
J. Fluid Mech. (2001), vol. 430, pp. 169–207. Printed in the United Kingdom

c© 2001 Cambridge University Press

169

On ‘spot’ evolution under an adverse
pressure gradient

By F. T. S M I T H AND S. N. T I M O S H I N
Department of Mathematics, University College London,

Gower Street, London WC1E 6BT, UK

(Received 9 June 1999 and in revised form 11 September 2000)

The unsteady travelling ‘spots’ or spot-like disturbances are produced, in an otherwise
planar boundary layer, by an initial impulse/blip, from wall forcing or from nearby
external forcing. Theory and computations are described for the evolving spot-like
structure, yielding initial-value problems for inviscid spot-like disturbances, commenc-
ing near the onset of an adverse pressure gradient. A transient stage incorporates the
initial conditions, following which adverse pressure gradient effects become significant.
Leading and trailing critical layers then form, which confine and define the spot-like
disturbance, and these depart from the wall downstream accompanied by disturbance
amplification and mean flow distortion. The interplay of adverse pressure gradient ef-
fects with three-dimensionality, nonlinearity and non-parallelism is considered in turn.

Three-dimensional effects provoke a universal closed planform of spot-like distur-
bance, which has a different side behaviour from the zero-gradient case. Nonlinear
interactions eventually change the internal structure, particularly at the spot-like
disturbance leading edge, while pointing to the mean-flow alteration underhanging
the spot-like disturbance and to a pressure-feedback alteration for the region behind
the spot-like disturbance. These two alterations offer complementary mechanisms for
describing the calmed region trailing a spot-like disturbance, in which an attached
thinned wall layer is identified. Non-parallel effects lead to enhanced spot-like distur-
bance growth and larger-scale/shorter-scale interactive behaviour downstream. The
approach to separation is also considered, yielding maximal growth for small spot-like
disturbances at 5/6 of the way from the minimum pressure position to the separation
position. Links with recent experiments on adverse-gradient spot-like disturbances
and with findings on calmed region properties are investigated, as well as the unsteady
forcing effects from an incident relatively thick vortical wake outside the boundary
layer.

1. Introduction
The creation of so-called ‘spots’ of unsteady (spatially confined) transitional or

turbulent disturbed motion within an otherwise steady boundary layer is of much
concern in engine flow design and elsewhere. Here, the term ‘spot’ is used to denote a
spot-like disturbance or, in two dimensions, a strip. ‘Spot’ propagation models are used
in turbomachinery transition predictions (as described by Abu Ghannam & Shaw
1980; Gostelow et al. 1993; Clarke, Jones & LaGraff 1994; Narasimha 1997; Johnson
1997; for instance) but are also relevant to other contexts with deep-transition physics
(for example Smith & Bowles 1992; Li et al. 1998; Savin, Smith & Allen 1999). Most
of the many ‘spot’ experiments are for basic boundary layers under nominally zero
pressure gradient, as discussed in the reviews in the references above.
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Gostelow and colleagues (1993, 1994) recently led the study of the effects of adverse
pressure gradients, which are observed to provoke much larger spreading rates of the
‘spot’ planform and quite distinct off-centre effects, among many other important
new features which have to be taken into account compared with zero or favourable
gradient cases. See also Seifert & Wygnanski (1995), Seifert (1997), Gostelow et al.
(1997), van Hest (1997) and Howell (1998). Computationally, direct simulations have
yielded relatively little on adverse gradient effects, especially concerning their physical
understanding, but empirically based modelling has been performed by Johnson (1997,
1998), Solomon, Walker & Gostelow (1996), Johnson & Ercan (1996) and Steelant
& Dick (1996). Little basic theoretical nonlinear study without empiricism has been
made for ‘spots’ until quite recently: see references later in this section. Any such
study was without significant adverse pressure gradients.

On compressor and turbine blades there are substantial areas of adverse pressure
gradient, owing to high loading. These areas are commonly observed to leave enhanced
calmed regions trailing behind any travelling ‘spot’ disturbance (see Gostelow et al.
1997), the calmed regions being of practical importance in the production of extensive
patches of laminar or relaminarized flow on the blades and being associated in practice
(observations by Gostelow, Hodson, Jones, Seifert) with the production of relatively
thin attached layers near the wall behind the ‘spot’.

The lack of, and need for, deep physical understanding of ‘spots’ was highlighted
at the 1997 Minnowbrook workshop on transition in turbomachinery (Narasimha
1997). Stress was placed on the unknown roles, during ‘spot’ evolution, of adverse
pressure gradients, of calmed regions, of separations, of high free-stream turbulence,
and on the need for more basic theoretical study. Major issues in ‘spot’ dynamics
concern: the determination of the sharp edges and global shape of the typical ‘spots’;
the underlying reason for the calmed region, with its advantageous relaminarizing
and stabilizing effect; pressure-gradient influences; and the breakdown to shorter
lengthscales inside the ‘spot’. Some of these issues are tackled here, hopefully to
help resolve the fundamental flow structure(s), advance physical understanding and
quantify the influences of pressure gradients. Again, most flows of real interest have
large characteristic Reynolds numbers.

Given the amount of interest in ‘spots’, the present paper addresses their scales,
flow structure and controlling parameters, under adverse pressure gradients. The ‘spot’
is initiated here by introduction of a three-dimensional unsteady disturbance into a
laminar planar boundary layer (on a blade, airfoil or internal wall), by means of
an abrupt kick (pulse, blip), such as in the pulsed wall membrane experiments by
Grass (private communications 1992–95) or the wall injection/suction experiments
by Seifert, Gostelow and their colleagues (private communications 1997–99) and by
Howell (1998) and Seifert & Hodson (2000). ‘Spots’ in reality are produced in many
different ways, by forcing at the wall as above, or external to the boundary layer
as addressed in the Appendix, or both. The emphasis then in this work is on the
free evolution problem for a general initial disturbance, as distinct from a fixed
frequency or fixed wavelength disturbance. The ‘spots’ of concern are rotational,
distorting the shear of the original decelerating boundary layer three-dimensionally,
and are predominantly inviscid apart from their eventual wall-sublayer breakdown.
All transients and growing amplitude components of the travelling ‘spot’ flow must
be included.

A crucial position for the initiation of the ‘spot’ is near the point of minimum
basic pressure, at the onset of the adverse pressure gradient. Inflectional instability
enters there via a near-wall sublayer. Gostelow’s experimental ‘spots’, in particular,
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Figure 1. The flow structure and scales, near the onset of the adverse pressure gradient: see § 2.
The disturbances of §§ 3 onwards start typically at a distance O(σ2) upstream or downstream from
the onset point. Wall forcing (e.g. from scaled slot suction or injection VW ) and external forcing
(e.g. from a vortical wake outside the boundary layer at O(1) angle α3) are considered in detail in
the Appendix.

are initiated typically close to the onset position, as is the inflectional growth of
fixed frequency disturbances in the experiments by Dovgal & Kozlov (1983, 1995).
Hodson’s experiments similarly point to substantial ‘spot’ growth near the onset
position. The present theory is local to that position at first before moving on to more
global scales downstream. Although viscous Tollmien–Schlichting disturbances may
also be present, upstream or downstream, their growth rate is relatively weak and
less than the inviscid inflectional growth rate considered herein. So, unless perhaps
there is a long region of viscous growth upstream (e.g. as in the fully nonlinear cases
considered by Smith & Bowles 1992; Medeiros & Gaster 1996; Li et al. 1998; Bowles
2000), such viscous disturbances may be omitted from the present consideration
of significant ‘spots’ arising near a point of minimum basic pressure. The current
analysis follows those by Brown & Smith (1999), by Smith & Doorly (1992), the
latter agreeing experimentally with Clarke et al. (1994) on the ‘spot’ spread rate
versus Mach number, by Bowles & Smith (1995), which agrees with the observed
incompressible spread rate, and by Smith, Dodia & Bowles (1994) and Smith (1995),
which agree on much of the ‘spot’ flow structure. All those comparisons are for zero
pressure gradients and with a parallel-flow approximation. In the adverse-gradient
setting, non-parallel effects must be incorporated eventually, and, again, although the
linear incompressible range should be examined first, the nonlinear range is also to
be included in an attempt at providing insight into the calmed region and other
mean-flow alterations.

Section 2 describes the original decelerating boundary layer and the onset of
inflectional instability near the pressure minimum. As depicted in figure 1, the scaled
streamwise velocity profile ū0 in the boundary layer becomes inflectional there (i.e.
at x = 0 in the figure) and inviscid disturbances generated nearby (within scaled
streamwise distances represented by σ2) can grow downstream initially by means
of the three-tiered disturbance flow structure shown in the figure. These inviscid
disturbances are generated for example by unsteady forcing at the wall such as from
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slot suction and injection, or by unsteady external forcing such as from a relatively
thick vortical flow distortion in the stream outside the boundary layer. The initial
structure of the inflectional inviscid disturbances leads, in wave terms, to a simple
neutral dispersion relation at leading order, over all streamwise and spanwise modes,
followed at next order by complex eigenrelations which determine the growth or
decay rate over the whole spectrum.

In initial-value terms, concerning a ‘spot’ disturbance, there is a transient stage first
which accommodates the initial conditions as described in § 3, with forced initiation
being addressed in the Appendix. Only after the transient stage does a distinct
‘spot’ really form and grow, as the typical disturbance velocities increase downstream,
leading and trailing critical layers emerge from near the wall and adverse pressure
gradient effects enter substantially. Their interplay is considered in turn with three-
dimensionality (§ 4), nonlinearity (§§ 5, 6) and non-parallel effects (§ 7), in the ‘spot’
evolution.

Section 4 indicates a universal closed planform for the three-dimensional ‘spot’ at
large scaled times, the ‘spot’ boundary being clear and abrupt. The ‘spot’ characteristics
here are derived from a double steepest-descent approach and are governed by two
distinct sets of components, one near-radial from the disturbance initiation point,
the other more of a longitudinal-vortex form. Three positions of local maximum
fluctuation amplitude occur, one along the ‘spot’ centreline (towards the leading edge
of the ‘spot’) and the other two off-centre (towards the trailing edge). It may be
fortuitous, but, despite the turbulent nature of most ‘spot’ experiments as opposed to
the non-turbulent flow theory, the predicted planform is qualitatively similar, or not
dissimilar, to those found in adverse-gradient experiments (Gostelow et al. 1993, 1994;
Seifert & Wygnanski 1995), and likewise for the predicted presence of the off-centre
maxima, streamwise vortices and other features (Carlson, Widnall & Peeters 1982;
van Hest 1997).

Section 5 incorporates the first planar nonlinear influence, arising through the
moving critical layer which lies effectively at the ‘spot’ leading edge. This leads to a
new vortex roll-up there, within a finite scaled time.

Section 6 considers the corresponding mean-flow alterations, which are found to
be different in character ahead of (or underhanging) the ‘spot’ and behind it. The
latter region, possibly modelling the observed calmed region, is controlled mainly by a
pressure-feedback mechanism similar to a suggestion by Seifert (private communica-
tion 1997), but the former region offers an alternative or supplementary model based
on direct inertial forcing and is perhaps closer to an empirical suggestion by Jones
(private communication 1997). The mean-flow distortion is found to be amplified by
effects acting throughout the region between the leading and trailing critical layers
within the ‘spot’, as the layers depart from the wall downstream. An attached thinned
wall layer is left behind the ‘spot’. This connects (tentatively) with the observations
on calmed region properties by practitioners mentioned earlier in this section.

Section 7 includes direct comments on the results, connections with experiments
on ‘spots’, the extension to non-parallel flow effects, for example, on the approach to
flow separation, and brief final points.

2. The boundary layer, and onset of inflectional instability
Non-dimensional Cartesian coordinates x, y, and z in the streamwise, normal, and

spanwise directions, respectively, are to be used, with the corresponding velocity
components being u, v, and w, while p denotes the pressure and t the time. The non-
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dimensionalization is with respect to a characteristic free-stream speed and streamwise
length, for example the distance from the leading edge of the blade or airfoil. The
Reynolds number Re is large, and the incompressible range is assumed. The resulting
basic boundary layer has thickness of order Re−1/2, say y = Re−1/2ȳ, with stream func-
tion Re−1/2ψ̄, where overbars signify here properties in this undisturbed steady planar
boundary layer. The basic boundary-layer flow is considered in § 2.1, particularly near
the station of minimum external pressure, and this is followed by discussion in § 2.2
of the onset of inviscidly unstable inflectional modes locally, serving as a guideline
for the flow structure in the subsequent examination of freely evolving disturbances.

2.1. The boundary layer

The basic flow is a boundary layer, on a solid surface and subject to an O(1) external
pressure gradient dp̄/dx, such that its governing equations are

ū = ψ̄ȳ , ūūx − ψ̄xūȳ = −p̄′(x) + ūȳȳ , (2.1a, b)

the pressure p̄ being independent of ȳ from the normal momentum balance. Here,
ū, ψ̄, x, ȳ are typically of order unity, and

ū = ψ̄ = 0 at ȳ = 0, ū→ ūe(x) as ȳ →∞, (2.1c, d)

where ūe(x)(> 0) is the outer stream velocity, satisfying ūeū
′
e = −p̄′. The prime denotes

here ordinary differentiation in x or ȳ as appropriate. The scaled skin friction
τ̄(x) ≡ ∂ū/∂ȳ (ȳ = 0) is assumed known from the solution of (2.1a–d) starting at
a suitable upstream station, e.g. the leading edge at x = −`0 where `0 is O(1) and
positive.

At the point of minimum pressure taken to be at x = 0, the velocity profile is
ū = ū0(ȳ) say, with ū′′0(0) = 0 in view of (2.1b) evaluated at ȳ = 0 and the condition
p̄′(0) = 0. We also have ū0(0) = 0, ū′0(0) = λ̄ > 0 for attached forward motion,
ū′′′0 (0) = 0 from the ȳ-derivative of (2.1b), while ū′ν(0) = −24κ with κ positive since,
from the double ȳ-derivative of (2.1b), ū′ν(0) equals τ̄ dτ̄/ dx (x = 0) and, although
τ̄(0) (= λ̄) is positive, dτ̄/ dx (x = 0) is expected to be negative because the station
x = 0 lies downstream of a point of maximum favourable pressure gradient. The
above near-wall properties tie in with the profile ū0 having negative curvature (no
inflection) for all 0 < ȳ < ∞, with ū0(∞) = ūe(0) being positive.

Nearby, for small |x|, the velocity expansion is regular, of the form

ū = ū0(ȳ) + xū1(ȳ) + · · · , (2.2)

in general, and similarly for ψ̄, so that from substitution into (2.1a–d)

ū1 = ψ̄′1(ȳ), ψ̄1 = ū0

∫ ȳ

0

ū′′0 ū
−2
0 dȳ, (2.3)

since ūe is maximal at x = 0. Hence, locally,

τ̄(x) ∼ λ̄− 24κx

λ̄
,

∂2ū

∂ȳ2
(ȳ = 0) ∼ p̄′′(0)x, (2.4)

confirming that dτ̄/dx is negative, whereas the profile curvature at the surface changes
sign from negative upstream of x = 0 to positive downstream, as p̄′′(0) > 0 for a
pressure minimum. (Also, the boundary-layer displacement can be shown to be
increasing with x locally, owing to the negative value of the integral in (2.3) at large
ȳ.) These features enable Rayleigh inflectional inviscid modes to be described, at their
onset at x = 0, as follows.
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2.2. Onset of instability

Inviscid instability of the inflectional kind requires solution of the Rayleigh equation,
and boundary conditions,

(ū− c)(ψ̃′′ − α2ψ̃) = ū′′ψ̃, (2.5a)

ψ̃(0) = ψ̃(∞) = 0, (2.5b, c)

for a sufficiently small planar disturbance ∝ ψ̃(ȳ) exp [iα(x̂− ct̂)] + CC in the stream
function, and so on, where CC denotes the complex conjugate, x = x1 + Re−1/2x̂
and time t ≡ Re−1/2t̂, with x1 a constant. (Three-dimensional disturbance properties
follow from the planar ones; see later.) This is under the assumption of a parallel
basic flow ū(ȳ) for now. For the initial-value context of concern later on, the scaled
O(1) wavenumber α is real and given, while the scaled O(1) wavespeed c or scaled
frequency ω ≡ αc is unknown and generally complex. Our aim is to find all the
wavenumbers for which the flow is unstable, with positive ωi.

Near the pressure-minimum position, ū is given by (2.1)–(2.4). Use of the parallel-
flow approximation is justified, however, as we examine disturbances centred at a
station x1 which is at a small distance of order σ2 from x = 0, say x1 = σ2x̄1; the
parameter σ is small and positive but greater than any inverse power of Re for now.
The basic pressure gradient dp̄/dx there is small, g̃σ2 say, with g̃ [≡ p̄′′(0)x̄1] an O(1)
constant which has the same sign as x̄1, and so p̄− p̄(0) is of order σ4, whereas (τ̄− λ̄)
and the surface profile curvature ∂2ū/∂ȳ2 (ȳ = 0) are both O(σ2) from (2.4). Guided
by the Smith & Bodonyi (1981), Gajjar & Smith (1985) papers we propose that the
unstable range occurs for small wavenumbers with

α = σα1, (c, ω) =

4∑
n=1

(σncn, σ
n+1ωn) + · · · , (2.6)

where the coefficients α1, c1, ω1, etc., are of O(1). The solution structure for (2.5) then
acquires a three-tiered form (see figure 1) comprising a near-wall sublayer I where
ȳ is O(σ), the main boundary-layer portion II in which ȳ ∼ 1 and an outer tier III
where ȳ is O(σ−1). The lateral scales for I and III stem, respectively, from the balance
of ū′ν0 and ū′′1 in the base flow, controlling the height of the inflection point (present
for x1 > 0), and from the exponential decay in |α|ȳ anticipated at large ȳ.

In tier I, ȳ = σY with Y ∼ 1 and the basic-flow and perturbation solutions expand
as

ū = σλ̄Y + σ3λ̄1Y + σ4u4(Y ) + · · · , (2.7a)

ψ̃ =

3∑
n=0

σnψn + · · · . (2.7b)

Here, u4 ≡ (−κY 4 + 1
2
g̃Y 2) and λ̄1 [≡ −24κx̄1/λ̄] is an O(1) constant, from (2.2), (2.4).

Substitution into (2.5a) yields the successive solutions

ψn = Anλ̄Y for n = 0, 1, 2, (2.8a)

ψ3 = A3λ̄Y + A0[−κ{s4 + 6ĉ1s
3 + 18ĉ2

1s
2 − 13ĉ4

1}
+Γ {s ln |s| − s+ ĉ1 ln ĉ1 − ĉ1}+ 1

2
g̃(s2 − ĉ2

1)], (2.8b)

after (2.5b) is applied, with A1–A3 real without loss of generality, s ≡ (Y − ĉ1),
Γ ≡ (g̃ − 12κĉ2

1)ĉ1; ĉ1(≡ c1/λ̄) is found below to be real. The result (2.8b) holds for
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s < 0, below the critical level at Y = ĉ1, whereas above that level the replacement

ln |s| (for s < 0)→ ln s+ iπ sgn(α1) (for s > 0), (2.8c)

is assumed, consistent with a linear critical-layer jump in dψ̃/dy with ψ̃ continuous.
This is verified in subsequent sections. We observe that as Y → ∞, the dominant
imaginary contribution independent of Y , in ψ̃, is −A0Γ ĉ1iπσ

2 sgn (α1) from ψ3.
Hence, in tier II (ȳ ∼ 1) the perturbation expansion is

ψ̃ =

4∑
n=0

σn−1ψ̄n + σ2 ln σψ̃3L + · · · , (2.9)

while ū is given by (2.2) with x replaced by σ2x̄1. The two leading terms here are,
from (2.5a) and matching with (2.8a),

ψ̄0 = A0ū0, ψ̄1 = ū0[A1 + b1I1]− c1A0, (2.10a, b)

I1 ≡ − 1

λ̄2ȳ
+

∫ ȳ

0

(
1

ū2
0

− 1

λ̄2ȳ2

)
dȳ, (2.10c)

where b1 = −λ̄c1A0. Tier III, in the upper reaches of the boundary layer, has ȳ = σ−1 ¯̄y
and

ψ̃ = σ−1A0ūe(0) exp (−|α1|¯̄y) + · · · , (2.11)

from (2.5a) with ū = ūe(0) to leading order and from (2.5c), (2.10a).
Matching of the linearly growing contributions between (2.10b), (2.11) implies that

b1 = −A0(ūe(0))2|α1|, and hence, with γ1 ≡ |α1|,

ω1 =

(
ū2
e(0)

λ̄

)
α1γ1 [= α1c1] (2.12)

determines the leading-order (real) part of the frequency expansion (2.6). Proceeding
to higher order to find the imaginary part, the solution

ψ̄4 = ū0[Ā4 + b4I1]− c4A0 + o.t. (2.13)

contains the first contribution in tier II that is complex and non-zero as ȳ → 0+, o.t.
denoting other real terms. The contribution in b4 here grows linearly at large ȳ in
view of (2.10c) and so b4 must be real in order to match with the exponential forms
(as in (2.11)) of the solution in tier III. Hence, matching the imaginary part in (2.13)
with that of tier I at large Y yields the value of c4i, from which the dominant growth
rate

ω4i = πg̃

(
1− γ2

1

α2
N

)(
ūe(0)

λ̄

)4

|α1|γ2
1 (2.14)

is obtained, where α2
N ≡ g̃λ̄4/[12κū4

e(0)]. The nature of the growth rate (2.14) is
consistent with the results in Smith & Bodonyi (1981), Goldstein, Durbin & Leib
(1987), Gajjar & Smith (1985).

Regarding the flow structure and results above, we should comment that (i) the
disturbance solution depends predominantly only on the quantities ūe(0), λ̄, g̃, κ of
the basic flow, i.e. on the wall and outer-stream properties ūe(0), ū′′e (0), τ̄(0), τ̄′(0) and
on the scaled position x̄1, rather than on the entire velocity profile. (ii) A finite
range of unstable wavenumbers is induced near the wall, given by 0 < |α1| < αN from
(2.14), just downstream of the minimum-pressure position. Here, αN is the neutral
value. Just upstream, in contrast, g̃ is negative and α2

N must be replaced by −α2
N , in



176 F. T. Smith and S. N. Timoshin

(2.14), so that all wavenumbers are stable there. (iii) The corresponding result for a
three-dimensional disturbance has (2.12),(2.14) holding again but γ2

1 ≡ α2
1 + β2

1 , where
β = σβ1 is the scaled spanwise wavenumber in the extra dependence exp (iβẑ) present
then, with z = Re−1/2ẑ. Thus again there is a finite range of unstable wavenumbers,
given by α2

1 + β2
1 < α2

N in this case. (iv) The finite range of unstable wavenumbers
provoked, in (2.14), and indeed the properties of the whole flow structure above,
provide the basis for the study of linear and nonlinear initial-value properties in the
following sections. In particular, two timescales are implied almost directly by (2.12),
(2.14) with (2.6), one having t̂ of order σ−2 (stage 1, with t̂ = σ−2t̃), being transient
and involving evolution towards the neutral behaviour associated with (2.12), while
the other (stage 2, with t̂ = σ−5T ) has t̂ longer, of order σ−5, leading to slow growth
in keeping with (2.14). In the next sections stages 1,2 are examined in turn.

3. Transient stage
This first temporal stage is considered now in order to elucidate the emergence of

the above Rayleigh behaviour, the transient dependence on the initial conditions and
the emerging flow structure for the later ‘spot’ evolution; see also the Appendix on
forced initiation of ‘spots’ (and the initial-value studies in Stewartson & Stuart 1971;
Chapman & Proctor 1980; Smith & Doorly 1992; Jennings, Stewart & Cowley 1999;
Savin et al. 1999; Smith, Bowles & Li 2000). We note that true disturbance growth
or decay, and the formation of a ‘spot’, come in stage 2 later.

During stage 1 of transients when t̂ = σ−2t̃ is of order σ−2 the flow solution is
found to remain smooth generally, if the initial conditions are smooth in x̂(= σ−1x̃), y,
and no critical layers are induced. Such layers start to emerge at large t̃, however, and
have an important bearing on growth and nonlinear effects subsequently, as we will
see at the end of this section and thereafter. In the present transient stage the whole
solution consisting of the original flow and the perturbations is expanded, within
the three tiers I–III and with a perturbation amplitude represented by ∆, and the
expansion is substituted into the Navier–Stokes equations. The form involved here is
based on interpreting the results in the previous sections in terms of transient times
t̃ of O(1). For convenience, the factors λ̄, ūe(0) are taken as unity and ∆ is supposed
to be very small, although the influence of increasing its size is first considered at the
end of this section. Also, the streamwise coordinate x̃ is of order unity.

3.1. Disturbance flow structure

Tier I now has

u = σY + · · ·+ σ4u4(Y ) + · · ·+ ∆[σ−1ũ0 + · · ·+ σ2ũ3 + · · ·], (3.1a)

v = · · ·+ ∆[σṽ0 + · · ·+ σ4ṽ3 + · · ·], (3.1b)

p = p̄(0) + 1
2
p̄′′(0)x̄2

1σ
4 + · · ·∆[p̃0 + · · ·+ σ3p̃3 + σ4p̃4 + · · ·], (3.1c)

with p̃0 − p̃3 being independent of Y . The solutions for the first three orders of
approximation of the disturbance give

ũn = Ãn, ṽn = −Ãnx̃Y , Ãñt = −p̃nx̃ for n = 0, 1, 2, (3.2a–c)

where the Ãn are real unknown functions of x̃, t̃. At the next order, the scaled shear
∂2ψ̃3/∂Y

2 (where ũ3 = ∂ψ̃3/∂Y and ṽ3 = −∂ψ̃3/∂x̃) satisfies

(∂t̃ + Y ∂x̃)ψ̃3Y Y = u′′4(Y )Ã0x̃Y , (3.3a)
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ψ̃3 = 0 at Y = 0, (3.3b)

(F.P .)ψ̃3x̃(Y →∞) = Ã3̃t, (3.3c)

with F.P . denoting here the finite part at large Y . The condition (3.3b) is the usual
inviscid one of tangential flow at the solid surface, where there is a thinnner attached
Stokes layer to comply with the no-slip surface constraint, while (3.3c) follows from
a matching condition with tier II’s behaviour.

Tier II is described by

u = ū0(ȳ) + σ2ū2(ȳ) + · · ·+ ∆[σ−1ǔ0 + · · ·+ σ2(ln σ)ǔ3L + σ2ǔ3 + · · ·], (3.4a)

v = · · ·+ ∆[v̌0 + · · ·], p = · · ·+ ∆[p̌0 + · · ·], (3.4b, c)

where p̌0 is independent of ȳ, thus equalling p̃0. The first two orders of solutions now
imply that

ǔ0 = Ã0ū
′
0, v̌0 = −Ã0x̃ū0, p̌0 = p̃0, (3.5a)

ǔ1 = Ã1ū
′
0 − [ū′0I1 + ū−1

0 ]p̃0, v̌1 = −Ã1x̃ū0 + [1 + ū0I1]p̃0x̃. (3.5b)

The subsequent order of most concern is the one determining v̌4, which gives the
controlling equation (ū0∂

2/∂ȳ2 − ū′′0)v̌4 = · · · + ū′′0∂Ã3/∂t̃, from which v̌4 contains a
part v̌4 = −∂Ã3/∂t̃. This verifies the constraint (3.3c) above, which in turn serves to
determine ∂Ã3/∂t̃ in effect.

Tier III has, since ūe(0) is unity now,

[u, v, p] = [1, 0, p̄(0)] + · · ·+ ∆[û0, v̂0, p̂0] + · · · , (3.6)

leading to Laplace’s equation in x̃, ¯̄y for each of û0, v̂0 and p̂0. This is subject to
far-field decay and to p̂0 → p̌0, ∂p̂0/∂ ¯̄y → ∂2Ã0/∂x̃

2 as ¯̄y → 0+, to merge with the
solution of tier II. Therefore, given the pressure balance in (3.5a), the interaction law

p̃0(x̃, t̃) =
1

π
(P .V .)

∫ ∞
−∞

Ã0ξ dξ

x̃− ξ (3.7)

is obtained between the surface pressure and the displacement. Here, P .V . denotes
the Cauchy principal value.

Coupling (3.7) with (3.2c) for n = 0 yields a linear integro-differential equation
for Ã0(x̃, t̃), which governs the leading-order evolution here and which is a linearized
Benjamin-Ono equation; see also Zhuk & Ryzhov (1982) and Smith & Burrgraf
(1985). For input waves of wavenumber α1 in x̃, equations (3.2c) and (3.7) also
retrieve the formula (2.12) for the main frequency response. For the current initial-
value problem with general smooth bounded input, on the other hand, the solution
has

2πÃ0(x̃, t̃) =

∫ ∞
−∞
R∗(k) exp [ikx̃− ik|k|̃t] dk, (3.8)

with R∗ ≡ Ã∗0(k, 0) being the initial Fourier transform (x̃→ k, signified by ∗). In either
case, there is effectively no sustained amplitude growth at this level.

Growth arises in the higher-order terms. Thus, from the Fourier transform solution
of (3.3a–c), we obtain

−ṽ3Y Y = (−12κY 2 + g̃)
Y

2π
M, where M ≡ (K1 +KCC

1 ), (3.9a)

and, with a representative initial disturbance such that R∗ = exp (−q|k|), correspond-
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ing to Ã0(x̃, 0) ∝ (x̃2 + q2)−1, for the sake of argument,

K1(x̃, Y , t̃) ≡
∫ ∞

0

ik
exp (−qk + ikx̃)

(Y − k) {exp (−ik2t̃)− exp (−ikY t̃)} dk (3.9b)

in view of (3.8). Here, q is a prescribed positive constant, and ṽ3Y Y is assumed to be
zero initially. The above confirms that the transient solution is smooth for times t̃ of
O(1). The solution is presented in figure 2, which shows M and ∂ṽ3/∂Y . Figure 2(a)
gives the temporal development of M at a fixed station x̃ and two values of Y . At the
same station, figure 2(b) shows the profile of M against Y , for various times. Figure
2(c) presents both M and ∂ṽ3/∂Y profiles at the downstream moving positions x̃ = t̃.
The trend towards a downstream moving ‘spot-like’ or (to be more specific) confined
response at increasing times is notable, and this is explored below. Further, equations
(3.9a) and (3.9b) apply whether the disturbance is initiated upstream or downstream
of the minimum-pressure point. The latter case, for which g̃ is positive, is shown in the
figure. In the case of upstream initiation, the function M (and K1) stays as shown in
the figure, but not ∂ṽ3/∂Y since g̃ is then negative. The continuous crossover between
these two cases is described in § 7. We address the large-time behaviour next.

3.2. Increasing time

At large t̃, first (3.8) leads to the downstream response

πÃ0 ∼ π1/2e−qη/2

t̃1/2
cos

(
η2t̃

4
− π

4

)
(3.10)

in the representative case, for positive x̃, where η ≡ x̃/̃t is typically of order unity;
upstream, for negative x̃, the response is exponentially small outside a |x̃| scale of
order t̃1/2. The lack of a pure wave behaviour here is noteworthy and, to repeat,
the solution at this leading order does not depend on whether the relative location
x̄1 for the initial disturbance is positive (downstream source) or negative (upstream
source). The temporal decay in (3.10) contrasts with the later (stage 2) growth within
a ‘spot’ further downstream, as anticipated at the start of this section. It is clear
also that two x̃-scales come into play downstream now, one of order t̃1/2 because of
the cos term above and the other of order t̃ because of the amplitude variation in
the exponential terms, these lengthscales agreeing with those of the ‘spot’-disturbance
analyses in Smith & Doorly (1992) (see their figure 2), Smith et al. (1994) as well as
those in the previous section. Secondly, the function M which is closely related to the
vorticity through (3.9a) develops a five-layered structure (i)–(v) within Y of the form,
for t̃ large,

M = o(1) for (i) 0 < Y < 1
2
η and (v) Y > η, (3.11a)

M ∼ −4πY e−qY cos (Y Φt̂) for (iii) 1
2
η < Y < η, (3.11b)

with Φ ≡ (η−Y ) being positive in the main range (3.11b), for x̃ of O(̃t). The solution
at this order does depend on the disturbance location x̄1 and for now we assume that
x̄1 is positive. The sketch in figure 3 indicates, in turn, the flow structure at these larger
times, the areas of most rapid fluctuation of M in the normal Y -direction and in the
streamwise x̃-direction, and the evolving structure in the (x̃, t̃)-plane at larger times.
Two relatively thin layers (ii) and (iv) join the forms (3.11a, b) together smoothly, at
Y − 1

2
η = O(̃t−1/2) and Y − η = O(̃t−1), respectively. Computations at increasing t̃ in

figure 2 are in line with this larger-time behaviour, whose details are as follows.
Splitting K1 = La − Lb and using P .V . as the limit as ε → 0+ of the sum of the
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Figure 2. Computed behaviour during the transient stage. (a) M vs. t̃ at x̃ = 50 for Y = 0.75, 1.5.
(b) M vs. Y at x̃ = 50, various t̃. (c) M vs. Y at x̃ = t̃ = 200, and ṽ3Y vs. Y along x̃ = t̃ at various t̃.
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Figure 3. Structure near the ending of the transient stage, at large t̃, in § 3.2.

integrals from zero to Y − ε, Y + ε to ∞, (3.9b) becomes

La = (P .V .)

∫ ∞
0

ike−qkeikξ+ikY t̃−ik2 t̃

(Y − k) dk, (3.12a)

Lb = (P .V .)

∫ ∞
0

ike−qkeikξ

(Y − k) dk, (3.12b)

where ξ ≡ (x̃ − Y t̃) = (η − Y )̃t. For t̃ � 1 we examine the layers (i), (iii) and (v)
first, where ξ is O(̃t). The major contributions there arise from k = Y + k̄t̃−1 with
k̄ of O(1), giving La ∼ πY exp {−qY + i(η − Y )Y t̃} multiplied by sgn (η − 2Y ), and
similarly for Lb. Hence,

M ∼ 2πY e−qY cos[Y (η − Y )̃t]{ sgn (η − 2Y )− sgn (η − Y )}, (3.13)

with relative error of order t̃−1. This leads to the results (3.11a, b) to lowest order.
More precisely in layers (i) and (v), however, the main non-zero parts are from
stationary-phase properties in La, concentrated at the values k = 1

2
η+O(̃t−1/2), which

yield

M ∼
(π
t̃

)1/2 ηe−qη/2

(Y − η/2)
cos

(
η2t̃

4
+
π

4

)
. (3.14)

The (Y − η/2)−1 singularity which clearly occurs at the top of layer (i) here is
consistent with an O(Q−1) term present in (ii), at large Q in (3.15a) below, and it
demonstrates the emergence of a critical layer at large times, with M becoming O(1)
where Y − η/2 is O(̃t−1/2). Layer (ii) is defined by Y = 1

2
η + t̃−1/2Q say with Q of

O(1). Here, the major parts of the integrals in (3.12a, b) stem from k = 1
2
η + t̃−1/2s̄
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and k = 1
2
η + t̃−1/2Q+ t̃−1r in turn, with s̄, r ∼ 1, so that

La ∼ 1
2
iη exp [− 1

2
qη + 1

4
iη2t̃](P .V .)

∫ ∞
−∞

exp (−īs2 ds̄)

(Q− s̄) , (3.15a)

Lb ∼ 1
2
πη exp [− 1

2
qη + i( 1

4
η2t̃− Q2)] (3.15b)

are odd and even, respectively, in Q. Therefore,

M ∼ −πηe−qη/2 cos ( 1
4
η2t̃− Q2) + F(Q), (3.15c)

with the function F(Q) being odd in Q, from which integration in Q gives∫ ∞
−∞
M dQ ∼ −π3/2ηe−qη/2 cos

(
η2t̃

4
− π

4

)
[≡ b̃]. (3.15d)

In layer (iv), Y = η + t̃−1ξ̃ and ξ̃ ∼ 1, leaving ξ = −ξ̃ of O(1). The dominant parts

of (3.12a, b) come from k = η + t̃−1(ξ̃ + k̄) and k ∼ 1, respectively, yielding

La ∼ −πηe−qη−iηξ̃ , Lb ∼ (P .V .)

∫ ∞
0

ike−qk−ikξ̃

(η − k) dk. (3.16a, b)

So

M ∼ −2πηe−qη cos (ηξ̃)− 2(P .V .)

∫ ∞
0

ke−qk

(η − k) sin (kξ̃) dk, (3.16c)

the first contribution being even in ξ̃ and the second odd, and in consequence

M → 0 as ξ̃ → +∞, M ∼ −4πηe−qη cos (ηξ̃) as ξ̃ → −∞. (3.16d, e)

These asymptotes merge with the solutions in layers (v) and (iii) in turn, while the
integral of M with respect to Y across (iv) is approximately O(̃t−1). See figure 3 again.

It follows that two critical layers (ii) and (iv) are emerging at large times t̃, associated
with the phase velocity and the group velocity, respectively, each layer at first lying
close to the wall at distances x̃ of O(̃t1/2), but leaving the wall on the x̃ ∼ t̃ scale
downstream. The former layer (which is the leading layer, see figure 3) turns out to
be the vital one. Integrating Y u′′4M in Y to derive ∂ṽ3/∂Y from (3.9a), we see that
(3.15d) is indeed dominant, producing the form

ṽ3Y − ṽ3Y (Y →∞) = ã for 0 < Y < 1
2
η, zero for Y > 1

2
η, (3.17a)

where

ã ≡ b̃̃t−1/2

2π
[Y u′′4(Y )]Y= 1

2 η
, (3.17b)

to order t̃−1/2. Here, we may regard ṽ3Y (Y → ∞) as zero for the significant part of
the disturbance, although, in fact, an unknown constant can be added to ṽ3Y which
along with terms similar to those in (2.8b) does not affect the subsequent analysis.
The main contribution to ṽ3Y in (3.17a) is clearly due to the jump across layer (ii),
the jumps across other layers being o(̃t−1/2). Hence (3.17a) implies the leading-order
result

ṽ3 = ãY for 0 < Y < 1
2
η, ṽ3 = 1

2
ãη for Y > 1

2
η, (3.18a, b)

since ṽ3 must be zero at Y = 0. It follows also that, for large t̃, the dominant growth
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is given by

Ã3̃t = − 1
2
ãη =

(π
t̃

)1/2 η3e−qη/2u′′4( 1
2
η)

8
cos

(
η2t̃

4
− π

4

)
(3.19)

from (3.3c). The growth rate (∂Ã3/∂t̃)/Ã0 inferred from (3.19) with (3.10) is exactly
as in (2.14) but evaluated at α1 = 1

2
η, in line with the stationary-phase analysis

of Ã0 leading to (3.10). All the results also generalize, with exp (− 1
2
qη) above then

being replaced by the amplitude of R∗( 1
2
η) throughout, accompanied by a phase

shift from the argument of R∗. We remark further that the dependence on Y u′′4 in
(3.9a) and (3.17b) and implicit in (3.19) agrees with that in Smith et al. (2000). The
prime point nevertheless is that, as might be expected, the phase-velocity values of
the profile curvature u′′4( 1

2
η) and the corresponding moving critical layer (ii) become

the controlling feature at large t̃, just prior to ‘spot’ formation. Thus, the relevance
of the approach in § 2 is confirmed. Similar working holds for three-dimensional
disturbances, leading to § 4 below. Indeed, in the subsequent temporal stage studied in
§ 4ff the ‘spot’ becomes truly distinct and its centre where maximum amplitude growth
occurs can be identified clearly, downstream of the minimum pressure position.

In anticipation of § 5, an estimate may now be made for the first occurrence of
significant nonlinear effects as the input disturbance amplitude ∆ is increased, based
on the above behaviour during stage 1. In view of (3.17a)–(3.19), we expect such
nonlinearity to enter first within layer (ii) during the subsequent stage 2 which has
already been identified with the long timescale t̃ ∼ σ−3. The representative inertial
operator in (ii) is of order (σt̃−1/2) times (σRe1/2) in the linear regime, from (u−c)∂/∂x
with (u− c) ∼ σ(Y − Yg) from (3.1a) and (3.17a), where Yg ≡ 1

2
η, and ∂/∂x ∼ σRe1/2

owing to the oscillatory response in (3.10) and (3.19), along with the O(̃t−1/2) thickness
of layer (ii). This is to be compared with the operator v∂/∂y, to obtain the new
nonlinear regime, indicating the typical order (∆σt̃−1/2) times (Re1/2σ−1t̃1/2), since v
is given by (3.1b), (3.2) with (3.10). The two operators therefore become comparable
when σ2t̃−1/2Re1/2 ∼ ∆Re1/2, i.e. when ∆ ∼ σ2t̃−1/2. Allowing for the relative timescale
σ−3 of stage 2, then, the suggestion for the lowest disturbance size to provoke
substantial nonlinearity is

∆ = O(σ7/2), (3.20)

for stage 2. This estimate is used in § 5. For lower amplitudes,

∆� σ7/2, (3.21)

and linear theory continues to hold.

4. Three-dimensional ‘spot’
For amplitude levels satisfying (3.21) the evolution of the three-dimensional distur-

bance during stage 2 (subsequent to the transient stage 1 of the previous section) is
given by a double Fourier (∗∗) inversion,

4π2Q̃(x̃, z̃, t̃) =

∫∫
Q̃∗∗(k, `, 0) exp (K) dk d`, (4.1a)

with, from (2.12) and (2.14),

K(k, `, x̃, z̃,̃t) ≡ [ikX̂ + i`Ẑ − ik(k2 + `2)1/2

+ĝ{1− (k2 + `2)/α2
N}|k|(k2 + `2)]̃t. (4.1b)
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Here, time t̃ � 1 but ĝ̃t ∼ 1, where ĝ ≡ σ3πg̃ is small and positive here, while
(X̂, Ẑ) = (x̃, z̃)/̃t are O(1) and k, ` are written for α1, β1, respectively. The integral
in (4.1a), with real k, `, is taken over positive k because of symmetry. The initial

condition Q̃∗∗(k, `, 0) is exp (−q(k2 + `2)1/2) for example.
To find the ‘spot’ behaviour at large times ĝ̃t we seek extrema of K with respect to

k, ` based on a double steepest-descent method (Brown & Smith 1999). Thus, zeros
of ∂K/∂` require

iẐ = ik`(k2 + `2)−1/2 − 2ĝ`|k|{1− 2(k2 + `2)α−2
N }, (4.2a)

determining `(k). The value of K then is as in (4.1b) with ` = `(k). Hence, zeros of
∂K/∂k require also that

iX̂ + i`′Ẑ − i(k2 + `2)1/2 − ik(k + ``′)(k2 + `2)−1/2

+ĝ[(k2 + `2)− (k2 + `2)2α−2
N + 2k(k + ``′){1− 2(k2 + `2)α−2

N }] = 0, (4.2b)

where `′ denotes d`/dk. So, in principle, (4.2b) determines k extremals, with the
exponentially large contribution Re (K/̃t) then to be evaluated using (4.1b). Here,
we recall that Re (k2 + `2)1/2 must be positive. In addition, however, ĝ is small, so
that (k, `) = (k0, `0) + ĝ(k1, `1) + · · · can be substituted into the above. This leaves the
relations

`0 =
k0Ẑ

(k2
0 − Ẑ2)1/2

, 8k2
0 = (4Ẑ2 + X̂2)± X̂(X̂2 − 8Ẑ2)1/2, (4.3a, b)

`′0[≡ d`0/dk0] = −Ẑ3(k2
0 − Ẑ2)−3/2, (4.3c)

for the extremal values k0, `0 (Smith et al. 1994), and the equations

S1k̄1 + S2
¯̀

1 = S3, S4k̄1 + S5
¯̀

1 = S6 (4.4a, b)

for k̄1, ¯̀1, where the extremals are k1 = ik̄1, `1 = i¯̀1 and, with B0 ≡ (k2
0 + `2

0),

S1 = Ẑk0B
−1/2
0 − b0, S2 = Ẑ`0B

−1/2
0 − k0, (4.5a, b)

S3 = 2k0`0B
1/2
0 (1− 2B0α

−2
N ), (4.5c)

S4 = −(3k0 + `0`
′
0)B

−1/2
0 + k2

0(k0 + `0`
′
0)B

−3/2
0 , (4.5d)

S5 = −(`0 + k0`
′
0)B

−1/2
0 + k0`0(k0 + `0`

′
0)B

−3/2
0 , (4.5e)

S6 = B0(1− B0α
−2
N ) + 2k0(k0 + `0`

′
0)(1− 2B0α

−2
N ). (4.5f)

The ensuing exponent (growth) term is given by

E

[
≡ Re(K)

ĝ̃t

]
= −k̄1{X̂ − (2k2

0 + `2
0)B

−1/2
0 } − ¯̀

1{Ẑ − k0`0B
−1/2
0 }

+(1− B0α
−2
N )k0B0 (4.6)

since K is purely imaginary to leading order. The disturbance Q̃ is therefore propor-

tional to Q̃∗∗(k0, `0, 0) exp(Eĝ̃t)/̃t whenever E is positive, at large ĝ̃t times.
Computations were performed as follows. For specified X̂, Ẑ values, and with α2

N

set as 2 without loss of generality, k0, `0, `
′
0 are evaluated successively from (4.3b, a, c),

then the corresponding S1–S6 from (4.5a–f), k̄1, ¯̀1 from solving (4.4a, b), and, hence,
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Figure 4. For the three-dimensional ‘spot’: (a), sketch of ‘spot’ planform (lower diagram), with

significant X̂ values and properties, and surface plot (upper diagram) of E against X̂, Ẑ; (b)–(g),

computed growth E vs. Ẑ at stations X̂ = 2.8, 2.5, 2, 1.5, 1, 0.8, respectively, showing both (+) and
(−) components; (h), limit solution near ‘spot’ trailing edge. See § 4.
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E is determined from (4.6). This is repeated for all (X̂, Ẑ) points of concern, to enable
plotting of E(X̂, Ẑ). Symmetry confines the task to Ẑ > 0. Also X̂ > 0 only. Further,
the computations are done for each sign in (4.3b) (yielding (±) contributions in turn),
to examine which yields the larger contribution to E.

Numerical results, an exponent surface plot and a summary sketch are presented in
figure 4. The ‘spot’ within which E is positive has a closed planform in X̂, Ẑ , with
its spanwise edge (side) straight along Ẑ = 8−1/2X̂ between the spot trailing edge
X̂ = 0+ and the station X̂ = 1.8856 . . . (= 4

√
2/3) before curving smoothly to form

a rounded leading edge at X̂ = 2.828 . . . (= 2
√

2), Z = 0, with symmetry about the
X̂-axis. Along the straight portion of the spanwise edge, which produces a spread
half-angle of 19.47◦, the (±) contributions to E are equal and positive, reaching a
maximum at X̂ = 1.4606 . . . , whereas along the curved portion E is zero. Outside,
E is negative. The (+) contribution dominates along the ‘spot’ centreline Ẑ = 0,
inducing an overall maximum value of E at X̂ = 2.191 . . . (= 2

√
6/5). On the other

hand, plotting at each X̂ station the position Ẑ which gives the maximum E value,
we obtain a curve (within the ‘spot’) which originates from the trailing edge at an
inclination between 0◦ and 19.47◦ but bends smoothly and gradually towards the
X̂-axis as X̂ increases. The curve then intersects the X̂-axis normally, at X̂ = 2, before
remaining along that axis for 2 6 X̂ 6 2.828 . . . . Thus, moving backwards from the
leading edge, we see first in figure 4(b) (X̂ = 2.8) that the maximum E value is at
the centreline, while the ‘spot’ edge spanwise is at Ẑ ≈ 0.20 where E passes regularly
through zero. In figure 4(c), where X̂ = 2.5, the edge in Ẑ increases to approximately
0.6. Figure 4(d) (X̂ = 2) shows the maximum still just at the centreline, the Ẑ edge
value being about 0.7. Then, figure 4(e) (X̂ = 1.5) indicates that the maximum position
is moved off-centre, remaining distinct from the (reduced) edge position Ẑ ≈ 0.5, at
which E is now non-zero, and that the (−) component is now positive, but still less
than the (+) component. In figure 4(f) (X̂ = 1), however, the off-centre maximum is
due to the (−) contribution, overwhelming the (+) contribution at Ẑ ≈ 0.28, quite
near the spanwise edge position Ẑ ≈ 0.34. Figure 4(g), for X̂ = 0.8, shows a similar
but more pronounced crossover, the spanwise edge position having now decreased to
about 0.28. Figure 4(h) presents the limit solution as X̂ → 0, Ẑ → 0 (trailing edge, see
below), which confirms the nearby trends.

Analytical properties from (4.3a)–(4.6) are useful for comparisons. (i) |Ẑ | < X̂/
√

8
to keep k0 real in (4.3b). (ii) Along the straight portion Ẑ = X̂/

√
8(−) of the spanwise

edge, the form of E is 9X̂3
√

3(1− 9X̂2/32)/64, this expression yielding the maximum
spanwise edge value 0.30358 . . . at X̂ = 1.4606 . . . (= 4

√
2/15) and the cut-off at

X̂ = 1.8856 . . . mentioned above. The merging between these positive E values along
the straight portion and the zero/negative values outside the ‘spot’ occurs in a thinner

layer, as in Smith & Doorly (1992). (iii) Analysis of the (+) contribution for Ẑ → 0
shows that along the X̂-axis E is given by

( 1
2
X̂)3(1− X̂2(4α2

N)−1). (4.7)

This is in line with the absolute maximum 0.52581 . . . (= 12
√

6/5
√

5) of E occurring
along the X̂-axis at X̂ = 2.191 . . . (which can be regarded as the ‘centre’ of the ‘spot’)
and with the ‘spot’ trailing- and leading-edge positions earlier. (iv) Near the leading
edge E ∼ 4

√
2 − 2X̂ − √2Ẑ2, from the (+) contribution, and so the ‘spot’ spanwise

edge locally has the parabolic shape Ẑ ∼ 21/4(2
√

2 − X̂)1/2. (v) Near Ẑ = 0, the
modification to Ê in (4.7) is 1

2
X̂(1 − 1

4
X̂2)Ẑ2 + · · · , confirming that the spanwise

maximum E value is along the centreline for X̂ > 2 but off-centre if X̂ < 2.
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(vi) Near the trailing edge as (X̂, Ẑ) → (0, 0), the quantities k0, `0, `
′
0, S1–S6, k̄1, ¯̀1

scale as X̂, X̂, 1, X̂, X̂, X̂3, 1, 1, X̂2, X̂2, X̂2, respectively, so that E _ X̂3 for both (±)
contributions. The scaled quantities satisfy (4.3a)–(4.6) in full, except that α−2

N is
replaced by zero, in effect. Graphs of the scaled quantities are in figure 4(h). (vii)
The (−) contribution for small Ẑ is found to produce the response X̂2(1 − 1

2
X̂2)Ẑ

for E to leading order (thus implying a thinner symmetry-achieving region in which
z̃ is O(ĝ−1) at large ĝ̃t for the (−) contribution, although the (+) contribution then
dominates locally anyway). All the above analytical properties agree well with the
computational results in figure 4.

A crossover is evident at comparatively small X̂ stations in figure 4, from the (+)
contribution being the greater to the (−) one dominating, as Ẑ increases. To verify
the crossover and the resulting discontinuity in the slope of E versus Ẑ , we performed
direct computations of the integral (4.1a) at several Ẑ values. In particular, for the
value (X̂, Ẑ) = (0.8, 0.25) (see figure 4g) the integral was first evaluated over a large
(k, `) domain, then over a smaller domain containing the two (k0, `0) positions implied
by the (+) and (−) signs, and, finally, over two still smaller domains each containing
only one of the (±) positions (k0, `0). This was for time t̃ = 500 as a typical case, with
ĝ taken as 0.1. The four computations agreed closely except for those concentrated
relatively near the (+) position, thus pointing to the predicted dominance of the (−)
contribution; and the results were in close agreement with the growth factor inferred
from figure 4(g).

The (+) contribution is clearly the overriding one in most areas of the ‘spot’,
including the curved portion of the ‘spot’ side and the centreline. The (−) contribution
is nevertheless of interest as it controls the area near the ‘spot’ sides upstream of
the ‘spot’ centre and it is more of longitudinal-vortex form at heart than radial-wave
form, at least in the limit of small Ẑ (see analytical properties above), and so is
distinct from the (+) contribution. This should be compared with Brown & Smith’s
(1999) case, where the (+) type is everywhere dominant in the ‘spot’. Also, to a certain
extent, the planform resembles that of the channel-flow ‘spots’ of Carlson et al.
without adverse pressure gradients, although this must be regarded as fortuitous. For
a given zero or favourable pressure gradient the typical channel-flow ‘spot’ tends to be
wider in planform than the boundary-layer case anyway. The present adverse pressure
gradient widens the boundary-layer ‘spot’, however, thus reducing the difference, but
at the expense of creating extra disturbance growth near the spanwise edges which
is quite different from the zero or favourable pressure gradient cases. The stronger
(−) contribution near the sides of the ‘spot’ upstream may be connected (however
fortuitously) with the extended side effects reported experimentally by Gostelow,
Seifert, van Hest and their colleagues in the presence of adverse pressure gradients,
even though we should emphasize immediately that the evolution theory here is not
for the turbulent case. Moreover, tentatively, the sketch and flow features found in
figure 4 are not unlike the experimental observations, for example, on spreading
angles and amplitude maxima within an adverse pressure gradient ‘spot’, although
here the adverse pressure gradient is still only mild.

5. Nonlinear effects
It is perhaps natural to consider planar nonlinear disturbances first, in view of the

centreline results of § 4. During stage 2, the long timescale t̂(≡ Re1/2t) = σ−5T comes
into operation, in addition to t̂ = σ−2t̃, so that ∂/∂t becomes Re1/2σ2(∂/∂t̃+σ3∂/∂T ),
and the streamwise dependence is on x̃, X where x − x1 = Re−1/2σ−4X. In stage 2,
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however, the remaining rapid variation, i.e. in x̃, t̃, is solely in terms of factors C, S ,
effectively cosΘ, sinΘ as implied by (3.10)ff, satisfying

∂x(C, S) = Re1/2σF(−S, C), ∂t(C, S) = Re1/2σ2G(−S, C). (5.1)

Here, F,G are functions of X,T to be determined below, although we may anticipate
them to be 1

2
η, − 1

4
η2, respectively, from ∂Θ/∂x̃, ∂Θ/∂t̃ where Θ = x̃2/(4̃t)− 1

4
π from

stage 1 (e.g. see (3.10)) and η, which is of order unity, now stands for X/T . Moreover,
the (planar) disturbance amplitude is taken to be as in (3.20) and so nonlinear influ-
ences are expected to appear in the leading critical layer, the continuation of layer (ii)
from the previous section, while outside of that, linear dynamics is expected to apply.

5.1. Majority of the flow

The flow structure in the lateral direction is mainly as before, with three tiers I–III,
but essentially supplemented by the leading critical layer (ii) and the trailing critical
layer (iv). Tier I now has, with ∆̂(≡ σ1/2∆) = σ4,

u = σY + σ3λ̄1Y + σ4u4(Y ) + ∆̂[ũ0 + · · ·+ σ3ũ3 · · ·+ σ6ũ6 + · · ·], (5.2a)

ψ = Re−1/2{ 1
2
σ2Y 2 + · · ·+ ∆̂[σψ̃0 + · · ·+ σ4ψ̃3 · · ·+ σ7ψ̃6,+ · · ·]}, (5.2b)

p = p̄(0) + 1
2
p̄′′(0)x̄2

1σ
4 + · · ·+ ∆̂[σp̃0 + · · ·+ σ4p̃3 · · ·+ σ7p̃6 + · · ·]. (5.2c)

The continuity equation therefore yields ũn = ∂ψ̃n/∂Y , the x-momentum balance
becomes

[L(ũ0, ψ̃0) ≡]ũ0̃t + Y ũ0x̃ − ψ̃0x̃ = −p̃0x̃ (5.3a)

at leading order in the disturbance, and the y-momentum balance shows p̃0−3 to be
independent of Y . The solution satisfying (5.3a) here is

[ũ0, ψ̃0, p̃0] = [a0, Y a0
, π0]C, with − Ga0 = Fπ0, (5.3b)

and the scaled velocity and pressure amplitudes a0, π0 are functions of X,T to be
determined. The next x-momentum balance of significance occurs at relative order
σ3, namely

L(ũ3, ψ̃3) + Ca0T + (u4 + ũ0)ũ0x̃ − ψ̃0x̃(u4Y + ũ0Y ) = −p̃3x̃ − Cπ0X, (5.4a)

after cancellation of two Y C ∂a0/∂X terms. The nonlinear contributions in ũ0∂ũ0/∂x̃,
(∂ψ̃0/∂x̃)(∂ũ0/∂Y )(= 0) are passive at this level, forcing second harmonics and mean-
flow corrections to arise. So the solution has the form

(ψ̃3, p̃3) = S(ψ̃31, p̃31) + C(ψ̃32, p̃32) + (C2 − S2)(ψ̃33, p̃33) + (ψ̃3m, p̃3m), (5.4b)

{(Y F + G)∂Y − F}(−ψ̃31, ψ̃32) + F(−p̃31, p̃32) = (a0T + π0X, [Y u
′
4 − u4]Fa0), (5.4c, d)

with the mean-flow correction terms remaining undetermined at this order. For the
two components in C, S , (5.4d) yields

(ψ̃32)Y Y = Y u′′4a0/(Y + G/F), (5.5a)

and, hence, a critical level (see layer (ii) below) at Y = −G/F ≡ Ỹg , inducing a jump
(j) from which the local behaviour

(ψ̃32)Y ∼ Ỹgu′′4ga0 ln |Y − Ỹg|, [ψ̃31] ∼ −Ỹgu′′4ga0j(Y − Ỹg), (5.5b, c)
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is obtained near Y = Ỹg , with u′′4g denoting u′′4 evaluated at Ỹg . Here, [ψ̃31] stands for
the difference between ψ̃31 as Y → Ỹg+, Ỹg−, and the velocity-like jump j is to be
found below from analysis of the moving critical layer (ii). The forced contribution
(5.5c) is in addition to that implied directly by (5.4c),

ψ̃31 = a31Y with Ga31 + Fp̃31 = −a0T − π0X, (5.5d)

for Y < Ỹg , in view of the tangential-flow constraint at the wall.
Tier II is described by

u = ū0(ȳ) + σ2ū2(ȳ) + · · ·+ ∆̂[u(0) + σu(1) + · · ·], (5.6a)

ψ = Re−1/2{ψ̄0(ȳ) + σ2ψ̄2(ȳ) + · · ·+ ∆̂[ψ(0) + σψ(1) + · · ·]}, (5.6b)

p = · · ·+ ∆̂[σp(0) + · · ·], (5.6c)

with only p(0) being independent of ȳ. Here, the leading-order disturbance solution is
found to be

[ψ(0), u(0), v(0), p(0)] = [Ca0ū0, Ca0ū
′
0, FSa0ū0, Cπ0], (5.7)

corresponding to the usual displacement form, for example as in (3.5a). At higher
order, as further inertial forces and non-zero pressure gradients enter play,

ψ(1) = C{−Ỹga0 − π0ū0I1 + a1ū0}, (5.8a)

ψ
(2)
x̃ = S{−Fa0ū2 − G[2π0ū0I2 − π0I1 + a1]

−Fū0[p
(1)
x̃ (ȳ = 0)I1 − a2 − F2a0I3]}, (5.8b)

remain in phase with ψ(0), whereas ψ(3) has an out-of-phase component Sâ31ū0, in
which

â31 ≡ a31 − Ỹgu′′4gja0. (5.9)

In (5.8b) I2, I3 denote the P .V . integrals of ū−3
0 , I1ū

−2
0 with respect to ȳ, in turn. Tier

III, just outside the boundary layer, consists of potential flow essentially as in §§ 2
and 3 and yields the pressure-displacement laws

π0 = Fa0, p̃31 = Fâ31 + ∂a0/∂X, (5.10a, b)

from matching with the solution of tier II. The dominant pressure disturbance here
is ∆σπ0C exp (−F ¯̄y) with F being assumed positive, while p̃31 is the higher-order
pressure disturbance in (5.4b).

Combining (5.10a) with (5.3b), we therefore obtain the primary relation

G = −F2, (5.11a)

or

Θt̃ = −Θ2
x̃ , (5.11b)

(see also Whitham 1974). This is consistent with the simple form x̃2/(4̃t)− 1
4
π for Θ

as anticipated near the start of this section. It is worth noting in passing that (5.11b)
gives the inviscid Burgers equation ∂φ̃/∂t̃ + 2φ̃∂φ̃/∂x̃ = 0 for φ̃ ≡ ∂Θ/∂x̃, allowing
discontinuities to form at finite time t̃ under suitable disturbed initial conditions;
a similar point is made by Gajjar & Smith (1985). However, we take it that Θ
is described by the simple form above, leaving F = 1

2
η and G = − 1

4
η2, and in

consequence Ỹg = Yg . The next relation of concern comes from the pressure match
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in (5.10b), or from matching terms in S between tiers I and II, which yields

F−1(a0T + π0X) = Y 2
g u
′′
4gja0 − a0X (5.12a)

or, upon substitution for F,G, Yg, u
′′
4 , π0, the scaled velocity amplitude equation

[∂T + η∂X](T 1/2a0) =
jg̃η3

8

(
1− 3κη2

g̃

)
(T 1/2a0) (5.12b)

for a0(X,T ) in the current stage 2.
For small times T , the jump j is expected to be nearly equal to π and then the

growth rate from (5.12b) is observed to agree with that implied in (2.14) and (3.19).
Thus, there is agreement with the Rayleigh result of § 2 as well as matching with
the solution of the earlier transient stage 1. Moreover, the grouping (T 1/2a0) here
indicates a merging with the earlier amplitude behaviour (3.10) and (3.19). The value
π for j also covers the case of comparatively small, linear, disturbances where ∆̂ is
reduced, as in §§ 4 and 5.3.

5.2. The leading critical layer

At order-one times T , and for nonlinear disturbances in general, the jump j is fixed
as follows by the properties in the moving critical layer (ii), wherein ȳ = σYg +σ5/2Y1

with Y1 of O(1) and Yg = 1
2
η(= Ỹg) from the forms of F,G. In (ii),

u = σYg + σ5/2Y1 + σ3λ̄1Yg + σ4u4g . . .+ ∆̂[Ca0 + σ3U1 + σ9/2U2 + · · ·], (5.13a)

ψ = Re−1/2{ 1
2
σ2Y 2

g + · · ·+ ∆̂[σCa0Yg + σ5/2Ca0Y1 + σ4a2 + σ11/2 · · ·] }, (5.13b)

p = · · ·+ ∆̂[σCπ0 + σ4p̃3 + · · ·+ σ11/2P2 + σ13/2P3 + · · ·], (5.13c)

where a2 denotes ψ̃3 evaluated at Y = Yg, P3 is the leading Y -dependent pressure
term and, to match with the solution in tier I,

U1 ∼ Ygu′′4gCa0(ln |Y1|+ 1) + {Sa31 + Cψ′32 (F.P., Y = Yg)}+ · · ·+ (zero or jump)

(5.14a)

at large |Y1|. Also, the lateral velocity is given by

v = ∆̂

[
σ2(FSa0Yg) + σ7/2(FSa0Y1) + σ5

{
−C(a0Yg)X + a2x̃ +

Ca0

2T

}

+σ13/2(−Ψ1x̃ − Ca0XY1) + σ8

(
Ψ1Y1

2T
− a2X

)
+ · · ·

]
(5.14b)

from (5.13b). The governing equations here, in succession, confirm the balance (5.3b)
and then the rapid dependence on x̃, t̃ in (5.1), before producing the vorticity or shear
equation for τ1 ≡ ∂U1/∂Y1,

Y1

∂τ1

∂x̃
+

(
F2Sa0 +

X

4T 2

)
∂τ1

∂Y1

= −F2u′′4ga0S. (5.14c)

At large |Y1|, this is subject to the condition (5.14a), the leading term of which is
consistent with a balance between the first and last terms in (5.14c). The quantities
F2a0, X/(4T

2) and u′′4g in (5.14c) act as parameters in determining the rapid variation
of τ1 with x̃ (and Y1), in terms of S, C and powers thereof, and the induced jump j.
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At this stage, the main particle paths within (ii) are assumed to remain open, corre-
sponding to Xa0 < 1 from the ∂τ1/∂Y1 coefficient in (5.14c). The present nonlinear
group critical layer is of the moving type, e.g. Gajjar & Smith (1985), rather than
the non-equilibrium type, e.g. Hickernell (1984), Goldstein et al. (1987) and others,
the movement being defined by its position Y = X/(2T )[= Yg = 1

2
η = F] which

represents an increasing departure from the wall and which, in a sense, marks the
leading edge of the disturbance fluctuation as it travels downstream.

Nonlinearity is present because of the F2Sa0 part. As a check, at small T , that part
becomes small relative to the X/(4T 2) linear part, by a factor T 1/2, in keeping with
the earlier stage 1. Again, for small velocity amplitudes |a0| the required solution of
(5.14a, c) is

τ1 = Im

[
exp (i(Θ − γ̃Y 2

1 ))
4T 2R

X

{∫ Y1

0

exp (iγ̃Ȳ 2
1 ) dȲ1 +

1

2

(
π

γ̃

)1/2

exp (iπ/4)

}]
(5.15)

where RS is the right-hand side of (5.14c), γ̃ ≡ 2FT 2/X and τ1 → 0 as Y1 → −∞.
Since the integral in (5.15) is odd in Y1, the velocity jump contribution from the
integral of τ1 over all Y1 is then −πFu′′4ga0S , giving j equal to π as expected. The
linear case (5.15) also shows that fast waves persist in the vorticity τ1 at large positive
Y1, as implied by § 3. These waves are cancelled out in the second critical layer,
effectively (iv), which is associated with the group velocity and is sited at a larger
Y position, marking the trailing edge of the fluctuating vorticity disturbance. Figure
5(a) gives a summary sketch in the (X,T )-plane to highlight the leading and trailing
edges of the ‘spot’ as far as the present small or non-small scaled vorticity waves are
concerned. For non-small amplitudes, the required solution of (5.14a, c) is given by
Smith & Bodonyi (1987).

5.3. Linear and nonlinear solutions

The nonlinear stage-2 problem overall is to solve, in the (η, T ) frame for convenience,

∂A

∂T
= j(m)

g̃η3

8

(
1− 3κη2

g̃

)
A (5.16a)

for A(η, T ), from (5.12b) with A ≡ T 1/2a0, but with the amplitude-dependent jump
j being the function of m ≡ (T 1/2Aη)−1 which is given in Smith & Bodonyi’s (1987)
figure 1(b) and equation (2.16) (written there as |φ| being a function of their parameter
µ). The function j(m) may actually be modelled, or approximated fairly closely, by
the formula

j(m) = π

{
1 +

1

4m2
+

5

m4

(
1

π
− 1

4

)}
, (5.16b)

from the above paper, although the latter notes the presence of an (m− 1) ln(m− 1)
behaviour near m = 1+. It is borne in mind also that the theory so far holds for
m > 1 [Xa0 < 1], because of the change to a closed streamline pattern in (ii) if m
falls below 1, i.e. if the amplitude A exceeds η−1T−1/2 at any η, T value. The initial
condition is

A = ν1e
−qη/2 at T = 0+ (5.16c)

for the main example of § 3, where ν1 is a constant which may be taken as positive
without loss of generality. Along any given line η(= X/T ) = constant, (5.16a) acts
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Figure 5. (a, b) Leading edge and trailing edge of planar linear ‘spot’, between which (a) the scaled
vorticity and (b) the scaled velocity fluctuation A concentrates at large time T (§ 5.3). (c) Solution
(5.17).

as a nonlinear ordinary differential equation controlling A for positive T , given the
starting form (5.16c).

For linear disturbances (ν1 small), j ≈ π and the velocity amplitude solution is

A = B(η) exp

[
π
g̃η3

8

(
1− 3κη2

g̃

)
T

]
, (5.17)

for all T > 0, from (5.16a). The function of integration, B, then follows from (5.16c) as
ν1 exp (− 1

2
qη), matching with stage 1 at small T . At large T , the solutionA becomes

exponentially large for 0 < η < (g̃/3κ)1/2, i.e. in the domain 0 < X < (g̃/3κ)1/2T ,
and exponentially small outside, in line with the results of § 4, e.g. see (4.7). A wedge
of velocity amplitude growth is thus produced in the domain above, as summarized
in figure 5(b) (which contrasts with the vorticity diagram in figure 5(a)) and shown
numerically for a specific example in figure 5(c) at increasing times.

For nonlinear disturbances (ν1 ∼ 1), numerical solutions of (5.16a–c) are presented
in figure 6. The figure shows the evolution of the scaled velocity amplitude A and
the phase property j for three different initial amplitudes. The two higher initial
amplitudes lead eventually to the upper limitation on amplitude being encountered
within the time range of the computations. In general, at early times, the response
is similar to (5.17), but eventually the upper limit A → η−1T−1/2 (m → 1+) on the
velocity amplitude is attained at a finite positive (X,T ) value as indicated. That
heralds a localized breakdown of the nonlinear theory behind (5.16a, b).
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Figure 6. Nonlinear ‘spot’ solutions of (5.16a–c) for initial amplitudes (a) 0.01, (b) 0.02, (c) 0.04,
showing amplitude A and phase function j. Note the upper limitation A = η−1T−1/2 (§ 5.3), which
is reached in cases (b), (c) at the times indicated, but not in case (a) for the time range shown.

6. Nonlinear effect on the mean flow
The nonlinear behaviour of the fluctuating component in § 5 has an effect on the

mean flow throughout tiers I–III of the ‘spot’, as well as interactively inside the critical
layer (ii).
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In tier I, both the velocity and the vorticity of the mean-flow correction experience
jumps across the leading critical layer (ii). The mean velocity jump uJm(X,T ) in scaled
form comes from (5.14c) and is

uJm = 1
4
a2

0Tη
2u′′4gj, (6.1)

with j, a0 determined as in § 5.3. The induced mean-flow correction first appears in
the terms with subscript 3m in (5.4b), independent of the fast variation C, S . The
governing equations for these terms are obtained at higher order, from the balance

L(ũ6, ψ̃6) + ũ3T + ũ3ũ0x̃ + (ũ4 + ũ0)(ũ3x̃ + ũ0X)

+Y ũ3X − ψ̃3X − (ψ̃3x̃ + ψ̃0X)(ũ′4 + ũ0Y )− ψ̃0X̃ ũ3Y = −p̃6x̃ − p̃3X, (6.2)

which, as a check, holds strictly provided that σ10 � Re−1/2, so that viscous forces
remain negligible. Also, p̃3 is independent of Y . Hence, the contributions with slower
streamwise and temporal dependence yield the momentum equation

(∂T + Y ∂X)ũ3m − ∂Xψ̃3m + 1
2
(a0a0X + Ya0F∂Y ũ31) = −p̃3mX (6.3a)

for the mean-flow correction, along with ũ3m = ∂ψ̃3m/∂Y , ∂p̃3m/∂Y = 0 and

ψ̃3m = 0 at Y = 0 + . (6.3b)

From (5.4c), however, ∂ũ31/∂Y is identically zero, and so (6.3a) gives (∂/∂T +
Y ∂/∂X )̃τ3m = 0 for the vorticity τ̃3m ≡ ∂ũ3m/∂Y . Therefore,

τ̃3m = f3m(X − Y T , Y ), (6.4)

with the function f3m to be found below for the areas (i), (iii) and (v) of tier I. Zero
initial vorticity τ̃3m is assumed.

Area (i) is ahead of or underhangs the leading edge (ii) of the ‘spot’ and so we
impose τ̃3m ≡ 0 in (i), for 0 < Y < X/(2T ). Across the leading, lower critical layer (ii)
a jump τJm(X,T ) in the scaled vorticity τ̃3m is supposed, this value therefore holding
at the lower edge (Y = X/(2T )+) of area (iii) and acting to fix f3m in (6.4) for area
(iii). Thus

f3m(X − Y T , Y ) = τJm

(
2[1− a]X,

[
1− a
a

]
T

)
, (6.5)

where 1
2
< a < 1, Y = aX/T in (iii), so that f3m is determined once values of τJm at

earlier positive times and positive X stations are found (below). The same argument
shows that f3m is zero in area (v), and indeed f3m tends to zero at the upper edge
Y = X/T− of (iii). This upper edge, which marks the position of the trailing critical
layer, corresponds to a being unity in the right-hand side of (6.5) and, hence, yields
zero mean vorticity alteration f3m since the initial correction is zero. The same feature
follows directly from the form of the operator in the governing equation (6.3a) for the
mean flow correction, confirming that the upper edge of the mean vorticity alteration
departs from the wall, as depicted in figure 7(a). The rate of departure of the upper
(trailing) edge is twice that of the lower (leading) because of the respective Y positions
X/T , X/(2T ) of the two critical layers.

No jumps occur in the corresponding pressure p̃3m(X,T ), across (ii). Further,
matching outwards through tiers II and III shows that p̃3m must be identically zero,
because of the implied longer lengthscale of the mean-flow correction compared with
that of the fluctuating components. It follows that in area (i) ũ3m is independent of
Y , so that ũ3m =

≈
u 3m(X,T ) say, and, hence, ψ̃3m = Y

≈
u 3m in view of (6.3b). So in (i),
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the momentum balance in (6.3a) leads to the relation

∂T (
≈
u 3m) = − 1

2
a0a0X (6.6)

controlling the mean velocity solution, in particular, giving the induced mean slip
velocity at the wall for positive X, thus representing a Benjamin–Ono-like mean flow
effect (a nonlinear influence which enters simultaneously with that inside the leading
layer (ii)). In area (iii), a similar integration of (6.4) in Y with (6.5) leads to

ψ̃3m =

∫ Y

X/2T

{∫ Y1

X/2T

f3m(X − Y2T , Y2) dY2

}
dY1 + Y

≈
u 3m +

(
Y − X

2T

)
uJm (6.7a)

and, hence, to
X

4T 2
τJm = −

[
(uJm)T +

(XuJm)X
2T

]
. (6.7b)

This controls the mean vorticity jump τJm in terms of the known velocity jump uJm
given by (6.1). It can be shown that the relation (6.7b) is consistent with higher-order
jump properties in the leading critical layer (ii).

The result of most immediate interest is (6.6), giving the induced mean wall slip
under and ahead of the ‘spot’, subject to the initial condition

≈
u 3m = 0 at time T = 0+

for all positive X. We notice that the time derivative in (6.6) is at a fixed position X,
whereas that in (5.16a) for the fluctuation is (travelling) for fixed η. In a sense, this
confirms that at a given streamwise position the main fluctuations sweep by, leaving
mean-flow alterations behind.

The solution of (6.6) obtained numerically is presented in figure 7(b), for three dif-
ferent initial fluctuation amplitudes. The figure plots the temporal evolution of T

≈
u 3m

versus the appropriate scaled streamwise coordinate η(= X/T ). At comparatively low
input amplitudes, this mean-flow solution continues for a long way downstream, and
for a relatively long time, developing an exponentially growing and expanding form in
η, T at large T . We observe also the similarity form holding at the start, for small T ,
in which T

≈
u 3m is a function of η, along with T 1/2a0, this form being accommodated

in the computations. At medium input amplitudes the nonlinear solution clearly ter-
minates at a finite time, as indicated by the jump function attaining its maximum
value (or A its maximum). This termination time becomes shorter with increasing
input and tends to zero as the input amplitude becomes relatively large; see further
comments in § 7. Also, in most cases, there is a pronounced expanding region where
the induced mean velocity

≈
u 3m is negative, this region moving essentially with the

‘spot’ and supplementing the fixed region of positive and negative velocity values

which trails behind. The above is for X (and T ) positive, whereas f3m, etc., like
≈
u 3m,

are zero for X negative behind the ‘spot’ trailing edge.
Behind the ‘spot’, in fact, the induced mean wall slip velocity is less in magnitude,

its pressure being σ11pI where,

pI (X,T ) =
1

π
(P .V .)

∫ ∞
0

(Ã3m)ξ(ξ, T )
dξ

X − ξ , (6.8a)

Ã3m =

∫ X/T

X/(2T )

f3m(X − Y T , Y ) dY +
≈
u 3m + uJm. (6.8b)

The induced displacement term in (6.8b) can be evaluated from (6.1), (6.5), (6.6),
(6.7b) and then substituted into (6.8a) to fix the upstream wall pressure. See figures
7(c) and 7(d), which show the quantities involved. In particular, figure 7(c) shows the
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Figure 7. Mean-flow alterations (§ 6). (a) The mean-flow structure, including the departures from
the wall of the leading edge (X/(2T )) and trailing edge (X/T ) of the mean vorticity distortion in

the ‘spot’. (b) Computed solutions for the mean velocity
≈
u 3m produced ahead of/under the ‘spot’,

from (6.6) with a0 (= T−1/2A) given as in figure 6, for three different input amplitudes; termination
times are shown for the two larger input amplitudes. (c) Mean shear τJm and extra velocity uJm .
(d) The induced mean displacement and pressure behind and within the ‘spot’.
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development of the mean jump properties uJm, τJm for the same three input amplitudes
as in figure 7(b). Figure 7(d) gives samples of the mean pressure and displacement
pI , Ã3m for one of the input amplitudes above and for two higher amplitudes of 0.1
and 0.2, in order to clarify the temporal evolution. Low input amplitudes lead to
a quasi-similarity exponential form at large times, whereas medium or high input
produces earlier termination via increased nonlinear effects throughout. Zones of
positive and negative induced pressure both appear, indicating trends towards and
away from mean flow separation, behind the main ‘spot’. On the other hand, these
pressures decay with time behind the main ‘spot’ and, within it, their corresponding
slip velocities are less in magnitude than those of (6.6).

7. Final comments (including non-parallel-flow effects)
7.1. General points

This work has been on linear and nonlinear unsteady disturbances introduced into a
laminar boundary layer mostly at or near the onset of an adverse pressure gradient,
leading to ‘spot’ growth downstream at later times. In contrast with recent studies
of nonlinear onset evolutions by Savin et al. (1999) for surface-roughness transitions,
where the effective phase-speed response is constant, and by Smith et al. (2000) for
near-wake transitions, where instead the effective frequency response is constant, in
the current setting the effective phase velocity plays a central role in the evolution of
the fluctuating disturbances, along with its corresponding critical layer which travels
across the flow and which helps form the leading edge of the ‘spot’. It should be
stressed that, on the other hand, the alteration of the mean flow vorticity takes place
in the region lying between the lower critical layer (leading edge) and the upper
critical layer (acting as the ‘spot’ vorticity trailing edge) as both layers leave the wall
downstream at later scaled times.

The theory in §§ 2–4 covers planar or three-dimensional ‘spots’, while that on
nonlinearity in §§ 5 and 6 is for the planar case as a first step, given the dominance of
planar growth in the form of the (+) contributions of § 4 along the ‘spot’ centreline.
It would be interesting to extend the nonlinear study to the three-dimensional case
(where vortex–wave interactions are known to arise at remarkably low amplitudes),
as well as to higher or lower input amplitudes yielding, respectively, earlier or later
onsets of nonlinearity relative to the σ−5 temporal (σ−4 spatial) stage. The former
amplitudes point to a nonlinear unsteady balance arising in the transient early stage,
whereas the latter amplitudes are reconsidered in § 7.3.

7.2. Connections with spot experiments

It is worth recalling the important point that the present ‘spot’ evolution theory is not
for the turbulent case, whereas most experiments to date are. So connections between
the two are probably best viewed with caution. In similar vein, only mild adverse
pressure gradients are considered in the theory here.

It may be coincidental, then, that qualitative links exist with the ‘spot’ experiments
under adverse pressure gradients by Gostelow et al. (1993, 1994, 1997), Seifert &
Wygnanski (1995), van Hest (1997) and Howell (1998). The general shape in figure
4(a) is not dissimilar to the observed ‘spot’ shapes, given the caution above. The
increase in theoretical spread angle from about 11◦ (Bowles & Smith 1995) in the
zero-gradient case to about 19◦ in the adverse-gradient case (figure 4) is in agreement
with the experimental trends (although apparently less in magnitude, see below), and
likewise for the appearance of distinct new behaviour at the spanwise edge of the
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‘spot’, behaviour which is associated here with the (−) contributions in § 4 with their
longitudinal-vortex form and which is similar to that observed in the flow visualization
study by Carlson et al. (1982) (see figure 3 of Johnson 1998) and in the off-centre
spiking found by van Hest. The maximum disturbance amplitude nevertheless persists
along the ‘spot’ centreline, leading there to the first internal vortex wind-up (§ 5).

The responses of the mean-flow alterations in § 6 suggest other tentative connections,
both within or under the ‘spot’ (figure 7b) and behind the spot trailing edge (figure
7c, d). It remains to be seen whether these yield a full explanation of the calmed region
in practice, although at early times, clearly, (6.6) is the dominant response, yielding the
results of figure 7(b). Regions of significant positive mean-flow velocity are induced
near the wall, in figure 7(b), leaving strong attachment of the flow there in view of
the corresponding high mean wall shears. At increased amplitudes, or later times, the
direct inertial effect of (6.6) may be connected with an empirical suggestion by Jones
mentioned in § 1. Simultaneously, the mean-pressure property (6.8a) may tend to cause
separation after the trailing edge passes by, the mechanism then being not unlike that
in the upstream separations in channel flows (Smith 1978), in roughness flows (Smith
& Walton 1998) and horseshoe vortices, and being close to one suggested empirically
by Seifert, with regard to the commonly observed calmed region trailing a ‘spot’.
That again requires study of higher amplitudes and/or increased distances travelled
downstream, leading hopefully to close comparisons with Gostelow et al. and Seifert
et al. on the leading-edge ‘spot’ velocity for various adverse pressure gradients.

We observe further that the induced mean wall shear is relatively large, dominated
by the O(σ19/2Re3/4) contribution to ∂u/∂y (at the wall) provoked by the slow unsteady

slip
≈
u 3m, as opposed to the smaller O(Re1/2) contribution of the original mean flow.

This is due to the associated thin O(σ−5/2Re−3/4) wall layer of viscous unsteady
motion which in essence starts afresh after the ‘spot’ has passed by, and it links,
however remotely, with the experimental observations on calmed region properties
by Gostelow, Hodson, Jones and Seifert. Indeed, the induced mean slip in the earlier
transient stage for this case is larger, of order σ4, and provokes a yet thinner
O(σ−1Re−3/4) viscous wall layer then, accompanied by larger values, of order σ5Re3/4,
in ∂u/∂y at the wall.

Other features may be considered also, in a cautious manner. First, §§ 3 and 4
indicate a ‘spot’ trailing-edge velocity equal to half that of the leading edge, a value
which is not inconsistent with the above experiments. Secondly, the trends of the
streamwise and normal positions of the leading and trailing edges, for instance in
figure 3, are in line with van Hest’s (1997) and other experiments. Thirdly, the
linear amplitude growth found in §§ 2–4 and 7.4 (below) is similar to that found
at the onset of an adverse pressure gradient and downstream in the maintained-
disturbance experiments of Dovgal & Kozlov (1983, 1995), Boiko, Dovgal & Kozlov
(1989). Finally, the Benjamin–Ono-like mean effect in § 6 reminds us of the Kachanov,
Ryzhov & Smith (1993) theory for zero pressure gradients, where fair agreement was
found with detailed experiments. Similar detailed experiments would be helpful in the
present case of adverse pressure gradients.

7.3. Non-parallel flow effects

Further links may rely more on incorporating non-parallel-flow effects, as the ex-
perimental ‘spot’ propagations continue well beyond the onset position upon which
attention has been focused so far in this paper. The streamwise development of the
basic flow then becomes important. (See also van Hest’s comments.) There are various
sources of non-parallelism, in addition to the viscous influences.
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Figure 8. Showing non-parallel-flow effects; solution of (7.1) for ν1 small, input station at a
distance X0 = 1 upstream of the onset station, at times T = 1(1)11. Here, g̃1 = κ = 1.

A first generalization along these lines is from (5.12b) and (5.16a) to

(∂T + η∂X)A = 1
8
jη3(g̃1X − g̃1X0 − 3κη2)A (7.1)

in the X-T frame, with g̃1 ≡ p̄′′(0) a positive constant, X0 an order-one constant,
to account for the local linear variation of the basic pressure gradient through the
pressure minimum (§ 2) at X = X0, with the ‘spot’ being initiated at X = 0. This
applies when the slower streamwise lengthscale O(Re−1/2σ−4X) in stage 2 becomes
comparable with the O(σ2) distance x1 from onset, i.e. when X is O(Re1/2σ6), which is
large for σ � Re−1/12; alternatively, X then is O(1) if σ is of order Re−1/12, a scale of
σ which is consistent with the earlier inviscid requirement in tier I, that σ be greater
than O(Re−1/8), and which yields a non-parallel onset lengthscale of order Re−1/6.
The solution of (7.1) for small disturbances where j = π, and for the same initial
condition as in § 5.3, gives now

A = ν1 exp (−qη/2) exp

[
1
8
πη3

{
g̃1

ηT 2

2
− (g̃1X0 + 3κη2)T

}]
, (7.2)

when ν1 is small (see figure 8). At early times, the disturbance either decays, if X0 is
positive (corresponding to an input position upstream of the basic pressure minimum
point), or grows, if X0 is negative (for a finite range of η values). At late times,
however, exponential growth is inevitable, and, moreover, it is of the enhanced form
exp [T 6], for an increasingly long range 0 < η < g̃1T/(6κ), giving spatially X of order
T 2. The above early- and late-time features tend to be verified by the numerical plots
in figure 8 which are for the case of a disturbance input station lying upstream of the
onset station, so that X0 is positive in that case. The late-time growth is clearly very
strong.

This rapid growth and lengthening of the ‘spot’ make good physical sense. Thus,
when the ‘spot’ evolution time t (= Re−1/2σ−5T ) increases to O(1) the total streamwise
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length x(= Re−1/2σ2X) of the ‘spot’ increases to O(1), from the orders of magnitude
above; the associated normal distance of the leading edge from the wall (y ∼
Re−1/2σX/(2T )) rises to O(Re−1/2), the boundary-layer scale; and the leading- and
trailing-edge velocities both also increase, to become of O(1). The growths for low
input amplitudes in figures 7(b) and 7(c) also tie in with the trend. Simultaneously,
the characteristic internal length and time scales of the ‘spot’ decrease to O(Re−1/2),
from the fast dependence in (5.1).

The overall trend points to a long-scale/short-scale interaction entering next, of the
kind described for zero basic pressure gradients by Smith & Burggraf (1985), Smith
et al. (1994), Li et al. (1998). For nonlinear disturbances, on the other hand, the upper
limitation,

A < η−1T−1/2, (7.3)

still holds on the amplitude solution of (7.1), as in § 5, in view of the local vortex
roll-up at the ‘spot’ leading edge.

7.4. Towards separation

A second, wider, generalization is to

(∂T + η∂X)A = 1
8
jη3(g̃3(X)− 3κ3(X)η2)A, (7.4)

with g̃3(X), κ3(X) being given functions of X, concerned, in particular, with mid-
chord breakaway separations and local blade-trailing-edge separations owing to blade
thickness, incidence or camber. On the basis of triple-deck theory, in such a breakaway
separation, the adverse pressure gradient sets in strongly only within an asymptotically
small distance of separation (and similarly for the blade trailing-edge flows), thus
allowing application there of the present onset theory. The pressure p locally has the
form b1(xs − x)3/2 − Re−1/16b2(xs − x)1/2, where the constants b1 and b2 are positive
and of order unity, and xs is the separation point. So, the pressure minimum arises
at a point xmin lying a distance Re−1/16b2/(3b1) ahead of xs, thus setting a relatively

long streamwise lengthscale. The skin friction there is λ̄− O(Re−1/16(xs − x)−1/6) and
g̃3(X) in (7.4) can be deduced approximately from the local pressure function above.

More precisely, accounting for the largeness of τ̄|τ̄′| and for the pressure gradient
p̄′ becoming positive between xmin and xs indicates three zones of interest. One is
comparatively close to xmin, where (7.1) is found to apply again over a lengthscale
which is short compared with the distance xs − xmin, but slightly longer than in the
non-parallel case of the previous paragraph. The second zone of interest covers the
majority of the distance between xmin and xs. The local maximum (over η) growth rate
on the parallel flow basis is proportional to g̃5/2/κ3/2 and so increases from zero at
xmin, but it is found to have a maximum more globally over x, at xmax say, because of
the factors g̃, κ which follow from the pressure form above and from τ̄τ̄′. The details
show that this maximum occurs 5/6 of the way from xmin to xs, that is

xmax = xmin + 5
6
(xs − xmin), (7.5)

which is relatively close to the separation point. Nonlinear effects as in §§ 5 and 6
would tend to provoke breakdown prior to (7.5). Moreover, the scaled growth rate
then decreases towards zero as x increases further from xmax towards xs. This perhaps
surprising (stabilizing) feature is due to the rapid increase of −τ̄′, overwhelming the
increase of the effective pressure gradient g̃ and, indeed, eventually causing the local
inflection point to migrate so close to the wall that (as expected) the inflection point
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enters the lower deck of the triple-deck structure closer to the breakaway separation
position xs.

That brings us to the third zone of interest, near xs, where the basic pressure
gradient is dominated by the b2 term above. In consequence, the non-parallel flow
equation (7.4) holds over a lengthscale of order Re−3/14 near xs, with g̃3, κ3 both being
positive and proportional to scaled (Xs −X)m, m = − 1

2
,− 7

6
in turn. The non-parallel

solution then shows that a ‘spot’ initiated at any station within the above lengthscale
ahead of xs produces negligible amplitude variation at xs itself. Again, this important
conclusion is due to the surprising stabilizing feature noted just after (7.5), and it is
in line with (7.5) itself.

The above seems to offer one way to understand more of the behaviour of ‘spot’
disturbances entering a substantial separation region. While the current work supports
a view that, at an inception near a pressure minimum, all adverse pressure gradient
‘spots’ are essentially the same, the form of the non-parallelism (7.4) accounts for the
entire length of adverse pressure gradient leading up to a mid-chord separation or to
a trailing edge. Other cases or scales of non-parallelism may occur and some work on
this is in progress by F. T. S., R. I. Bowles and S. N. Brown. The extensions (7.1) and
(7.4) should help the theory to keep track of the ‘spot’ further downstream under the
increasing adverse pressure gradient and may lead then to an enlarged spread angle
in the three-dimensional case.

7.5. Finally

We end with three brief comments. First, some initial unsteady forcings are consid-
ered in the Appendix. More sustained forcing and/or interaction with free-stream
turbulence should be studied further (D. Ashpis, private communications 1997), as
should interactions between several ‘spots’. The Appendix also considers an analogy
between near-wall forcing and external forcing effects in a ‘spot’, with a relatively
thick vortical wake outside the boundary layer providing one example of external
forcing. Secondly, given the predominance of the moving critical layers in the present
setting, we note that full unsteadiness may re-enter the main critical layer eventually
because of vortex roll-up in the nonlinear case. This is as in the spiking theory of
Li et al. (1998) and as in van Hest’s (1997, pp. 139, 140) experiments: R. I. Bowles,
private communications 1998. Thirdly, we would like to pursue the analysis of that
nonlinear roll-up, taking place as it does at the head or leading edge of the ‘spot’.

Thanks are due to Professor Paul Gostelow, Dr Avi Seifert, Dr Tom Allen, Dr
Howard Hodson, Professor Terry Jones, Professor Roddam Narasimha and Dr David
Ashpis for their interest, to the referees for helpful comments, and for support for
F. T. S. through the Isaac Newton Institute during part of this study.

Appendix A. On ‘spots’ from wall forcing or external forcing
We consider here the ‘spot’ evolution if the initial disturbance is set up by forcing

or receptivity, during the transient stage, as presented earlier in figure 1.
First, forcing at the wall is exemplified by unsteady slot suction and/or injection,

e.g. a pulse, as used experimentally by Howell (1998) and others mentioned in § 1 to
examine the ensuing ‘spot’ development. Here, (3.2b) and (3.2c) are altered by the
prescribed scaled normal velocity VW (x̃, t̃) at the wall, such that now tier I has the
flow solution

ṽ0 = VW − Ã0x̃Y , (A 1)
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Ã0̃t + VW = −p̃0x̃, (A 2)

with the suction or injection speed being of order ∆σ and appearing only as above
rather than in higher-order terms. In tiers II and III the induced displacement and
pressure dominate the dynamics, as before, in view of the growth in Y in (A 1),
whereas VW (x̃, t̃) appears only in higher-order effects there, such as an addition of
VW to v̌1 in (3.5b). Hence, (3.7) remains valid. The coupling of (A 2) and (3.7) then
gives the transform equation

(∂t̃ + ik|k|)Ã∗0 = −V ∗W (k, t̃) (A 3)

for Ã∗0(k, t̃), which is assumed to be zero initially at time t̃ = 0, say, prior to the slot
pulse VW . Suppose for clarity that VW is a constant VJbetween x̃ = 0, ˜̀ (the slot),
and zero otherwise, for times t̃ between zero and t̃0, after which VW is identically zero
everywhere. The solution of (A 3) then is

Ã∗0 = VJ(1− exp (−ik˜̀))(1− exp (−ik|k|̃t))/(k2|k|), (A 4)

Ã∗0 = VJ(1− exp (−ik˜̀))(1− exp (−ik|k|̃t0)) exp (−ik|k|(̃t− t̃0))/(k2|k|), (A 5)

in turn, for 0 < t̃ < t̃0, t̃ > t̃0. It follows that the effective initial condition, for the free
evolution of the spot at times t̃ after t̃0, is VJ multiplied by the first two bracketed
terms in (A 5) divided by k2|k|, imposed at t̃ = t̃0. This replaces R∗(k) in (3.8) and
subsequently (we note R∗(0) is finite), with t̃− t̃0 replacing t̃, and so the spot goes on
to develop just as described throughout §§ 3–6.

Here and below, the resulting disturbance such as in (A 5) or (3.8) does not exhibit
on its own any sign of growth or decay during the current transient stage 1, of course,
and little indication is given by the higher-order term Ã3. Instead, growth or decay
is seen fully only in the subsequent stage 2. So, if the narrow injection slot implied
above for (A 4) and (A 5) is positioned downstream of the adverse-pressure-gradient
onset station x = 0, so that x1 > 0, then spot growth results directly during stage 2
as in §§ 5 and 6. If the slot position is upstream, so that x1 < 0, then the spot decays
at first but grows later, downstream, as the non-parallel-flow effects come into action
as described in § 7.3 and shown in figure 8. The intermediate case of slot positioning
closer to the onset station yields slower growth or decay, in line with § 7.3.

Secondly, a forcing which has been much studied previously, e.g. Terent’ev (1981),
Hall & Smith (1982), Goldstein (1985), is that due to a combination of temporal
oscillation in the free stream and a bump at the wall, or other source of near-surface
non-parallelism. This seems less relevant here, however, unless rough surfaces, for
example, are under consideration.

Thirdly, forcing due solely to perturbed conditions in the free stream external to
the boundary layer may take numerous forms. Suppose the input emanates from a
disturbance outside the upper tier III of (3.6), for instance from unsteadiness in a
remote upstream incident wake which is typically thicker than the wall boundary layer.
The outside disturbance then acts as a forcing term via the outer boundary condition
on the linearized Euler equations in the upper tier, such as in one of the forms

p̂0 ∼ π1(̃t) exp (α1
¯̄y) cos (α1x̃− ω1(̃t)), (A 6)

p̂0 ∼ π2(̃t)r
m2 cos (m2θ + m3), (A 7)

[û0, v̂0] ∼ [cos α3, sin α3]π3(̃t)f3(x̃ sin α3 − ¯̄y cos α3 − ω3(̃t)), (A 8)

as r ≡ (x̃2 + ¯̄y2)1/2 → ∞. Here, tan θ = ¯̄y/x̃, while π1, π2, π3, α1, ω1, m2, m3, α3, ω3 are
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prescribed O(1) functions of time t̃ and the given wake-profile function f3 is also O(1),
typically. The constraints (A 6) and (A 8) can arise from remote wake disturbances, as
in Smith et al.’s (2000) §§ 5 and 6, respectively. For the former case, the shear in the
remote wake is much less than in the present wall boundary layer because the wake
is thicker, while strictly its minimum velocity is small, yielding the convective contri-
bution ω1; the flow solutions in Smith et al. have π1(̃t) being oscillatory in t̃, along
with exponential dependence in the normal direction if the wake perturbations are
simple waves. The constraint (A 7) is in similar vein, again consistent with irrotational
motion in tier III.

The condition (A 8) is more clearly equivalent to a distorted wake profile (its
evolution defined by π3, f3, α3) with vorticity incident at an O(1) angle α3(̃t) and
with zero incoming pressure. It is also in keeping with the Smith et al. near-wake
disturbance theory for general perturbations rather than the simple waves of (A 6),
again in the remote thick wake directed at an angle to the wall. The high degree of
arbitrariness possible through π3, f3, α3 in this external wake is due to the local outer
flow being quasi-steady, as well as nearly uniform. Again, see figure 1. Taking (A 8),
we obtain from the linearized governing equations in tier III the interaction response,
as the wall is approached,

p̃0(x̃, t̃) =
1

π
(P .V .)

∫ ∞
−∞

(Ã0ξ − G̃0)
dξ

(x̃− ξ)
(A 9)

in place of (3.7) now, with suitable boundedness in the far field. Here, G̃0(x̃, t̃)
denotes π3 sin2(α3)f3(x̃ sin α3 − ω3). The response (A 9) is coupled with (3.2c)(n = 0),
to determine the induced pressure and displacement due to the external forcing. The
unknown difference function Ã0 − g̃0, where ∂g̃0/∂x̃ = G̃0, therefore satisfies (3.7)
coupled with (A2) again, for an effective injection velocity which is VW = ∂g̃0/∂t̃, or

VW (x̃, t̃) =
∂

∂t̃
{π3(sin α3)g3(x̃ sin α3 − ω3)}. (A 10)

Here, g3 is the incident mass-flux-deficit profile associated with (A 8), so that ψ̂0 ∼
−π3g3(s) there, s = x̃ sin α3− ¯̄y cos α3−ω3, and g′3 = f3. The equivalent injection/suction
velocity at the wall therefore relies on the incident external-wake-like amplitude π3,
angle α3 and/or speed factor ω3 being unsteady, together with α3 being non-zero.

Let us continue further with the analogy. Suppose, for clarity again, that the speed
factor ω3 is simply ω̃t̃, with ω̃, π̃3, α3 constant, leaving

VW (x̃, t̃) = −ω̃π3(sin α3)f3(x̃ sin α3 − ω̃t̃). (A 11)

If, also, the incident velocity profile f3(s) is piecewise constant, ±f̃, so that g3(s)
is piecewise linear but with no added mass in total, only momentum, then (A11)
gives a blow–suck piecewise constant VW _ ±f̃ over the ranges 0 < x̃ − c̃̃t < ˜̀,
˜̀ < x̃ − c̃̃t < 2˜̀, in turn, for all positive t̃, say. The effective scaled speed of the
(moving) slot position is c̃ = ω̃/(sin α3) and ˜̀ is again a lengthscale.

Hence (compare (A 3) and (A 4))

Ã∗0 = g̃∗0 +
VJ

|k| − c̃
(

1− e−ik˜̀

ik

)2

(e−ik|k|̃t − e−ikc̃̃t), (A 12)

where now the constant VJ = −ω̃π3(sin α3)f̃. Of particular concern is the case where
the external speed factor ω̃ is relatively large. This makes c̃ large and so |k| may
be neglected (except at very large values) in the denominator of (A 12). Then the
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exp (−ikc̃̃t) term and the g̃∗0 contribution represent the rapid part of the disturbance
that travels downstream with the forcing, at high relative speed ω̃/ sin α3, while the
exp (−ik|k|̃t) term represents the part of the disturbance that is left behind, at slower
speed. The latter part, namely

Ã∗0 = π3(sin
2 α3)

(
1− e−ik˜̀

ik

)2

f̃e−ik|k|̃t (A 13)

goes on to form the ‘spot’, cf. (3.8) and (3.10). Here, R∗(0) = π3(sin
2 α3)f̃˜̀2 is again

finite; notably, it (and (A 13)) is independent of ω̃ owing to a cancellation above,
leaving the subsequent ‘spot’ properties overall controlled by the incident amplitude,
angle and profile width alone.

Further, taking (A 6) and (A 7) likewise provokes virtually the same forced equation
as in (A 2), but with the effective VW not necessarily having compact support and
so, then, leaving R∗(k) unbounded at small |k|. This affects the amplitude scales in
stage 2, although less so the main dynamics. Also, these more spatially extensive
disturbances point once more to the non-parallel decay–growth evolution of § 7.3
upstream/downstream of the adverse-onset station, as does the fast-moving slot
analogy of (A 10)–(A 13) if it enters far upstream.

Other external or near-wall forcings are produced by a moving body in the free
stream or by a travelling patch of vorticity and basic non-parallelism near the wall, for
instance. Their equivalent suction/injection wall velocities could be of interest. Finally,
the three-dimensional counterpart (§ 4) also holds, based on a suction/injection hole
of circular cross-section, for example.
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