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REPRESENTABILITY IS NOT DECIDABLE
FOR FINITE RELATION ALGEBRAS

ROBIN HIRSCH AND IAN HODKINSON

Abstract. We prove that there is no algorithm that decides whether a finite
relation algebra is representable.

Representability of a finite relation algebra A is determined by playing a
certain two player game G(A) over ‘atomic A-networks’. It can be shown
that the second player in this game has a winning strategy if and only if A is
representable.

Let τ be a finite set of square tiles, where each edge of each tile has a colour.
Suppose τ includes a special tile whose four edges are all the same colour, a
colour not used by any other tile. The tiling problem we use is this: is it the
case that for each tile T ∈ τ there is a tiling of the plane Z × Z using only
tiles from τ in which edge colours of adjacent tiles match and with T placed
at (0, 0)? It is not hard to show that this problem is undecidable.

From an instance of this tiling problem τ , we construct a finite relation
algebra RA(τ) and show that the second player has a winning strategy in
G(RA(τ)) if and only if τ is a yes-instance. This reduces the tiling problem to
the representation problem and proves the latter’s undecidability.

1. Introduction

In this paper we address an old question in algebraic logic: is there an algorithm
that tells us whether or not a finite relation algebra is representable? We have not
been able to pin down the origin of this problem precisely, but in all probability it
originated with Roger Maddux. Maddux and McKenzie discussed it in the early
1980s, Maddux suggesting a solution by tiling (our approach here). It was raised
again by McKenzie at a recent conference on universal algebra and lattice theory
(Szeged, Hungary, 1996). The problem is listed in [AMN91, page 730, open problem
3] (credited to Maddux). There is a discussion of the question in [Ma94, problems
13 and 14, page 463], where it is observed that the finite relation algebras can be
partitioned into three classes: (a) the non-representable ones, (b) those that are
representable over some finite set, and (c) the finite representable relation algebras
with no representation over a finite set. It is not hard to show that (a) and (b)
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are recursively enumerable.1 The (isomorphism types of) finite relation algebras is
clearly a recursive set. Consequently, (a), (b) and (c) are all recursive if and only
if (c) is recursively enumerable. Maddux conjectures that the answer is no in both
cases. In this paper we show that (a) is not recursive, thus confirming Maddux’s
conjecture. Hence the set of (isomorphism types of) finite representable relation
algebras with no finite representation is not recursively enumerable. One problem
remains open: is (b) recursive — i.e., given a finite relation algebra, is it decidable
whether it has a representation over a finite set?

We will reduce the tiling problem to the question of whether a finite relation
algebra is representable. That will show that the question is undecidable. This is
utterly unsurprising, but our proof is rather complicated.

It is interesting to consider alternatives to this approach. For example, it has
been known for some time that the representable relation algebras cannot be de-
fined by a finite number of axioms [Mon64], and this alone suggests that for finite
relation algebras the representability problem is undecidable. However, finite ax-
iomatizability and decidability are not the same. If a class is finitely axiomatizable,
then this does give us a decision method to test whether a finite object belongs
to the class or not. But the converse is false: Németi shows that the relativized
cylindric set algebras of any finite dimension greater than two are not finitely axiom-
atizable [HMT85, 5.5.12, 5.5.13, credited to Németi], yet it is decidable whether a
finite structure is in this class or not [Nem96]. He further shows that the equational
theory of this class is decidable.

One of the main motivations for Tarski’s study of relation algebras was to define
an alternative foundation for set theory. In [TG87] it is shown that relation algebras
can act as a vehicle for set theory and hence all of mathematics. It would seem
then, that undecidability results for relation algebra should be obtainable by this
result. However, we have not been able to obtain the result of the present paper in
that way.

Our construction originated in [Hir95] and has been used in different forms in
[HH97a, Hod97].

We assume some familiarity with relation algebras. The uninitiated might try
[JT48, JT52, Ma91b, Ma91a], for example.

2. Representability and games

There have been a number of attempts to axiomatize the representable rela-
tion algebras (RRA), a key one being Tarski’s axiomatization of the relation alge-
bras [JT52, Definition 4.1]. This axiomatization turned out not to be complete
[Lyn50, Mon64] and Lyndon proposed a stronger, infinite axiomatization [Lyn50]
which we will refer to here as the Lyndon conditions. It turned out that the Lyndon
conditions were not sound over RRA: there are representable relation algebras that
fail some of the Lyndon conditions. Lyndon explained the error in his first ax-
iomatization and produced a rather complex but correct axiomatization in [Lyn56].
Three separate axiomatizations of the closely related class of representable cylindric
algebras appeared in [HMT85], and alternative axiomatizations of representable re-
lation and cylindric algebras appeared in [HH97b].

1Strictly, we have to consider the isomorphism type of members of these classes, so that we
are dealing with sets and not classes.
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However, the Lyndon conditions do correctly characterize the representable re-
lation algebras among the finite relation algebras; and in this paper, where we deal
only with finite relation algebras, we will use a variant of these conditions to test
representability.

In [HH97a] the Lyndon conditions are expressed in terms of a winning strategy for
the second, ‘existential player’ in a certain two-player game, played over a relation
algebra.2 Here we define a variant of these games that characterizes representability
for finite relation algebras.

2.1. Atomic networks. LetA = (A,+,−, 0, 1, ;,^ , 1′) be a finite relation algebra.
We define an atomic network N = (D,h) to consist of a finite set of nodes D and a
labelling function h : D ×D → At(A), where At(A) is the set of atoms of A, such
that for all d, e, f ∈ D,

h(d, e) ≤ 1′ ⇔ d = e,

h(d, e) = h(e, d)^,
h(d, f) ≤ h(d, e) ;h(e, f).

In this paper we deal only with atomic networks, so we may refer to them simply
as networks. Elsewhere a weaker definition is given for networks where only the
right to left implication is required for the first rule. A network in which a two-way
implication holds is called strict. However, in this paper all networks are assumed
to be strict.

Let M = (D, f), N = (E, g) be networks. If D ⊇ E and f |E×E = g, then we say
that M is an extension of N and that N is a subnetwork of M . We write N ⊆M .

In the following we will use the same symbol N to refer to the network, the set of
nodes, and the labelling function, distinguishing the cases by their context. Thus,
n ∈ N means that n is a node in the network N , and N(m,n) stands for the label
on the edge (m,n) ∈ N ×N .

2.2. Games.

Definition 1. Let A be a finite relation algebra, as before. G(A) is a game of
countable length in which two players, ∀ (male), and ∃ (female), build an increasing
sequence of atomic networks

N0 ⊆ N1 ⊆ N2 ⊆ . . . .

In his first move, ∀ picks any atom a ∈ At(A), and ∃ responds with a network N0

with nodes m,n ∈ N0 such that N0(m,n) = a. That completes the zero’th round
of the play.

Suppose at the end of the (k−1)th round that ∃ played the networkNk−1 (k > 0).
In the kth round, ∀ picks any two nodes m,n ∈ Nk−1 and two atoms a, b ∈ At(A)
such that a ; b ≥ Nk−1(m,n). ∃ responds with any network Nk ⊇ Nk−1 such that
there is a node p ∈ Nk with Nk(m, p) = a and Nk(p, n) = b. That completes the
kth round.

2This simplified the conditions and showed a certain connection between the Lyndon conditions

and the completely representable relation algebras — in fact, the Lyndon conditions axiomatize
the theory of the completely representable relation algebras, though this class turns out not to
be closed under elementary equivalence, so there are relation algebras that satisfy all the Lyndon
conditions but have no complete representation.
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It is possible that in some round of the play ∃ is unable to make the required
extension. In that case ∀ has won. If she does make a legal move in every round k
(for k < ω), then she has won.

Convention 1.
1. There is no advantage to ∃ in adding more than a single node to the current

network in each round of the play, and we assume throughout that she never does
so, so that |Nk| ≤ |Nk−1|+ 1 for all k > 0.

2. If ∀ picks nodes m,n ∈ Nk−1 and atoms a, b ∈ A, and if there is already a
node p ∈ Nk−1 such that Nk−1(m, p) = a and Nk−1(p, n) = b, then ∃ does not need
to make a proper extension but can let Nk = Nk−1. As this kind of ∀-move is rather
trivial, we will assume throughout that he never makes a move of this kind. With
this assumption, ∃ is always forced to add a new point, and so |Nk| = |Nk−1| + 1
for all k > 0. If ∀ cannot make a move in some round, then ∃ wins straight away.

3. We regard ∀ as choosing the labels on the edges (m, p), (p,m), (p, p), (p, n),
and (n, p), in the notation of Definition 1 above. (Of course, (m, p) determines
(p,m), etc.) All other labels on edges of Nk involving p are regarded as having
been chosen by ∃. This will be crucial later.

Theorem 1. Let A be a finite relation algebra. A is representable if and only if ∃
has a winning strategy in G(A).

Proof. See, for example, [HH97b, Theorem 9] or [HH97a, Proposition 13]. The idea
is essentially in [Lyn50] and is well known (e.g., [Ma82]).

3. The tiling problem

An instance τ of the tiling problem is a finite set of square tiles τ={T0, . . . , Tk−1}.
Each tile has a colour on each of its four edges: the four colours on the tile Ti are
Top(Ti), Bot(Ti), Lt(Ti) and Rt(Ti). See Figure 1. Note that the tiles have a fixed
orientation.

Such an instance is said to be a yes-instance if it is possible to tile the plane
Z × Z. That is, there is a function f : (Z × Z) → {0, . . . , k − 1} such that for all
x, y ∈ Z we have Lt(Tf(x+1,y)) = Rt(Tf(x,y)) and Bot(Tf(x,y+1)) = Top(Tf(x,y)).
We call such an f a tiling. If there is no such tiling, then we have a no-instance.

The tiling problem (given an instance, is it a yes-instance or a no-instance?) is
known to be undecidable [Ber66]. It is not hard to show from this that the following
problem is also undecidable. Given a finite set of tiles {T0, . . . , Tk−1} as above, is
it the case that for each i < k there is a tiling f i of the plane with Ti placed at
(0, 0) (formally f i(0, 0) = i)?

We lose no generality if we assume that one tile, T0, is a special tile such that all
four edges have the same colour but this colour is not used on any edge of any other

Lt(T ) Rt(T )T

Top(T )

Bot(T )

Figure 1. A tile T
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tile. Thus, there is certainly a tiling f0 with f0(0, 0) = 0 given by f0(x, y) = 0
(all x, y ∈ Z). T0 can tile the plane on its own but not in combination with any
of the other tiles. So given an arbitrary set of tiles {T1, . . . , Tk−1}, if we add the
special tile, T0, then {T1, . . . , Tk−1} is a yes-instance if and only if the augmented
set {T0, . . . , Tk−1} is a yes-instance.

It is this version of the tiling problem that we use here.
Now, roughly, given an instance τ of the tiling problem we construct (by an

algorithm) a finite relation algebra RA(τ) such that τ is a yes-instance if and only
if RA(τ) is representable. Strictly, RA(τ) is what Maddux calls a weakly associative
algebra (WA) [Ma82, definition 1.2.4] — an algebra of the same type as a relation
algebra satisfying all the Tarski axioms for relation algebras except, perhaps, the
associativity axiom, but satisfying instead the weak associativity axiom

((1′ . x) ; 1) ; 1 = (1′ . x) ;(1 ; 1).

RA(τ) is a relation algebra if and only if it is associative.3 We prove that
(i) if RA(τ) is associative (and so a relation algebra), then if it is representable,

τ is a yes-instance (Theorems 1 and 3);
(ii) if τ is a yes-instance, then RA(τ) is associative (Theorem 4 and Lemma 7),

and representable (Theorems 1 and 4).
This suffices to prove the undecidability of the representation problem for finite
relation algebras. To see this, note that the problem of whether a finite weakly-
associative algebra is associative is certainly decidable. If the representation prob-
lem for finite relation algebras were decidable, then given a tiling instance τ , we
could construct RA(τ) and decide if it is associative. If not, τ is a no-instance by
(ii). If it is associative, then by (i,ii) it is a yes-instance if and only if RA(τ) is
representable. Hence the tiling problem would be decidable, a contradiction.

4. The definition of RA(τ)

Notation. A representation of a relation algebra A is a map X providing a binary
relation X(a) on some set, the domain of X , for each element a of A. Of course,
X respects the algebraic operations and is 1–1.

In this section we define the algebra RA(τ). We will see (Lemma 2) that RA(τ)
is a weakly associative algebra, but not integral4 — in fact, the identity 1′ is the
disjunction of three units e0, e1, e2. If RA(τ) is representable, then in any repre-
sentation X , the domain D of the representation will be the disjoint union of three
subsets — D = D0 ∪D1 ∪D2 — and for any point d ∈ D and i < 3 we have

(d, d) ∈ X(ei)⇔ d ∈ Di.

As is standard for weakly associative algebras, every atom a has a start unit st(a) =
1′ . (a ; ă) and an end unit end(a) = 1′ . (ă ;a) [Ma82, Definition 5.10], which are
atoms [Ma82, Lemma 5.12.1]. Let st(a) = ei and end(a) = ej (some i, j < 3). If
RA(τ) has a representation X with domain D, this tells us that for any pair of
points (e, d) ∈ X(a) we have e ∈ Di and d ∈ Dj. We will call such an atom an
(i− j)-atom.

3It turns out that RA(τ) is associative if and only if the following condition is met: for each
tile Ti ∈ τ there is a tile Tj ∈ τ such that Rt(Tj ) = Lt(Ti), along with three other conditions for

the other sides of Ti.
4A suitable integral algebra RA(τ) can also be constructed, but we will not do so here.
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We will give the atoms of RA(τ) subscripts to indicate their start and end units.
If the subscripts are equal, we generally write just one of them. E.g., a01, e22 = e2,
etc.

If n is any node in an RA(τ)-network N , there is a unique unit ei such that
N(n, n) = ei (some i < 3). We will call such a node an i-node. If n is an i-node
and m is a j-node of a network N , then the label N(n,m) must be an (i− j)-atom.
(n,m) is called an (i− j) edge.

We will often use subscripts to denote implicitly the kind of node we are talking
about. For example, ni ∈ N is implicitly stated to be an i-node, m1 and m′1 are
1-nodes, and so on.

4.1. The atoms. If τ is a tiling instance with k tiles T0, . . . , Tk−1, then RA(τ)
has 2k + 28 atoms. They are

start end Atoms
0 0 e0, w0

0 1 g01, u01, v01, w01

0 2 g02, u02, v02, w02

1 1 e1,+11,−11, w1

2 2 e2,+12,−12, w2

1 2 T i12 (i < k), w12

plus the converses of the (0 − 1), (0 − 2) and (1 − 2) atoms. If i, j < 3, i 6= j,
and aij is any (i − j) atom, we write aji for ăij . Thus, the converse of g02 is g20.
We consider some of the atoms to be coloured; the atoms g01, g10, g02, and g20 are
green, and the atoms w0, w1, w2, w01, w02, w12 and their converses are white.

4.2. The atom structure. To define RA(τ) it remains to define the operations
of converse and composition on the atoms. The operations on arbitrary elements
are then defined by distribution over disjunction; see [Lyn50]. For converse, we
have already defined the converse of atoms with distinct subscripts. All the rest
are self-converse except the following: the converse of +11 is −11 and the converse
of +12 is −12, and vice versa.

Now we define composition. We do this by listing the inconsistent triangles
(a, b, c) of atoms. This is defined to mean that a ; b . c̆ = 0. Recall that the Peircean
transforms of the triangle (a, b, c) are (b, c, a), (c, a, b),(ă, c̆, b̆), (c̆, b̆, ă), and (b̆, ă, c̆).
By the Peircean law in WAs, it follows from the inconsistency of (a, b, c) that its
Peircean transforms must also be inconsistent. The following triangles, plus all
Peircean transforms of them, are defined to be inconsistent. First, any triangle
where the indices do not match is inconsistent; e.g., (xij , ykl, a) and (xj , ykl, a) are
inconsistent if j 6= k, for any atom a. Second, a triangle (ei, x, y) is inconsistent
unless x = y̆. Third, the following are all inconsistent (the last column indicates
the type of nodes in the triangle):

(g10, g02, w21) 0, 1, 2,(1)

(T i12, T
j
21,+11) any i, j < k, unless Lt(Ti) = Rt(Tj) 1, 1, 2,(2)

(u10, g02, T
i
21) any i with 1 ≤ i < k 0, 1, 2,(3)

(v10, g01,±11) 0, 1, 1.(4)

There are three dual rules for inconsistent triangles, obtained from rules 2, 3 and
4 by swapping the subscripts 1 and 2 throughout and replacing Lt,Rt by Bot, T op,
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respectively. We write ±11 as an abbreviation for ‘either +11 or −11’. We will refer
to these inconsistent triangles by ‘rules 1 to 4’.

All other triangles are defined to be consistent. This suffices to define composi-
tion. The resulting operation may not be associative (see [Lyn50, page 710]), but
we will prove associativity later (Lemma 7), in the case that is important to us.
Note that 1′ = e0 + e1 + e2 follows from this definition of consistency.

Clearly, we can obtain RA(τ) from τ effectively (by an algorithm).

Lemma 2. For any instance of the tiling problem τ , RA(τ) is a weakly associative
algebra.

Proof. Let C be the set of consistent triangles of RA(τ). By Theorem 2.2.3 of
[Ma82]5 it suffices to show that

(i) C is closed under Peircean transforms,
(ii) if (ei, x, y) ∈ C, then x = y̆ and
(iii) for any atom aij of RA(τ) (ei, aij , aji) ∈ C.

This is rather easy to verify from the definition of the atom structure of RA(τ),
bearing in mind that the only inconsistent triangles involving a unit ei are those
where the indices do not match and those which break requirement (ii) above.

Remarks. It is helpful to think of the atoms T i12 as corresponding to the tiles
Ti (i < k). Because of this correspondence, we call an edge (n1, n2) of a net-
work N a tile edge if N(n1, n2) = T i12 (some i < k). (Recall our convention that
n1 is a 1-node here, so that N(n1, n1) = e1, and similarly for n2.) The atoms
T i12 : i < k are called tile atoms.

Rule 2 (and its dual) force the tile edges to form a tiling pattern, as we will see
in Theorem 3.

5. Winning strategy implies tiling

Theorem 3. Let τ be a set of tiles such that T0 is a special tile with all four edges
equal to each other but distinct from the colours used by any other tile. If ∃ has a
winning strategy for G(RA(τ)), then for each i < k there is a tiling of the plane
with Ti at (0, 0), so τ is a yes-instance.

Proof. Suppose ∃ has a winning strategy and let ∀ make the following moves. First
he plays the atom T i12, and in the next round he picks atoms g10, g02, so forcing the
triangle in Figure 2(a) (in the diagram we have labelled (c, a0) with g01 instead of
labelling (a0, c) with g10, but of course this is equivalent). Then he picks the edge
(b0, c) and the two atoms +12, g20, as in Figure 2(b).
∃ has to fill in and label the missing edge (a0, b1). She can do so because she has

a winning strategy. The label must lie under (g10 ; g02) . (T i12 ; +12). By rule 1 she
cannot choose w12, so the label must be T j12 for some j < k. By rule 2 she must
choose j so that Bot(Tj) = Top(Ti).
∀ continues with the two moves shown in Figure 3. In this way ∀ constructs two

sequences of nodes a0, a1, a2, . . . and b0, b1, b2, . . . . He can also extend the sequences
backwards (. . . , a−1, a0, a1, . . . ) by playing suitable moves. ∃ has to label each edge
(ax, by) : x, y ∈ Z and in each case the only consistent choices are T j12 for some j < k.

It is fairly simple (by rule 2) to see that this defines a tiling f i of the plane with Ti
at (0, 0). Formally, if the edge (ax, by) is labelled by T j12, then let f i(x, y) = j.

5Maddux defines (a, b, c) to be consistent iff a ; b ≥ c whereas here we mean that a ; b ≥ c̆.
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Figure 3. The play after five rounds

6. Tiling implies winning ∃-strategy

To complete the reduction of the tiling problem to the representation problem
we need to prove the converse to Theorem 3.

Theorem 4. Let τ be an instance of the tiling problem where each tile is part of a
tiling of the plane, and one tile T0 ∈ τ is a special tile with all four edges the same
colour, a colour not used by any other tile. Then ∃ has a winning strategy in the
game G(RA(τ)).

Proof. Assume the hypotheses. Let f i be a tiling function where f i(0, 0) =
i (each i < k). We will provide a winning strategy for ∃ in the game G(RA(τ)).

Initially, if ∀ plays the atom aij of RA(τ), then ∃ responds with a network N0

consisting only of the nodes ni, nj , equal if aij is a unit and distinct if not, with
N0(ni, nj) = aij , N0(nj , ni) = aji, N0(ni, ni) = ei, and N0(nj , nj) = ej . By the
second part of the definition of consistency of triangles, this is clearly a well-defined
network (in particular, if aij ≤ 1′, then aij = ei = ej).

Suppose, at some stage in the continuing play of G(RA(τ)), that the current
network is N . ∀ picks two nodes ni, nj ∈ N and two atoms ail, bl′j such that
ail ; bl′j ≥ N(ni, nj). Necessarily, l = l′. An ∀-move of this kind is called an l-move,
and, bearing in mind Convention 1(2), it forces ∃ to add an l-node to N . She has to
find a network M extending N containing a node nl ∈M such that M(ni, nl) = ail
and M(nl, nj) = blj .

Convention 2. Throughout, if we define the labelling of an edge M(p, q) = c ∈
At(A), then the labelling on the converse edge is implicitly defined by M(q, p) = c̆.
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∃ first builds a complete but partially labelled graph N∀ whose nodes are N ∪
{nl}, where nl is a new l-node, not in N . (I.e. every pair of nodes in N∀ forms
an edge, but not all edges are labelled.) N∀ extends N , so that if p, q ∈ N , then
N∀(p, q) = N(p, q). Also, N∀(ni, nl) = ail, N∀(nl, nj) = blj , and N∀(nl, nl) =
el. As with Convention 2, labels on the reverse edges (nl, ni) and (nj , nl) are
now specified as well. (These are the edges we regard as being labelled by ∀ —
recall Convention 1). It can be checked that this is well-defined if ni = nj . No
other edges are labelled in N∀. Clearly, N∀ is consistent — for any three nodes
p, q, r ∈ N∀, if all three edges of the triangle (p, q, r) are labelled in N∀, then
N∀(p, r) ≤ N∀(p, q) ;N∀(q, r), else ∀ has made an illegal move.

We now define a strategy for ∃ in choosing an atom for each unlabelled edge
of N∀. Such edges have the form (nl,m) for m ∈ N \ {ni, nj}. Employing this
strategy results in a completely labelled graph, say M .

We show that the strategy is winning for ∃ by showing that the graphM is in fact
an atomic network. In order to do this, we have to show for any three nodes p, q, r ∈
M that the triangle (p, q, r) is consistent, i.e., that M(p, r) ≤ M(p, q) ;M(q, r). If
all three edges (p, r), (p, q) and (q, r) are labelled in N∀, then we may assume that
the triangle is consistent. If not, then if two of p, q, r are equal, consistency is
assured by Convention 2 and our definition of M(nl, nl) = el, so long as ∃ always
uses an i, j-atom to label an (i − j)-edge (and she will). So it suffices to check
consistency of the triangles with three distinct nodes and an edge labelled by ∃ in
the current round of the game. We will do this as we define the strategy: for each
edge unlabelled in N∀, we will explain which atom ∃ chooses to label it, and check
that any triangle containing it conforms with rules 1–4 of the definition of RA(τ).

Remark 1. Since all this takes up what remains of the paper, it may help the reader
if we discuss the underlying idea a little, before plunging in. The critical part of
the strategy is where ∃ is forced to choose a (1− 2)-atom — a tile atom or w12 —
to label a (1−2) edge. The atom w12 is a sort of ‘wild card’ which may be adjacent
to any tile as it is not mentioned in rule 2. So where possible, she chooses the atom
w12 to label such edges.

However, rule 1 prohibits the use of w12 in some circumstances. When rule 1
applies, ∃ is forced to choose a tile atom. To help decide which one, we will assume
that each tile edge in N is associated with a genuine tiling of the plane, in the
same way as happened in Theorem 3. This means that every tile edge (n1, n2) in
N has an associated tiling function f(n1,n2) ∈ {f0, . . . , fk−1}, and sometimes also
a pair of co-ordinates Co(n1, n2) ∈ Z×Z, so that the tile atom labelling (n1, n2) is
given by the tile Tf(n1,n2)(Co(n1,n2)) if f(n1,n2) 6= f0, and by T0, otherwise. Except
in ∀’s current triangle, which is in N∀ so is assumed consistent, the tilings and
co-ordinates will have to fit together in a coherent way rather as in Theorem 3.

These tilings and co-ordinates will be assumed (inductively) to be given for N ,
and one of ∃’s tasks will be to extend them to M . (The u- and v-atoms play an
important role here: the way her strategy deployed v01 and v02 in earlier rounds
of the game will ensure that she can define tiling functions for new tile edges
coherently, and u01, u02 do the same job for the co-ordinates.) When she has done
this, it will be easy for her to decide which tile atom should label each new tile
edge — she will just choose the one given by its tiling function and co-ordinates.
Consistency of her choices will follow from the fact that the tiling function is a
genuine tiling of the plane.
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Figure 4. ∃’s strategy, case II(1,2)

The details of the tiling and co-ordinate functions will be discussed below, when
we come to describe ∃’s strategy for choosing tile atoms in full.

6.1. ∃’s strategy. Here is ∃’s strategy for labelling edges of M , unlabelled in N∀.
We will define it so that:
(α) ∃ never chooses a green atom, ±11, or ±12 to label an edge;
(β) she never chooses a tile atom M(n1, n2) = T i12 unless there is a node n0 ∈ N

such that N∀(n0, n1) = g01 and N∀(n0, n2) = g02. In particular, she never
chooses a tile atom unless one of the atoms chosen by ∀ in the current round
of the game is green.

I: (0− 0), (1− 1), and (2− 2) edges: For each of these types of edges she
chooses the label wi for suitable i. Since wi is not mentioned in any of rules 1
to 4, it follows that any triangle containing such an edge must be consistent.

II: (0− 1) and (0 − 2) edges: We define the strategy for a (0−1) edge (n0, n1);
the strategy for (0 − 2) edges is similar. ∃ always chooses either u01, v01 or
w01 for a (0− 1) edge.

1. Suppose there is a cycle of distinct 1-nodes of N∀, say γ = 〈g0, g1, . . . ,
gl−1〉 (some l ≥ 3), such that
(a) n1 ∈ γ,
(b) N∀(gi, gi+1) = ±11 (each i < l − 1), and N∀(gl−1, g0) = ±11,
(c) for all gi ∈ γ, if gi 6= n1, then N∀(n0, g

i) = g01.
Then ∃ lets M(n0, n1) = u01.

2. If there is a chain of 2-nodes C = 〈c2, . . . , d2〉 ⊆ N , with c2 6= d2, such
that
(a) for each α2 ∈ C, N∀(n0, α2) = g02,
(b) each edge between two consecutive nodes in the chain C is labelled

by ±12 in N ,
(c) N∀(n1, c2) = T i12 and N∀(n1, d2) = T j12 (some i, j < k),
then she lets M(n0, n1) = v01.

3. Otherwise, she lets M(n0, n1) = w01.
See Figure 4.

We should check first that this strategy is well-defined — i.e., cases II(1)
and II(2) do not apply simultaneously. So suppose both cases apply to the
edge (n0, n1). Since case II(1) applies, there is a cycle γ as described above;
and since case II(2) applies, there is a chain C as above with endpoints c2
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and d2. As the edge (n0, n1) is just being labelled by ∃, either n0 or n1 is
currently being added to the network. Now the new node, whichever it is, is
incident with at most two labelled edges in N∀, the ones labelled by ∀ in the
current round. But both n0 and n1 are incident with at least four such edges,
because N∀(n0, g) = g01 (g ∈ γ \ {n1}) and N∀(n0, α2) = g02 (α2 ∈ C), while
N∀(n1, c2), N∀(n1, d2) are labelled in N∀ (they are tile atoms) and the two
edges connecting n1 to its neighbours in γ are also labelled (with ±11) in N∀.
This is a contradiction, and shows that the strategy is well-defined.

Next we check that it is consistent: when the labelling of all edges of M
has been completed, no triangle containing an edge labelled by case II of the
strategy is inconsistent. Though we have not yet described the rest of the
strategy, so we don’t know exactly how edges of M are labelled, we promise
that conditions (α) and (β) will in the end be met, and these are all we need.

First, we check that if ∃ chooses the atom u01 for the edge (n0, n1), then
there is no 2-node n2 such that the triangle (n0, n1, n2) violates rule 3 in
M . Suppose this happened: so M(n0, n1) = u01, M(n0, n2) = g02, and
M(n1, n2) = T i12 for some i with 1 ≤ i < k. (Recall that rule 3 does not apply
to T 0

12.) Now n0 is incident with at least three green edges — two labelled
g01 into the cycle γ that caused the use of u01 and one labelled g02 to n2 —
so by (α), n1 must be the node added in the current round. n1 is incident
with two edges labelled ±11 in the cycle γ, so by (α), these are the two edges
chosen by ∀ in the current round. But then, as neither of ∀’s atoms is green,
by (β) ∃ would not have chosen a tile atom for M(n1, n2). Thus we have a
contradiction. So if ∃ chooses M(n0, n1) = u01, then any triangle involving
this edge is consistent.

The second possible inconsistency that we have to check for is when ∃
chooses v01 for the edge (n0, n1), and there is a 1-node m1 such that the
triangle (n0, n1,m1) violates rule 4. Suppose there is a chain C with endpoints
c2 6= d2, with N∀(n1, c2) and N∀(n1, d2) both tile atoms, as in case II(2) of
the strategy, and with N∀(n0,m1) = g01 and N∀(m1, n1) = ±11. As before,
because the labels g02 on the edges (n0, c2) and (n0, d2) must have been chosen
by ∀, this could only happen if n1 is the node currently added, as c2 6= d2.
Now the edges (n1, c2) and (n1, d2) are in N∀, and as this exhausts the labelled
N∀-edges incident with n1, the edge (n1,m1) must be labelled by ∃ in the
current round. This conflicts with (α), because ∃ never uses ±11 to label an
edge. Thus, the situation described does not arise.

Hence, if this strategy is used, any triangle in M involving a (0− 1) edge
labelled by ∃ must be consistent. Similarly, triangles involving (0 − 2) edges
chosen by ∃ are consistent.

Having dealt with all (0− 1), (0− 2), (1− 1) and (2− 2) edges now, we can
see that (α) is indeed a true property of ∃’s strategy.

III: (1− 2) non-tile edges: ∃ now proceeds to deal with the new (1−2) edges
not occurring in N∀. Let (n1, n2) be such an edge. If it is consistent with N∀,
she lets M(n1, n2) = w12. In more detail, if there is no node m0 ∈ N such
that N∀(m0, n1) = g01 and N∀(m0, n2) = g02, then she lets M(n1, n2) = w12.
Such an edge cannot be part of an inconsistent triangle in M , because the only
inconsistent triangles involving the atom w12 are those mentioned in rule 1
and because ∃ never chooses green atoms. The edges so labelled are not tile
edges.
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This means that (β) is also a true property of ∃’s strategy.
IV: (1 − 2) tile edges: Finally, ∃ has to label the remaining (1 − 2) edges of
M , if any. These are the edges of the form (n1, n2) such that for some node
m0 ∈ N , N∀(m0, n1) = g01 and N∀(m0, n2) = g02. ∃ is not allowed to choose
the atom w12 for (n1, n2) because of rule 1 — she must use a genuine tile
atom here.

To choose tile atoms for these edges, ∃ will take advantage of certain tilings
and (possibly) co-ordinates associated with existing tile edges; and to continue
winning later on, she will also have to extend these tilings and co-ordinates
to the new tile edges constructed in the current round. This includes any new
tile edges labelled by ∀, so that ∃ may have to define tilings/co-ordinates even
if there are no new tile edges for her to label.

These tilings and co-ordinates will be assumed inductively to comply with
the conditions T1, T2 and T3 below. To specify these, we need to define some
terms.

Definition 2. Let X ∈ {N,M}.
• Let p, q, r be distinct nodes of X . The triangle (p, q, r) is said to be an ∀-

triangle if it was constructed by ∀ in some round of the game. More formally,
suppose (without loss) that node r was the most recently constructed node
out of p, q, r as the game progressed. Then triangle (p, q, r) is an ∀-triangle if
in the round when r was added, ∀ chose p, q as his nodes (and X(p, r), X(r, q)
as his atoms). The order of the nodes p, q, r is not significant here, so if
(p, q, r) is an ∀-triangle, then so are (q, r, p) and (q, p, r).
• Recall that a tile edge is one labelled with T i12 for some i < k. Two edges

(m1,m2) and (m1,m
′
2) of X are said to be attached to each other if they are

both tile edges, N(m2,m
′
2) = ±12, and the triangle (m1,m2,m

′
2) is not an ∀-

triangle. Similarly, if (m1,m2) and (m′1,m2) are both tile edges, N(m1,m
′
1) =

±11, and the triangle (m1,m
′
1,m2) is not an ∀-triangle, then the two edges

are attached.
In a nutshell, two tile edges are attached if they form two sides of a non-

∀-triangle, the third side of which is labelled by a ±1 atom.
In this definition, we are not concerned with the orientation of the edges

— we regard them as undirected edges.
• Two tile edges (m1,m2) and (m′1,m

′
2) are said to be linked in X if and only

if they are equal or there is a chain of tile edges in X from (m1,m2) to
(m′1,m

′
2) with each edge in the chain attached to the next one. Thus, ‘linked’

is the reflexive, transitive closure in X of the ‘attachment’ relation. It is an
equivalence relation on tile edges.

At this stage ∃ has labelled all the edges of M except the (1 − 2) tile edges.
Although she has not yet labelled these, she knows which edges are going to be tile
edges (by (β)), and she knows the labels on all (1− 1) and (2− 2) edges. She also
knows which triangles ∀ has picked during the game, of course. Therefore it makes
sense to say that two tile edges of M are attached or linked to each other in M .

6.2. Tiling and co-ordinate requirements for N . We require (inductively)
that each tile edge (n1, n2) of N — whether its label was chosen by ∃ or ∀ — is
associated with a tiling f = f(n1,n2) ∈ {f i : i < k} in such a way that

T1: if the tile edges (n1, n2), (n′1, n
′
2) are linked in N , then f(n1,n2) = f(n′1,n

′
2).
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If f = f0, we do not need co-ordinates. (Recall that all four edges of the tile T0

have the same colour.) If f 6= f0, we need co-ordinates Co(n1, n2) = (x, y), say,
where x, y ∈ Z, such that:

T2: If (n1, n
′
2) is attached to (n1, n2), f(n1,n2) = f(n1,n′2) 6= f0, N(n2, n

′
2) = +12,

and Co(n1, n2) = (x, y), then Co(n1, n
′
2) = (x, y + 1).

Similarly, if (n′1, n2) is attached to (n1, n2), the associated tiling is not f0,
N(n1, n

′
1) = +11, and Co(n1, n2) = (x, y), then Co(n′1, n2) = (x+ 1, y).

T3: For each tile edge (n1, n2), if f(n1,n2) = f0, then N(n1, n2) = T 0
12. If

f(n1,n2) = f i (i > 0) and Co(n1, n2) = (x, y), then N(n1, n2) = T
fi(x,y)
12 .

It is easy to arrange that the requirements T1, T2, and T3 hold in the initial
network N0. It will involve at most one tile edge (at most one edge of any kind!),
and if its label is T i12, we let the associated tiling be f i, and if i > 0 we assign the
co-ordinates (0, 0).

Now assume inductively that tilings and co-ordinates are defined forN , satisfying
T1–T3. First, we will describe how to extend them to M . Then, when all tilings
and co-ordinates have been defined, we will check that T1 and T2 are satisfied.
Finally, T3 will tell ∃ which tile to use for each new tile edge, and then we can
check consistency of triangles involving them.

6.3. Tiling functions and co-ordinates for ∀’s tile edges. The first step is to
define tiling functions and co-ordinates for any tile edges chosen by ∀ in the current
round. If ∀ chooses N∀(n1, n2) = T j12, say, then let f(n1,n2) = f j , and if j > 0 let
Co(n1, n2) = (0, 0), in agreement with T3.

6.4. Tiling functions for ∃’s new tile edges. ∃ must now find tilings and per-
haps co-ordinates for the new tile edges in M , if any. Suppose that there are some.
Suppose also that the new node is a 2-node: i.e., the nodes of M are those of N plus
a new node n2 /∈ N . The other case, where the new node is a 1-node, is dealt with
similarly, using the (1 − 2) symmetry of the rules 1–4 defining the atom structure.
This n2 will be fixed in the notation from now on. The new tile edges are precisely
those of the form (n1, n2), where n1 ∈ N and N(m0, n1) = g01, N∀(m0, n2) = g02

for some m0 ∈ N . ∃ has to associate a tiling function f(n1,n2) with each such edge.
She does this as follows:
• If (n1, n2) is linked (in M) to a tile edge t of N∀, then she associates with

(n1, n2) whatever tiling function is associated with t. That is, she sets
f(n1,n2) := f(t).
• Otherwise, she lets f(n1,n2) = f0.

Of course, we have to show that this is well-defined. This is done by the following
lemma.

Lemma 5. Under the above assumptions (in particular, that n2 is the new node
and (n1, n2) a tile edge to be labelled by ∃, so that N∀(m0, n2) = g02 and N(m0, n1)
= g01 for some m0 ∈ N):

1. If (n1, n2) is linked in M to a tile edge of N∀ that is not in N , then (n1, n2)
is not linked in M to any other tile edge of N∀.

2. Let t, t′ be tile edges of N . If t and t′ are linked in M , then they are linked in
N .

For suppose that (n1, n2) is linked in M to two distinct tile edges t, t′ of N∀. By
(1) of the lemma, t, t′ are edges of N . Because ‘linked’ is an equivalence relation
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Figure 5. The chain linking t to t′

on tile edges, t, t′ are linked in M . By (2) of the lemma, they are linked in N , so
by T1 for N , f(t) = f(t′). Thus, ∃’s definition of f(n1,n2) := f(t) is well-defined.

Proof. (1) Assume the hypotheses. Then ∀’s chosen atoms in the current round
must have been g02 and a tile atom. Neither of them was ±12.

Suppose that (n1, n2) are linked to a tile edge t in N . Then there is a chain of
attached tile edges proceeding from (n1, n2) to t. At some stage, this chain crosses
into N . This is impossible unless some edge of M incident with n2 is labelled ±12.
But ∀ did not choose ±12, and ∃ never does (by (α)). So (n1, n2) is not linked
to any tile edge of N . As there is a unique tile edge of N∀ that is not in N , this
proves part (1).

(2) Assume not. Take a counterexample pair of tile edges t, t′ of N , linked in M
but not in N , with the shortest possible chain of attached tile edges ei (1 ≤ i ≤ s)
of M linking t with t′: so t is attached to e1, e1 to e2, . . . , es−1 to es, and es to
t′, and s ≥ 1 is least possible. Clearly, no ei is an edge of N , or a counterexample
with a shorter chain would be possible. Also, the ei are all distinct. So the ei have
the form (ni1, n2) for distinct nodes ni1 ∈ N (1 ≤ i ≤ s). Since t, t′ are edges of
N , we must have t = (n1

1,m2) and t′ = (ns1,m
′
2) for some 2-nodes m2,m

′
2 ∈ N

with M(n2,m2) = ±12 and M(n2,m
′
2) = ±12. Hence (n2,m2), (n2,m

′
2) are edges

of N∀, chosen by ∀ in the current round. Now by the assumption of the lemma, ∀
also chose a green atom: N∀(m0, n2) = g02. Because he only chose two edges, we
must have m2 = m′2. Because t 6= t′, we see that n1

1 6= ns1, so s ≥ 2. As ∀ did not
choose a tile atom in this round, the tile edges (ni1, n2) are going to be labelled by
∃, so by (β) we must have N(m0, n

i
1) = g01 for all i. By considering the different

labels on the edges (x, n2) for x ∈ {m0,m2, n
i
1 : 1 ≤ i ≤ s}, we see that m0, m2,

and the ni1 are all distinct. See Figure 5.
We claim that N(m0,m2) = g02. Given the claim, we have:
1. the edges (ni1,m2) are all tile edges of N (by rule 1, since N(m0, n

i
1) = g01

for each i).
2. for each 1 ≤ i < s, (ni1,m2) is attached to (ni+1

1 ,m2).
For if not, (ni1, n

i+1
1 ,m2) must be an ∀-triangle: two sides of it were chosen

by ∀ when its last node was constructed. So if m0 was already in existence
when this triangle was completed, the label on the edge from the last node of
the triangle to m0 must have been chosen by ∃. But this last node is connected
to m0 by a green edge (we use the claim again here in the case where the last
node was m2), and ∃ never chooses green labels. So m0 must have been



REPRESENTABILITY IS NOT DECIDABLE 1417

±12
g01

tile
g02

g01

tile

ni1

m2

m0

ni+1
1 v

\
\
\\

�
�
�
�
��

�
�
�
�
�
�
��

l
l
l
ll

��
��
��
��

v

v
v

Figure 6. Successive tile edges are attached

constructed after the triangle (ni1, n
i+1
1 ,m2). This is also impossible, since it

is connected to all three nodes of the triangle by green edges and at least one
of these edges must have been labelled by ∃. See Figure 6.

3. Hence t is linked to t′ in N , via the chain t = (n1
1,m2), (n2

1,m2), . . . ,
(ns1,m2) = t′. This is what we wanted to show.

To prove the claim, suppose for a contradiction that N(m0,m2) 6= g02. We have
a chain of 1-nodes

C = 〈n1
1, . . . , n

s
1〉 ⊆ N

such that N(m0, n
i
1) = g01 for all ni1 ∈ C and consecutive nodes in the chain are

connected by ±11 (Figure 5). We know that the chain C has distinct endpoints:
n1

1 6= ns1 ∈ C. Which node out of C ∪ {m0,m2} was most recently added? The
interior nodes n2

1, . . . , n
s−1
1 of C, if any, are incident with at least three edges within

C ∪ {m0,m2} chosen by ∀ (consider green atoms and ±1, as usual) and therefore
none of these could be the most recently added node. The endpoints of C, n1

1 and
ns1, are each incident with one edge labelled ±11 and another labelled g01. If n1

1

(or ns1) was the most recently added, then, as N(m0,m2) 6= g02 by assumption, we
cannot account for the fact that N(n1

1,m2) (respectively, N(ns1,m2)) is a tile atom.
So this can’t happen. Thus, the most recently added node must be m0 or m2.

If ∃ chose the edge (m0,m2) then, by her strategy for (1− 2) edges and because
of the prior existence of the chain C, she would have chosen N(m0,m2) = v02. But
then, in the current round, ∀’s move must be illegal, as g02 ;±12 6≥ v02 (rule 4). So
this can’t happen, and it must be ∀ who chose the edge (m0,m2). Hence, the most
recently added node was, in fact m2, for m0 is incident with at least three edges,
those to m2, n

1
1, n

s
1, chosen by ∀.

We are supposing that (m0,m2) is not green and we know now that this edge
was labelled by ∀. Therefore, at least one of the two tile edges (n1

1,m2), (ns1,m2)
was labelled by ∃. So by (β), ∀ must have chosen the edge N(n0,m2) = g02, for
some n0 ∈ N . Since (n0,m2) is green and (m0,m2) is not, we have n0 6= m0.
Hence ∀’s two edges were (m0,m2) and (n0,m2). He chose neither of the tile edges
(n1

1,m2), (ns1,m2): both were chosen by ∃, and for her to do this we must have
N(n0, n

1
1) = N(n0, n

s
1) = g01. See Figure 7.

But now we consider which node from C ∪ {m0, n0} was most recently added.
The interior nodes of C are incident with three edges chosen by ∀: two edges within
C labelled ±11, and one to m0, labelled g10, so it was not any of those. Nor was it
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either of the end nodes n1
1, n

s
1, since they are each incident with a ±11 edge within

C and two green edges, to n0 and m0. So it must have been either n0 or m0. These
are both connected to n1

1 and ns1 by edges labelled by g01, so in this round, ∀ must
have chosen the nodes n1

1, n
s
1 (recall that these are distinct) and the atoms g10, g01.

But this is in contravention to Convention 1, since there was a suitable node
(namely whichever of n0,m0 already existed) in N already, so ∀ would not have
made such a move. This is a contradiction and completes the proof of the claim.

Now we have a well-defined association of tiling functions to all new tile edges
not in N .

6.5. Co-ordinates. Next, we have to assign co-ordinates Co(n1, n2) to each new
tile edge (n1, n2) of M which is not an edge of N∀ and with f(n1,n2) = f i for some
i > 0.

If there are no such edges, there is nothing to do. So assume that there is at
least one; let (n1, n2) be such an edge. Now, i > 0 means that (n1, n2) is linked to
a tile edge of N∀ — either an edge of N , in which case ∀’s second atom must be
±12, or a tile edge chosen by ∀ in the current round, in which case ∀’s second atom
is a tile atom (cf. the proof of Lemma 5(1)). Either way, we see that in the current
round, ∀ chose exactly one green atom — say, N∀(m0, n2) = g02, for some unique
m0 ∈ N . Like n2, this m0 will be fixed in our notation from now on.

Let

Γ = {n1 ∈ N : N(m0, n1) = g01}.
∃ has to give co-ordinates to each of the edges (n1, n2), for n1 ∈ Γ, if its tiling
function is not f0. Define a set of 1-nodes Γ+ by
• Γ+ = Γ if ∀’s second atom is ±12,
• Γ+ = Γ ∪ {m1} if ∀’s second atom is N∀(m1, n2) = T j12 (some necessarily

unique m1 ∈ N and j < k).
The tile edges incident with n2 in M are {(n1, n2) : n1 ∈ Γ+}.

Define a graph G with nodes Γ+ and with an edge connecting two nodes a, b of
G if and only if N(a, b) = ±11.

Lemma 6. The graph G is acyclic.
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Proof. First, suppose that ∀’s second atom is ±12, so that Γ+ = Γ. Assume for
contradiction that there is a cycle in G — say γ = 〈g0, . . . gt−1〉 ⊆ G (some t ≥ 3)
with graph edges of G connecting g0 to g1, g1 to g2, . . . , gt−1 to g0. We ask the
question: in the course of the game, which node of γ ∪ {m0} was most recently
added to N? Whichever it is, it can be connected to the rest of γ ∪ {m0} by
at most two edges labelled by ∀. Now each node in γ is incident with two edges
labelled ±11 (because it is in the cycle γ) and one green edge connecting it to m0

(because it is in Γ), and all of these edges are only chosen by ∀. Thus, none of these
can have been the most recently added node, and the last-added node must be m0.
But |γ| ≥ 3, and m0 is connected to every node of γ by a green edge. As before,
this is impossible, since ∃ never chooses green labels. So G is acyclic in this case.

Now suppose instead that ∀ chooses N∀(m1, n2) = T j12 (some j), so Γ+ = Γ ∪
{m1}. We claim that j > 0. To see this, recall that we are supposing that there
is at least one edge (n1, n2) with n1 ∈ Γ and f(n1,n2) = f i for some i > 0. By
definition of f(n1,n2), this means that (n1, n2) is linked to a tile edge e in N∀ with
tiling function f i. However, as in Lemma 5(1), when the two edges chosen by ∀ in
the current round are N∀(m0, n2) = g02 and N∀(m1, n2) = T j12, (n1, n2) cannot be
linked to an edge in N , so it must be linked to the edge (m1, n2) and to no other
edge of N∀. The tiling function for this edge is f(m1,n2) = f j . So j = i > 0, as
claimed.

Suppose, for contradiction, that there is a cycle γ ⊆ G (|γ| ≥ 3). Now, if
m1 6∈ γ, then we revert to the situation in the previous case: each node in γ∪{m0}
is incident with more than two ∀-edges within γ ∪ {m0}, which is impossible. So
assume m1 ∈ γ. Which node of γ ∪ {m0} was most recently added to the network?
The most recent node should be incident with at most two edges in γ∪{m0} chosen
by ∀. As above, each node in Γ ∩ γ is incident with two edges within γ labelled
±11 and one green edge connecting it to m0, and all of these edges are only chosen
by ∀. Therefore, either m0 or m1 was most recently added, and the edge (m0,m1)
must have been chosen by ∃ — otherwise, m0 and m1 are also incident with three
edges chosen by ∀, since m1 ∈ γ.

So which atom would ∃ have chosen for the edge (m0,m1)? Her strategy for
(0 − 1) edges tells her to choose u01 because of the existence of the cycle γ. But
then, the current ∀-move is illegal, as j > 0 and g02 ;T j21 6≥ u01 by rule 3, so that
the triangle (m0,m1, n2) is inconsistent. This gives us a contradiction and proves
the lemma.

This lemma allows us to define an integer valued rank r(n1) for each node n1 of
Γ+ such that

if n1, n
′
1 ∈ Γ+ and N(n1, n

′
1) = +11, then r(n′1) = r(n1) + 1.

Now we can define co-ordinates for each new tile edge (n1, n2) with n1 ∈ Γ and
f(n1,n2) = f i for i > 0.

Case A. Suppose that the two atoms chosen by ∀ are N∀(m0, n2) = g02 and
N∀(m1, n2) = T j12 (for some m1 ∈ N and j < k). Here, m1 ∈ Γ+; obviously,
it is unique. We define co-ordinates for (n1, n2) by

Co(n1, n2) = (r(n1)− r(m1), 0).
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Case B. Suppose now that ∀ chooses the two edgesN∀(m0, n2)=g02 andN∀(m2, n2)
= +12 (the case where he chooses the atom −12 is similar). Again, m2 is uniquely
defined.

As f(n1, n2) 6= f0, (n1, n2) must be linked to a tile edge of N . In fact, consid-
eration of a shortest linking chain shows that it must be linked to one of the form
(n′1,m2), for some n′1 ∈ Γ, by a chain of attached tile edges of M that are not edges
of N . We have f(n′1,m2) = f(n1,n2) 6= f0, so (n′1,m2) has co-ordinates in N . Let
Co(n′1,m2) = (x, y), say. The co-ordinates of the new edge (n1, n2) in M are now
defined to be

Co(n1, n2) = (x+ r(n1)− r(n′1), y + 1).

(If ∀’s second atom is −12, then replace y + 1 by y − 1.)
We have to show that this is well-defined. Suppose that (n1, n2) is linked to two

distinct such tile edges (n′1,m2) and (n∗1,m2) by chains of the form stated. Then
(n′1,m2) and (n∗1,m2) are themselves linked in M by such a chain — there is a
chain of new tile edges

(n′1, n2) = (n1
1, n2), (n2

1, n2), . . . , (ns1, n2) = (n∗1, n2)

of M , each successive pair being attached, with (evidently) (n′1,m2) attached to
(n′1, n2) and (n∗1, n2) attached to (n∗1,m2). We have n1

1, . . . , n
s
1 ∈ Γ. The proof of

the claim in Lemma 5(2) now applies, to show that N(m0,m2) is green, the (ni1,m2)
(1 ≤ i ≤ s) are all tile edges of N , and that (ni1,m2) is attached to (ni+1

1 ,m2) for
each i < s. So (n′1,m2) = (n1

1,m2), (n2
1,m2), . . . , (ns1,m2) = (n∗1,m2) is a chain of

attached tile edges of N .
Clearly, n1

1, n
2
1, . . . , n

s
1 is a path in G. So by T2 (in N) and the definition of the

rank r, we have, for any x, y ∈ Z, Co(ni1,m2) = (x+r(ni1), y) ⇐⇒ Co(ni+1
1 ,m2) =

(x+ r(ni+1
1 ), y) for each i < s. We now obtain

if Co(n′1,m2) = (x, y), then Co(n∗1,m2) = (x + r(n∗1)− r(n′1), y),(∗)
by induction on s. Thus, the co-ordinate function is well-defined.

We have now defined tilings for all tile edges of M that are not in N , and
co-ordinates for those whose associated tiling is not f0.

6.6. Conditions T1, T2 hold for M . Let us now check that M satisfies con-
ditions T1 and T2. It is sufficient to check that if the tile edges e, e′ of M are
attached, then they share a tiling function and, if appropriate, their co-ordinates
match according to T2. Since T1 and T2 hold for N , we can assume that e, e′ are
not both edges of N .

It follows that e, e′ are not both edges of N∀. For if they were, then being
attached, they form two sides of a triangle ∆ which is not a ∀-triangle, the third
side of ∆ being labelled by a ±1 atom. Because ∃ never chose a ±1 label in this
(or any) round, the third side of ∆ is also labelled in N∀. So all three sides of ∆
are labelled in N∀. But by the preceding paragraph, ∆ does not lie within N , so
∆ must in fact be ∀’s triangle in the current round. This is a contradiction.

So we may assume that e is not an edge of N∀. This means that e is a tile edge
labelled by ∃ in the current round. Say, e = (n1, n2) for some n1 ∈ N .

Case 1: Assume that e′ is an edge of N . So e′ must have the form (n1,m2)
where m2 ∈ N and M(m2, n2) = ±12. Then as e, e′ are certainly linked
in M , by the well-definedness of the tiling function we have f(e) = f(e′),
so T1 holds for e, e′. Moreover, if f(e) 6= f0, then by the well-definedness
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of the co-ordinates, if Co(e′) = (x, y) and M(m2, n2) = +12, say, we have
Co(e) = (x, y + 1). Thus, the condition in T2 is met. The case where
M(m2, n2) = −12 is similar.

Case 2: Assume that e′ is an edge of N∀ but not an edge of N . Thus, it
was chosen by ∀ in the current round, and has the form (m1, n2), where
N(m1, n1) = ±11. Its co-ordinates, if any, are (0, 0). As in the previous
case, f(e) = f(e′), so T1 is satisfied. If f(e) 6= f0 and N(m1, n1) = +11,
say, then again by definition of the co-ordinates we have Co(e) = (1, 0). If
N(m1, n1) = −11, Co(e) = (−1, 0). Hence, T2 is met.

Case 3: Assume finally that e, e′ are both edges of M that are not in N∀. Then
they are linked in M . As ‘linked’ is an equivalence relation, if e is linked to a
tile edge e∗ of N∀, then so is e′, and we have f(e) = f(e′) = f(e∗). If e is not
linked to any tile edge of N∀, then neither is e′ and we have f(e) = f(e′) = f0.
Hence f(e) = f(e′) in any case, and T1 is met. Let e′ = (n′1, n2), and assume
that N(n1, n

′
1) = +11 (the case N(n1, n

′
1) = −11 is similar). If f(e) 6= f0

then e, e′ are assigned co-ordinates as above, and there are two ways this can
happen.

Case 3a: Suppose first that e is linked in M to a tile edge e∗ = (m1, n2) chosen
by ∀ in the current round. (So ∀’s atoms were N∀(e∗) and the green atom
forcing the existence of the tile edges e, e′.) Then e′ is also linked to e∗, and
we have

Co(e) = (r(n1)− r(m1), 0),
Co(e′) = (r(n′1)− r(m1), 0).

As N(n1, n
′
1) = +11, the rank r satisfies r(n′1) = r(n1) + 1, and this yields

that Co(e) and Co(e′) are in accordance with T2.
Case 3b: Suppose now that e is linked in M to a tile edge e∗ of N by a chain

of attached tile edges of M that are not in N . Then so is e′ (by extending
the chain by the extra link (e′, e)). We saw that e∗ can be taken to be of the
form (n∗1,m2), where N∀(m2, n2) = ±12 — say, −12. Let Co(e∗) = (x, y).
Then the definition of the new co-ordinates (above) gives

Co(e) = (x+ r(n1)− r(n∗1), y − 1),
Co(e′) = (x+ r(n′1)− r(n∗1), y − 1).

From the definition of the rank r, r(n′1) = r(n1) + 1, so that if Co(e) = (z, t)
then, Co(e′) = (z + 1, t), in accordance with T2.

6.7. Tile atoms for the new edges, and consistency. Now we have a tiling
function and (if necessary) co-ordinates for each new tile edge to be labelled by ∃.
For each such edge e, ∃ lets

M(e) =

{
T 0

12, if f(e) = f0;

T
f(e)(Co(e))
12 , otherwise,

in accordance with T3. It remains to check that triangles involving these edges are
consistent. There are two rules involving tile edges: rules 3 and 2.

For rule 3, suppose for a contradiction that the new tile edge (n1, n2) lies in a
triangle ∆ in M whose other sides are labelled by g01 and u02, or alternatively g02

and u01. There can only be a problem with rule 3 if M(n1, n2) = T i12 for some i
with i > 0. Now ∃ only chooses T i12 with i > 0 if (n1, n2) is linked to a tile edge
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of N∀. That means that in the current round, ∀ must have chosen one green atom
g02 and either ±12 or a tile atom T j12 (some j). All other edges incident with n2

were chosen by ∃. The edge (m0, n2) (say) of N∀ labelled g02 is not in ∆, since
we know that N(m0, n1) = g01 (else ∃ would not choose a tile to label (n1, n2)).
So it follows that ∃ must have chosen a second side of the triangle ∆ as well as
(n1, n2). ∃ never chooses a green atom, so this second side must be labelled with
the u-atom. But we have already checked (when we considered her strategy for
(0− 1) and (0− 2) edges) that no triangles involving u-labelled edges chosen by ∃
are inconsistent. Thus, rule 3 cannot be violated.

That leaves the crucial rule 2. Suppose ∃ chooses M(n1, n2) = T i12, and this edge
is part of a triangle (n1, n2, n

′
1) say, with M(n′1, n2) = T j12 and M(n′1, n1) = +11,

say (the other three cases, in which +1 is replaced by −1 and/or n′1 is replaced by
a 2-node n′2, are entirely similar).

This triangle (n1, n2, n
′
1) is not an ∀-triangle, because if it were it would be in

N∀, whereas in fact one of its edges is a tile edge labelled by ∃. Hence the two tile
edges in it are attached. By T1, they share a tiling function, say f l. If l = 0, then
by T3 we have i = j = 0, so there is no problem with rule 2. If l > 0, by T2 we
have Co(n′1, n2) = (x, y) and Co(n1, n2) = (x + 1, y) for some x, y ∈ Z. By T3,
f l(x, y) = j and f l(x+1, y) = i. Because f l is a valid tiling, Lt(Ti) = Rt(Tj). Hence
the labels on the triangle (n1, n2, n

′
1), which are (T i12, T

j
21,+11), are consistent with

rule 2.
Thus triangles involving new edges are consistent with all the rules.
This completes ∃’s strategy. In each case she is able to choose an atom without

creating any inconsistent triangles and she is able to define coherent tilings and
co-ordinates where appropriate. In this way she can continue forever and win the
game G(RA(τ)).

7. Associativity and conclusion

Lemma 7. Suppose that ∃ has a winning strategy in the game G(RA(τ)). Then
RA(τ) is associative.

Proof. This is well-known. Let r, s, t ∈ RA(τ). We show that (r ; s) ; t ≤ r ;(s ; t).
Take an atom x ≤ (r ; s) ; t. Because for any p, q ∈ RA(τ) we have

p ; q =
∑
{a ; b : a, b atoms of RA(τ), a ≤ p, b ≤ q},

we see that there are atoms y ≤ r ; s and c ≤ t with x ≤ y ; c. Similarly, there are
atoms a ≤ r, b ≤ s with y ≤ a ; b.

Let ∀ begin a play of G(RA(τ)) with the atom y. Using her winning strategy in
this game, ∃ will respond with a network N0 with nodes 1, 3, say, not necessarily
distinct, with N0(1, 3) = y. Let ∀ continue by picking the edge (1, 3) and atoms
a, b, and then the edge (1, 3) again and atoms x, c̆. (We suspend Convention 1(2),
to allow ∀ to make any consistent moves he likes. This is quite harmless.) ∃
responds after these two moves with a network N2 = N with nodes 1,2,3,4 such
that N(1, 2) = a,N(2, 3) = b, N(3, 4) = c, and N(1, 4) = x. See Figure 8.

Let N(2, 4) = z. Then because N is a network and z an atom, we have z ≤ b ; c,
so that z ≤ s ; t, and x ≤ a ; z, so that x ≤ r ;(s ; t). Because the atom x ≤ (r ; s) ; t
was arbitrary, and RA(τ) is atomic, we have (r ; s) ; t ≤ r ;(s ; t).

A similar argument shows that (r ; s) ; t ≥ r ;(s ; t). This proves associativity.
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Figure 8. Associativity of RA(τ)

Assume that τ is a yes-instance of the tiling problem. From Theorem 4, we get
that ∃ has a winning strategy in G(RA(τ)). By Lemma 7, RA(τ) is associative,
so by Theorem 1, it is representable. Now assume that τ is a no-instance. Then
either RA(τ) is not associative (and this is decidable), or else it is, in which case
by Theorems 1 and 3, RA(τ) is not representable. So we obtain our result:

Theorem 8. The problem of deciding whether a finite relation algebra is repre-
sentable or not is undecidable.

Corollary 9. The set of isomorphism types of representable finite relation algebras
possessing only infinite representations is not recursively enumerable.

For a proof, see the discussion in the introduction.

Added after posting

There is an error in the proof of part 2 of Lemma 5 of the originally posted
article. In the proof of the claim that N(m0,m2) = g02, the statement that “If
∃ chose the edge (m0,m2) then, by her strategy for (1 − 2) edges and because of
the prior existence of the chain C, she would have chosen N(m0,m2) = v02” is not
correct, as we do not know that the tile edges (m2, n

1
1), (m2, n

s
1) are labelled in N∀

in the round when ∃ labels (m0,m2), as required by ∃’s strategy.
We therefore alter the definition of ∃’s strategy by dropping the requirement

that these edges are labelled in N∀. Now, we only require that they be tile edges.
There are consequential amendments to the checks that the strategy is well-defined
and consistent. The corrections are listed below; they affect only the page or so of
§6.1 between II and III.

We thank Ágnes Kurucz for useful comments on correcting the mistake.

Definition of ∃’s strategy. After the definition of condition (β), insert:
“Remark A. Clearly, (β) completely determines which edges of M will be tile
edges and which will not: an edge of M will be a tile edge iff either it is already
labelled in N∀ with a tile atom, or it forms one side of a triangle in M whose other
two edges are labelled g01, g02 in N∀.”

In ∃’s strategy, case II, replace condition 2(c), “N∀(n1, c2) = T i12 and N∀(n1, d2)
= T j12 (some i, j < k),” by the following:
“(n1, c2) and (n1, d2) will be tile edges of M (cf. Remark A above),”
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Check that the strategy is well-defined. Replace the 5 lines “But both n0 and
n1 are incident with at least four such edges . . . strategy is well-defined” by the
following:
“But n0 is incident with four such edges, because N∀(n0, g) = g01 (g ∈ γ\{n1}) and
N∀(n0, α2) = g02 (α2 ∈ C). So the node being currently added must be n1. The
two edges connecting n1 to its neighbours in γ are labelled with ±11 in N∀, so by
(α), these must be the two edges labelled by ∀ in the current round—in particular,
he chose no green atoms. By (β), ∃ does not choose any tile atoms in this round,
so the tile edges (n1, c2), (n1, d2) must also be labelled by ∀ in the current round.
This contradicts the fact that n1 is incident with only two labelled edges in N∀,
and shows that the strategy is well-defined.”

Check that the strategy is consistent. Replace the 9 lines “Suppose there is a
chain C with endpoints c2 6= d2 . . . Thus, the situation described does not arise.”
by the following:
“ Suppose there is a chain C with endpoints c2 6= d2, with (n1, c2) and (n1, d2)
both tile edges of M , as in case 2 of the strategy, and with M(n0,m1) = g01 and
M(m1, n1) = ±11. As before, because the labels g02 on the edges (n0, c2) and
(n0, d2) must have been chosen by ∀, this could only happen if n1 is the node
currently added, as c2 6= d2.

Since by (α) the edge (n1,m1) is labelled in N∀, at most one of the two tile
edges (n1, c2), (n1, d2) can also be labelled in N∀, so ∃ is going to label at least
one of them with a tile atom. So by (β), ∀ must have chosen a green atom in the
current round. His choices of atoms and nodes were therefore ±11, g01, and m1, p0,
say, for some p0 ∈ N : N∀(p0, n1) = g01. Hence, ∃ labelled both tile edges (n1, c2),
(n1, d2). By (α), (p0, n1) is the only green edge incident with n1; so by (β), we
must have N(p0, c2) = N(p0, d2) = g02. Note that p0 6= n0, since M(n1, n0) is not
green.

But now we consider which node from C ∪ {n0, p0} was most recently added, as
the game progressed through earlier rounds. Whichever it is, it can be connected to
the rest of C∪{n0, p0} by at most two edges labelled by ∀. Nodes in C \{c2, d2} are
incident with three edges chosen by ∀—two edges within C labelled ±12, and one
to n0, labelled g20—so it was not any of those (if there are any). Nor was it c2 or
d2, as they are each incident with a ±12 edge (within C) and two green edges, to p0

and n0. So the most recently added node must have been either n0 or p0. These are
both connected to c2 and d2 by edges labelled by g02. Because c2 6= d2, we see that
in the round when the last of n0, p0 was built, ∀ must have selected the nodes c2, d2

and the atoms g20, g02. But this is in contravention to convention 1, since there
was a suitable node (namely whichever of n0, p0 already existed) in the network
already, so ∀ should not have made such a move. This contradiction shows that if
∃ chooses M(n0, n1) = v01 then any triangle involving this edge is consistent.”

Clarification: edges of N∀. On a separate matter, in later parts of the paper
the term “edge of N∀” is used over-loosely to mean “labelled edge of N∀”. For
example, in the first sentence of §6.5, the phrase “ . . . which is not an edge of N∀

. . . ” means “ . . . which is not a labelled edge of N∀ . . . ” In the third sentence
before the end of the second paragraph in the proof of Lemma 6, the phrase “ . . .
and to no other edge of N∀.” means “ . . . and to no other labelled edge of N∀.”.
The first sentence of the second paragraph of §6.6, “It follows that e, e′ are not both
edges of N∀.” means “It follows that e, e′ are not both labelled edges of N∀.”. The
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first sentence of the third paragraph of §6.6, “So we may assume that e is not an
edge of N∀.”, means “So we may assume that e is not a labelled edge of N∀.”. In
the first sentence of Case 2, the phrase “ . . . e′ is an edge of N∀ . . . ” means “ . . .
e′ is a labelled edge of N∀ . . . ”. In the first sentence of Case 3, the phrase “ . . .
edges of M that are not in N∀.” means “ . . . edges of M that are not labelled in
N∀.”.
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