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Trapped waves between submerged obstacles
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Free-surface flows past submerged obstacles in a channel are considered. The fluid
is assumed to be inviscid and incompressible and the flow to be irrotational. In
previous work involving a single obstacle (Dias & Vanden-Broeck 2002), new solutions
called ‘generalized hydraulic falls’ were found. These solutions are characterized by
a supercritical flow on one side of the obstacle and a train of waves on the other.
However, in the case of a single submerged object, the generalized hydraulic falls are
unphysical because the waves do not satisfy the radiation condition. In this paper
new solutions for the flow past two obstacles of arbitrary shape are computed. These
solutions are characterized by a train of waves ‘trapped’ between the obstacles. The
generalized hydraulic falls are shown to describe locally the flow over one of the two
obstacles when the distance between the two obstacles is large.

1. Introduction
Free-surface potential flows generated by disturbances moving at a constant

velocity in a channel of finite depth are considered. The disturbances can be a
pressure distribution with bounded support, a surface-piercing object (i.e. a ship) or
a submerged object. We take a frame of reference moving with the disturbance(s)
and seek steady solutions. These solutions also describe the free-surface flows past
one or several fixed disturbances in a current. The results presented in this paper are
qualitatively independent of the nature of the disturbances.

Using weakly nonlinear theories and fully nonlinear computations, Dias & Vanden-
Broeck (2002) showed that in the case of a single obstacle there are four basic types
of solutions in which the flow is required to be uniform in the far field. Due to the
reversibility of potential flows, this uniform stream can be either at the front or the
back of the disturbance. We introduce Cartesian coordinates with the x-axis parallel
to the bottom and assume without loss of generality that the uniform stream occurs
as x → ∞. We define the Froude number

F =
U

(gH )1/2
, (1.1)

where U and H are the constant velocity and depth as x → ∞ and g is the acceleration
due to gravity. When the flow is also uniform as x → −∞, we introduce in addition
the Froude number

F ∗ =
U ∗

(gH ∗)1/2
. (1.2)
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Figure 1. The four basic free-surface flows past a single submerged obstacle: (a) Subcritical
uniform flow upstream and waves downstream. (b) Supercritical flow on both sides. (c) Sub-
critical flow upstream and supercritical flow downstream (hydraulic fall). (d) Wavy subcritical
flow upstream and supercritical flow downstream (generalized hydraulic fall). The horizontal
scale is the same as the vertical scale. All solutions are computed solutions based on the full
incompressible Euler equations with a free surface. Since the flows are reversible, the arrows
which indicate the direction of the flow can in principle be reversed.

Here U ∗ and H ∗ are the constant velocity and depth as x → −∞. The uniform flow
at infinity is called supercritical if F > 1 and subcritical if F < 1. Similarly the flow as
x → −∞ (when uniform) is called supercritical if F ∗ > 1 and subcritical if F ∗ < 1.

Solutions of the first type have a subcritical flow as x → ∞ (i.e. F < 1) and
a train of waves as x → −∞ (see figure 1a). Solutions of the second type have
uniform supercritical flows both upstream and downstream and are characterized by
F =F ∗ > 1 (see figure 1b). The third type of solution (see figure 1c) is a hydraulic fall
with a uniform subcritical flow as x → −∞ (i.e. F ∗ < 1) and a uniform supercritical
flow as x → ∞ (i.e. F > 1). The fourth type of solution (see figure 1d) is similar to the
third but has a train of waves as x → −∞. The first three types of solution are classical
and have been studied by many previous investigators (see for example Lamb 1932;
Forbes & Schwartz 1982; Vanden-Broeck 1988; Forbes 1988; Dias & Vanden-Broeck
1989, 2002). Solutions of the fourth type are relatively new and have only been
calculated in the fully nonlinear regime by Dias & Vanden-Broeck (2002). Dias &
Vanden-Broeck called this fourth type of flow a generalized hydraulic fall to contrast
it with the classical hydraulic fall (third type of solution) which is characterized by a
uniform stream upstream.

Potential flows are reversible and the direction of the arrows in figure 1 can in
principle be reversed. This is, for example, the case for the flow of figure 1(b).
However when waves are present on the free surface, physically relevant solutions
have to satisfy the radiation condition. This condition, which requires that there is no
energy coming from infinity, implies that waves can only occur on the downstream
portion on the flow. The direction of the flow (i.e. the direction of the arrow) has
been chosen in figure 1(a) so that the radiation condition is satisfied. However the
flow of figure 1(d) does not satisfy the radiation condition. One might attempt to
resolve this difficulty by reversing the direction of the arrow. Unfortunately hydraulic
falls are only observed with subcritical flow upstream, i.e. with the orientation of the
arrows shown in figure 1(c, d) (see for example the monograph by Viollet et al. 1998).
In conclusion, the physical relevance of the flow of figure 1(d) is limited in the case
of a single submerged obstacle.

Here, as in the rest of the paper, a frame of reference moving with the obstacles
is chosen and the flows are assumed to be steady. Figure 2 shows a flow past two
submerged obstacles with a train of waves ‘trapped’ between the obstacles. The flow is
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Figure 2. An example of a flow past two submerged obstacles: (a) Global picture (the
horizontal scale is the same as the vertical scale). (b) Blow-up of the region in the dotted box.
The uniform flow is subcritical upstream. The uniform flow is supercritical downstream. Waves
are trapped between the obstacles.

uniform as x → −∞ so that the radiation condition is now satisfied. Solutions similar
to the one sketched in figure 2 have not been calculated before in the fully nonlinear
regime. Pratt (1984) performed experiments with two obstacles and interpreted them
in the framework of a weakly nonlinear model. He observed several types of steady
solutions. In particular, he found solutions with a regular train of waves between
the obstacles, the flow being uniform and subcritical upstream of the first obstacle
and uniform and supercritical downstream of the second obstacle (see the sketch in
Pratt’s figure 4a and the photograph of an experimental flow in Plate 1). Pratt also
found that only the details of the wave amplitudes and lengths depend on obstacle
shape. In the present paper we provide conclusive numerical evidence of the existence
of solutions with trapped waves between the obstacles.

The portion of the flow of figure 2 on top of the second obstacle is similar to the
one shown in figure 1(d). The portion of the flow on top of the first obstacle is similar
to the one shown in figure 1(a) with x replaced by −x. We show below that these
two portions of the flow of figure 2 approach those of figures 1(a) and 1(d) in the
limit as the distance between the obstacles tends to infinity.

The problem of figure 2 is formulated in § 2, the numerical procedure is described
in § 3 and the numerical results are discussed in § 4.

2. Formulation
The flow configuration of figure 2 is considered. It is bounded below by a horizontal

bottom, except for the presence of one or several bumps, and above by a free surface.
The fluid is assumed to be inviscid and incompressible and the flow to be irrotational.
We introduce Cartesian coordinates with the x-axis along the flat part of the bottom
and the y-axis directed vertically upwards. Gravity is acting in the negative y-
direction. As x → ∞, the flow approaches a uniform stream with constant velocity U

and constant depth H . We define dimensionless variables by choosing U as the unit
velocity and H as the unit length. The Froude number (1.1) is assumed to be greater
than 1, so that the flow is supercritical as x → ∞. The problem is formulated in terms
of the velocity potential φ(x, y). This function satisfies Laplace’s equation

φxx + φyy = 0 (2.1)

in the flow domain with the boundary conditions

φ2
x + φ2

y +
2

F 2
y = 1 +

2

F 2
on y = η(x), (2.2)

φy = φxηx on y = η(x), (2.3)
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φy = φxBx on y = B(x), (2.4)

φx → 1, η(x) → 1 as x → ∞. (2.5)

Here y = η(x) is the (unknown) equation of the free surface and y =B(x) is the
(prescribed) equation of the bottom. Equation (2.2) is the dynamic boundary condition
derived from Bernoulli’s equation and (2.3) and (2.4) are the kinematic boundary
conditions on the free surface and on the bottom respectively. The condition (2.5)
forces a uniform flow at infinity with velocity and depth both equal to 1. This
concludes the formulation of the problem. We seek two functions φ(x, y) and η(x)
satisfying (2.1) together with the boundary conditions (2.2)–(2.5). One of the difficulties
encountered in solving this type of problem is to find the number P of independent
dimensionless parameters needed to determine a solution uniquely. It was shown by
the analytical and numerical work of Dias & Vanden-Broeck (2002) and others that
P depends on the flow under study. In order to understand the importance of the
number of parameters P , one can rely on experiments. Imagine that the obstacles
have given shapes and sizes. Then two obvious parameters that one can vary are
the speed of the towed obstacle and the water depth. Intuitively, one expects to find
a unique solution for each pair of speed and depth (or equivalently each pair of
Froude number and dimensionless obstacle size). And indeed P = 2 for the flows
of figure 1(a) and 1(b). But P = 1 for the flow of figure 1(c) and P = 3 for the flow of
figure 1(d).

3. Numerical procedure
The problem is first reformulated as a system of integro–differential equations by

following the work of Forbes & Schwartz (1982), Belward & Forbes (1993), Forbes
(1988) and Dias & Vanden-Broeck (2002). The free surface is described parametrically
by x = X(s) and y = Y (s), where s is the arclength. Therefore we require

X′2(s) + Y ′2(s) = 1, (3.1)

where the prime denotes derivative with respect to s. We choose s = 0 at the point
x = 0 on the free surface (i.e. X(0) = 0). Following Belward & Forbes (1993), we derive
the integral equations

− π[φ′(s)X′(s) − γ ] =

∫ ∞

−∞

[φ′(σ ) − γX′(σ )][Y (σ ) − Y (s)] − γ [X(σ ) − X(s)]Y ′(σ )

[X(σ ) − X(s)]2 + [Y (σ ) − Y (s)]2
dσ

+

∫ ∞

−∞

γB ′(σ )[σ − X(s)] + [B(σ ) − Y (s)]{ū(σ )[1 + B ′(σ )2] − γ }
[σ − X(s)]2 + [B(σ ) − Y (s)]2

dσ (3.2)

and

− π[ū(x) − γ ] =

∫ ∞

−∞

[φ′(σ ) − γ ][Y (σ ) − B(x)] − γ [X(σ ) − x]Y ′(σ )

[X(σ ) − x]2 + [Y (σ ) − B(x)]2
dσ

+

∫ ∞

−∞

γB ′(x)[σ − x] + [B(σ ) − B(x)]{ū(σ )[1 + B ′(σ )2] − γ }
[σ − x]2 + [B(σ ) − B(x)]2

dσ, (3.3)

where φ(s) is the velocity potential on the free surface and ū(x) the horizontal
component of the velocity on the bottom. The first integral in (3.2) and the second
integral in (3.3) are Cauchy principal values. Equations (3.2) and (3.3) are obtained
by applying the Cauchy integral equation formula to the function φx − γ − iφy with
a contour consisting of the free surface, the bottom of the channel and two vertical
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lines at x = −∞ and x = ∞. The constant γ is chosen as the undisturbed velocity as
x → −∞ (a precise definition is given later).

Next the dynamic boundary condition (2.2) is rewritten as

[φ′(s)]2 +
2

F 2
[Y (s) − 1] = 1. (3.4)

This concludes the reformulation of the problem as a system of integro–differential
equations. We seek four unknown functions X(s), Y (s), φ(s) and ū(x) satisfying
(3.1)–(3.4). To solve these equations numerically we introduce the N mesh points

sI = − (N − 1)E

2
+ (I − 1)E, I = 1, . . . , N, (3.5)

on the free surface and the M mesh points

xI = − (M − 1)h

2
+ (I − 1)h, I = 1, . . . , M, (3.6)

on the bottom. The intervals of the discretization are E and h. We also use the
midpoints

sm
I =

sI + sI+1

2
, I = 1, . . . , N − 1, (3.7)

and

xm
I =

xI + xI+1

2
, I = 1, . . . , M − 1. (3.8)

For clarity we describe the numerical scheme for the flow configurations of figures 1(c)
and 1(d). The length of the disturbance is denoted by 2L2 and its maximum thickness
by 2A2. The appropriate changes to compute the flow of figure 2 will be described in
§ 4. The 3N + M + 3 unknowns are 2A2, F , γ , X′

I = X′(sI ), Y ′
I (sI ), φ′(sI ), I =1, . . . , N

and ū(xI ), I =1, . . . , M . In all the calculations it is assumed that L2 (and L1 in the
case of two obstacles) is (are) given.

We satisfy (3.2) at the mesh points sm
I . The integrals are approximated by the

trapezoidal rule with a summation over the mesh points sI and xI . The symmetry of
the quadrature and of the discretization enables us to evaluate the Cauchy principal
value integral (first integral in (3.2)) as if it were an ordinary integral. This leads
to N − 1 algebraic equations. Similarly M − 1 algebraic equations are obtained by
satisfying (3.3) at the mesh points xm

I . The next 2N equations are derived by satisfying
(3.1) and (3.4) at the mesh points sI . Two more equations are obtained by imposing

ū(xM ) = 1 (3.9)

and

γ 2 +
2

γF 2
− 1 − 2

F 2
= 0. (3.10)

Relation (3.9) forces a uniform stream with velocity 1 as x → ∞ while relation (3.10)
defines the undisturbed velocity as x → −∞.

We have now 3N +M equations with 3N +M +3 unknowns. Three more equations
are needed. As explained at the end of § 2, these last three equations depend on the
flow under study. For the flow of figure 1(c) (P = 1), these three equations are defined
as follows. The free surface is forced to be flat as x → −∞ by imposing the conditions

Y ′
1 = Y ′

2 = 0, (3.11)
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Figure 3. Computed hydraulic fall past a single submerged obstacle (A1 = 0) in the shape of
the square of a cosine. The obstacle is characterized by A2 = 0.4 and L2 = 3.2. The Froude
number is found as part as the solution: F = 1.977.

and the value of A2 is fixed. For the flow of figure 1(d) (P = 3), the three extra
equations are defined by fixing values of F , A2 and by imposing

Y (s1) = a, (3.12)

where a is prescribed. Equation (3.12) fixes the value of Y at the first mesh point. This
condition does not have a physical meaning but is a convenient numerical way to fix
the third parameter. After a solution has been computed, it can be characterized by
the amplitude of the waves instead of the parameter a. For a given value of L2, we
now have a system of 3N + M + 3 nonlinear algebraic equations with 3N + M + 3
unknowns. This system is solved by Newton iterations.

4. Numerical results
The numerical computations were performed by assuming that the obstacles have

‘cosine’ profiles. Therefore we write

B(x) = 2A1 cos2

(
π(x + l)

2L1

)
, −L1 < x + l < L1,

B(x) = 2A2 cos2

(
πx

2L2

)
, −L2 < x < L2,

B(x) = 0, otherwise,




(4.1)

where A1, A2, l, L1 and L2 are prescribed constants for all the flows we consider.
When A1 �= 0 and A2 = 0 or A1 = 0 and A2 �= 0, (4.1) corresponds to a single obstacle.
When A1 �= 0 and A2 �= 0, (4.1) describes two obstacles separated by the distance l.
In (4.1), the origin x = 0 is chosen at the centre of the second obstacle.

We first describe results for one obstacle (A2 �= 0, A1 = 0). These results are
qualitatively similar to those previously obtained for triangular obstacles by Dias &
Vanden-Broeck (1989) and for circular obstacles by Forbes (1988), Vanden-Broeck
(1988) and Dias & Vanden-Broeck (2002). Typical profiles are shown in figures 3 and
4. Figure 3 shows a hydraulic fall for L2 = 3.2, A2 = 0.4 and the (unknown) Froude
number F = 1.977. The flow is supercritical as x → ∞ and subcritical as x → −∞.
There are no waves on the free surface. For a given value of L2, the hydraulic falls
define a one-parameter family of solution (P = 1). This means that solutions are
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Figure 4. Computed generalized hydraulic fall past a single submerged obstacle (A1 = 0) in
the shape of the square of a cosine. The obstacle is characterized by A2 = 0.4 and L2 = 3.2.
The prescribed Froude number is F = 1.977. Plots (a) and (b) differ by the amplitude of the
waves, which is prescribed.

uniquely defined by fixing one parameter, for example A2. The value of the Froude
number F is then found as part of the solution. Figure 4 shows some generalized
hydraulic falls. This type of solution was first computed by Dias & Vanden-Broeck
(2002) in the fully nonlinear case. For a given value of L2, these solutions form a
three-parameter family of solutions (P = 3). This means that a solution is uniquely
defined by fixing three parameters, for example A2, F and the amplitude of the waves
on the free surface.

Solutions with two obstacles similar to the one of figure 2 have been observed
experimentally by Pratt (1984). In his experiments, the obstacles are fixed and water
is circulated through the flume by a variable-speed pump. The choice (4.1) for the
shape of the obstacles agrees fairly well with the experimental set up of Pratt. In a
frame of reference moving with the obstacles (or in the laboratory frame of reference
in the case of Pratt’s experiments), the flow is in the direction of the arrow of figure 2.
The generalized hydraulic falls of figure 4 have not been observed experimentally in
the case of one obstacle. This is consistent with the fact that the waves in figure 4
do not satisfy the radiation condition (which requires that there is no supply of
energy from infinity). It is shown below that the generalized hydraulic falls of figure 4
describe locally free-surface flows with waves trapped between the obstacles.

Typical free-surface flows past two obstacles (A1 �= 0, A2 �= 0) are shown in
figures 5(a) and 5(b). These solutions were obtained by using the scheme of § 3, with
A1, A2 and l fixed. This means that we prescribe values of L1, L2, A1 and l in (4.1) and
define the last three equations (see discussion at the end of § 3) by fixing A2 and impos-
ing (3.11). The flow is uniform and supercritical as x → ∞ and uniform and subcritical
as x → −∞. There is a train of waves trapped between the obstacles. Since there are
no waves in the far field the radiation condition is satisfied. As the distance l between
the obstacles increases, the flow on top of the obstacle centred at x = 0 approaches
the generalized hydraulic fall past a single obstacle (see examples in figure 4). This is
shown explicitly in figures 5(c) and 6. Figure 5(c) shows a solution with trapped waves.
Figure 6 shows a generalized hydraulic fall which agrees with the portion of flow of
figure 5(c) near x =0. This solution was computed by assigning to F and A2 the same
values as those for the flow of figure 5(c) and adjusting the value of a in (3.12) so that
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Figure 5. Computed hydraulic fall past two submerged obstacles in the shape of the square
of a cosine. Waves are trapped between the obstacles. The obstacles are characterized by
A2 = 0.4, L1 = 0.8, L2 = 3.2, and (a) A1 = 0.3, l = 12.5; (b) A1 = 0.4, l = 20; (c) A1 = 0.075,
l = 20. The Froude number is found as part of the solution: (a) F = 1.976, (b) F = 1.971,
(c) F = 1.976.

the waves in figure 6 have the same amplitude as in figure 5(c). An argument based on
weakly nonlinear theory can be given to convince the reader that the flow of figure 5(c)
indeed approaches the generalized hydraulic fall of figure 6. Dias & Vanden-Broeck
(2002) showed that under some assumptions (long waves, small bump), the flow past
an obstacle can be described by the forced Korteweg–de Vries equation

ηxx + 9
2
η2 − 6(F ∗ − 1)η = −3B(x), (4.2)
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Figure 6. Computed generalized hydraulic fall past a single submerged obstacle (A1 = 0) in
the shape of the square of a cosine. The obstacle is characterized by A2 = 0.4 and L2 = 3.2.
The prescribed Froude number is F = 1.976.
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Figure 7. Phase planes corresponding to the forced Korteweg–de Vries equation (4.2). The
fixed points are indicated. (a) Unforced bounded solutions. (b) Trajectory corresponding to
the subcritical flow of figure 1(a) with x replaced by −x. There is a negative jump in ηx from
the origin to the periodic wave. (c) Trajectory corresponding to the flow of figure 6. There is a
negative jump in ηx from the periodic wave to the solitary wave. (d) Trajectory corresponding
to the flow of figure 5(c). The phase plane (d) simply is a superposition of the phase planes
(b) and (c). There are two jumps in ηx , one from the origin to the periodic wave and one from
the periodic wave to the solitary wave.
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where F ∗ is the Froude number (1.2) and η the deviation from the water level
at x = −∞. For obstructions whose height is comparable with the length of the
obstruction base (‘local’ forcing), the forcing can be approximated by the Dirac delta
function in the dimensionless long-wave coordinates. Then the problem reduces to
seeking solutions which are continuous and bounded for all x, and satisfy

ηxx + 9
2
η2 − 6(F ∗ − 1)η = 0 for x �= xbump, ηx(x

−
bump) − ηx(x

+
bump) = 3Q,

where xbump denotes the location of the bump and Q the bump size. The jump
condition is obtained by integrating (4.2) from x−

bump to x+
bump. In the presence of two

obstacles, there are two jumps, say at x = x1
bump and x = x2

bump. Figure 7 shows four
phase planes: one corresponding to the unforced equation (4.2), one corresponding
to the flow of figure 1(a) with x replaced by −x, one corresponding to the flow of
figure 1(d) (or 6), and one corresponding to the flow of figure 5(c). Without forcing,
the non-trivial bounded solutions are either cnoidal waves going around the origin
η = 0, ηx =0, or a solitary wave (figure 7a). In the subcritical flow of figure 1(a) with
x replaced by −x, the solution is uniform for x < 0 (η = 0) and it is a cnoidal wave
for x > 0 (figure 7b). In the supercritical flow of figure 6, the solution is a cnoidal
wave for x < 0 and it follows the solitary wave solution for x > 0 (figure 7c). In the
two-obstacle flow of figure 5(c), the solution is uniform for x < x1

bump (η = 0), a cnoidal
wave for x1

bump <x2
bump and a solitary wave for x >x2

bump (figure 7d). Increasing the
distance between obstacles merely increases the number of waves without changing
the lengths or amplitudes of the existing waves, as already noticed by Pratt (1984).
The above description generalizes to forcings which are not necessarily Dirac delta
functions, thus confirming that the flow on top of the second obstacle is a generalized
hydraulic fall while the flow on top of the first obstacle is a subcritical wavy flow.

This work was partially supported by EPSRC, the National Science Foundation
(NSF) and Alliance (the Franco-British Joint Research Programme of the British
Council, with Project Number 05697WF).

REFERENCES

Belward, S. R. & Forbes, L. K. 1993 Fully non-linear two-layer flow over arbitrary topography.
J. Engng Maths 27, 419–432.

Dias, F. & Vanden-Broeck, J.-M. 1989 Open channel flows with submerged obstructions. J. Fluid
Mech. 206, 155–170.

Dias, F. & Vanden-Broeck, J.-M. 2002 Generalised critical free-surface flows. J. Engng Maths 42,
291–301.

Forbes, L. K. 1988 Critical free-surface flow over a semi-circular obstruction. J. Engng Maths 22,
3–13.

Forbes, L. K. & Schwartz, L. W. 1982 Free-surface flow over a semicircular obstruction. J. Fluid
Mech. 114, 299–314.

Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.

Pratt, L. J. 1984 On nonlinear flow with multiple obstructions. J. Atmos. Sci. 41, 1214–1225.

Vanden-Broeck, J.-M. 1988 Free-surface flow over a semi-circular obstruction in a channel. Phys.
Fluids 30, 2315–2317.

Viollet, P.-L., Chabard, J.-P., Esposito, P. & Laurence, D. 1998 Mécanique des Fluides Appliquée.
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