
IEEE Network • May/June 200116

he Internet was simply designed for packet delivery.
However recent developments such as commercializa-
tion and the diversity of application requirements
make it obvious that a more concrete definition of the

type of service delivered to the user is needed. This description
of the service delivered by the network is called the service
model and documents the commitments the network makes to
the clients that request service. It describes a set of end-to-
end services and it is up to the network to ensure that the ser-
vices offered at each link along a path combine meaningfully
to support the end-to-end service.

Traditionally, in the Internet all packets are treated the
same without any discrimination or explicit delivery guaran-
tees. This is known as the best effort service model; all the net-
work promises is to exert its best effort to deliver the packets
injected into it without committing to any quantitative perfor-
mance (quality of service, QoS) bounds.1 Users do not request
permission before transmitting, and therefore perceived per-
formance is determined not only by the network itself, but
also from other users’ offered load, resulting in a complete
lack of isolation and protection. The best effort service model
has no formal specification; rather, it is specified operational-
ly; packet delivery should be an expectation rather than an excep-
tion. The traditional applications and protocols were flexible,
adaptive, and robust enough to operate under a wide range of
network conditions without requiring any particularly well-
defined service.

The Problem of Congestion

Congestion is the state of sustained network overload where
the demand for network resources is close to or exceeds
capacity. Network resources, namely link bandwidth and
buffer space in the routers, are both finite and in many cases
still expensive. The Internet has suffered from the problem
of congestion which is inherent in best effort datagram net-
works due to uncoordinated resource sharing. It is possible
for several IP packets to arrive at the router simultaneously,
needing to be forwarded on the same output link. Clearly,
not all of them can be forwarded simultaneously; there must
be a service order. In the interim buffer space must be pro-
vided as temporary storage for the packets still awaiting
transmission.

Sources that transmit simultaneously can create a demand
for network resources (arrival rate) higher than the network
can handle at a certain link. The buffer space in the routers
offers a first level of protection against an increase in traffic
arrival rate. However, if the situation persists, the buffer space
is exhausted and the router has to start dropping packets. Tra-
ditionally Internet routers have used the first come first served
(FCFS) service order, typically implemented by a first in first
out (FIFO) queue, and drop from the tail at buffer overflow
as their queue management strategy.

The problem of congestion cannot be solved by introduc-
ing “infinite” buffer space inside the network; the queues
would then grow without bound, and the end-to-end delay
would increase. Moreover, when packet lifetime is finite, the
packets coming out of the router would have timed out
already and been retransmitted by the transport protocols [1].

0890-8044/01/$10.00 © 2001 IEEE

Congestion Control Mechanisms and the
Best Effort Service Model

Panos Gevros, Jon Crowcroft, Peter Kirstein, and Saleem Bhatti
University College London

Abstract
In the last few years there has been considerable research toward extending the
Internet architecture to provide quality of service guarantees for the emerging real-
time multimedia applications. QoS provision is a rather controversial endeavor. At
one end of the spectrum there were proposals for reservations and per-flow state in
the routers. These models did not flourish due to the network’s heterogeneity, the
complexity of the mechanisms involved, and scalability problems. At the other end,
proposals advocating that an overprovisioned best effort network will solve all the
problems are not quite convincing either. The authors believe that more control is
clearly needed for protecting best effort service. An important requirement is to pre-
vent congestion collapse, keep congestion levels low, and guarantee fairness.
Appropriate control structures in a best effort service network could even be used for
introducing differentiation. This could be achieved without sacrificing the best effort nature
of the Internet or stressing its architecture beyond its limits and original design princi-
ples. In this article we revisit the best effort service model and the problem of conges-
tion while focusing on the importance of cooperative resource sharing to the
Internet’s success, and review the congestion control principles and mechanisms
which facilitate Internet resource sharing.

TT

1 The QoS bounds are usually any combination of the three following met-
rics: throughput, end-to-end delay, and packet loss ratio.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1682113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Network • May/June 2001 17

In fact, too much buffer space in the routers can be more
harmful than too little, because the packets will have to be
dropped only after they have consumed valuable network
resources.

The Threat of Congestion Collapse
Congestion in the Internet can cause high packet loss rates,
increased delays, and can even break the whole system by caus-
ing congestion collapse (or “Internet meltdown”). This is a
state where any increase in the offered load leads to a
decrease in the useful work done by the network (Fig. 1, the
area beyond the “cliff”). The threat of congestion collapse is
not a new one; it dates back to the early days of the Internet
(then ARPANET) and can take several forms. In 1984 Nagle
[2] reported on congestion collapse due to TCP connections
unnecessarily retransmitting packets that were either in transit
or already received at the receiver. This form of congestion
collapse is a stable condition which results in throughput that
is only a small fraction of the normal. This phenomenon, as
predicted by Nagle, occurred several times in 1986–1987 with
a large number of sites experiencing simultaneous slowdown
of their network services for prolonged periods. At that time
BBN, the firm maintaining the Internet backbone, responded
to the collapse by providing additional link capacity. However,
this could only ever be a temporary fix.

Another form of congestion collapse is the one from
undelivered packets; in this case bandwidth is wasted by deliv-
ering packets that will be dropped before they reach their
final destinations. Compared to the “classical” congestion
collapse reported by Nagle, this form of congestion collapse
is not a stable condition but one that can be reversed if the
offered load is reduced. Other forms of congestion collapse
reported by Floyd [3] include fragmentation-based congestion
collapse in which the network transmits fragments of packets
that will be discarded at the receiver since they cannot be
reassembled into a valid packet, and congestion collapse from
stale packets in which the network carries packets that are no
longer wanted by the user (because the transfer took so long
for instance).

TCP Congestion Control and the Role of
Cooperation
In order to deal with congestion the Internet used end-to-end
window-based flow control in its Transmission Control Proto-
col (TCP) [4], primarily for controlling demand on the receiv-
er’s bottleneck resources (memory and processing). Since
1987 TCP congestion control has been augmented with the
Slow Start and Congestion Avoidance algorithms developed
by Jacobson and Karels [5]; these algorithms became manda-

tory requirements for all Internet hosts [6]. The receiver-driv-
en TCP flow control mechanisms have been the only conges-
tion control methods available. This is why the term “flow
control” is sometimes confused with “congestion control,”
although the former is only one method of the latter.

Few would argue that the TCP congestion control mecha-
nisms have served the Internet remarkably well and formed
the basis for its survival and success. The TCP window man-
agement algorithm uses the well proven principles of Additive
Increase and Multiplicative Decrease (AIMD) [7]. AIMD
manages to reconcile mutually contradictory objectives by
being simple to implement, effective in the presence of con-
gestion, efficient with respect to resource utilization, stable,
scalable with the number of sources, and fair by providing
equal shares to users sharing a scarce resource.

The Role of Cooperation
Nevertheless, it should be stressed that TCP congestion con-
trol owes its success to the fact that everyone was using it; in
other words, to cooperation. So far it has been assumed that
there is a uniform response to the congestion signals by all
users. This assumption was indeed true because the Internet
used to be a small network, operated by a technically knowl-
edgeable community adhering to informal rules about conges-
tion control and the use of Internet services. The operating
systems in use were mainly UNIX and its variants, which
allowed the “standard” congestion control algorithms of TCP
to be deployed universally.

To this day users who misbehave (do not respond to the
congestion signals as the “standard” TCP rules prescribe) cap-
ture more bandwidth than their fair share, seriously degrade
the service delivered to cooperating users, and in general
threaten the stability and operation of the entire system.
There are only guidelines by the research community for coop-
erative congestion control behavior in the form of so-called
TCP friendliness. Non-TCP flows are considered TCP-friendly
if “their long-term throughput does not exceed the throughput
of a conformant TCP under the same conditions” [3]. Howev-
er, this definition is weak, since there are several TCP variants
with widely different performance; moreover, the same aver-
age loss rate can affect throughput in different ways depend-
ing on the actual distribution of packet losses.

The Internet architecture has not incorporated any
incentives for cooperative congestion control behavior. Fur-
thermore, users do not have information about the behav-
ior of other users against whom they are competing for
network resources, so creating appropriate incentives is not
an easy task. Misbehaving users are even implicitly reward-
ed by receiving a larger fraction of bandwidth than they
would have received by being cooperative. The importance
of detecting and penalizing misbehaving users was realized
from the early days of the Internet. Request for Comments
(RFC) 896 [2] suggests that a router detect and disconnect
a misbehaving host, although it is acknowledged that such
detection is a nontrivial task because the definition of a
well behaved host in terms of its externally observed behav-
ior is subtle. Floyd [3] points out that the incentives for
cooperative user behavior can only come from the network
itself, and therefore router mechanisms are an inescapable
necessity.

It is well known from game theory that noncooperative
actions may lead to suboptimal outcomes; this situation is often
referred to as the prisoner’s dilemma. Axelrod [8] discusses the
necessary conditions for maintaining cooperation in a system as
a stable state. Cooperative behavior leads to fair allocations of
resources; however, it is necessary that fairness be precisely
defined before creating any incentives for cooperation.

■ Figure 1. Throughput as a function of the offered load.

Collapse

Recovery

Avoidance

Th
ro

ug
hp

ut

Offered load

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 200118

Fairness
The notion of fairness is of major importance in the best effort
Internet due to the lack of explicit admission control and quan-
titative service assurances. Fairness is conceptually related to
congestion control; under conditions of low load everybody’s
demands are satisfied; there is no need for trade-offs and no
considerations for decisions that lead to fair allocation of
resources. Fairness becomes an issue only when there are
unsatisfied demands and users have to compete for their share.
In an environment of competitive individualist users, the critical
factor of cooperation relies on the underlying notion of fairness
as well as incentives for adopting certain behaviors. The impor-
tance of fairness is not drawn out of thin air, but is a result of
an optimization-under-uncertainty argument. Rational individu-
als who have to make decisions under uncertainty (having limit-
ed knowledge of their fate) tend to adopt what is called the
max-min rule: “the greatest benefit for the least advantaged.”

Although several definitions of fairness arise from various
disciplines, in the networking world the most popular notion is
indeed that of max-min fairness (also referred to as the classical
notion of fairness). Max-min fairness is informally defined as
“each user’s throughput is at least as large as that of all other users
which have the same bottleneck” [9]. Fairness can be examined
macroscopically along a path (global view) or on a per-link
basis (local view). To translate from a locally fair allocation
decision to a globally fair one, each user (flow) should limit its
resource usage to the smallest locally fair allocation along its
path; this is known to result in a globally fair allocation [10].

Formally, let I be a set of users and x = (xi; xi > 0 and i Œ
I) the vector of the allocations to each user. The vector is
called feasible if the sum of the allocations does not exceed
the capacity of the resource.

Max-min fairness is a widely used technique for resource
allocation in cases where some users’ demand is smaller than
others. It has been considered desirable in the networking
community — in both the Internet Engineering Task Force
(IETF) and the ATM Forum (for asynchronous transfer
mode) — and operates as follows:
• Resources are allocated in increasing order of demand.
• A user is never allocated a share higher than its demand.
• All users with unsatisfied demands are allocated equal

shares.
Initially all users get at least as much as the “small” user
demands, and the remaining resources are evenly distributed
among the users with unsatisfied demands. It follows that
from those users with unsatisfied demands no one can increase
its share without decreasing the share of a user with an
already small one. This can be formally expressed as follows: a
vector of allocations x is max-min fair if for any other feasible
vector y there exists a user j such that yj > xj implies that
there exists user i such that yi < xi < xj.

The Role of Policy
Fairness should not necessarily imply equal distribution of
resources to all those users with unsatisfied demands. A fair
allocation of resources is usually defined with respect to a
given policy. Policy is the unified regulation of access to net-
work resources and services based on administrative criteria.
It can be expressed at different levels:
• Macroscopically at the network level taking into account

topology, connectivity, end-to-end performance objectives
and the dynamic state of the network

• At the node level where a set of mechanisms like classifica-
tion, policing, buffer management, and scheduling allow
administrative intentions to be translated into differential
packet treatment [11]

Under a certain policy it may be justifiable (under certain cri-
teria) to allocate more resources to some users than to others;
this leads to a generalization of max-min fairness.

Weighted max-min fairness generalizes the concept of max-
min fairness for the case where users have different rights to
resource allocation. Each user i is associated with a weight wi
which reflects its right to a relative resource share. The
weighted max-min fair allocations are calculated as follows:
• Resources are allocated in increasing order of demand nor-

malized by weight.
• A user is never allocated a share higher than its demand.
• Users with unsatisfied demands are allocated shares in pro-

portion to their weights.
The formal definition is similar to the one used for max-min
fairness, but the allocations are replaced by the ratio xi/wi.

It has been argued that max-min fairness can be suboptimal
in several contexts depending on the actual utility functions of
the flows. Using logarithmic utility functions Kelly introduced
the notion of proportional fairness [12] as a more suitable fair-
ness model for bandwidth sharing. Proportional fairness tends
to favor “short” flows over “longer” ones and has ties to the
Nash bargaining scheme, which is known to be the only arbi-
tration scheme to satisfy certain axioms from the economic
theory viewpoint (such as Pareto optimality).

Proportional Fairness
Formally, a vector x is proportionally fair if it is feasible and if
for any other feasible vector y the aggregate of proportional
changes is zero or negative:

In a similar fashion, weighted proportional fairness generalizes
the notion of proportional fairness for the case where user
allocations are influenced by the price per unit share a user is
prepared to pay (wi). Then the feasible vector of allocations x
is weighted proportionally fair if for any other allocations vec-
tor y the weighted sum of the proportional changes is zero or
negative:

The allocations resulting from the two types of fairness
described above are illustrated with an example. Figure 2 shows
three flows sharing two links of unit capacity. Let the notation for
the allocations to flows 1, 2, and 3 be (x1, x2, x3); then the max-
min fair allocations would be (1/2, 1/2, 1/2) while the proportion-
ally fair allocations would be (2/3, 2/3, 1/3). Assuming logarithmic
utility function for each flow, proportional fairness requires that
the “longer” flow 3 sacrifice its own utility (thus receiving a small-
er share) for a greater sum of the utilities of all flows. It is known
that TCP is biased toward “shorter” flows; flows that traverse a
smaller number of links (because they are exposed to potentially
fewer losses) or have smaller round-trip time (because they

w
y x

x
i

i i

i
i I

- £ŒÂ 0.

y x

x
i i

i
i I

- £ŒÂ 0.

■ Figure 2. Three flows sharing two links of the same capacity.

Link 1 Link 2

Flow 1

Flow 3

Flow 2

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2001 19

update their window faster). However,
the fact that proportional fairness
results in allocations that favor such
“short” flows, does not necessarily mean
that TCP is proportionally fair.

Clearly max-min and proportional
fairness are the same in the case of a
single resource. Proportional fair
shares depend on the number as well
as capacity of the resources (links) on
which a user places demand. The
problem with this approach is that
the end user is usually unaware of how many or how congest-
ed are the links the traffic goes through. The user tends to
view the network as a single resource, unaware of the actual
cost implications different actions might have. These costs are
reflected in the prices the user is asked to pay, but again it is
hard for the endpoints to infer and the network to calculate
these prices and communicate them to the endpoints.

Timescales of Bandwidth Sharing
In the Internet bandwidth is shared between many different
flows; therefore, a decrease in resource usage by one flow
may potentially increase the fair allocation of other flows
which share part of their path with that flow, and vice versa.
Of course the flows can increase/decrease their resource
usage (by adjusting their sending rate or window) only after
a certain propagation delay which depends on their flow
control mechanisms and the feedback received by the net-
work. It is possible that by the time a source adapts to an
allocation which was known to be fair in the near past, traf-
fic conditions (demand on resources) may have changed dra-
matically. This introduces oscillating behavior and makes
important the issue of determining the appropriate
timescales in which fairness should be examined in such an
environment. Another issue related to fairness is the appro-
priate granularity at which to define a user. Even if protocol
implementations are well behaved, applications may use
them in a socially suboptimal manner. For instance, they can
open many connections to the same destination, as has been
the case in the past with some popular Web browsers. The
granularity of a “user” for fairness and congestion control
purposes is a policy issue which has not been addressed in
the IETF. However, the general consensus seems to be

toward that of a source/destination host pair being the most
appropriate grouping for the definition of a network user
from the router perspective.

Congestion Control Mechanisms
The Internet is decentralized by nature, comprising many het-
erogeneous administrative domains; therefore, resource man-
agement naturally involves both end-to-end as well as local
(per-link) decisions. We identify two broad classes of congestion
control mechanisms with regard to where these mechanisms are
implemented: host-based and router-based mechanisms.

The entire Internet architecture was founded on the con-
cept that all flow-related state should be kept on the hosts
[13]; therefore, the congestion control mechanisms were main-
ly implemented in the end hosts. Upon detection of conges-
tion the sources should inject their packets into the network
more slowly. This mechanism is called end-to-end flow con-
trol.2 In order for a host to be able to detect congestion, the
routers must be able to provide the information that the net-
work is currently (or is about to become) overloaded; this
mechanism is called feedback. Flow control and feedback are
conceptually related, so they are often referred to as feedback
flow control. Although flow control should be aware of the
feedback semantics, the exact mechanisms used to implement
either are orthogonal, so we decided to treat them separately
in our context. The feedback mechanism is distributed and
can be implemented partly or entirely at the end hosts (receiv-
er side) or routers. Packet drops were, and to a great extent
are still, the only means for a router to fight congestion. The
sources become aware of the packet drops, interpret them as

a congestion indication, and reduce their rates.
The feedback from the network and the response

from the source are the foundations of Internet con-
gestion control and are very important because they
facilitate decentralized resource allocation. Howev-
er, with decisions made at the end hosts and treat-
ment of the network as a black box that simply
drops packets, there is clearly a limit on how much
control can be achieved over the allocation of net-
work resources. This also limits the range of services
the network is capable of offering.

Routers, on the other hand, know exactly how
congested they are and can therefore perform more
drastic resource management. Thus, the introduction
of router mechanisms for congestion control that
will enable the network to more actively manage its
own resources seems inescapable [3]. These mecha-
nisms can be used as building blocks for providing

■ Figure 3. Feedback flow control.

Sender

ACK/ECN ACK/ECN

Mark/drop

Router resource management

Feedback generation

ICMP source
quench Network

Receiver

■ Figure 4. Router resource management actions.

Scheduler

Queue
management

Buffer
management

Scheduling

Buffer pool

…

Output link

2 Flow control has also been used for controlling demand on
the receiver’s bottleneck resources (memory and processing
power), which is irrelevant to network congestion.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 200120

higher-level resource management mechanisms such as link
sharing3, penalty boxes,4 and pricing, which by means of finan-
cial incentives controls the sharing of network resources.

The extension of router functionality per se does not con-
tradict the design philosophy of the Internet where all state
should be kept at the end hosts or, better, at the edges of the
network. Routers have two conceptually orthogonal methods
of managing their own resources: scheduling to directly man-
age bandwidth allocation on an output link, and queue/buffer
management to manage buffer space and queue occupancy,
respectively, and thus indirectly affecting bandwidth alloca-
tion.

Congestion Control Phases
Clearly congestion can be avoided at the expense of low
resource utilization; however, this is usually undesirable. Thus,
the goal of any congestion control mechanism, with respect to
resource utilization, is to operate the resource (link) in a
region close to its capacity (see the circled area, called the
“knee,” in Fig. 1). There are two phases in congestion control:
• Congestion avoidance when the system operates about the

knee
• Congestion recovery (often confusingly referred to as conges-

tion control in the literature) when the state of the system is
between the knee and the cliff, and congestion has occurred
so that the total load should be decreased to avoid collapse
(from which it might not be possible to recover)

We next treat in turn each of the four classes of congestion
control mechanisms identified above.

End-to-End Flow Control
In control theory a controller changes its input to a black box
and observes the corresponding output. The goal is to choose
the input as a function of the observed output so that the sys-
tem state conforms to some desired objective, provided that
the system state can be observed. From a control-theoretic
viewpoint the end host flow adjustment is the response to a
servo-control loop which needs to match the source’s sending
rate to the rate that corresponds to its fair share at the bottle-
neck link. The problem is that the appropriate bottleneck ser-
vice rate becomes known to the source after a delay, and the
new rate (after any adjustments) takes effect at the bottleneck
only after another delay. The precision of the servo-control
loop determines performance; if the queue at the bottleneck
link is empty, throughput will be less than the maximum. If
there are always packets in the queue, the link will never be
idle, but if the queue size grows beyond a limit, packets will
start being discarded. However, in flow control, the output of
the system (the rate of a flow as seen at the receiver) does not
depend only on the actions of that particular flow, but also on
the actions of all other flows sharing the same path.

Other flow control issues involve the decision function (how
the feedback information is interpreted), frequency of control
(how often the source decides to adjust its window/rate), and
control function (how the window/rate is adjusted). The above

issues depend on the end-to-end network path properties
(available bandwidth, delay, loss) as well as the nature of the
feedback signal, which has to be predictable and well defined;
otherwise, end-host adjustments cannot be used to implement
resource allocation policies or even to control loss.

Except for the primary goal of rate matching, a flow control
mechanism tries to achieve certain, sometimes mutually contra-
dictory, objectives that allow interesting design trade-offs and
lead to a wide range of mechanisms. Flow control schemes gen-
erally fall in two broad categories: open loop and closed loop.

Open-loop flow control is acceptable only in an environ-
ment without considerations about the impact of individual
actions to other network users. In an open-loop flow control
scheme the sender describes its rate to the network with
parameters like burst size and interburst interval. Simply stating
the rate is not sufficient because b packets/s may be 1 packet
every 1/b s, but it can also mean a burst of b back-to-back
packets every second, which might be unacceptable for a gate-
way that does not have enough buffer space to store the burst.
The network examines the parameters given by the sender
and if the request can be granted (admission control based on
availability or policy criteria) it reserves resources, corre-
sponding to these parameters, along the path from the sender
to the receiver. The sender simply ensures that its rate con-
forms to the given description, and in this fashion network
congestion is avoided. This paradigm fits nicely in a connec-
tion-oriented architecture like IntServ but cannot be enforced
only with end-to-end mechanisms; it requires resource man-
agement mechanisms in all the routers.

The difficulty with open-loop flow control is to accurately
describe source behavior using a small set of parameters
since the network must be aware of these parameters for
admission control calculations. However, sources may be
bursty and delay-intolerant; reservations at the peak rate do
not usually lead to the most efficient use of bandwidth, pre-
venting statistical multiplexing gains. It is therefore useful
for the source output to be smooth. Other options for
source description parameters include average rate or the
use of a linear bounded arrival process (LBAP) [14]. An
LBAP-constrained source bounds the number of bits trans-
mitted in a time interval by a linear function of time. An
LBAP can be used to describe a source with a known long-
term average sending rate which can occasionally deviate
from that average and transmit in bursts of a known maxi-
mum size. A leaky bucket regulator [15] is a mechanism for
regulating the size of bursts allowed to a source character-
ized by LBAP. Intuitively the regulator collects tokens in a
bucket and sends a packet only if the bucket has enough
tokens otherwise the packet waits until enough tokens have
been accumulated in the bucket or until it is discarded. The
effect of a leaky bucket is to limit the size of bursts to a lit-
tle more than the buckets depth (since tokens can arrive
while packets are being transmitted).

Closed-loop flow control schemes target more dynamic
network environments where it is a requirement for the
sources to dynamically adapt their rate to match their fair
share of network resources. The fair share usually fluctuates,
and the sender must be able to track these changes and
adjust its rate to allow for more efficient resource utilization.
Closed-loop schemes can be adaptive window, in which the
source indirectly controls the transmission rate by modifying
the number of packets sent but not yet acknowledged (win-
dow), or adaptive rate, in which the source, every time it
sends a packet, sets a timer with a timeout value equal to the
inverse of the appropriate transmission rate and transmits
the next packet when the timer expires. The potential dam-
age to the network is constrained in different ways, but win-

3 Link sharing allows routers to control the distribution of bandwidth on a
link based on local policies which allow multiple organizations to have
access to a guaranteed share of the link bandwidth during congestion and
optionally make unused bandwidth available to other organizations shar-
ing the link.

4 The purpose of a penalty box is to detect and restrict unresponsive and
high-bandwidth flows in times of congestion, thus creating incentives for
the use of end-to-end congestion control procedures.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2001 21

dow-based schemes are easier to implement because they do
not require a fine-grained timer, which is hard to implement
in non-real-time operating systems. If a closed-loop flow
control scheme appears ineffective, either the sources suffer
from excessive packet loss or the network resources are
underutilized.

Feedback Mechanisms
The mechanism used for notifying the sender about network
congestion or the appropriate sending rate is called the feed-
back, and inherently involves both the routers that generate
the congestion signals and the receiver host(s) that propagates
the signal to the sender for interpreting it accordingly. Closed-
loop flow control mechanisms and overall network perfor-
mance rely heavily on feedback. Without a feedback
mechanism a source would be clueless as to what to do with
its sending rate, and the network could become unstable,
unfair, and either congested or underutilized. Feedback
involves information about the state of the system, so in prin-
ciple it should originate from the network and ultimately be
delivered to the sender. The sender receives feedback either
directly from the network or from the network via the receiver;
therefore, there are two forms of feedback: implicit or explicit.

Implicit Feedback
Implicit feedback requires the end-hosts to be responsible for
monitoring the performance of their own transmissions (delay,
loss) for indications that will let them infer the state of the
network and determine their appropriate sending rate. Never-
theless, it is debatable how accurately this can be derived. The
most common form of implicit feedback signal is packet drop
and has been traditionally used by Internet routers. However,
packet drop is not necessarily an indication of congestion, for
instance in error prone wireless links. Another proposed
method of implicit feedback is the observation of the rate at
which packets emerge from the bottleneck [16] or the mea-
surement of the change in end-to-end delay as the transmis-
sion rate changes [17].

The advantage of implicit feedback is simplicity in the
routers; routers are left to focus only on resource allocation,
and do not have to calculate and produce an appropriate
feedback signal. However, the scheduling mechanisms must be
known to the end hosts for implicit feedback to be useful; oth-
erwise, the observed performance may be misleading and not
accurately describe the actual congestion state of the network.
For example, with FIFO scheduling an increase in the rate
may lead to an increase in the observed throughput, although
queues may have already started building up and the total
delay has increased.

Explicit Feedback
In principle explicit feedback can be in the form of congestion
notification or rate indication. Due to the limitations in the
information that can be carried in protocol headers explicit
feedback can be binary (in its lowest granularity : “congestion
experienced”) or multivalued (usually limited to a small num-
ber of values: “how much congestion has been experienced”).
In the case of binary feedback the appropriate operating point
is found through an iteration process of network feedback and
host adjustments. For explicit feedback the only methods pro-
posed for TCP/IP networks is the ICMP Source Quench mes-
sages and Explicit Congestion Notification (ECN) proposal
[18] (the idea first appeared in the DECbit scheme [19]).

The ICMP Source Quench message is sent by the IP layer
of a host or router to throttle back a sender in case the
host/router runs out of buffers or throws datagrams away [20].

ICMP Source Quench is very rarely used in the Internet, and
although there is no substantial evidence, the current feeling
is to deprecate this message because it consumes bandwidth at
times of congestion, and is generally an ineffective and unfair
fix to congestion [21, 22].

In the ECN feedback scheme the router sets a bit in the
packet header (CE bit) whenever it detects incipient conges-
tion. The receiver copies this bit into the header of the
acknowledgment packet, and the flow control mechanism at
the sender is responsible for adjusting the window (or rate)
based on a certain algorithm. The algorithms used for conges-
tion detection and window adjustment as responses to explicit
feedback are part of the queue management and flow control
mechanisms, respectively. Explicit feedback implies an extra
mechanism in the router, but on the other hand provides
more quantitative control information which can be valuable
for the adjustment process. Explicit rate indication [23] is
another method of explicit feedback in which the switches
perform rate allocation and the calculated rates are explicitly
communicated back to the sources (via the receiver) as infor-
mation in the packet headers; it has been used in ATM net-
works but not in the Internet.

Scheduling Mechanisms
Scheduling determines the service order of the packets and
therefore is the most direct control over how a network serves
its users. There have also been claims that scheduling is the
only effective means of resource management and that queue
management alone is not sufficient for controlling bandwidth
usage, but this needs further investigation. The scheduling dis-
cipline controls the bandwidth allocation by serving a certain
number of packets from each flow in a given time interval.

There are several factors that have to be considered in the
design of a scheduling discipline. The most important design
factor is the number of priority levels that may be realized as
separate queues. Assuming n priority levels and the higher-
numbered levels corresponding to higher-priority users, the
scheduler only serves a packet from priority level k if there
are no packets waiting to be served at higher priority levels k,
k + 1 …, n (multilevel priority with exhaustive service). The
service order within a priority level must also be defined, espe-
cially when the priority level serves aggregates of flows with
different delay requirements [24]. This can be something as
simple as FCFS or more complex by sorting packets on the
basis of service tags calculated by the scheduler. Another
design decision is the degree of flow aggregation within a prior-
ity level; each flow may be treated separately (per-flow
scheduling), or several flows may be treated at the same prior-
ity level (class). However, the issue of resource management
for flows that belong to the same class still remains, and it is
not guaranteed that all flows in the same class will receive the
same QoS. The service order within the class and the cooper-
ation between the flows are important here.

Last but not least is the issue of work-conserving vs. non-
work-conserving scheduling disciplines. A work-conserving
scheduler is idle only when there are no packets that require
service. In contrast, a non-work-conserving scheduler may be
idle even if there are packets awaiting service. The reason for
doing so is that it serves packets only when these become eli-
gible. Eligibility times can be computed in such a fashion that
the packet stream after the scheduler conforms to criteria
related to packet interarrival time variation (jitter) and burst
size, which is crucial to the buffer provisioning of the down-
stream routers. A scheduling discipline must be easy to imple-
ment, provide fairness and protection, be able to satisfy
certain performance bounds (deterministic or statistical), and

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 200122

have efficient admission control procedures. Sometimes these
requirements can be contradictory and lead to trade-offs.

The simplest scheduling algorithm is FCFS, implemented
with a FIFO queue, which serves packets in order of arrival.
With FCFS all users experience the same average delay even
if only a small number of them are responsible for the over-
load (in other words, greed is rewarded). So FCFS does not
protect users and can be unfair too, since it distributes link
bandwidth according to queue occupancy distribution. With
FCFS the way buffer space is managed has a direct impact on
the way bandwidth is managed.

FCFS cannot provide max-min fair allocation, this can be
achieved by an ideal work-conserving discipline called general-
ized processor sharing (GPS) [25]. GPS serves packets as if
they were in separate logical queues, by visiting each nonemp-
ty queue in turn and serving an infinitesimally small amount
of data from each queue; in any finite time interval, it can
visit every logical queue at least once, skipping potentially
empty queues. The queues can have weights associated with
them and receive service in proportion to their weight, in
which case GPS achieves max-min weighted fair sharing.

GPS is only a model and cannot be implemented in prac-
tice. The simplest emulation of GPS is round-robin, which
serves a packet from each nonempty queue instead of an
“infinitesimal amount of data.” When the queues have weights
associated with them they get served in proportion to their
weights; the scheme is then called weighted round-robin
(WRR). In order to allocate bandwidth fairly, WRR requires
knowledge of the average packet size for each queue but this
is not realistic given the characteristics of the sources. More-
over WRR is fair only when examined in time-scales larger
than the round-time (the time taken to serve each queue
once).

Weighted tair queuing (WFQ), [26] is an approximation of
GPS that does not require knowledge of the average packet
size for each queue. Instead, it emulates GPS by associating
each packet with a finish number which corresponds to the
time this packet would complete service had it been served by
GPS. The packets are then served in order of these finish
times and WFQ can provide a flow with QoS guarantees. For
leaky bucket constrained sources and arbitrary topology net-
works of GPS servers, Parekh and Gallager [27] proved that
there is a bound on the worst case end-to-end delay experi-
enced by a flow that passes through a series of GPS sched-
ulers. The bounds for GPS networks apply to networks of
packet GPS (synonym to WFQ) schedulers for small packet
sizes. The original WFQ is computationally expensive to
implement so several variations of WFQ have been proposed
that are optimized for software and/or hardware implementa-
tion such as worst-case WFQ (W2FQ)[28], self-clocked fair
queuing [29], and deficit round-robin [30].

Scheduling disciplines are a very important part of higher-
level resource management mechanisms, like link sharing [31],
which are expected to play a key role as building blocks of
future IP service models. Although, strictly speaking, fair
queuing may not be absolutely necessary for implementing a
certain QoS policy (bandwidth allocation, delay, or jitter guar-
antee), it is clear that some form of active resource manage-
ment is required that can provide protection and enforce
bandwidth allocation policies.

Buffer and Queue Management Mechanisms
Scheduling cannot by itself offer a solution to resource man-
agement inside the network, mainly because traffic can arrive
in bursts. So unless there is enough buffer space to absorb
these packet bursts and transmit them in subsequent silence

intervals, the loss rate can be very high irrespective of the
scheduler; thus, buffering is essential. However, buffer space
in the router is finite and can be exhausted when the traffic
arrival rate exceeds link bandwidth for a sufficiently long time.
Even if the buffer space were infinite, it (surprisingly) would
not solve the problem. Nagle [1] observes that a datagram
network with infinite storage, FCFS scheduling, and finite
packet lifetimes (based on the time to life, TTL, field in the
IP header) under overload conditions will drop all packets.

Buffer Management
The role of buffer management is to determine how the buffer
space is shared between the different flows that traverse the
gateway and, in particular, those flows that use the same output
interface. There is a wide variety of possible strategies for
buffer allocation, static or dynamic and based on different crite-
ria, number of flows, current or past bandwidth allocation, and
buffer occupancy. The two most popular buffer management
schemes are shared buffer pool and per-flow allocation. There
are more sophisticated ways of allocating buffer space, mostly
influenced by router design and implementation issues, and
they are probably the least well understood aspects of conges-
tion control today. In a shared buffer pool buffers are used on
a first come first use basis, and there is clearly no protection
between the flows since one flow can occupy all the buffers and
starve all other flows by simply sending fast enough. Due to its
simplicity and implementation efficiency this scheme is found in
most Internet routers today.

Per-flow allocation protects flows from each other by keeping
track of buffer utilization and dropping packets based on the
buffer occupancy level of each flow. This is considered expensive
and cannot scale in terms of processing power to meet the
requirements of large numbers of flows in the backbone routers.

The larger the maximum allowed queue length, the larger
the size of burst that can be absorbed without dropping pack-
ets. However, it is obvious that long queues in the routers
increase end-to-end delay. Delay is a very important perfor-
mance measure for many applications therefore maintaining
in steady state short queues results in higher throughput and
lower end-to-end delay while a high maximum queue limit can
be useful for absorbing occasional large bursts of packets.

Queue Management
The role of queue management is to control the length of the
queue and potentially which flows occupy it, by selecting
which packets to drop and determining when this is appropri-
ate. Queue management mechanisms are orthogonal and
complementary to both scheduling (which determines the ser-
vice order) and buffer management (which determines the
number of queues per output interface; aggregate/class based
or per-flow queues). However, it should be noted that packet
drop has traditionally been interpreted by TCP as a conges-
tion indication; thus, the queue management mechanism is
also the place where the feedback to the source originates by
either dropping (or marking) packets. In a congestion situa-
tion where the offered load persistently exceeds link band-
width, and the sources do not react uniformly to congestion
the queue management discipline has a stronger impact on
bandwidth sharing than the scheduling discipline itself [32].
There are generally two options for managing a queue at a
router that correspond roughly to congestion recovery and
congestion avoidance as we discuss below.

Queue Management for Congestion Recovery — Traditionally
Internet routers have managed the queues at their links
(almost always one queue per output interface) by setting a
maximum length for each queue, accepting packets until the

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2001 23

maximum length is reached and then dropping subsequent
incoming packets until space becomes available in the queue.
This method is known as tail drop because packets arriving at
the end of the queue (the tail) are dropped when the queue is
full. Tail drop has served the Internet well for years, but has
two serious disadvantages: it sustains full queues, and it can
cause lockout due to traffic phase effects; we describe these
two problems in turn. Tail drop by nature signals congestion
via packet drops very late (only when the queue overflows)
and this allows the queue to maintain a full (or almost full)
status most of the time. With tail-drop routers it is also possi-
ble to introduce global synchronization in the network because
when a queue overflows packets from several sources are
often dropped and all these sources reduce their transmission
rate simultaneously and their control actions become synchro-
nized. This can lead to reduced link utilization (if there are
intervals when the queue is empty) or lockout phenomena
(flow segregation) where a few sources monopolize queue
space, preventing others from getting in [33].

Discrimination against some of the flows is exacerbated by
the fact that traffic sources in datagram networks can be peri-
odic in nature (from flow control protocols based on round-
trip times like TCP, to real-time audio and video applications).
Control theory suggests that periodicity can have strong non-
linear interaction with deterministic control mechanisms in
the gateways.

Besides tail drop, another deterministic queue management
mechanism that gets triggered on buffer overflow is drop-
from-front. The gateway drops the packet from the front of
the queue upon arrival of a new packet. Lakshman et al. [34]
have shown that this method improves the performance of
TCP by allowing the congestion indication signal to reach the
sender faster than waiting for the full queue to be transmitted
first. It also prevents lockout and improves fairness because
dropping a packet from the front of the queue leads to a loss
distribution that follows the buffer occupancy among connec-
tions at the instances when the queue is full.

It has been realized that global synchronization and lockout
phenomena can be avoided by introducing randomization in
the network. One such discipline is the random drop where
the gateway randomly selects a packet to drop from the queue
when a new packet arrives at a full queue. The intention of
this discipline is to notify those users whose traffic contributes
more to the congestion of the router. The intuition behind
this is that a packet randomly and uniformly selected from all
incoming traffic will belong to a particular flow with a proba-
bility proportional to the bandwidth share of that flow on that
gateway. Random drop gateways are reported [35] to achieve
improved fairness for late-starting connections and slightly
improved throughput for connections with longer RTTs. How-
ever, the operation of randomly selecting a packet to drop can
be computationally expensive.

Active Queue Management for Congestion Avoidance — The last
two strategies described above solve the problem of lockout but
do nothing to solve the problem of full queues. This happens
because they do not react to congestion fast enough but only
after congestion has occurred. In other words, they are conges-
tion recovery mechanisms rather than congestion avoidance.

The solution to the full queues problem can come only if
routers take measures to prevent congestion before it happens,
and this can be achieved by dropping packets proactively rather
than reactively. This proactive approach is called active queue
management and allows routers to control which packets to
drop and when this should happen in order to avoid conges-
tion. Moreover, this approach need not necessarily use packet
drops (the traditional method of congestion notification) but

can also mark a packet and notify the source to reduce its rate.
The mark can consist of setting a bit in the packet header or
some other method understood by the transport protocol.

The primary goal of active queue management is conges-
tion avoidance, but there are other goals: avoid global syn-
chronization, eliminate the bias against bursty traffic, maintain
upper bounds on router queue sizes even in the presence of
noncooperating flows, penalize aggressive flows, reduce the
number of packet drops, and provide lower-delay interactive
service [36]. It was also hoped that it would be able to elimi-
nate the bias against long RTT connections, although this bias
proved to be an artifact of the TCP window increase and
decrease algorithm rather than due to the gateway queue
management discipline.

Random drop, although originally conceived as a congestion
recovery mechanism, is also proposed for congestion avoidance
by initiating the dropping of packets when congestion is antici-
pated instead of only when the queue becomes full. This
enhanced version is called early random drop (ERD) The inten-
tion is that the drop rate (rate at which randomly and uniformly
selected packets get dropped) is derived from the level of con-
gestion at the gateway which is inferred from the number of
packet arrivals between drops. A requirement for any conges-
tion avoidance scheme is congestion detection. This was imple-
mented in the simplest form by a static threshold in queue
length, although more elaborate measures like exponentially
weighted moving averages or link utilization have been pro-
posed. The control interval is chosen in terms of packet arrivals,
and the drop probability is fixed. An appropriate number of
random variables are drawn in the packet range corresponding
to the control interval, and these random numbers (uniformly
distributed) are used to drop packets as they arrive by counting.
ERD gateways are certainly an improvement over drop tail
because they alleviate to a great extent the problem of flow seg-
regation. However, they are not sufficient for providing fair
bandwidth allocation and cannot successfully contain aggressive
sources. ERD gateways are also biased against bursty traffic
(like drop tail); this bias occurs because the contents of the
queue do not necessarily reflect the average traffic.

Given the shortcomings of ERD gateways, a new mecha-
nism was proposed by Floyd and Jacobson called random early
detection (RED) [38]. RED gateways attempt to mark packets
sufficiently frequently to control the average queue size and
avoid the biases described above. The mechanism works as
follows. The gateway detects incipient congestion by comput-
ing the average queue size; when this exceeds a preset thresh-
old, arriving packets are marked (or dropped) with a certain
probability that is a function of the average queue size. The
average queue size is kept low, but occasional bursts can pass
through unharmed. During congestion the probability of
marking a packet from a particular flow is roughly proportion-
al to the bandwidth share of that flow. There are two distinct
algorithms operating in a RED gateway:
• The average queue size computation, which uses a low-pass

filter with an exponentially weighted moving average, which
determines the degree of burstiness that will be allowed

• The algorithm for calculating the packet marking probabili-
ty, which determines how frequently packets get marked
given the current level of congestion
RED is the most prominent and widely studied active queue

management mechanism and successfully addresses the prob-
lems found in its predecessors. However, it is very difficult to
parameterize RED in order to perform well under different
traffic conditions. In almost all studies the parameter settings
are based on heuristics, and the proposed configuration is suit-
able only for the particular traffic conditions studied. It is possi-
ble that the performance of a RED gateway to approach that

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 200124

of a drop tail gateway for a given set of configuration parame-
ters and traffic conditions. Feng [39] proposed a self-configur-
ing (adaptive) active queue management mechanism which
effectively reduces packet loss rates and maintains high network
utilization across a wide range of traffic conditions.

Selecting which packets will be dropped is a very powerful
mechanism that enables the gateway to implement specific
resource management policies, making active queue manage-
ment a key mechanism for the differentiated services Internet
as proposed by Clark [40]. This is also backed by the
widespread belief that mechanisms like WFQ scheduling or
any form of per-flow queuing does not scale with the number
of flows, the bandwidth of the links, and the processing power
and memory requirements of the routers in the core of the
network, although this requires further investigation.

Directions for Internet Service and the Role of
Control Mechanisms
Ideally it would be desirable to have a single network which
offers a number of end-to-end service options that exactly
match individual application requirements at any given time
without any perceived deterioration in QoS. However, given
the diversity of application requirements and current experi-
ences, such a network might not be possible or in fact even
required. It is known that even reservation-capable net-
works which offer guaranteed QoS can have high blocking
rates if the demand grows beyond certain limits for a certain
level of provisioning. Providing QoS guarantees in the Inter-
net has been the holy grail of modern networking. Indeed,
extending the traditional best effort service model has
proven to be not only an extremely complex task but quite
controversial too.

The IETF Efforts
In recent years the IETF undertook two major efforts in
order to enhance the services offered by the Internet. The
first attempt was to develop a new service model called the
integrated services architecture (IntServ) [41] which provides
end-to-end QoS capabilities on a per-flow basis. The model
involves two traffic classes:
• The best effort class for applications that are able to adapt

to whatever QoS is available from the network
• The guaranteed service class for real-time applications

which require “hard” QoS guarantees in order to be usable
The IntServ model suffers from scalability and manageabili-

ty problems, and it has not been widely adopted by the Inter-
net service providers (ISPs), although several router vendors
implemented IntServ in their products.

The most recent IETF attempt is the differentiated services
architecture (DiffServ) [42] which standardizes the per-hop
behaviors (PHBs) as functional blocks out of which end-to-end
services can be built. DiffServ aims to provide statistical QoS
guarantees for traffic aggregates, as opposed to individual
flows, and makes the fundamental assumption that the Internet
will continue to be dominated by best effort traffic.

Overprovisioning
It is well known that the service of a best effort network is as
good as its provisioning. Indeed, one of the major reasons for
Internet success has been the fact that the network has general-
ly been well enough provisioned to avoid congestion growing at
least as rapidly as demand. Thus, it has been argued that the
main problem of the Internet is not a technical one but an eco-
nomic one, since the existing IP technology, even without any
complex congestion control mechanisms, can provide satisfacto-

ry service in the absence of congestion. This view is usually
backed by arguments for advances in optical transmission tech-
nology that promise more and cheaper link capacity.

It is believed that long-term congestion is better solved by
installing extra bandwidth at the bottlenecks. However, this is
feasible only within a well specified scope of deployment in
order to be a truly cost-effective alternative to complex QoS
structures and dynamic resource management schemes that
are good only for transient congestion. On a global scale,
overprovisioning is considered an economically prohibitive
luxury since bandwidth is very unlikely to become infinite and
cheap in the near term [43]. Even if prices drop, there will
always be bottlenecks where resource allocation will have to
be regulated and congestion controlled to provide the appro-
priate levels of service to everyone. Indeed, in the past, similar
forecasts based on expectations for increased availability in
resources and drop in prices were proven wrong. More and
cheaper memory, high-speed links, and fast processors did not
alleviate congestion problems. On the contrary, it was precise-
ly at the point when high-speed LAN technology was intro-
duced that interest in congestion control techniques increased
[44]. This was caused by the bandwidth mismatch between the
fast LANs and the relatively low-speed wide-area links which
created congestion at the interconnection points.

However, the arguments for reservations and guaranteed
QoS vs. overprovisioning are the two extremes of the spec-
trum. Shenker [45] argues that the amount of bandwidth
needed to offset the benefits of extending the service model
depends in detail on the utility functions of applications and
the service model being offered. Proper evaluation requires
judgment of future developments, about which little is known
and opinions vary widely. He also conjectures that there will
be enough bandwidth savings by offering multiple service
classes to outweigh the costs of deploying extra mechanisms.

Odlyzko [46] has proposed running parallel network infras-
tructures (“channels”) for different classes of service with higher
prices for using the better provisioned and therefore (allegedly)
less congested classes. Pricing would be the primary congestion
control tool for achieving differential QoS in a best effort net-
work without the need for additional control mechanisms.

Game Theoretic Aspects of Internet Congestion
The authors believe that mere overprovisioning cannot be the
solution to Internet congestion. Free public goods are known to
shift toward a state where demand grows beyond supply (known
as “the tragedy of the commons” paradigm in economics)
resulting in bad performance for everyone and loss of the
potential benefits that would result from a more “sensible” use
of the common “good.” Overprovisioning can certainly be help-
ful in the best effort context by making service deterioration
due to congestion less frequent and easier to tolerate. However,
the instinctive solution is to impose more control for protecting
the best effort Internet from abuse and service degradation.
There is already evidence that use of appropriate congestion
control mechanisms, (e.g., active queue management) can sig-
nificantly contribute to congestion avoidance, and ensure fair-
ness, stability, and high utilization levels.

Historically the problem of congestion has been approached
from different viewpoints; by applying queuing theory, control
theory, and lately economic principles, game theory in particu-
lar. The game theoretic aspects of Internet congestion,
although they have long been realized, started receiving
increasing interest in the research community recently. Solu-
tions to the tragedy of the commons problem can be either:
• Cooperative
• Authoritarian
• Market solutions [1]

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2001 25

Cooperative solutions (everyone agrees to be well behaved)
are adequate for a small number of players where “cheating”
on behalf of a player is usually obvious to the others, but they
tend to break as the number of players increases, and there-
fore mutual agreement and monitoring becomes impractical.
Authoritarian solutions are effective when the behavior of
other players can be monitored but tend to fail when the defi-
nition of good behavior is subtle (this also applies to coopera-
tive solutions). Market solutions are applicable in certain
cases when the rules of the game can be changed (e.g., price
changes) and are known to be quite effective in situations
where the resources are valued differently by different users.
This is a relatively new direction in dealing with Internet con-
gestion and requires further investigation.

The Internet is a large complex system that involves inter-
actions of various entities at different levels. The interactions
occur not only between end users (agents or transport proto-
cols) and service/content providers but also at a higher level
between larger entities; network service providers (offering
backbone services) and access providers (or ISPs). The actions
of these entities affect network conditions and the resulting
resource allocations. Thus, it seems natural that the solution
to the problem of uncoordinated access lies in applying differ-
ent types of solutions to the different levels of the game.

The mechanisms described in this article can be applied to
control the interactions, resource allocations, and ultimately
congestion at different levels in this complex game. For
instance, end-to-end flow control may be particularly relevant
to end users, while a link sharing scheduling mechanism may
be of great importance for resource management on an
expensive link connecting two large backbone networks.
Moreover, the mechanisms should provide appropriate knobs
which encompass any of the above mentioned types of solu-
tions. For example, in the case of link sharing, “borrowing”
[31] may be allowed between agencies sharing the same link;
that would be a cooperative type of solution. Knobs which
allow distributed resource sharing and resolve congestion
through “market-type” solutions have been gaining in impor-
tance lately [47].

Best Effort Service and Differentiation
Appropriate congestion control mechanisms can also be used
to provide relative differentiated services [48] in a best effort
context. Best effort was conceived with nondiscrimination in
mind; however, service differentiation and best effort service
are conceptually orthogonal. Thus, it is possible to create
classes with qualitatively different QoS characteristics (pro-
portional bandwidth, delay, or loss) and price them accord-
ingly. The QoS spacing between the classes would be
consistently proportional but there would be no quantitative
assurances of any kind. It would be ultimately up to the end
user to decide whether the price paid for using a class was
fair given the QoS offered by the class at a given time. Intro-
ducing service differentiation in this fashion would be a step
in the direction of “market-type” solutions to the problem of
congestion.

Conclusions
Best effort service has been tremendously successful for data
traffic, which today accounts for the vast majority of Internet
traffic; there are no indications that this will stop being the
case in the future. The main reason for pursuing QoS was
concerns about the requirements of emerging real-time and
streaming multimedia applications, which could not be met in
the existing service model. Nevertheless, it has been amply
demonstrated that many popular applications (packet audio,

videoconferencing) are able to adapt to dynamic network con-
ditions by changing their transmission rate using different cod-
ing techniques, and therefore perform sufficiently well under
moderate congestion levels. Thus, it is likely for the Internet
to evolve toward a best effort network which, if controlled and
provisioned appropriately, will be able to satisfy the majority
of popular applications that are willing to tolerate service
deterioration due to transient congestion. This could sustain a
large market for best effort service and would limit the appli-
cability of service models for guaranteed QoS to corporate
intranets and virtual private networks.

Most of the congestion control mechanisms presented in
this article, the router-based ones in particular, were almost
exclusively studied in the context of guaranteed QoS and real-
time traffic. There has been considerably less research in their
use within the best effort service framework, so there is a
widespread misconception that the best effort service model
necessarily implies simple FIFO queues in the routers. If
appropriately used these mechanisms could provide, for
instance, preferentially lower delays to “fragile” interactive
applications (like telnet) without striving to provide any quan-
titative QoS guarantees. The authors believe that their use
can considerably improve, enhance, and protect the best effort
service model and that therefore this is a direction which
deserves further investigation.

References
[1] J. Nagle, “On Packet Switches with Infinite Storage,” IEEE Trans. Commun.,

vol. 35, 1987, pp. 435–38.
[2] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, IETF, Jan.

1984.
[3] S. Floyd and K Fall, “Promoting the Use of End-to-End Congestion Control in

the Internet,” IEEE/ACM Trans. Net., Aug. 1999.
[4] J. Postel, “Transmission Control Protocol,” RFC 793, IETF, Sept. 1981.
[5] V. Jacobson, “Congestion Avoidance and Control,” ACM Comp. Commun.

Rev., vol. 18, no. 4, Aug. 1988, pp. 314–29.
[6] R. T. Braden, “Requirements for Internet Hosts — Communication Layers,”

RFC 1122, IETF, Oct. 1989.
[7] D. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks,” Comp. Networks and ISDN
Sys., vol. 17, no. 1, 1989, pp. 1–14.

[8] R. Axelrod, The Evolution of Cooperation, HarperCollins, 1984.
[9] J. M. Jaffe, “Bottleneck Flow Control,” IEEE Trans. Commun., vol. 29, no. 7,

July 1981, pp. 954–62.
[10] D. Bertsekas and R. Gallager, Data Networks, Englewood Cliffs, NJ: Pren-

tice Hall, 1991.
[11] R. Rajan et al., “A Policy Framework for Integrated and Differentiated Ser-

vices in the Internet,” IEEE Net., vol. 13, no. 5, Sept. 1999, pp. 36–41.
[12] F. P. Kelly, “Charging and Rate Control for Elastic Traffic,” Euro. Trans.

Telecommun., vol. 8, 1997, pp. 33–37.
[13] D. D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” Proc.

ACM SIGCOMM, Stanford, CA, Aug. 1988, pp. 106–14.
[14] R. L. Cruz, “A Calculus of Network Delay and a Note on Topologies of

Interconnection Networks,” Ph.D. thesis, Univ. of IL, July 1987.
[15] J. S. Turner, “New Directions in Communications (or Which Way to the

Information Age?),” IEEE Commun. Mag., vol. 24, no. 10, Oct. 1986, pp.
8–15.

[16] S. Keshav, “A Control-theoretic Approach to Flow Control,” Proc. ACM
SIGCOMM, Zurich, Switzerland, Sept. 1991, pp. 3–15.

[17] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance,” Proc. ACM SIGCOMM,
London, U.K., Aug. 1994. pp. 34–35.

[18] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit Congestion
Notification (ECN) to IP,” RFC 2481, IETF, Jan. 1999.

[19] K. K. Ramakrishnan and Raj Jain, “A Binary Feedback Scheme for Conges-
tion Avoidance in Computer Networks,” IEEE Trans. Comp. Sys., vol. 8, no.
2, May 1990, pp. 158–81.

[20] J. Postel, “Internet Control Message Protocol, “ RFC (Standard) 792, IETF,
Sept. 1981.

[21] W. Richard Stevens, TCP/IP Illustrated Volume 1: The Protocols, Reading,
MA: Addison-Wesley, 1994.

[22] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Comp. Com-
mun. Rev., vol. 24, no. 5, Oct. 1994, pp. 10–23.

[23] A. Charny, D. Clark, and R. Jain, “Congestion Control with Explicit Rate
Indication,” Proc. ICC ‘95, June 1995, pp. 1954–63.

[24] S. Keshav, An Engineering Approach to Computer Networking: ATM Net-
works, the Internet, and the Telephone Network, Addison-Wesley.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 200126

[25] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single Node
Case,” IEEE Net., vol. 1, no. 3, June 1993, pp. 344–57.

[26] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair
Queueing Algorithm,” Proc. ACM SIGCOMM, Austin, TX, Sept. 1989, pp.
1–12.

[27] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Multiple
Node Case,” IEEE Net., vol. 2, no. 2, Apr. 1994, pp. 137–50.

[28] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case Fair Weighted Fair
Queueing,” Proc. IEEE INFOCOM, San Francisco, CA, Mar. 1996, pp.
120–28.

[29] S. J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband
Applications,” Proc. IEEE INFOCOM, Toronto, Canada, June 1994.

[30] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using Deficit
Round Robin,” ACM Comp. Commun. Rev., vol. 25, no. 4, Oct. 1995, pp.
231–42.

[31] S. Floyd and V. Jacobson, “Link-sharing and Resource Management Models
for Packet Networks,” IEEE/ACM Trans. Net., vol. 3, no. 4, Aug. 1995, pp.
365–86.

[32] B. Suter et al., “Efficient Active Queue Management for Internet Routers,”
Proc. Eng. Conf. at Interop 98, Las Vegas, NV, May 1998.

[33] S. Floyd and V. Jacobson, “Traffic Phase Effects in Packet-switched Gate-
ways,” ACM Comp. Commun. Rev., vol. 21, no. 2, Apr. 1991, pp. 26–42.

[34] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The Drop from Front Strategy
in TCP and in TCP over ATM,” Proc. IEEE INFOCOM, San Francisco, CA,
Mar. 1996.

[35] E. S. Hashem, “Analysis of Random Drop for Gateway Congestion Con-
trol,” Tech. rep. MIT/LCS/TR-465, MIT Lab. for Comp. Sci., Cambridge, MA,
Nov. 1989.

[36] B. Braden et al., “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet,” RFC 2309, IETF, Apr. 1998.

[37] A. Mankin and K. Ramakrishnan, “Gateway Congestion Control Survey,”
RFC 1254, IETF, July 1991.

[38] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance,” IEEE/ACM Trans. Net., vol. 1, no. 4, Aug. 1993, pp.
397–413.

[39] W. C. Feng et al., “A Self-Configuring RED Gateway,” Proc. IEEE INFO-
COM, NY, Mar. 1999.

[40] D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet Delivery
Service,” IEEE/ACM Trans. Net., vol. 6, no. 4, Aug. 1998, pp. 362–73.

[41] IETF Integrated Services Working Group (intserv),
http://www.ietf.org/html.charters/intserv-charter.html.

[42] IETF Differentiated Services Working Group (diffserv),
http://www.ietf.org/html.charters/diffserv-charter.html.

[43] P. Ferguson and G. Huston, Quality of Service: Delivering QoS on the Inter-
net and in Corporate Networks, Wiley, 1998.

[44] R. Jain, “Myths about Congestion Control Management in High-speed Net-
works,” Internetworking: Res. and Experience, vol. 3, June 1992, pp.
101–13.

[45] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE JSAC,
vol. 13, no. 7, Sept. 1995, pp. 1176–88

[46] A. M. Odlyzko, “Paris Metro Pricing for the Internet,” Proc. ACM Conf. E-
Commerce, 1999, pp. 140–47.

[47] R. J. Gibbens and F. P. Kelly, “Resource Pricing and the Evolution of Con-
gestion Control,” Automatica, vol. 35, 1999.

[48] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional Differentiated
Services: Delay Differentiation and Packet Scheduling,” ACM Comp. Com-
mun. Rev., vol. 29, no. 4, Oct. 1999, pp. 109–20.

Biographies
PANOS GEVROS (p.gevros@cs.ucl.ac.uk) is a Ph.D. candidate in the Department of
Computer Science University College London (UCL).He graduated from the Uni-
versity of Patras Department of Computer Engineering and Informatics in 1994,
and received his M.Sc. degree in networks and data communications from the
University of London in 1996. Since 1997 he has been a research fellow at the
Department of Computer Science at UCL and has been working for several EU
and DARPA funded research projects. His research interests are in models and
mechanisms for resource management, congestion control, and differentiated ser-
vices.

JON CROWCROFT [SM] (j.crowcroft@cs.ucl.ac.uk) is a professor of networked
systems in the Department of Computer Science, UCL, where he is responsible
for a number of European and U.S. funded research projects in multimedia
communications. He has been working in these areas for 20 years. He gradu-
ated in physics from Trinity College, Cambridge University in 1979, and
gained his M.Sc. in computing in 1981 and Ph.D. in 1993. He is a member of
the ACM, and a Fellow of the British Computer Society, the IEE, and the Royal
Academy of Engineering. He is a member of the IAB, and was general chair
for ACM SIGCOMM 95–99. He is also on the editorial team for ACM/IEEE
Transactions on Networks and Computer Communications as well as on the
program committee for ACM SIGCOMM and IEEE INFOCOM. With Mark
Handley, he is the co-author of WWW:Beneath the Surf (UCL Press); he also
authored Open Distributed Systems (UCL Press/Artech House).A third book,
Internetworking Multimedia (Taylor and Francis/Morgan Kaufman), was pub-
lished in September 1999.

PETER T. KIRSTEIN (p.kirstein@cs.ucl.ac.uk) is professor of computer communications
and director of research in the Department of Computer Science, UCL. He has
been both technical and administrative director of many European and U.K.
national projects. He has a B.A. from Cambridge University, M.Sc. and Ph.D. from
Stanford University, and D.Sc. from the University of London. He was awarded the
1999 ACM SIGCOMM award for his contributions to the international develop-
ment of the Internet. He has written some 160 papers and one book.

SALEEM N. BHATTI [M] (s.bhatti@cs.ucl.ac.uk) is a lecturer in the Department of
Computer Science, UCL. His research interests are QoS (applications and net-
works), network management, network security, and mobile systems. He is a
member of the ACM.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:29 from IEEE Xplore. Restrictions apply.

