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 Abstract 
 
By disclosing long range order from few dissimilar tiles, aperiodic tilings can 
potentially diversify and spatially enrich the repetitive aspects of modular 
systems still pertinent in the production of architecture today. Such effective 
tilings have been discovered in quasicrystals and can be generated by the 
projection of higher dimensional grids in two or three dimensions. A Penrose 
tiling, for example can be derived from the projection of five dimensional grids 
onto a two dimensional plane. 
 
The thesis initially investigates if a program allowing the grids to be rotated 
parametrically can provide for numerous alternative tillings using the 
projection method for any dimensions.  
 
Some found tilings are then analysed and their assembly rules tested against 
the adaptation of other types of geometries in order to determine if a high 
level of diversity can still sustain the test of repetition of few different modules 
and field a spatial configuration of probable forces.   
 
It is further demonstrated that these initial tilings can in fact perform as 
efficient organizational scaffolds by letting more complex geometries free 
flowing past the tiles’ edges and pass the test of mass production with the aid 
of a minimum amount of formwork.  
 
 
 
 
 
 
 
 
 
Word count: 10279 + (3217 for the supplemented Adaptation and Fabrication chapters) 
 
 
 
 
 
Keywords:  Quasicrystals, aperiodic tiling, strip projection method, assembly 
rules, adjacencies, porosity, tangential continuity, formwork, modularity. 
 
 

 
 



 
 
 
 
 
 
Acknowledgments 
 
 
 
I would like to thank my supervisors: 
 
Sean Hanna for his insightful guidance and his critical opinions on the topic 
throughout the research 
 
Alasdair Turner for his invaluable programming assistance, particularly in 
propelling the plunge in n dimensions 
 
 
I would also like to thank:  
 
Elsa Caetano for her inexhaustible help with generative components 
 
Stylianos Dritsas for his numerous suggestions and expertises on the 
computation part 
 
Guan Lee for never stopping to challenge and inspire the physical counterpart 
so pertinent to the thesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
Contents 
 
1. Introduction 
               The whole dilemma 
               Aperiodic structure 
                         Motif versus pattern 
2. Background 
              Motif recognition 
       6.1 Scientific approaches  
              The Penrose tiling; a special case 
                  Quasitiler and the projection method 
        6.2 Architectural correlations 
                  Modularities 
                Quasi furniture 
                Orgone Reef 
3. Research objectives 
                   The projection method from arbitrary rotations 
                 Adjacency analysis 
                 Adaptation 
                 Fabrication 
4. Methodology 
                Tool used 
        8.1 The projection strip method 
                Transformation matrices  
                  The 4 and 5d hypercube experiment  
                  The strip or clipping boundary  
                  In jumping down one dimension  
                  In jumping down two dimensions  
                  In jumping down more than two dimensions  
        8.2 Adjacency analysis 
                Case study #1 to 6               
5. Adaptation 
                   NURBS Line type 
                   Tangencies 
                 Fleeing the tile’s original shape 
                  Porosity 
                  Quasi roller 
6. Fabrication 
               6.1  Fieldproof  
                    6.2 Tileproof  
               Quasi wall prototype 
               Quasi roller prototype 
7. Discussion  
               Overall impressions  
              The strip projection method by arbitrary rotations  
              Adaptation to fabrication 
              Further Work 
8. Conclusion 
           Repetitions of differences 

References 
Appendix 

 
 
 
 

1

3

4

8

13

27

45
46

12

13

34

45

51

55

56
58



 
MSc Adaptive Architecture and Computation                                                                                                    1 
Olivier Ottevaere  
 
 
 

1. Introduction 
 
The recent and ongoing advance of CAD/CAM* technologies has 
considerably shrunk the passage between the digital and its physical 
counterpart, portraying it to the designer almost seamless and nearly non 
existent.  Yet this passage has been and remains an important conceptual 
ground for the designer to reside throughout the conception of a project. In 
doing so, she or he allows the design development to be informed back and 
forth by the digital as well as the physical.   
Today, such conversion that CAD/CAM technologies facilitate, tends to 
polarize the design process more towards the digital and to consider its 
physical being later in the process. 
While recognizing the advantages and the potentials of this smooth 
conversion (e.g. more sophisticated forms and structure are made physically 
possible nowadays by means of this type of technology), design projects are 
often submitted to the law of fragmentation.   
This, results in the breaking apart of an entity into single and unique units, 
manufactured and then assembled into its original whole but this time for real.  
The simple fact that data can almost effortlessly be processed by a computer 
to a machine renders efficiency less crucial and the customization of 
individual or unique pieces more predominant. However a building today 
cannot still be manufactured in one single piece and the unavoidable issue of 
fragmentation originates more from a conceptual level than from the level of 
eased means of fabrication. 
 
The whole dilemma 
 
A distinction could be drawn between the relationships of a fragment and its 
whole versus the one of a part to its whole.  By definition, a fragment is a 
piece cut off of something else.  Many sets of fragments can make up this 
something else but which specific one is less so relevant.  On the contrary, a 
part or a component is a constituent of a composite entity suggesting that it 
has intrinsic properties related to the whole and vice versa.  Therefore, could 
some sort of intentional bondage between the specific constituents make for a 
singular whole?  This initial question prompted the following thesis to 
investigate the ambiguity between parts and whole, but in reverse. 
Could one initially conceive of building units and their organizational 
properties and arrive at a unique spatial and physical assemblage?  That is 
without being too restricted about what that (assembled) entity must be to 
start with. Could the rules making up this entity be embedded within the parts 
and therefore conductive of their assembly? 
 
 
*CAD stands for Computer-aided design 
*CAM stands for Computer-aided manufacturing and is the use of computer-based software 
tools that assist engineers and machinists in manufacturing or prototyping product 
components (www.wikipedia.org), or even soon entire buildings. 
 

http://www.wikipedia.org/
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Aperiodic structure 
 
A key motivation for the thesis was to generate relatively intricate entities from 
the least possible parts, calling for some sense of economy of means and 
efficiency without compromising the quest for diversity.   
Similar characteristics to the ones just stated had been identified in aperiodic 
structures, such as the ones found in Quasicrystals. They comprised of 
structures made of few different tiles (or units) which are combined in a non 
repetitive manner and which project long range order.  Rotational symmetry 
makes their non repetitive combination possible as opposed to periodic 
structures which only have translational symmetry (can be copy and paste 
next to one another).  Quasicrystalline structures became the core material 
from which these questions were researched.  
 
Motif versus Pattern 
 
In “The Self-Made Tapestry”, Philip Ball defines pattern as “arrays of units that 
are similar but not necessarily identical, and which repeat but not necessarily 
regularly or with a well-defined symmetry” (p.9). 
 
Patterns are rendered by external forces and travel extensively in space,  
Motifs are static and self-contained.  Which category would Quasicrystals fall 
into?  It could be argued that rotational symmetries although less immediate 
than translational ones are nonetheless well-defined symmetries.  Therefore, 
aperiodic tiling could then be classified at best as enhanced motifs which are 
finite and bounded in space.  Either this is accurate or not, the distinction 
made here only highlights one of the dangers in working with aperiodic tilings 
and raises a more definite question that this research would strive to tackle: 
-If aperiodicity can present maximum variation with minimum variety of tiles, 
would it suffice to perform as a provisional scaffold to govern only organized 
efficiency and allow other types of geometries to be spatially let free of the 
strict edges and recognizable motif those tilings ultimately depict? 
And if so, could this leave room for other types of geometries to be 
conditioned further in the process by external forces (physical) and become 
more responsive to its milieu? 
A general approach to this question was  
First to fully disclose the searching space inside which aperiodic structures 
emerge so that convergence to only special cases might be overcome 
(Penrose tiling) 
Then gradually test how far other types of geometry can distance themselves 
from a found aperiodic tiling without disposing of the rules accounting for its 
initial efficiency. 
 



 
2. Background 
 
Motif recognition 
 
Even though aperiodic structure and space packing (3d aggregates) have 
been an explored material for quite some time now within the scientific realm, 
their growing interests have been seen in recent years applied to architecture.  
Today well known examples of them are the water cube (National Swimming 
Centre) for the Beijing Olympics by PTW Architects and Arup (fig. 2a) or the 
RMIT Storey Hall in Melbourne, Australia by ARM Architects (fig. 2d, 2f).  
A thorough or fair architectural critic of these specific projects is beyond the 
scope of this research but it could be suggested that, while not undermining 
their respective technical achievements (i.e. structure and facade of the water 
cube), the strong look-alike proximity to the original scientific material is 
somewhat conspicuous of their architectural shortcomings.  The water cube 
for instance borrows the Weaire-Phelan packing directly from its two authors 
of the same names (fig. 2b) to only operate a series of transformations 
(rotation and slicing) on it (fig. 2c).  This was mainly prompted by a will from 
the architects to render the original structure of aggregates visually less 
repetitive while not risking a drift too far away from the initial metaphor; from 
water to soap bubbles. 
   
 
 
 
 
 
 
 
 
 
 
 
       Fig. 2a Water Cube, in Beijing, China (from the Architects http://www.ptw.com.au/) 
 
 
 
 
 
         a 
 
 
 
 
        b c 
 
         Fig. 2b Weaire-Phelan space packing aggregates        Fig. 2c procedure of transformations from the same       
            a:  irregular pentagonal dodecahedron                        aggregates for the water cube (from ARUP Australia) 
            b:  tetrakaidecahedron     
            c:  base cluster: 2 of a and 6 of b 
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        Fig. 2d Parts of RMIT Storey Hall, in Melbourne, Australia (from the Architects http://www.a-r-m.com.au/) 
 
 
 
 
 
 
 
 
 
 
 
        Fig. 2f Parts of RMIT Storey Hall, in Melbourne, Australia (from the Architects http://www.a-r-m.com.au/) 
 
“Our brief from RMIT for Storey Hall was the creation of an international standard exhibition 
and auditorium facility, and one which could make a significant contribution to 
architectural theory and practice, and to the present and future identity of RMIT.”  
(From the Architects at http://www.a-r-m.com.au/) 
 
The reader may feel slightly uneasy with the presented evidences to this 
statement and a return later to why it may be architecturally problematic is 
inevitable. 
 
2.1 Scientific approaches 
 
But where these strong iconographic precedents partly originated from? 
Quasi periodic structures were discovered in 1982 within the field of 
crystallography from electrons diffraction disclosing patterns (fig. 1a) with 
icosahedral (20 sided) symmetry*.  They are special crystals with no 
translational symmetry. That is, contrary to crystals they cannot repetitively 
align themselves as tiles or building blocks to fill up space without resorting to 
rotational symmetry (see difference from fig.2a and fig.2b).  Crystals have 
close range order, whereas quasicrystalline structures disclose long range 
order even though they are comprised of only few different tiles.  
 
 
* From “Quasicrystals to Kleenex”, by Alison Boyle 
(http://plus.maths.org/issue16/features/penrose/) 

 
MSc Adaptive Architecture and Computation                                                                                                    4 
Olivier Ottevaere  
 
 

http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://www.a-r-m.com.au/project.php?projectID=1&categoryID=1
http://plus.maths.org/issue16/features/penrose/


 
 
 
 
 
 
 
 
 
 
 
 
  
  (from Quasicrystals, The State of the Art, World Scientific, 1999, p.106) 

 fig.1a High resolution images of electron diffraction pattern of the Al-Cu-Co allow annealed at 550 °C.                                                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   fig.2a crystalline structure with                                         fig.2b quasicrystalline structure with 
         translational symmetry                                                         rotational symmetry (derived from 
         (derived from a sectioning of a                                             2d projection of a five  
         three dimensional grid: 1 tile type)                                       dimensional grid: 10 tiles type) 
 
The Penrose tiling; a special case 
 
An exhaustive documentation already exists on Penrose sets of tiles.  But in 
short, they were devised (and patented) by the British mathematician Roger 
Penrose in the 1970’s prior to the discovery of quasicrystalline structures 
(1984).  What makes them particularly interesting is their ability to cover a 
plane or a space (2d or 3d) in an aperiodic manner only using two types of 
tiles: skinny and fat rhombi for the rhombus Penrose tiling (fig. 2g). There exist 
as well other types of Penrose tiling such as the pentagonal Penrose tiling 
using pentagons (instead of rhombi).  The growth of a Penrose tiling is 
regulated by a finite number of (local) matching rules between tiles (fig.2e, 2f).  
 
fig. 2e   Two pairs of Penrose tiles and their grouping (from http://plus.maths.org/issue18/features/penrose/) 
fig. 2f   The 7 vertex stars allowed in the Penrose rhomb tiling (from http://intendo.net/penrose/) 
fig. 2g  An aperiodic Penrose tiling using 2 rhombi (from http://plus.maths.org/issue45/features/kaplan/) 
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        fig. 2e                 fig. 2f                                                                              fig. 2g    
 
Penrose tilings are briefly introduced here not only because of the later 
discovery of similar structure in Quasicrystals but more for the reason that 
they presented a break for a relevant question asked by Marjorie Senechal*:   
Can Penrose tilings be alternatively generated, using a projection method? 
 
Quasitiler and the projection method 
 
By then, N.G. De Bruin* (1981) already showed that Penrose tilings could be 
seen as the projection of an object in 5-dimensional space (5d to 2d) onto a 
plane.  However the question was put to task and generalized by Eugenio 
Durand to become the aspiration behind the program Quasitiler (fig 2h) that 
he later went on to develop. Unfortunately the program itself is no longer 
available for use but a useful description of the method still remains 
(http://www.geom.uiuc.edu/apps/quasitiler/). 
It mainly consisted in drawing Penrose tilings from the projection of five 
dimensional grids onto a two dimensional plane.  Quasitiler also offers 
drawings of other types of tilings from 4, 5 and more dimensional grids.  Prior 
to projection, the vertices making those grids need to be selected or sliced 
from a specific region.  
 
“Eugenio Durand, a Geometry Center programmer, has written the program QuasiTiler to find 
the described quasiperiodic tilings of the plane. He originally wrote it to help Marjorie 
Senechal with her work on quasicrystals. The program allows the user to specify the "slope" 
of the plane E (see fig. 2j), using a mouse to modify a picture of the five-dimensional unit 
cube. There are three degrees of freedom for the offset of the plane. The user uses three 
sliders to change the offset. One of the offset directions specifies whether the tiling is a 
Penrose tiling. The program then shows the tiling that the user has specified. In addition, the 
user may specify a lattice dimension other than five. It is an easy program to use, and the 
results are beautiful.”  
(From http://www.geom.uiuc.edu/docs/forum/quasitiler/quasitiler.html) 
 
Rotation angles appear to be contained in quasitiler inside an overall 
rotational matrix (summary of many rotational matrices into one).  However 
this precedent became an inspiring benchmark for the research to follow. 
 
*Marjorie Senechal has been a leading figure for years in the field of mathematical       
 crystallography (http://maven.smith.edu/~senechal/). 
*M. Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995. 
*N.G.deBruijn, Algebraic theory of Penrose's nonperiodic tilings of the plane, I, II, Nederl. 

 
 Akad. Wetensch. Indag. Math. 43 (1981) 39-52, 53-66. 
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                      fig. 2h  Penrose tiling from Quasitiler 3.0                     fig. 2i  selection region for a Penrose tiling 
                     (from http://www.geom.uiuc.edu/apps/quasitiler/)        (from http://www.geom.uiuc.edu/apps/quasitiler/) 
 
The slicing region of n-dimensional lattices is given by an area just wide 
enough to fit one unit of an n-dimensional lattice (fig. 2j, 2i). 
 
 
 
 
 
 
 
 
 
 
               fig. 2j Example of slicing region in 2d for a projection  
               of points onto a 1d line  (from http://www.geom.uiuc.edu/apps/quasitiler/) 
 
Alternative methods are also known today for generating Penrose tilings such 
as the Updown generation* method (fig 2k) and the dual grid or Pentagrid* 
method (fig 2l). These do not have a direct connection to the following thesis 
and therefore are only briefly illustrated and referenced.   
For the ‘Updown generation’ method, half rhombi are combined under some 
specific assembly rules to recursively make an aperiodic tiling (fig. 2k). 
 
 
 
 
 
 
 
 
 
 
  fig. 2k  Example of the updown generation method for drawing a Penrose tiling 
             (from http://www.ams.org/featurecolumn/archive/ribbons.html) 
 
For the ‘Pentagrid method’, a Penrose tiling can be thought as a series of 
parallel ribbons in five directions. The intersection between non parallel 
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ribbons makes a rhombus belonging to the Penrose tiling. So each rhombus 
can be defined from a series of intersecting straight lines. Ultimately those 
intersecting lines can be used to generate a Penrose tiling (fig. 2l). 
 
 
 
 
 
 
 
 
 
 
 
   fig. 2l  Example of the dual grid or Pentagrid method for drawing a Penrose tiling 
              (from http://www.ams.org/featurecolumn/archive/ribbons.html) 
 
* The Updown generation method is explained in more detail by David Austin at 
http://www.ams.org/featurecolumn/archive/ribbons.html
* The dual grid or Pentagrid method is as well explained by David Austin at 
http://www.ams.org/featurecolumn/archive/ribbons.html
Dr. Eric R. Weeks wrote a program called Quasig using the Pentagrid method which can be 
found at http://condellpark.com/kd/quasig.htm
 
6.2 Architectural correlations 
 
Modularity 
 
Some architects remain captivated by the idea that elements can be 
effectively repeated to make a whole. Along with the aid of an ever evolving 
scientific knowledge and technology, the modernist project continues 
spreading its mission for mass production in architecture, although 
increasingly at the brink of retinal and procedural exuberance. “Less is more” 
has now the potential to be toppled by a pinch of “more for less”. At what 
expense? This should be revisited towards the end of this thesis, but 
undoubtedly this phenomenon has been facilitated by the tools employed? 
 
Repetition of differences 
As one of Greg Lynn latest projects, the “Blobwall” best epitomizes the above, 
an initial module is repeated into wall-type patterns generated in the computer 
and causing each one of its modules to digitally overlap with its neighbours 
(fig. 2m).  To permit the components to physically interlock and the wall-type 
to stand, all individual and redundant intersections have to be trimmed off by a 
well behaved six-axis robot (fig. 2mb).  The manufacturing process is here 
individualized (individual trimmings) while the rough material (unit) is the same 
to begin with.  It is clear to say that if the overlap for each module would have 
had to be traced and trimmed by a human hand (manageable), an effort to 
make the process more efficient would have had to be pondered on further. 
However, if a robot can provide for some relative easiness, why not exploiting 
it? In fact, during a lecture last year at the Architectural Association in London, 
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he was supportive of an architecture being a singular object built out of many 
variant components. In regards to the “Blobwall”, a more central question 
persists: does this forceful process make up conceptually for a more 
interesting wall and if so, what are the criteria to judge it?  History may help.  
 
 
 
 
 
 
 
 
  a                                                       b                                                            c 
fig. 2m “Blobwall” by Greg Lynn (from http://www.glform.com/blobwall.html) 
 
Repetition of same 
For the last 50 years, the Austrian born artist Erwin Hauer has been 
developing tectonic screens which main intentions are to temper with visual 
movements while still allowing diffused light to go through. His screens (fig.2n) 
are made of the same repeated module but are two-sided. Each module is 
precast and mass produced manually. Using a suture curve* as its main 
spatial articulation, they disclose an interstitial voided space continually 
fleeing away from the moving eye.  An ever changing presence that 
dynamically makes up for the fact each cast module is the same throughout.  
 
 
 
 
 
 
 
 
 
 
  a                                                 b                                                                             c 
 
Fig 2n example of a screen by Erwin Hauer (from Continua--Architectural Screens and Walls, by Erwin Hauer, 2007) 
 
* A suture curve is “a way of partitioning the surface of a sphere into 2 
identical halves…The makers of baseballs and tennis ball have chosen it to 
fabricate their products.” (From Continua--Architectural Screens and Walls, p 84, 2007)

 
Repetitions of difference 
The last modular precedent (fig.2o) developed by Gramazio/Kohler at the 
ETH in Zurich, Switzerland differs from the previous two by bringing out a 
stronger sense for rationality. It accepts the bricks as primitive artefacts and 
contrasts their limitations as such by extending the ways they can literally 
form a wall.   
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In their work the robot has taken charge for the bricklayer.  
It sequentially positioned the bricks row by row and is informed by sets of 
coordinates from created patterns in the digital realm.  The process 
emphasizes more on a series of instructions bounded by the brick size and its 
consideration to gravity and experiment on how far it can be articulated as a 
formal standing wall in perplex interplay between mass and void.  
 
 
 
 
 
 
 
 
         a                                                     b                                                           c          
 fig. 2o “Programmed wall” by Gramazio/Kohler (from http://www.dfab.arch.ethz.ch/web/e/lehre/index.html) 
 
The reasons why these three examples were presented here was not so 
much to validate one successful approach over the other two, but more to 
reflect on the field of already pre-existing possibilities and on there respective 
premises in tackling modular systems. 
 
Quasi furniture 
 
Aranda/lash, a young architectural practice based in New York City has been 
interested in quasicrystalline structures since a few years now.  They are 
currently testing their ideas mainly in small scale prototypes (i.e. furniture in 
fig. 2m) and believe these aperiodic structures can challenge new variations 
in form and surface that they can further transform into architecture.  Although 
it is not very clear how they generate the (3d) tilings themselves, their results 
portray an immediate resemblance to the scientific material presented before. 
Nonetheless they are quite effective as pieces of furniture.  While serving their 
purposes, as objects they neither come out as lavishly decorative: A concern 
that appears harder to conceal when having to deal with architectural space. 
 
 
 
 
 
 
 
 
 
Fig 2m                                     quasi cabinet                                                   quasi table                            quasi chair 
(from http://www.johnsontradinggallery.com/) 
 

 

The final precedent proposes an alternative take to the friction already 
brought up earlier (motif recognition) and a more ventured approach to space, 
further away from a restricted bounding box. 
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Orgone Reef (by Philip Beesley)  
 
“Orgone Reef is a speculation of what the skin of a building could be like in the future. 
Orgone Reef is a technical exercise in construction and fabrication. The project relates to 
geotextiles, a new class of materials used for reinforcing landscapes and buildings. A minimal 
amount of raw material is expanded to form a network forming a porous volume. A Penrose 
tessellation, a non-repeating geometrical system, is used to create the hybrid fabric. This 
structure acts like an artificial reef that could support a living skin.”  
(from Philip Beesley: http://www.philipbeesleyarchitect.com/index.html)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2o View of Orgone Reef at the London Building Centre (http://www.philipbeesleyarchitect.com/index.html). 
 
Philip Beesley is a Canadian architect whose experimental kinetic structures 
have been widely commended.  Orgone Reef uses a Penrose tessellation (fig. 
2nd) to organize its intricate hybrid fabric.  One contrasting aspect of his 
approach is how on one hand he rigorously overlays and organizes his 
structure along the lines of the Penrose tiling and of its associated assembly 
rules (fig. 2na, 2nd) and yet manages to spatially depart away from the tiling 
strong graphical presence and at last allowing its structure to become 
autonomous (fig 2o). Indeed, he uses the Penrose tiling only as an efficient 
organizational scaffold and not any longer as a dominant and decorative 
feature. 
  
 
 
 
               a 
 

 
 
 
 
 
               b                                                  c                                                          d 
 
Fig 2na   Penrose tessellation assembly rule: alternate configurations for rhombic structural units 
Fig 2nb   nested laser-cutting production layout, showing cutting paths for snap-fit assembly elements 
Fig 2nc   units are positioned within the membrane filter layer.  
Fig 2nd   unfolded meshwork structure showing a self-generating pattern of interlinked rhombic units 
(Images and captions taken from AD “design trough Making”, July/August 2005, p. 49, 50) 
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3. Research objectives 
 
The central research question was:  
 
Can quasiperiodic tilings be employed as efficient means of producing 
complex and visually irregular patterns with a minimal amount of 
reusable formwork involved?  
 
The thesis is structured into four major sections in undertaking the research 
question: 
 
1) The projection method from arbitrary rotations 
 
The main part of the thesis was to create a parametric program to see if 
alternative tiling to those already familiar like the Penrose tiling could be 
found.  Two and three dimensional projections of higher dimensional grids 
(4d, 5d, 6d…) from any arbitrary rotations, was the method used to generate 
aperiodic structures.  
 
2) Adjacency analysis 
 
The second phase was to analyse the organizational structure of some of 
these findings (tilings) from various dimensions, such as the number of 
different tiles a tiling will be made of (from a specific dimension) as well as 
their inherent adjacency rules regulating how such tiling is put together.  
 
3) Adaptation 
 
The next objective was to investigate how alternative geometries and more 
specifically NURBS* surfaces could be created in accord with those 
adjacency rules (shared edges and tangencies from both sides of an edge, 
overall curvature of tile, etc) while still making up for a field with long range 
order and with certain degrees of adaptive freedom. 
 
4) Fabrication 
 
The ultimate aspiration for this research was to arrive to some spatial and 
physical evidences of how with few a tiles, a large field of diversity can be 
efficiently mass produced.  This was accomplished by milling the necessary 
moulds required for each type of tiles, by casting them in a repetitive manner 
and by assembling them according to the rules of the overall (found) tiling.  
For this phase an attention to details was inevitable in defying gravity 
(reinforcements/connections) and avoiding leakages. 
 
 
 
* Non-uniform rational B-spline (NURBS) is a mathematical model commonly used in 
computer graphics for generating and representing curves and surfaces (wikipedia.org). 

http://en.wikipedia.org/wiki/B-spline
http://en.wikipedia.org/wiki/Computer_graphics


8. Methodology 
 
The main tools used in the research were processing (processing.org) for the 
programming part, generative components (Bentley parametric software) for the 
adaptation part and a 3 axis CNC (stands for Computer Numerical Control) milling 
machine for the fabrication part. 
 
8.1 The projection strip method 
 
In general, the projection method consists of selecting for an n-dimensional 
grid all the points falling within an area defined by a clipping boundary (or the 
strip) of a one unit of the n dimensional grid and projecting those selected 
points onto at least an n-1 dimensional (hyper) space.  In this research, the 
projection is done onto a two dimensional plane or within a three dimensional 
space for any higher dimensional grid (i.e. From 3 to 2, from 4 to 3 or 2, from 
5 to 3 or 2, from 6 to 3 or 2, etc).  
When speaking of higher dimensions we quickly enter a domain where 
visibility is quite limited. Their representation is often difficult to imagine. 
Nonetheless, transformations can be performed on these extra parameters 
(x, y, z, a, b) and their perception brought back in three dimensions in various 
ways; projections (in n-1 or more) is one of those.  The following section 
illustrates a quick experiment of how higher dimensional transformations 
prove to be quite powerful and on how those higher dimensions can be 
brought back to some sort of visualization.  
 
8.1.1 Transformation matrices 
 
At this stage the concept of transformation matrices (essential in working with 
higher dimensions) have to be presented as they became a central operator 
in this research.  It is well known in the field of computer graphics that 
matrices are used to transform vectors in space or more precisely their 
coordinates (x, y, z, a, b, c, etc). Examples of those possible transformations 
are translations, mirroring, rotations, orthogonal projections and 1, 2, 3 points 
perspectives.  In 3d, we are accustomed to three possible rotations: Around 
the X-Y plane, the Y-Z plane and the Z-X plane. For each rotation exists a 
specific rotation matrix which when multiplied by a vector, will cause it to 
rotate. The same thing applies for the other types of transformations. 
A generalized 4x4 transformation matrix in 3d is as follow: 
The extra column and row (a) are added to account for the other types of 
transformations. 
     x             y           z         a 
x | Ra      Rb      Rc     px |    
y | Rd      Re      Rf      py |   times  vector |x, y, z, a| 
z | Rg      Ri       Rj      pz |          
a |  tx       ty        tz      os | 

Where, the Ra to Rj group is for rotations, tx, ty, tz for translations, px for 1 point perspective, 
px and py for 2 points perspective, px, py, pz for 3 points perspective and os for overall 
scaling, etc. (Computer Graphics: Mathematical First Steps : Patricia A. Egerton, William S. 
Hall: Books, p.124.) 
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In 4 dimensions (x, y, z, a, b) we have 6 possible rotation matrices (5x5) around each plane:  
x-y, x-z, y-z, x-a, y-a, z-a.  
In 5 dimensions (x, y, z, a, b, c) we have 10 possible rotation matrices (6x6) around each 
plane: x-y, x-z, y-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b.    
In 6 dimensions (x, y, z, a, b, c, d) we have 15 possible rotation matrices. 
In 7 dimensions (x, y, z, a, b, c, d) we have 21 possible rotation matrices. 
 
Here is an example of a rotation matrix around the Y-axis or the X-Z plane, in 3d. 
Angle alpha can parametrically range from 0 to 360 degrees. 
(See appendix A for an example of the all rotation matrices to a given dimension) 
                           x          y        z       a    
                     x   |cosa    0     -sina    0|                    x              y              z              a 
(x, y, z, 1) *   y   |0         1         0      0|    =  (x*cosa+ z*sina,  y,  -x*sina+ z*cosa, 1)       
                     z   |sina     0     cosa    0| 
                     a   |0         0         0      1| 
 
8.1.2 The 4 and 5d hypercube experiment 
 
A first program was created in order to comprehend better how diverse 
transformations in higher dimensions interrelate while being represented in 3-
dimensional space.  This clarified for instance what effect a rotation in 5d 
around an A-B plane had upon the other dimensional vectors. All calculations 
were performed first on vectors in high dimensions and then each one was 
brought down to a 3-dimensional vector in order to be drawn in a 3d Cartesian 
space following this formula: 
In 4d for (x, y, z, a) = (x*da/(a+da),  
                                   y*da/(a+da),  
                                   z*da/(a+da),  
                                   a*da/(a+da)) ~ (x, y, z, 0) 
In 5d for (x, y, z, a, b) = ((x*db/(b+db))*da)/ ((a*db/(b+db))+da),    
                                       (y*db/(b+db))*da)/ ((a*db/(b+db))+da),  
                                       (z*db/(b+db))*da)/ ((a*db/(b+db))+da),  
                                       (a*db/(b+db))*da)/ ((a*db/(b+db))+da),  
                                       (b*db/(b+db))*da)/ ((a*db/(b+db))+da)) ~ (x, y, z, 0, 0) 
da and db are scalars of a certain adjustable range.    
 
A vector and a matrix class were implemented for this program partly to 
facilitate the multiplication of vectors by matrices. Even tough all the rotation 
matrices (6 in 4d, 10 in 5d) are all multiply into a single one before operating 
on vectors, they can still be individually manipulated within the interface. This 
offers the user to interact parametrically with any singular vectorial 
transformations (rotations, perspectives, orthographic projections, scaling) 
while simultaneously witnessing the effect it has on the overall geometry. 
 
 
 
 3d                                                     4d                                                     5d 
 
 
 
 
 
 
 
 
fig. 8a 3d, 4d and 5d representations of vectors in 3d space 
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fig. 8b Snap shot from the interface of a 5d hypercube under specific transformation matrices 
 
The development of this small interface turned out to be quite useful in 
disclosing parametrically the various transformations at work and was later 
directly employed for the projection method. This set literally the apparatus to 
search for aperiodic tilings from any compounds of individual and arbitrary 
rotations.  In place of mathematically determining the content of an overall 
rotation matrix to unveil its corresponding tiling, this procedure permitted to 
discover alternative tilings along non determinate routes and without any 
preconceived destination.   
By freely altering rotation’s angles one by one and in non prescriptive orders, 
the contact sheet in the next page illustrates some specific encounters. 
For instance, initially when none or only the rotations in 3d were manipulated, 
the 5d, 4d and 3d (hyper) cubes were inside of each other respectively (fig 1a: 
green, blue and red). Once some 4d rotations were activated the 4d 
hypercube was extroverted from the 3d cube (fig 1c: blue, green and red). 
The same occurred for the 5d hypercube under 5d rotations (fig 1e: red, blue 
and green). Now the various rotations can be controlled in any prescriptive 
orders, causing this interplay of higher dimensional representations to 
intertwine in many surprising ways. 
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   1a                                     1b                                      1c 
 
 
 
 
 
 
 
 
 
  
   1d                                                       1e                                                        1f 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
   

1g                                                         1h                                                       1i 

Fig. 8c contact sheet of one-pass through the hypercube interface 
Order of successive transformations: from1a, 1b, 1c, 1d......to 1i 
 
 
8.1.3 The strip or clipping boundary 
 
The strip projection method is a two-step process: one of projection and 
beforehand one of selection.  
The selective method involved what is called a strip; a width between two 
lines in two dimensions or a space between two planes in three dimensions.  
This range defined the boundary inside which a set of points were first 
located, selected and then projected to create a tiling.  The range for this 
method had to be just wide enough to only incorporate all the points falling 
within one unit of the n-dimensional lattice, no more, no less 
(http://www.geom.uiuc.edu/apps/quasitiler/). But as the figure below shows, this width 
(black strip) had to increase or decrease when the lattice was rotated in order 
to constantly maintain this one unit rule. A first issue was how to make the 
width of the strip shift to the correct amount when the lattice was subjected to 
rotations. 
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8.1.4 Jumping down one dimension 
 
From 2d to 1d (x, y) 
 
For a 2d lattice of a 1 unit, the width of the strip ranges   
- from minimum: 1 (the side of the square at rotation x-y = 0 deg) 
- to maximum: 1.414 (the diagonal of the square at rotation x-y = 45 deg) 
In the case below, the strip is defined by 2 boundary lines:  
1) y1= 0; fixed at the origin (the viewing plane). 
2) y2= [min. to max.] ; varies upon x-y rotation. 
In solving this, a depth vector from (0, 0) to (1, 1) was created and multiplied 
by the rotation matrix.  To define the second boundary line, one checks that 
the points of the lattice are smaller or equal to its y-value.  
                         x         y        a    
                     x |cosa   sina    0|              x                 y          a 
(1, 1, 1) *      y |-sina   cosa   0|  =  (cosa- sina, cosa+ sina, 1)       
                     a |0         0        1| 
 
2) y2= [min. to max.] = cosa+ sina 
If a=45 deg, y2=cos 45+sin 45= 1.41 (= sqrt of 2) 

 

as in fig 8d, if a= 0 deg, y2=cos 0- sin0= 1 
as in fig 8e, if a =125 deg, y2= 1.39 
 
 
                                                        
                                                                                   1d proj. 
                                                        
 

y1 
 

y2 
 
 
 
 
 
fig. 8d  2 dimensional lattice projected in 1 dimension      fig. 8e same but rotated disclosing aperiodic structure  
 
Notice the aperiodic structure of the 1d projection of figure 8e.  If the magenta 
segments were 0 and the green ones 1, we would have a series of this sort: 
…0101001010010101001…., making it non repetitive as opposed to the 
periodic structure in figure 8d (11111111111) disclosing only translational 
symmetry.   
 
Pseudocode 
 
If the y-value of a point X > 0 and <= y-value of the depth vector  
(y1 line < X_y <= y2 line) 
Then point X is inside the clipping boundary and is selected. 
After selection only its x-value is drawn (1d projection) 
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From 3d to 2d (x, y, z)  
 
The same method presented for the 2d to 1d projections applies to the 3d to 
2d projections.  The depth vector goes from (0, 0, 0) to (1, 1, 1) with three 
rotations matrices around x-y, y-z, z-x.   
 
depth_Vec=(1,1,1) 
z1 = 0 (fixed) 
M_rotall= M_rotxy * M_rotyz * M_rotzx  (multiply the 3 rotation matrices into a single one) 
z2 = z_val of depth_Vec * M_rotall (varies upon rotations) 
       
z2 min = 1 
z2 max = 1.732 (= sqrt of 3) 
 

 

 
 
 
 
 
 

 
z1 

 
 

z2 
 

 
 

 
 

fig. 8f 2d projection on x-y plane of a 3d grid                          fig. 8g strip width defined by z1, z2 planes   
 
 
                                                                 diagonal vector : x, y and z coordinates 
                                                                                                                        z1 
                                        
                                                                                                                                                                                       X 
 
 
 
 
                                                             
 
                                                                                               Z 

 
     z2 
 
 
fig. 8h  X-Z projection view of a 2d projection tiling from a 3d lattice showing the space and its selection between the    
            two boundary planes (z1,z2). 
 
This method wasn’t yet working properly. As the next 2 figures indicate (fig. 8i, 
8j), some holes were occurring in the tiling. The selection boundary was not 
as large as it should have been causing it to not properly select all the points 
needed to make a complete 2d tiling under the 3 specific rotations.   
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The problem originated when the depth vector was rotated past a certain 
amount of degrees from any rotation(s). The quadrant in which the depth 
vectors resides has a direct effect on the signs and values of its x, y, z 
coordinates and therefore on the width of the boundary itself.  What needs to 
be avoided is a negative depth vector (- sign(s) of any of its coordinates 
caused by the three rotations when changing quadrant). A pre-emptive 
measure to this problem was to check first if the coordinates of the depth 
vector were negative before it was actually rotated. This was done by 
checking against its z-value (0, 0, 1) as clipping occurs along the z-axis and 
by multiplying it by the inverse* of the overall rotation matrix.  If any of its 
coordinates turned out negative (i.e. (0.651, -0.781, -0.265)), then flip the 
sign(s) for the same coordinates of the original depth vector (1, -1, -1). Now 
the depth vector could be correctly rotated from 0 to 360 degrees along with 
its complete tiling (fig 8k, 8l).     
 
 
 
 
 
 
 
 
 
                                                                         z1 
 
                                                                         z2 
 
 
 
 
 
 
 
fig. 8i incomplete tiling; z2= 1.09 units                                     fig. 8j incomplete tiling; z2= 0.70 units   
 
Pseudo code  
 
test_Vec = (0, 0, 1) 
(0,0,1) * inv.M_rotall  (multiply the test_Vec by the inverse of the overall rotation matrix) 
//This results in flipping quadrant when coordinate(s) are negative upon rotation angles. 
 
If x_ val of test_Vec < 0, then make x_val of depth_Vec < 0  
If y_ val of test_Vec < 0, then make y_val of depth_Vec < 0   
If z_ val of test_Vec < 0, then make z_val of depth_Vec < 0  
 
depth_Vec * M_rotall (Only then multiply the depth_Vec by the overall rotation matrix) 
 
void invRot(Matrix inv) { 
    rows=inv.rows; 
    cols=inv.cols; 
    for(int i=0; i<rows; i++){ 
      for(int j=0; j<cols; j++){ 
        matrix[i][j]=inv.matrix[j][i]; }}} 
 
 
 
*The inverse of a rotation matrix is its transpose (flip along its diagonal) 
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                                                                         z1 
 
 
                                                                         z2 
  
 
 
 
 
 
fig. 8k  corrected depth vector and tiling from fig. 8i                fig. 8L  corrected tiling from fig. 8j 
                          
In fig. 8i, z2 was 1.09 units and its depth_Vec was in the SW quadrant 
In the corrected fig. 8k, z2 is 1.58 units and its depth_Vec is now in the NE quadrant 
In fig. 8j, z2 was 0.70 units and its depth_Vec was in the NE quadrant 
In the corrected fig. 8L, z2 is 1.72 units and its depth_Vec is now in the NW quadrant 
 
These revised examples illustrate how substantial this boundary error was.  
Since, one of the premises of this research was to search for tilings from any 
arbitrary rotations ranging from 0 to 360 degrees, it was crucial for the 
projection to fully emerge under any rotations but also to progress in 
accordance with the change of rotations. 
 
8.1.5 Jumping down two dimensions 
 
Until now, the method for stepping down one dimension was satisfactory.  
Could the same strategy be applied successively when jumping down 2 
dimensions from any higher dimensional grids? 
 
From 4d to 2d (x, y, z, a) 
 
As mentioned before in 4 dimensional space we have 6 possible rotations 
around six planes: x-y, y-x, z-x, x-a, y-a, z-a. 
Two dimensions need to be clipped against (z, a) in order to project in 2d (x, 
y).  The key issue was to elucidate if the clipping boundaries in those two 
dimensions are checked against individually (one after the other) or in a pre-
combined manner. 
The successive method or ‘square’ method is a continuation of the way 2d 
projections were tackled previously with three dimensional grids (fig.8m). 
 
Pseudocode 
 
If the z-value of point X > 0 and <= z-value of the depth vector  
(z1 plane < X.z <= z2 plane) 
And if a-value of point X > 0 and <= a-value of the depth vector  
(a1 plane < X.a <= a2 plane) 
Then point X is inside the clipping boundary and is selected. 
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The combined method or ‘circular’ method calculates the projection boundary 
in both dimensions simultaneously (fig.8n). 
 
Pseudocode 
 
If (the square (z-value of point X) + (the square (a-value of point X)) <=  
((square (z-value) + square (a-value))*0.25) of the depth vector  
(z1 plane <(sq(X.z) + sq(X.a))*0.25) < z2 plane) 
Then point X is inside the clipping boundary and is selected before being projected. 
 
The z-a reference plane is used in the following diagrams to visualize the 
differences between the two approaches. 
 
 
 
 
 
 
 
 
 
 
 
fig. 8m the ‘square’ method where            fig. 8n the ‘circular’ method where             fig. 8o area differences  
the depth vector is individually                  the depth vector is calculated                   between both methods   
calculated in each dimensions                  together for both dimensions                    for the depth vector.          
(z_depth, a_depth).                                   (z_depth + a_depth). 
 
The ‘circular’ method has always a larger selection area upon rotations than 
the ‘square’ method. For instance, as the depth vector in the ‘square’ method 
is approaching the a-axis or the z-axis, the area is progressively being 
reduced to a line. This will inevitably create holes till no points at all will be 
found within the clipping boundary. The following figures indicate the main 
problem caused while using the ‘square’ method.   
 
 
 
 
 
 
  
 
 
 
fig. 8p 2d projection of 4d tiling using the ‘square’ method revealing holes in the tiling 
    
This method was computed by initializing the 16 points (x, y, z, a) making up a 
one unit 4d hypercube and by updating the clipping planes positions as the 4d 
points were rotated. Two vectors (z_depth, a_depth) constantly spanned 2 of 
those 16 points in making sure they always incorporated the smallest z_min 
and a_min and the largest z_max and a_max from those 16 points (fig 8q). 
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Pseudocode 
 
void update clip(){ 
......... 
  for( int i = 0; i < c; i++ ) { 
    if( block[i].vector[2] >= zmax) {  
      if( block[i].vector[3] >= amax ) {      
        zmax = block[i].vector[2];  
        amax = block[i].vector[3];  
      } 
    } 
if( block[i].vector[2] <= zmin ) {  
     if( block[i].vector[3] <= amin ) {  
     zmin = block[i].vector[2];  
     z_min = block[i]; 
     amin = block[i].vector[3];  
     a_min = block[i];  
    }   
  } 
  CLIP_POZ = z_max; 
  CLIP_PIZ = z_min; 
  CLIP_POA = a_max; 
  CLIP_PIA = a_min;                         
 }                                                         fig. 8q 4d hypercube and its corresponding clipping    
                                                                     plane positions subject to a set of rotations. 
                                                                     The red line is the depth vector 
                                                                                                                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig. 8p 2d and 3d projection of 4d tiling using the ‘square’ method  
 
From the ‘square’ method, a more or less complete tiling can still emerge by 
manually incrementing the clipping planes (fudging) on top of a finely tuned 
set of rotation angles. Figure 8p gives an indication as to how far the clipping 
planes in this instance had to be widened from the originally calculated z and 
a_depth vector to include the missing points of the tiling; 129% for the former 
and 121% for the later.  This percentage can vary greatly depending on 
rotation angles and the tiling search process can become painstaking.  
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fig. 8q digital and physical (CNC milled) model of a 3d projection of 4d tiling using the ‘square’ method  
 
It emerged that a 4d tiling is composed of six tiles or less if some of those tiles 
become identical under specific rotations (rotational symmetry). Special cases 
of tiling have been widely documented (Penrose tiling) and do not constitute 
the focus of this research.  In figure 8q, in order to complete the tiling the 
holes were filled (in red) with the some of the 6 existing tiles from the 3 
dimensional tiling.   
To prove that the ‘circular’ method was potentially the correct one, a 
comparative test was carried out in three dimensions where it is easier to 
visualize what is at work. A cubic grid of points in three dimensions was 
directly projected onto a one dimensional line (3d to 1d) using each method 
separately and jumping down two dimensions at once. The diagrams below 
explain each method and their differences. 
 
 
 
                                                          
 
 
 
 
 
 
 
 
 
 
 
 
fig. 8r diagram of the square method to define                   fig. 8s diagram of the circular method to define 
           the clipping boundary for a 1d projection                             the clipping boundary for a 1d projection 
          (line on the x-axis) of a cubic grid of points.                        (line on the x-axis) of a cubic grid of points. 
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Closer the depth vector (red arrow) is to the y-axis or the z-axis in the ‘square’ method, 
smaller the clipping boundary becomes (the square is literally compressed towards a line).   
The gray rectangles are the initial clipping planes for a y-z rotation of 0 degree. 
The yellow planes are the same clipping planes for y-z rotation of 330 degree (z1, z2). 
The clipping plane located at the origin (z1) is actually the viewing plane for the interface. 
 
The findings illustrated in figure 8t and 8u are quite self explanatory.  
These show that only the ‘circular’ method makes a complete tiling. Should it 
work as well in jumping two dimensions from higher dimensional grids, this 
would solve the overall problem. 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
                 fig. 8t ‘square’ method from 3d to 1d with missing points in 3d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 fig. 8u ‘circular’ method with equal amount of matching points in 3d and 1d 
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It is worth noting that the existing literature* on the subject is somewhat 
ambiguous about the description of the clipping offset for higher dimensions.  
It often presents the projection method with the aid of a 2d to 1d projection 
diagram (as in fig. 8e) and then stipulates that the same concept applies for 
higher dimensions, yet not quite. If clipping occurs indeed within an area 
between two lines from 2d to 1d, from 3d to 1d that area is actually delimited 
by a rotating line in 3d and not by a linear offset between two planes. A hyper 
plane is here a 2d plane wrapped around (3d line rotated) to form a cylinder. 
 
The working ‘circular’ projection method for 4 dimensional grids 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        fig. 8v   example of a 2d tiling using the ‘circular’ projection method from 4d (6tiles) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        fig. 8w   same example but for a 3d tiling using the ‘circular’ projection method from 4d (6tiles) 
 
* Among others: http://www.geom.uiuc.edu/apps/quasitiler/
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8.1.6 Jumping down more than two dimensions 

 
From 5d to 2d (x, y, z, a, b)  
 
The same approach used for four dimensional grids was successfully tested 
for five dimensional grids while this time jumping down three dimensions, 
disclosing a maximum of 10 different tiles and employing ten possible 
rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b plane). 
 
Pseudocode 
 
If (the square (z-value of point X) + (the square (a-value of point X) + (the square (b-value of 
point X)) <= ((square (z-value) + square (a-value) + square (b-value))*0.25) of the depth 
vector (z1 plane < (sq(X.z) + sq(X.a) + sq(X.b))*0.25 < z2 plane) 
Then point X is inside the clipping boundary and is selected before being projected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig. 8x example of a tiling from a 5d grids projected in 2d (x, y, z, a, b) 
 
From 5d to 3d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig. 8y example of a tiling from a 5d grids projected in 3d (x, y, z, a, b) 
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From 6d to 2d and from 6d to 3d (x, y, z, a, b, c), see case study #5, p.32. 
15 different tiles, 15 possible rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b, x-
c, y-c, z-c, a-c, b-c plane). 
From 7d to 2d and from 7d to 3d (x, y, z, a, b, c, d). 
21 different tiles, 21 possible rotations (around x-y, y-z, x-z, x-a, y-a, z-a, x-b, y-b, z-b, a-b, x-
c, y-c, z-c, a-c, b-c, x-d, y-d, z-d, a-d, b-d, c-d plane). 
 
8.2 Adjacency analysis 
 
A further incentive for this research was to employ those tilings and their 
organizational structure and apply other types of geometries to them. This 
also stresses that the investigation was less concerned about the aesthetic 
values of the found tilings but more about their inherent assembly rules by 
which very few tiles could be repeated to form a field of a long range order 
and with a certain amount of specificities. 
The type of geometry that was experimented with were NURBS* surfaces. 
Each NURBS surface corresponded to a specific tile (6 types in 4d, 10 types 
in 5d, etc) and was delimited by the tile’s edges.  In order to constitute a 
continuous field and maintain proper tangencies with its neighbouring tiles, a 
specific NURBS surface had to know which edges it shared with which other 
tile(s) at other locations within the field. 
This is precisely what the next case studies (#1, #2, #3, etc) set to establish. 
For any given set of tiles and their inherent organisation, how many degree(s) 
of freedom does the tiling have? Or in other words how many different line 
types at the tiles’ edges can be individually manipulated while still providing 
for a fluent propagation of tiles.  The example below shows how the initial 
appearance of a tiling’s structure can be considerably altered under the new 
geometry and become much less discernable even though the same structure 
still governs the organization and repetition of the (NURBS) tiles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   fig. 8za example of a clearly defined 4d tiling                     fig. 8zb 
                                                                        (physical milled model) 

same tiling’s structure but with NURBS surfaces  
 
* NURBS stands for Non-Uniform Rational B-Spline. 
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Case study #1 (4d tiling same as figure 8v) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This first adjacency analysis unveiled 4 potentially different line types that 
would be explored in more details in the next section.  
The white lines compounds in the figure above are showing alternative 
configurations for the 6 tiles (rotational symmetries within the same group of 
tiles) and therefore already highlight that a specific edge will have more than 
one neighbouring edge in common. 
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Finally, edge 1a and 1c (in rectangle above) have an extra edge in common 
because in the overall tiling two tiles of type 1 are repeated next to one 
another causing 1a to be equal to 1c (the same occurs with edge 3b and 3d).    
 
Case study #2 (alternative 4d tiling for comparison with one (blue tile) double only) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this example above, only edge 3a and 3c have more than 2 corresponding 
edges (3 in total) because tile #3 is adjacently doubled in places in the tiling. 
For a 4d tiling that has no double tiles left, every edge (24 in total) would have 
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a corresponding 2 edges in common and 4 different line types of 6 edges 
each (6 edges x 4 line types= 24 edges). 
 
Case study #3 (5d tiling same as figure 8x) 
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A 5d tiling has a maximum of 40 possible edges (10 tiles x 4 edges). 
In this specific case study 6 possible line types were encountered ((4 x 8 
edges) + (2 x 4 edges)) = 40 edges. 
 
Case study #4 (alternative 5d tiling for comparison) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This case study is very close to the Penrose tiling 
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In the example above, 5 different line types were categorized (5 x 8 edges 
each = 40 edges in total). 
 
Case study #5 (6d hybrid tiling) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This 6d case study disclosed just 14 tiles instead of the expected 15 tiles. 
Firstly, it does still perform as an aperiodic tiling as well as its adjacency 
analysis. The actual ‘missing’ tile is there but has been reduced to a line 
overlapping with an existing tile’s edge. 
The fact that rotations are articulating the emerging tiling, by rotating in space 
selected vertices within a specific region, does not guaranty that for a higher 
dimension all the concerned vertices will be accordingly activated to make up 
for the correct amount of tiles.  A 5d type of tiling can be created within a 6d 
environment even though the 15 rotations are all activated.  More crucially, 
arbitrary rotations offered the possibility for hybrid tilings to emerge.  The ones 
comprised with moments of 5d, 4d, 3d and/or 2d tile projections within the 
same tiling.  The red (contour) line above shows a 5d assortment (10 tiles) 
inside the 6d tiling.  
Hybrid tilings would prove to be spatially richer in the next experiments. 
Lines linking vertices behave somewhat like ‘rubber bands’ within a dimension 
and across dimensions. The default setup is when all rotations are at zero 
degree angles and when for any dimensions the selected vertices are all 
overlapping on top of one another, which perception from one of its clipping 
plane is a simple 2d grid. Appendix B presents the geometry making up faces 
from vertices in and across dimensions. 
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It is now safe to assume that for a tiling of n dimensions; a minimum of n 
different line types are possible.    
In 4d: for a max. of 6 repeated tiles, that is 24 edges: a min. of 4 line types of 6 edges each 
In 5d: for a max. of 10 repeated tiles, that is 40 edges: a min. of 5 line types of 8 edges each 
In 6d: for a max. of 15 repeated tiles, that is 60 edges: a min. of 6 line types of 10 edges each 
In 7d: for a max. of 21 repeated tiles, that is 84 edges: a min. of 7 line types of 12 edges each 
Etc. 
 
Back to the Penrose 
 
Case study #6 (5d tiling) 
In 5d: min. of 2 repeated tiles, that is 40 edges: a min. of 5 line types of 8 edges each? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Penrose tiling above can be generated by the 2d projection of 5- 
dimensional grid.  It is aperiodic and made of only two different rhombi (fig 6A, 
6B).  As such the adjacency analysis would require all the edges to have the 
same line type in order to mass produce two types of tile only. One line type 
for the overall tiling is very efficient but does limit the amount of irregularity 
another geometry could have when adapted to the adjacency rules (see next 
section).  Alternatively it can also be thought as a 5d tiling comprised of a 
maximum of 10 different tiles as in fig. 6D, even though as a 2d shape, it 
actually portrays as 5x2 different tiles. This carries the possibility of 5 different 
line types for 10 tiles to make up for a greater diversity in a field formation 
from the exact same tiling, similar to case study #4.  As 2 tiles, they have to 
be rotated to make the appropriate tiling, but as 10 tiles, they are just 
translated to make the same tiling (no rotations in individual tiles, only as 
compounds of 10 tiles; see how the green tiles above have the same 
orientation). This distinction would become useful in a later experiment (p.40). 
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5. Adaptation 
 
This chapter is in some sort a continuation of the methodology pursued 
previously.  Nonetheless a separation wanted to be drawn to better 
distinguish the findings (tiling from the projection method) against how their 
organizational effectiveness can be further tested past a tiling graphical arrest.  
This section also instigated the discussion part. 
 
Towards the Quasi Roller 
 
Once the organization of the edges for a tiling had been determined (i.e. case 
studies carried out), a line type, accounting for a group of edges distributed 
throughout the field, became its own being.  This meant each line type had 
the potential to be manipulated individually while readjusting the overall field.   
This part of the process was tested in generative component, where each line 
type was first programmed parametrically and then mapped appropriately 
onto the field.  In doing so, any changes made locally (on a line type itself) 
would instantly altered and update the overall tiling. Appendix D1 shows 
examples of different graph variables created to parametrically alter a 4d 
tiling. 
 
NURBS line type 
 
A primary experiment was carried out by changing the Z-values of the line 
types in two locations (yellow dots in fig. 5a) along the edges of the tiles in 
order to create a NURBS curve in elevation (a sinusoidal-like curve). Figure 
5a and 5b describe the geometry employed. The tiling used is a 2d projection 
of a 4 dimensional lattice (for its adjacency analysis see appendix C). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
            fig. 5a axonometric view showing a 2nd, 3rd,         fig. 5b axonometric showing the 4 different linetypes    
                       4th degrees order of NURBS curves                      (green, red, orange, blue) from adjacency              
                      (a linetype) along a tile’s edge.                               analysis onto a combination of 6 tiles. 
 
Every tile is rhombic (4 edges) but have different line types making up a 
NURBS surface from the initial tile (fig. 5c shows 2 types of NURBS curves for 
a single tile). 
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Tangencies 

 
The construction of a Nurbs tile alone does not account for how it must 
communicate with its neighbouring tiles. In fact, for a NURBS surface to 
smoothly translate into its neighbours, tangencies had to be resolved so that 
creases could be avoided along the tiles’ edges.  Tangential offsets were 
created away from the surfaces’ respective common edges, onto which a 
series of points were added to be become part of the overall definitions of the 
surfaces and act as tangency points.  These offsets are represented in the 
two figures below by dotted lines (fig. 5c, 5d).  Each point along a dotted line 
has a corresponding point perpendicular to a tile’s edge and belonging to the 
other surface sharing the same edge. Figure 5e best illustrates this 
geometrical model in plan view.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig. 5c axonometric view showing a Nurbs surface from        fig. 5d axonometric view showing the combination of 3      
           4 Nurbs curves located onto the tile’s edges                      NURBS tiles with proper tangencies between them 
    
One of the difficulties encountered was how good the tangencies performed 
near the vertices. Each vertex is a meeting point of 3 to 8 edges (in 4d) at 
different angles (obtuse, acute) across the field.  Although each specific case 
could have been tailored, the key was to arrive to a general method which 
would apply anywhere in the tiling under any convergences of edges (p.37). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  fig. 5e plan view of a combination of 6 tiles showing the           fig. 5f axonometric view of NURBS surfaces 
             NURBS curves are coincident with the tiles’ edges                   from changes in the curves’ z-values. 
            and the offsets points perpendicular to the tiles’ edges. 
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   fig. 5g Plan view of a CAM simulation of NURBS aperiodic field of 6 tiles from the 2d projection of a 4d grid 
              Gray lines are tool paths: 45° parallel finish, 6mm ball mill 
              White lines show the structure of the original 4d tiling superimposed 
                 
The image above shows a field configuration from the example in figure 5f. 
Once the line types and its geometry have been tested for a combination of 6 
tiles, they are then referenced as components to a larger field of tiles.  This 
was scripted (in generative components, see appendix D2, p.63) by following 
the rules from the adjacencies analysis, shown previously.  
A corresponding physical model in appendix F2 manifested for the first time 
how the repetition of few tiles (6 in this case) could support a relatively 
irregular and complex pattern away from the tiles’ immediate recognition.  
 
Fleeing the tile’s original shape 
 
A further test was to dislocate the NURBS geometry from to the tiles’ straight 
edges by allowing not only the Z-values of the curves but also the X and Y-
values to vary.  Simultaneously it was essential to ensure that suitable 
tangencies between the NURBS tiles were well kept (fig. 5h, 5i). 
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    fig. 5h plan view of a combination of 6 tiles showing              fig. 5i axonometric view of NURBS surfaces 
               the overall geometry and how the NURBS                             from changes in the curves’ x, y and z-values. 
               line types are changes in x and y. 
 
In returning to the tangencies, the general method is a combination of two 
principles and was constructed as follow: 
a) Around the vertices (red lines and points in fig. 5j) 
Equidistant points from a vertex along each edge were defined from which 
transversal lines to each edge were drawn in order to create series of 2 
tangential points belonging to the NURBS surfaces’ definitions.  This made 
sure a tangency between two NURBS surfaces near the vertices were 
properly matching. 
b) Along the edges (yellow lines and points in fig. 5j) 
Additionally in between vertices, series of equidistant points are defined on 
the tiles’ edges to transversally draw lines on which offset points are created 
to also be part the NURBS surfaces so that proper tangencies between tiles 
are settled. The general method was later tested effectively on a 5d tiling 
(fig.5k).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    fig. 5j plan view detail of 5d NURBS tiling                          fig. 5k plan view of 5d NURBS tiling where x, y an z- 
              default setup for tangencies                                                  values of the different line types were altered  
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  fig. 5l Plan view of a CAM simulation of NURBS aperiodic field of 6 tiles from the 2d projection of a 4d grid  
            White lines show the tool paths between levels: horizontal finish, 6mm ball mill by plateaus of 3mm 
            Magenta lines are the cut transfer paths) 
            Black lines show the altered structure (x and y values) of the original 4d tiling superimposed 
                           See appendix F3 for the corresponding physical milled model  
 
Porosity 
 
Until now the two-sidedness of the field has been left latent, even though it 
always existed. One way the interrelation of the two sides (recto, verso) of the 
overall tiling can be enhanced is by allowing some voids throughout the field 
of tiles upon the same initial assembly rules.  These voids work as vehicles 
between the two sides in settlement with their prior duality. A hole came about 
by the incursion of part of a bottom tile into a top tile. Their intersection is then 
voided to make an opening.  Two families of holes were investigated; one 
around the middle of a tile (fig. 5k), the other around the corners of a tile (fig. 
5l). A void outline emerged specifically characterized by the partial overlap of 
the bottom and top tiles NURBS geometry.  
The figure 5m uses a tiling from a 2d projection of a 4d lattice, previously 
analysed (case study #7, appendix C).  The porosity factor contributed in 
transforming what was previously a wall-type into a more dynamic screen. 
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fig. 5m plan view of 6 tiles with holes at the vertices (tiles’ corners) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig. 5n plan view of 6 tiles with holes at the vertices (tiles’ corners) and in middles of the tiles 
 
 
 
 
 
 
 
 
 
 
 
 
    fig. 5o 
          The boundary line between the black and the gray zone defines the plane onto which all original vertices    

Elevations of fig. 5k and 5l showing the amplitude of the z-values for each tile 

                from the tiling are located (2d plane). 
 
     See appendix F4 for the corresponding physical two-part mould from a larger field of tiles  
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   fig. 5o Top view of field configurations from 6 tiles (4d) with holes at vertices and at middle of tiles 
 
Quasi roller  
 
At last, an experiment was to liberate any tiling and the subsequent geometry 
from its projected plane (2d projection of vertices) and roll it into a cylinder (fig 
5q). Since each individual tile (6 in 4d, 10 in 5d, etc) is repetitively translated 
and copy throughout the tiling, its relationship with regards to the curvature of 
the cylinder was not altered, that is a quasi roller could be built without 
increasing the amount of different tiles (still 6 tiles in 4d). None of the 
individual tile was in fact rotated anywhere else.  Only groupings of 6 tiles (in 
4d) had various types of configurations across the field.  On the contrary, this 
efficiency of means would collapse in trying to map a sphere, a cone or any 
volume changing in more than one direction; each tile would indeed have to 
become individualized. 
All the previous experiments can now be amplified from the new cylindrical 
configuration where interior spatially interacts with the exterior and vice versa 
(image on title page).  
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             fig. 5q rolling of a 4d tiling into a cylinder with close match 
 
The length of a quasi cylinder (along its rotational axis as well as transversal 
to it) for any n-dimensional tiling is limited for the same reason an aperiodic 
tiling is finite in space. Regions of translational symmetry are indeed finite by 
definition on such tilings. How long a cylinder could be made from a tiling was 
an exploration beyond the scope of this research but more time may come 
later to ponder further on the question.  
 
 
 
 
 
 
 
 
 
 
             fig. 5r Elevations and interior views of a quasi roller from case study #7 (4d tiling) in appendix C 
 
A rolling of a 5d (or more) tiling is as well effective.  Nonetheless tiles need to 
be repeated across the tiling by translations only. If they are repeated by 
translations and rotations, the cylindrical curvature for the same tile would be 
different and would increase the amount of tiles required initially. The 5d 
Penrose tiling would have to be first generalized as 10 tiles and not just 2 in 
order to avoid the problem of various curvatures for one tile.  Or if it is 
considered as a two tiles’ aperiodic structure, under the rules of a cylinder, it 
will return to a 10 tiles’ structure in order to retain the same curvature for each 
tile.  Also, from the perspective of one tile because it is a parallelogram and it 
is located askew (not transversal) to the rotation axis of the cylinder, it is 
made of a surface which has a double curvature. 
 
Geometrical development 
 
 
 
 
 
 
 
 
 
       fig. 5s Front elevation of one NURBS tile within a cylindrical geometry showing the offset converging                                               
                   towards the centre in 2 directions (x and y not z ) 
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By looking at one tile (fig.5s) with acceptable thickness beyond the paper thin 
model and in regards to the new spatial configuration (cylindrical), the tiles’ 
edges raised some new geometrical challenges. Not only, had they tapered in 
opposite direction in sets of two parallel lines (creating undercuts) but they 
were also found warped (fig.5t) in order to meet the overall geometry of the 
cylinder (convergence to a central axis). This caused more of a problem in 
making it to the physical realm (next section) than it did resting inside the 
digital one.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       fig. 5t Side elevation of a default tile prior to NURBS adaptation showing tapered and warped edges    
                 when the tile’s thickness is considered. 
                   
Similarly to the experiments carried out before with the 2d tilings, 6 NURBS 
tiles were later developed within the quasi roller’s geometry (fig. 5u).  All the 
tiles’ vertices are converging perpendicularly along the central axis of rotation 
of the cylinder (blue line).  The converging lines (orange lines), as shown in 
figure 5v became the basis from which all the tiles’ edges were geometrically 
articulated. Once the 6 tiles were parametrically created, they could finally be 
associated (components) to a cylindrical field following the same adjacency 
rules from the case study in appendix C, p.62. A last experiment was to test 
the notion of porosity throughout the NURBS field (fig. 5w, 5x). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
              fig. 5u Side elevation of 6 NURBS tiles within the cylindrical geometry (axis convergence)  
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                       fig. 5v front elevation of 6 NURBS tiles within the cylindrical geometry (axis convergence)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       fig. 5w interior view of porous NURBS field within the aperiodic cylinder 
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  fig. 5x Side elevation of porous NURBS field within the aperiodic cylinder 
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6. Fabrication 
 
As stated in objectives, fabrication was from the very start a central motivation 
in directing the research. At last, the aim was to mass produce some of the 
findings by repeatedly casting the necessary tiles with the least possible 
amount of formwork while not compromising on the overall ‘irregularities’ of 
generated patterns from the projected tilings (what is meant here by 
‘irregularities’ and how it can be objectively measured must be discussed 
further in the next section). The fabrication process was conducted early on at 
two scales informing one another: the scale of the field and the 1 to 1 scale of 
the singular tile (fig 6a, 6b). Moreover attention to certain details was 
inescapable if physicality had to be conveyed. The main tool used was a CNC 
3-axis milling machine. For the singular tiles, negative moulds were milled and 
positive casts (plaster, cement) were the final outputs (two-step production). 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig 6a milling of part of a field for geometry check             Fig 6b milling of part of a mould for a 1:1 cast of a tile  
 
6.1 Fieldproof  
 
The milling of some fields was already introduced (in the adaptation chapter) 
and was mainly conducted to verify that tangencies between NURBS tiles 
were working properly in providing for a continuous field as well as for testing 
the general amplitude of the NURBS geometry. It was often exaggerated to 
see how robust the tangency method was, before a tile would be milled at full 
scale. 
 
 
 
 
 
 
 
 
 
 
   Fig 6c group of 6 tiles (two-sided) from a 4d tiling where tangency is still leaving creases on some edges 
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Figure 6c shows an early milling test where tangencies were not robust 
enough under extreme z-values. The problem led to the corrected method 
presented in figure 5j on page 37. 
 
6.2 Tileproof 
 
Some criteria for mass production (repeating many casts from the same 
moulds) were durability of the moulds, rapid setup prior to casting, easy mould 
release after casting. The full cycle had to be as efficient as possible to 
facilitate repetition.  
Other criteria related to the performance of the finished tiles themselves were 
the tiles strengths upon stresses, tile reinforcements, surface finish, and most 
importantly how the tiles are connected to one another (no magic silicon!). 
These depended a lot on the spatial configuration of the tiling itself and its 
associated loads.  For instance, it could be a 3d one-sided floor tiling, a wall 
tiling, a two-sided free standing wall (gravity), a porous screen, a porous quasi 
roller, etc.   
A first prototype was developed for a free standing wall type (two sided), 
another for a porous quasi roller (interior/exterior). 
Although the fabrication part is very much in the making and will continue to 
be so past this report, here follows excerpts of some of the first experiments 
pursued. 
 
Quasi wall prototype (4d tiling: 6 tiles) 
 
The following study is a two-sided NURBS tiling which has no undercuts.  
The first full scale prototype tested the changes in the z-values of the tiles’ 
edges only (no x and y variations yet). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6d one tile’s corresponding two-part mould (dim: 400 x 400 x 250mm) 
 
The 6 tiles are 3 dimensionally milled as a two-part mould (negative) matching 
the top and bottom of the tiles’ surfaces (fig. 6d).  Each half mould is 
laminated into two horizontal sections to reach the necessary height (z-value). 
They were made of EPS boards 30kg/m3 (Expanded Polystyrene) and glued 
together. 
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The strategy for connecting the tiles to one another was first to position in the 
moulds two pairs of hollow plastic tubes surrounded by plaster rings 
(spacers). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6e same mould showing the addition of reinforcements, connection system and removable sides 
 
The rings ensured the tubes would be kept away from the tile’s finished 
surfaces and remain properly located within the tile’s thickness (fig.6e).  After 
the tiles were cast and dry, steel cables were threaded inside the hollow tubes 
to travel from tiles to tiles until an end was finally reached, at which they were 
tensioned and tightened (similar to the directions of the NURBS’ isocurves in 
fig. 5e, p.35). The technique accounted for a non permanent site type of 
assembly and disassembly (appendix F6, p.76 for an assembly of 6 tiles). For 
permanency, the tubes would be replaced by continuous steel bars 
reinforcements (pre-bent) and the moulds would travel along their paths to 
make progressive pours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6f the parts making a mould for easy assembly and disassembly 
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The figure above presents at this stage how a mould was devised in all its 
parts to allow for fast reuse and easy mould release.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6g other mould type showing variation in the tile’ shape and in the z-amplitude of the edges 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6h mould preparation during and after casting 
 
EPS was not as durable a material as desired, especially when involving 
reuse.  After the technique was better perfected, fibreglass moulds were 
made instead to counter that problem. The milled moulds nonetheless had to 
accommodate for the change (see next prototype).  
Other fabricated moulds are documented in appendix G, p.79. 
 
Quasi roller prototype (4d porous tiling) 
 
The last prototype only recently began and was initiated by the making of one 
tile fitting a NURBS quasi cylinder (same tile as in fig. 5s, p.41).  It further 
involved solving for the x, y and z changes in the NURBS’ edges, holes at 
middle and corners of the tile and not the least, cylindrical curvatures 
disclosing undercuts (as in fig. 5t). The moulds’ geometry for the milling was 
also revised to provide for the fibreglass change.  It was applied as a layer 
directly onto the EPS moulds and then later released. 
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To solve for the double curvature of the tile and the edges’ undercuts, the 
mould had to be conceived in three composite parts (prior to fibreglass 
application): Two negative beds (fig. 6i) and the actual positive tile (fig. 6l). 
The two beds accounted for the top and bottom surfaces of the tile but also 
served as supports in the process .The positive tile was flip-milled from one 
bed to the other so that the undercuts could be avoided (fig. 6j, 6k). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 6i the two beds for flip milling and for fibreglass mould 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 6j the two beds on which the positive tile is being milled in 2 horizontal laminations 
 
Once the three pieces were completed, the positive was placed back onto one 
of its bed (appendix G2) and then coated with fibreglass to make one half of 
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the final mould. The other half is done by coating the other bed alone. Once 
the resin is cured, the EPS is fully removed and the fibreglass mould ready for 
casting.  The process turned out to be more robust as well as more flexible in 
working with this type of geometrical complexity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 6k views of the two halves of the positive tile (recto/verso) after milling and before lamination 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig. 6l views of the final positive tile after laminations 
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7. Discussion 
 
Overall impressions  
 
The word ‘Irregularity’ had been mentioned at various places in this report as 
a mean of measuring some of the premises of the thesis.  One of which being 
how far away can a generated pattern (parametrically defined) distance itself 
from a comprehensive tiling (projection of n-dimensional grids) without 
abandoning its efficient assembly or adjacency rules, that is its ability to 
repeat with the least amount of tiles.  ‘Irregularity’ here became the length of a 
scale stretching from an initial aperiodic tiling to a generated NURBS pattern 
to mainly gauge itself against that initial tiling: the most possible variations 
within a generated field with the least possible amount of tiles.  The scale’s 
units defined not only a level of recognition one had over the other but also 
etched along its length a series of parameters autonomous from the original 
tiling.  Such parameters were, for example the ones defining the geometrical 
amplitude of a NURBS tile, the amount the porosity a field would have, the 
size of individual holes, etc.  A this stage they were established manually in 
arbitrary ways, but they have the potential to be further conditioned 
meaningfully by external forces. For instance, could such parameters become 
more in tune with a specific environment?  In a screen type or in the case of 
the quasi roller, could its structural envelope perform as a mediator between 
the amounts of natural (diffused) light is let in versus the amount of visibility is 
offered through to a participant? 
 
Even though the research had not directly addressed these types of 
questions, it had freed up a ground for them to be explored extensively. Under 
which processes though would still have to be determined. 
The exploration presented may also be perceived rather self-referential 
despite an effort to depart from the restrictions of the aesthetic appearances 
of the found tilings (in contrast to the RMIT example in the Background 
section).  By comprehending how such tilings came about (the projection 
method), how their adjacencies were related and less how they graphically 
looked like, alternative geometries were able to ‘economically’ emerge 
spatially from it (adaptation chapter). The self-referential criticism could as 
well bring up to discussion a certain temptation of falling for the ornamental for 
the sake of retinal exuberance. The reader should decide if that is the case. 
Although in defence, it would be argued that to stand up, the tiles both in 
themselves and connected together had no choice but to become a structural 
entity (performing against gravity) and not merely an add-on decoration.  
  
It often occurs throughout the scientific literature* on the subject that looking 
for aperiodic structures (quasicrystals) becomes a final goal in and of itself. 
Only sometimes, brief speculations are made on what they can be used for, 
often derived from their appearances.  
 
* “Things to do with Quasitiler:  Redecorate the bathroom!” 
   (From http://www.geom.uiuc.edu/apps/quasitiler/) 

http://www.geom.uiuc.edu/apps/quasitiler/
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In stopping short to analyse what rules tilings more broadly are really founded 
on, the opportunity to think of them as mere organizers capable of effectively 
articulating remote geometries is often missed out or by default too promptly 
associated to the well known Penrose tiling and its specific assembly rules. 
 
The strip projection method by arbitrary rotations  
 
A principal characteristic of the proposed method was to render wide open the 
searching space in which tilings emerged. This was achieved by breaking 
apart an overall rotation matrix with specific values into a compound of 
individual rotations (around various planes) where each angular value could 
be parametrically adjusted (see appendix A, p.58 for example in 6d).  Out of 
this implementation, a user had more chances to arrive to a hybrid tiling than 
a predefined case (Penrose). Because any dimensions could be activated in 
no specific order (top-down, bottom-up or any subjective orders in fact), the 
searching process was as valuable in cutting across projected dimensions as 
the moment when a tiling was completed. By hybrid, it is meant here a tiling 
made of a crossover between dimensions where for instance zone of 3d or 4d 
tiles are mixed with zone of 5d tiles, etc (see case study #5, p.32).  A hybrid 
tiling had the extra potential to make a pattern (later developed) spatially 
richer by externalizing greater irregularities from the same amount of tiles.   
Despite the infinite quantity of tilings the method can disclose, it does have 
some limitations. It is known by now that for a tiling to perfectly emerge it 
requires a well tuned compound of rotation angles. The more rotations higher 
dimensions offer, the more the space to entirely arrive to a well tuned group of 
angular values is shrunk. The fact that they are operated manually in the 
interface does not facilitate the task at hand (approximations and rounding 
errors as explained by U. Vogg and P.L. Ryder, 1996, A general algorithm for 
generating quasiperiodic lattices by the strip projection method, Journal of Non-
Crystalline Solids 194 134-144 ).  
In theory it works absolutely fine but in practice it became harder and harder 
to arrive to a complete tiling as higher dimensional grids increased. For 
instance, the interface accommodates for the search for tiling from 7 
dimensional grids, but its hunt can turn out painstaking and long.  Could there 
be some other types of processes capable of fine tuning and directing more 
accurately this search? One dilemma is that there isn’t a real beginning or end 
in determining a trajectory to pursue in the method. How to define what is 
being search for away from special cases with special sets of angles?  It is 
similar to juggling at once with 15 balls (in 6d) in any prescriptive order.  In 
other words, the searching criteria are a bit ad hoc and in the method are 
highly relying on step by step human intuition and curiosity (handling the 
rotations). Could that sort of intuition be algorithmically substituted or maybe 
only complemented? 
 
Furthermore the hypercube example demonstrated that higher dimensions 
can be transferred back in three dimensions with different representations. In 
this research, with the help of transformations matrices (linear algebra) of 
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higher dimensions, rotations were used prior to 2d and 3d projections. Other 
types of transformations than rotations could have been operated and higher 
dimensional vectors represented in 3d space while still focusing on aperiodic 
structure. In the method just the x, y and z values of vectors were kept.  It is 
important to stress that an abundance of parameters (x, y, z, a, b, c, d, etc) 
and computation are used here and a lot of it remained latent or to use a 
stronger term, wasted. Much more can be demanded from these extra 
vectorial variables than rotations. For instance, a 5 dimensional lattice could 
project a three dimensional tiling while its fourth parameter (coordinate: a) is 
being utilized and represented in Cartesian space to regulate the size or the 
amount of apertures upon a moving source of light. A not so great example 
merely to illustrate (out of a certain consciousness) that these extra 
dimensions were being disposed of too swiftly throughout the process. 
 
Adaptation to fabrication 
 
In the research, not as many explorations had been put into the three 
dimensional projections (of n-dimensional grids) as it went into the two 
dimensional ones. A lack of time was more the reason rather than one 
favoured over the other. Although the method provided for three dimensional 
projected outputs (see fig. 8w, 8x, 8y, etc) for any found tilings, they had yet to 
be experimented with in the adaptation of other possible geometries.  The 
model presented in appendix F1 (p. 71) shows that 3 dimensional tiling came 
out in a plate-like structure due to the strip selection from the projection 
method. Within a plate unfinished aggregates (half sections) are embedded, 
nonetheless they contained enough information to complete them into full 
aggregate structures (formations of similar kinds to the presented water cube 
and quasi furniture in the background section). Also in the interface the region 
between the clipping planes can be parametrically incremented to incorporate 
complete aggregates.  The distinction from two to three-dimensional 
projection raises a few queries on the choice of alternative geometries for 
adaptation and on the volumetric limitations the 2d projection has over the 3d.  
NURBS surfaces are known to support continuity and flow; therefore they 
were thought to be an appropriate choice for adaptation in competing against 
the strictly defined edges of tiles in 2d projections.  Would this type of 
geometry be suitable to test the rules of 3d tilings remains to be seen? Faces 
forming 3d aggregates are in some places relatively acute and less desirable 
for tangential continuity.  In addition, 3d aggregates have the potential to be 
much more flexible in making up volumes in space than when starting from 2d 
aperiodic structures.  The further the experiments went from 2d projection was 
to the cylindrical configuration where the 2d vertices were not anymore 
contained within a 2d plane. Numerous experiments would still need to be 
carried out from 3d projections in order to test how far modularity can be 
challenged beyond the initial aggregates’ identifications. 
From the point of view of fabrication, a (full scale) single tile should integrate 
all the necessary details to make up for the whole without requiring a 
comprehensive notion of it. In reference back to a point made in the 
introduction, the concept of going from the building element or the part 
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towards the whole (in contrast to the usual reversal) makes the edge detail of 
a tile in this sense very crucial and informative.  Their assembly into an entity 
is indeed governed locally by the manner a tile’s edge meets its neighbours 
and from the original adjacency analysis of a tiling regardless of its overall 3 
dimensional articulation.  For instance in return to the example of the quasi 
roller, by assembling any of the 6 different tiles in the correct arrangement, it 
incrementally evolves towards a cylinder on the basis of an edge to edge 
correlation. The proposed route is additive rather than one based from 
divisions where an emphasis had to be put first on structure before enclosure.  
The thesis generally devoted itself to investigate how far an initial 2d tiling 
could make it to the 3-dimensional realm without breaking into unique pieces.  
At last, a direct way to evaluate how well a modular system performed is to 
judged it from the ratio between the most (generated spatial field) against the 
least (amount of different tiles required). 
 
Further Work 
 
In the short term, a porous quasi wall prototype will be carried out at 1 to 1 
scale in the frame of a short workshop, followed by the further development 
and construction of a complete quasi roller with all the detailing involved.  
In the longer term, investigations in the geometry of n-dimensions will want to 
be pursued and translated to the field of generative design and architecture.  
But prior to that the missing experiments mentioned previously in tackling 3d 
projections of aperiodic aggregates would have to bear to some more fruition.  
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8. Conclusion 
 
Repetitions of Differences  
 
To put it simply, it is quite gratifying for a designer to know beforehand that 
because only few building elements would be reproduced over and over into a 
relatively intricate assemblage, more attention and endeavour can be 
channelled on just the few pieces accounting for it all.  
 
By exposing and probing the space inside which aperiodic structures 
emerged, the research virtually extended the quantity of already known tilings 
to an infinite amount of possibilities for any higher dimensions. The computing 
performance of the machine became one of its limits.  The pursued 
explorations not only detracted from the gravitation in and around the special 
cases (i.e. Penrose tilings) but essentially proposed through analytical means 
to liberate the organizational potentials of the found tilings from their strong 
graphical appeals. 
Once comprehended as mere scaffolds, alternatives geometries could 
suddenly plot their courses past the tiles’ boundaries and present relatively 
complex pattern formations without compromising on the scaffolds’ efficiency. 
 
On one hand, the position taken for the thesis was an attempt to demonstrate 
that one can conceive of modular systems without the restrictions frequently 
attached to them; ‘repetitions of the same’. 
On the other hand, how far the quest for intricacy and irregularity can be 
stretched without falling into the gratuitous?  A difficult question which 
answers can begin to be legitimized by the call for efficiency of means: 
Minimum amount of formwork for maximum overall irregularities. 
This research would have reached its objectives if while interacting with a (full 
scale 4d NURBS) quasi roller for instance, the initial tiling its adjacency rules 
are based from and the fact it is made of only 6 tiles throughout, cannot be 
directly recognized; ‘repetitions of differences’. 
 
This motto summarizes an approach which may or not partially contribute to 
the advance of modular systems, but which nonetheless highlights the fact 
that modularity has plenty of space left to be explored under conducted 
guidelines. In this regard, the ‘modernist project’ might have not yet ended. 
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Appendix A:  Rotation matrices in 6d (x, y, z, a, b, c),  
 
15 matrices around xy, xz, xa, xb, xc, yz, ya, yb, yc, za, zb, zc, ab, ac, bc plane 
 
1)for xy 
         x           y       z     a    b    c      g 
x | cos(1)   sin(1)   0     0    0    0     px |       
y | -sin(1)  cos(1)   0     0    0    0     py |    
z |     0          0       1     0    0    0     pz | 
a |     0          0       0     1    0    0     pa |          times  vector |x, y, z, a, b, c, 1| 
b |     0          0       0     0    1    0     pb | 
c |     0          0       0     0    0    1     pc | 
g |    tx          ty      tz    ta   tb    tc    os | 
 
2)for xz 
          x       y         z     a    b    c      
x | cos(2)    0    sin(2)   0    0    0  | 
y |     0        1        0      0    0    0  |    
z | -sin(2)    0   cos(2)   0    0    0  | 
a |     0        0        0      1    0    0  | 
b |     0        0        0      0    1    0  | 
c |     0        0        0      0    0    1  | 
 
3)for xa 
          x      y     z       a       b    c        
x | cos(3)   0     0   sin(3)    0    0  | 
y |     0       1     0      0        0    0  |    
z |     0       0     1      0        0    0  | 
a | -sin(3)   0     0   cos(3)   0    0  | 
b |     0       0     0      0        1    0  | 
c |     0       0     0      0        0    1  | 
 
4)for xb 
         x        y     z    a        b     c        
x | cos(4)   0     0    0    sin(4)   0  | 
y |     0       1     0    0        0      0  |    
z |     0       0     1    0        0      0  | 
a |     0       0     0    1        0      0  | 
b | -sin(4)   0     0    0    cos(4)  0  | 
c |     0       0     0    0        0      1  | 
 
5)for xc 
         x        y     z    a    b       c        
x | cos(5)   0     0    0    0    sin(5) | 
y |     0       1     0    0    0       0     |    
z |     0       0     1    0    0       0     | 
a |     0       0     0    1    0       0     | 
b |     0       0     0    0    1       0     | 
c | -sin(5)   0     0    0    0   cos(5) | 
 
6)for yz 
      x        y         z        a     b   c        
x |  1       0          0        0    0    0  |    
y |  0    cos(6)   sin(6)   0    0    0  | 
z |  0   -sin(6)   cos(6)   0    0    0  | 
a |  0       0          0        1    0    0  | 
b |  0       0          0        0    1    0  | 
c |  0       0          0        0    0    1  | 
 
7)for ya 
      x        y       z       a       b     c        
x |  1        0       0       0       0     0  |    
y |  0    cos(7)   0   sin(7)    0     0  | 
z |  0        0       1       0       0     0  | 
a |  0   -sin(7)    0   cos(7)   0     0  | 
b |  0        0       0       0       1     0  | 
c |  0        0       0       0       0     1  | 
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8)for yb 
      x        y       z      a        b     c        
x |  1        0       0     0        0      0  |    
y |  0    cos(8)   0     0    sin(8)   0  | 
z |  0        0       1     0        0      0  | 
a |  0        0       0     1        0      0  | 
b |  0   -sin(8)    0     0   cos(8)   0  | 
c |  0        0       0     0        0      1  | 
 
9)for yc 
      x        y       z     a      b      c        
x |  1        0       0     0      0      0      |    
y |  0    cos(9)   0     0      0    sin(9) | 
z |  0        0       1     0      0      0      | 
a |  0        0       0     1      0      0      | 
b |  0        0       0     0      1      0      | 
c |  0   -sin(9)    0     0      0   cos(9) | 
 
10)for za 
      x     y         z           a         b    c        
x |  1     0         0           0         0    0  |    
y |  0     1         0           0         0    0  | 
z |  0     0    cos(10)   sin(10)   0    0  | 
a |  0     0   -sin(10)   cos(10)   0    0  | 
b |  0     0         0           0         1    0  | 
c |  0     0         0           0         0    1  | 
 
11)for zb 
      x     y         z       a          b      c        
x |  1     0         0       0          0      0  |    
y |  0     1         0       0          0      0  | 
z |  0     0    cos(11)  0    sin(11)   0  | 
a |  0     0         0       1          0      0  | 
b |  0     0   -sin(11)   0   cos(11)   1  | 
c |  0     0         0       0          0      0  | 
 
12)for zc 
      x     y         z       a     b       c        
x |  1     0         0       0     0       0       |    
y |  0     1         0       0     0       0       | 
z |  0     0    cos(12)  0     0    sin(12) | 
a |  0     0         0       1     0       0       | 
b |  0     0         0       0     1       0       | 
c |  0     0   -sin(12)   0     0   cos(12) | 
 
13)for ab 
      x     y      z       a             b         c        
x |  1     0     0        0             0         0  |    
y |  0     1     0        0             0         0  | 
z |  0     0     1        0             0         0  | 
a |  0     0     0   cos(13)    sin(13)    0  | 
b |  0     0     0   -sin(13)   cos(13)    0  | 
c |  0     0     0        0             0         1  | 
 
14)for ac 
      x     y     z        a         b        c        
x |  1     0     0        0        0         0     |    
y |  0     1     0        0        0         0     | 
z |  0     0     1        0        0         0     | 
a |  0     0     0   cos(14)   0    sin(14) | 
b |  0     0     0        0        1         0     | 
c |  0     0     0   -sin(14)   0   cos(14) | 
 
15)for bc 
      x      y      z    a       b           c        
x |  1     0     0     0        0           0      |    
y |  0     1     0     0        0           0      | 
z |  0     0     1     0        0           0      | 
a |  0     0     0     1        0           0      | 
b |  0     0     0     0   cos(15)  sin(15) | 
c |  0     0     0     0  -sin(15)  cos(15) | 
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Appendix B: Processing code snippets for 6d to 3d strip projection method 
 
Matrix mult(Matrix a, Matrix b) 
{ 
  Matrix result= new Matrix (a.cols, b.rows); 
  for (int i=0; i<b.rows; i++){ 
    for(int j=0; j<a.cols; j++){ 
      result.matrix[i][j]= 0.0; 
      for(int x=0; x<a.cols; x++){ 
        result.matrix[i][j]+= a.matrix[i][x]* b.matrix[x][j]; 
      } 
    } 
  } 
  return result; 
} 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
   void xform(Matrix b) 
  { 
    Vector result=new Vector(7); 
    for(int i=0; i<7; i++){ 
      result.vector[i]=0.0; 
      for(int j=0; j<7; j++){ 
        if(j!=6){ 
          result.vector[i]+=vector[j]*b.matrix[j][i]; 
        } 
        else{ 
          result.vector[i] +=b.matrix[j][i]; 
        } 
      } 
    } 
    for(int i=0; i<6; i++){ 
      vector[i]= result.vector[i]/result.vector[6]; 
    } 
  } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
void rot_yc(float ang_yc) 
  { 
    matrix[1][1]=cos(ang_yc); 
    matrix[5][1]=-sin(ang_yc); 
    matrix[1][5]=sin(ang_yc); 
    matrix[5][5]=cos(ang_yc); 
  } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
void invRot(Matrix inv) 
  { 
    rows=inv.rows; 
    cols=inv.cols; 
    for(int i=0; i<rows; i++){ 
      for(int j=0; j<cols; j++){ 
        matrix[i][j]=inv.matrix[j][i]; 
      } 
    } 
  } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
rotA=mult(p_xy,p_yz); 
  rotA=mult(rotA,p_xz); 
  rotA=mult(rotA,p_xa); 
  rotA=mult(rotA,p_ya); 
  rotA=mult(rotA,p_za); 
  rotA=mult(rotA,p_xb); 
  rotA=mult(rotA,p_yb); 
  rotA=mult(rotA,p_zb); 
  rotA=mult(rotA,p_ab); 
  rotA=mult(rotA,p_xc); 
  rotA=mult(rotA,p_yc); 
  rotA=mult(rotA,p_zc); 
  rotA=mult(rotA,p_ac); 
  rotA=mult(rotA,p_bc); 
 
  rotG=new Matrix(7,7); 
  rotG.invRot(rotA); 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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//test with inverse rotatons to determine the clipping plane. 
  Vector temp_test= new Vector((int)0, (int)0, 100, 100, 100, 100); 
 
temp_test.xform(rotG);//overall inverse rotation matrix 
 
//find diagonal for clipping thickness 
  Vector temp_1= new Vector(100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut, 100*zIn*zOut);  
    
  if(temp_test.vector[0]<0){ 
      temp_1.vector[0]=-temp_1.vector[0]; 
     } 
  if(temp_test.vector[1]<0){ 
    temp_1.vector[1]=-temp_1.vector[1]; 
  } 
  if(temp_test.vector[2]<0){ 
    temp_1.vector[2]=-temp_1.vector[2]; 
     } 
  if(temp_test.vector[3]<0){ 
     temp_1.vector[3]=-temp_1.vector[3]; 
    } 
  if(temp_test.vector[4]<0){ 
    temp_1.vector[4]=-temp_1.vector[4]; 
    } 
  if(temp_test.vector[5]<0){ 
    temp_1.vector[5]=-temp_1.vector[5]; 
   } 
 
  Matrix p6=new Matrix(7,7); 
  p6.makeTrans(425,425,0,0,0,0); 
  trans2=mult(rotA,p6);       
  temp_1.xform(trans2); 
 
  float diag= clip3d* temp_1.vector[2]; 
  float diag2= clip4d* temp_1.vector[3];  
  float diag3= clip5d* temp_1.vector[4];   
  float diag4= clip6d* temp_1.vector[5]; 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
for(int i=-2-incPt; i<2+incPt; i++){ 
    for(int j=-2-incPt; j<2+incPt; j++){ 
      for(int k=-2-incPt; k<2+incPt; k++){ 
        for(int m=-2-incPt; m<2+incPt; m++){ 
          for(int n=-2-incPt; n<2+incPt; n++){ 
            for(int o=-2-incPt; o<2+incPt; o++){ 
 
              Vector temp_q = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_x = new Vector((i+1)*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_y = new Vector(i*100*zIn*zOut, (j+1)*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_z = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, (k+1)*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_w = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_b = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, (n+1)*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_c = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, m*100*zIn*zOut, n*100*zIn*zOut, 
(o+1)*100*zIn*zOut); 
 
              Vector temp_w1 = new Vector(i*100*zIn*zOut, j*100*zIn*zOut, (k+1)*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_w2 = new Vector(i*100*zIn*zOut, (j+1)*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
              Vector temp_w3 = new Vector((i+1)*100*zIn*zOut, j*100*zIn*zOut, k*100*zIn*zOut, (m+1)*100*zIn*zOut, n*100*zIn*zOut, 
o*100*zIn*zOut); 
 
              stroke(0,100,0); 
              Matrix p5=new Matrix(7,7); 
              p5.makeTrans(425,425,transZ,transA,0,0); 
              trans=mult(rotA,p5); 
              temp_q.xform(trans); 
              temp_x.xform(trans); 
              temp_y.xform(trans); 
              temp_z.xform(trans); 
              temp_w.xform(trans); 
              temp_b.xform(trans); 
              temp_c.xform(trans); 
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//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
              //select and draw points 
              if (pointOn==true){ 
                //points 
                strokeWeight(1); 
                if ((sq(temp_q.vector[2])+sq(temp_q.vector[3])+sq(temp_q.vector[4])+sq(temp_q.vector[5])) 
                  <=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){ 
 
                  stroke(255,0,0); 
                  fill(255,0,0,0); 
                  ellipse(temp_q.vector[0], temp_q.vector[1],7,7); 
 
                } 
              } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
//lines circle method 
              stroke(255,opac2,255,opac3);//x_line=magenta 
              makeLine(temp_q, temp_x, diag, diag2, diag3, diag4); 
              stroke(opac2,255,opac2,opac3); //y_line=green 
              makeLine(temp_q, temp_y, diag, diag2, diag3, diag4); 
              stroke(opac2,opac2,255,opac3);//z_line=blue 
              makeLine(temp_q, temp_z, diag, diag2, diag3, diag4); 
              stroke(opac2,255,0,opac3);//a_line=yellow 
              makeLine(temp_q, temp_w, diag, diag2, diag3, diag4); 
              stroke(255,opac2,opac2,opac3);//b_line= 
              makeLine(temp_q, temp_b, diag, diag2, diag3, diag4); 
              stroke(255,255,255,opac3);//c_line=white 
              makeLine(temp_q, temp_c, diag, diag2, diag3, diag4); 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
          //6d 
                fill(0,0,155,opac1);//11 
                makeFace(temp_q, temp_c, temp_c1, temp_x,  diag, diag2, diag3, diag4);    
                fill(125,0,0,opac1);//12 
                makeFace(temp_q, temp_c, temp_c2, temp_y,  diag, diag2, diag3, diag4);    
                fill(155,155,0,opac1); //13 
                makeFace(temp_q, temp_c, temp_c3, temp_z,  diag, diag2, diag3, diag4);    
                fill(0,100,50,opac1); //14 
                makeFace(temp_q, temp_c, temp_c4, temp_w,  diag, diag2, diag3, diag4);  
                fill(50,100,0,opac1); //15 
                makeFace(temp_q, temp_c, temp_c5, temp_b,  diag, diag2, diag3, diag4); 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
void makeLine(Vector A, Vector B, float diag, float diag2, float diag3,float diag4){ 
  if ((sq(A.vector[2])+sq(A.vector[3])+sq(A.vector[4])+sq(A.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){ 
    if ((sq(B.vector[2])+sq(B.vector[3])+sq(B.vector[4])+sq(B.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){ 
      line(A.vector[0], A.vector[1], A.vector[2], B.vector[0], B.vector[1], B.vector[2]); 
    } 
  } 
} 
 
void makeFace(Vector A, Vector B, Vector C, Vector D, float diag, float diag2, float diag3, float diag4){   
  if ((sq(A.vector[2])+sq(A.vector[3])+sq(A.vector[4])+sq(A.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){  
    beginShape();                 
    noStroke(); 
    vertex(A.vector[0], A.vector[1], A.vector[2]); 
    if ((sq(B.vector[2])+sq(B.vector[3])+sq(B.vector[4])+sq(B.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){  
      vertex(B.vector[0], B.vector[1], B.vector[2]); 
      if ((sq(C.vector[2])+sq(C.vector[3])+sq(C.vector[4])+sq(C.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){  
        vertex(C.vector[0], C.vector[1], C.vector[2]);  
        if ((sq(D.vector[2])+sq(D.vector[3])+sq(D.vector[4])+sq(D.vector[5]))<=(sq(diag)+sq(diag2)+sq(diag3)+sq(diag4))*0.25){   
          vertex(D.vector[0], D.vector[1], D.vector[2]);            
          endShape(); 
        } 
      } 
    } 
  } 
} 
 
 
 
 



 
 

Appendix C: Adjacency rules 
 
 
Case study #7 (4d tiling) 
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Appendix D: Graph variables and script snippets (Generative Components) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D1.  two examples of graph variable tables for 4d NURBS tilings 
 
transaction modelBased "GraphFunction  polyBottom" 
{ 
    feature polyBottom GC.GraphFunction 
    { 
        Definition  = function (CoordinateSystem cs1 ,Polygon poly ,int start , BSplineCurve bs,double scalarZ )            
                                 
                       {  
                           //breakpoint; 
                           Point projPt={}; 
                           DVector3d vect3dZ ={}; 
                           DPoint3d ptD3d1={};     
                           for (int i = 0; i < poly.Vertices.Count-1;i++) 
                                { 
                                  projPt[i]= new Point ();                                           
                                  projPt[i].ProjectOnToCurve(bs,poly.Vertices[i]);                             
                                  vect3dZ[i] = new DVector3d(); 
                                  vect3dZ[i].Init(  projPt[i].DPoint3d,poly.Vertices[i].DPoint3d); 
                                  vect3dZ[i].NormalizeInPlace();  
                                  vect3dZ[i].ScaleInPlace(scalarZ);                                                    
                                  ptD3d1[i]= new DPoint3d();                                            
                                  ptD3d1[i].Init(poly.Vertices[i].DPoint3d); 
                                  ptD3d1[i].AddInPlace(vect3dZ[i]); 
                                }                                                   
                           pt= new Point(); 
                           pt.FromDPoint3d(cs1, ptD3d1);                            
                           Polygon polyOffset= new Polygon (); 
                           polyOffset.ByVertices(pt);                                  
                           return polyOffset; 
                           } 
} 
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transaction modelBased "graph function pt" 
{ 
    feature pt GC.GraphFunction 
    { 
        Definition  = function (CoordinateSystem cs , Polygon poly , int start , int  end,  int start1 ,BSplineCurve bs , double scalarX ,     
                                           double scalarY,  double scalarZ , double scalarOff)       
            
          { 
               //breakpoint; 
               iCount=0; 
               Point  pt= {}; 
                                         
               // vector X 
               DVector3d vect3dX= new  DVector3d ();           
               vect3dX.Init( poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);  
               vect3dX.NormalizeInPlace (); 
               vect3dX.ScaleInPlace (scalarX);                                        
               DPoint3d pt3dBase = new DPoint3d ();  
               pt3dBase.Init(poly.Vertices[start].DPoint3d); 
               pt3dBase.AddInPlace(vect3dX);          
               Point ptB = new Point (); 
               ptB.FromDPoint3d(cs, pt3dBase); 
                                              
               //vector y 
               Point projPt = new Point();    
               projPt.ProjectOnToCurve(bs, ptB);                               
               DVector3d vect3DProj = new DVector3d(); 
               vect3DProj.Init( ptB.DPoint3d ,projPt.DPoint3d); 
               vect3DProj.NormalizeInPlace();                                        
               DVector3d vect3dXn= new  DVector3d();             
               vect3dXn.Init(poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);  
               vect3dXn.NormalizeInPlace(); 
               DVector3d vect3dYCrossP = new DVector3d();            
               vect3dYCrossP=DVector3d.FromCrossProduct (vect3dXn, vect3DProj); 
               vect3dYCrossP.NormalizeInPlace();                                  
               DVector3d vect3dY = new DVector3d();                    
               vect3dY=DVector3d.FromCrossProduct (vect3dX, vect3DProj); 
               vect3dY.NormalizeInPlace();  
               vect3dY.ScaleInPlace(scalarY); 
                                               
               //vector z                                                                                                                
               DVector3d vect3dZ = new DVector3d(); 
               vect3dZ.Init(ptB.DPoint3d ,projPt.DPoint3d); 
               vect3dZ.NormalizeInPlace();  
               vect3dZ.ScaleInPlace(scalarZ);   
                
               DPoint3d pt3d= new DPoint3d();     
               pt3d.Init(poly.Vertices[start].DPoint3d); 
               pt3d.AddInPlace(vect3dX); 
               pt3d.AddInPlace(vect3dY); 
               pt3d.AddInPlace(vect3dZ); 
                                       
               //vector offset 
               DVector3d vect3dXOff= new DVector3d();                                              
               vect3dXOff.Init(poly.Vertices[start].DPoint3d,poly.Vertices[end].DPoint3d);  
               vect3dXOff.NormalizeInPlace();                                
               DVector3d vect3DProjOff= new DVector3d(); 
               vect3DProjOff.Init(poly.Vertices[start1].DPoint3d ,pt3d); 
               vect3DProjOff.NormalizeInPlace();                                             
               DVector3d vect3dOff = new DVector3d();                    
               vect3dOff=DVector3d.FromCrossProduct(vect3DProj ,vect3DProjOff); 
               vect3dOff.NormalizeInPlace(); 
               vect3dOff.ScaleInPlace(scalarOff);                                                                         
               DPoint3d pt3d1= new DPoint3d(); 
               pt3d1.Init(pt3d); 
               pt3d1.AddInPlace(vect3dOff);                             
               iCount=0; 
               pt[0]= new Point(); 
               pt[0].FromDPoint3d(cs, pt3d); 
               iCount++; 
               pt[1]= new Point(); 
               pt[1].FromDPoint3d(cs, pt3d1); 
               iCount++;  
                           
               return pt;                               
             }; 
       } 
} 
 
 

D2.  Script showing DPoint 3d/DVector3d geometry employed for NURBS adaptation 

 



 
Appendix E: Drawings of aperiodic structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D1.  4d to 2d 
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D2.  4d to 3d 
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D3.  4d to 2d NURBS adaptation  
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D4.  5d to 2d  
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D5.  5d to 3d 
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D6.  6d to 3d 
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Appendix F: Fabrication of tiles’ field, formwork and cast 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F1.  3d projection of a 4d tiling 
     Dimension: 500x500x90 
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F2.  
     Dimension: 500x500x90 

NURBS field from 2d projection of 4d tiling (z parameters only) 
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F3.  NURBS field from 2d projection of 4d tiling (x, y, z parameters) 
       Dimension: 500x500x90 
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F4.  Two-part mould (negative) for a 4d NURBS porous field 
      Dimension: 2x (500x500x90) 
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F5.  Three cast tiles assembly from 4d tiling with working tangencies 
         Dimension: 1100x400x300 
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F6.  Six cast tiles assembly from a 4d tiling with working tangencies and cables through 
         Dimension: 1400x700x300 
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F7.  Example of another tile’s formwork 
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F8. NURBS tile from quasi cylinder; one bed and positive tile for fibreglass mould 
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F9.  Examples of formworks for other shapes of tiles 
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F10.  Formwork before and after casting 
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F11. Ready formwork for casting 
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