 0.75 (18) 0.60 (20) 0.64 (28) 0.27 (3.91, 3)
(1,2) 0.56 (18) 0.45 (22) – – 0.25 (1.33, 1)

High 1.5 (1,1) 0.00 (10) 0.05 (20) 0.10 (40) – 0.50 (1.40, 2)
endowment (1,0) 0.50 (10) 0.33 (18) 0.47 (32) 0.31 (32) 0.12 (5.91, 3)
(E =2, K =2) (1,2) 0.05 (44) 0.00 (6) – – 0.10 (2.70, 1)

3 (1,1) 0.11 (38) 0.00 (6) 0.06 (16) – 0.60 (1.02, 2)
(1,0) 0.43 (30) 0.67 (6) 0.57 (14) 0.41 (34) 0.53 (2.23, 3)

Table 5. The relative frequencies of contributions from the different histories



A single parameter

τ / n 0 1 2 τ / n 0 1 2
4 0.11 4 0.08
3 0.14 0.07 0.00 3 0.09 0.06 0.00
2 0.18 0.10 0.00 2 0.12 0.08 0.00
1 0.20 0.17 0.00 1 0.19 0.13 0.00
0 0.75 0.65 0.00 0 0.00 0.36 0.00

τ / n 0 1 2 τ / n 0 1 2
1 0.19 1 0.4
0 0.76 0.65 0 0 0.3 0.42 0.09

Table 6A. QRE estimation results and the probability of contribution

T= 5, A =3
Log_lik =-472.52

T= 5, A =1.5
Log_lik =-475.01

β=10.05 (0.78) β=12.34 (0.83)

β  = 10.51 (1.27) β  = 2.26 (0.20)

T =2, A =3
Log_lik = -278.55

T =2, A =1.5
Log_lik = -296.41



A single parameter for each τ

τ / n 0 1 2 β τ / n 0 1 2 β
4 0.09 20.08 (2.20) 4 0.09 11.15 (1.19)
3 0.09 0.05 0.00 23.94 (2.97) 3 0.05 0.03 0.00 15.28 (1.72)
2 0.11 0.14 0.00 16.30 (1.58) 2 0.07 0.04 0.00 14.14 (1.66)
1 0.31 0.13 0.00 461.88 (3770.8) 1 0.33 0.20 0.01 5.62 (0.92)
0 0.62 0.58 0.23 1.19 (0.52) 0 0.22 0.42 0.07 2.61 (0.16)

τ / n 0 1 2 β τ / n 0 1 2 β
1 0.18 4.39E+09 (n/a) 1 0.18 17.74 (3.57)
0 0.65 0.59 0.16 1.67 (0.68) 0 0.33 0.43 0.11 2.08 (0.27)

T =2, A =3
Log_lik =  -271.76

T =2, A =1.5
Log_lik =  -267.39

Table 6B. QRE estimation results and the probability of contribution

T= 5, A =3
Log_lik =  -442.42

T= 5, A =1.5
Log_lik =  -406.19



A single parameter for each n

τ / n 0 1 2 τ / n 0 1 2
4 0.11 4 0.08
3 0.13 0.03 0.13 3 0.09 0.04 0.16
2 0.16 0.04 0.11 2 0.10 0.06 0.13
1 0.21 0.09 0.09 1 0.19 0.10 0.10
0 0.76 0.66 0.08 0 0.00 0.35 0.09
β 10.52 (0.69) 31.67 (5.56) 2.51 (0.51) β 11.64 (0.67) 20.09 (4.57) 2.36 (0.57)

τ / n 0 1 2 τ / n 0 1 2
1 0.18 1 0.38
0 0.73 0.50 0.00 0 0.31 0.33 0.00
β 5.37 (0.23) 0.00 (0.55) 1546.5 (n/a) β 2.22 (0.23) 1.23E+11 (n/a) 8581 (n/a)

Table 6C. QRE estimation results and the probability of contribution

T= 5, A =3 T= 5, A =1.5
Log_lik = -446.84 Log_lik =  -457.43

T =2, A =3 T =2, A =1.5
Log_lik = -274.46 Log_lik =  -290.65



Unrestricted parameter
λ

β  (Std. Err.)

τ / n 0 1 2 τ / n 0 1 2
0.09 0.09

15.53 (1.41) 17.55 (2.27)
0.08 0.11 0.00 0.05 0.03 0.00

13.06 (1.13) 18.25 (8.91) 1752.8 (n/a) 28.54 (4.32) 14.86 (4.82) 9218.5 (n/a)
0.11 0.07 0.25 0.06 0.06 0.25

10.20 (0.90) 40.68 (27.95) 1.31 (0.98) 29.21 (5.23) 11.64 (3.26) 1.44 (1.52)
0.42 0.07 0.10 0.26 0.19 0.17

67188 (n/a) 7.3E+05 (n/a) 2.37 (1.14) 30.95 (32.81) 5.65 (1.98) 1.76 (1.20)
0.54 0.61 0.07 0.19 0.48 0.09

0.31 (0.69) 2.43 (3.22) 2.57 (0.74) 2.69 (0.14) 0.42 (1.15) 2.35 (0.74)

τ / n 0 1 2 τ / n 0 1 2
0.18 0.18

148.51 (28.61) 7.89 (0.80)
0.62 0.53 0.00 0.35 0.33 0.00

1.14 (0.54) 0.35 (0.87) 1.45E+22 (n/a) 1.98 (0.31) 4.19E+09 (n/a) 132.52 (n/a)

1

0

1

0

0

4

3

2

1

0

4

3

2

1

T =2, A =3 T =2, A =1.5
Log_lik = -269.51 Log_lik = -265.19

Table 6D. QRE estimation results and the probability of contribution

T= 5, A =3 T= 5, A =1.5
Log_lik = -419 Log_lik =  -395.72



Figure 1A. The predicted (QRE) and empirical contribution probabilities
(Baseline treatment with T =5 and A =3)
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Figure 1B. The predicted (QRE) and empirical contribution probabilities
(Baseline treatment with T =5 and A =1.5)
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