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Abstract

There is great interest in using automatic computational neuroanatomy tools to study age-

ing and neurodegenerative disease. Voxel-Based Morphometry (VBM) is one of the most

widely used of such techniques. VBM performs voxel-wise statistical analysis of smoothed

spatially normalised segmented Magnetic Resonance Images. There are several reasons why

the analysis should include only voxels within a certain mask. We show that one of the most

commonly used strategies for defining this mask runs a major risk of excluding from the

analysis precisely those voxels where the subjects’ brains were most vulnerable to atrophy.

We investigate the issues related to mask construction, and recommend the use of alternative

strategies which greatly decrease this danger of false negatives.
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Introduction

In essence, Voxel-Based Morphometry (VBM) (Ashburner and Friston, 2000) involves voxel-

wise statistical analysis of data derived from structural Magnetic Resonance (MR) brain

images of multiple subjects. The images analysed are obtained through tissue segmentation,

spatial normalisation, and spatial smoothing. Statistical analysis employs a mass-univariate

parametric or non-parametric general linear model at each voxel. More precisely, the cal-

culations are performed at each voxel within some mask. There are several reasons why

masking is necessary, mostly related to the multiple comparison problem. Family-wise error

(FWE) correction using random field theory (RFT) is generally more powerful for smaller

analysis regions (this is commented on further in the discussion), and perhaps more im-

portantly, masking is necessary for successful estimation of the smoothness of the residuals

(John Ashburner, personal communication), which is a key part of the RFT correction pro-

cedure (Kiebel et al., 1999). If non-parametric permutation methods (Nichols and Holmes,

2002) are employed for FWE correction, the effect of the analysis region on computational

complexity may also be important (Belmonte and Yurgelun-Todd, 2001). Correction of the

false-discovery rate (Genovese et al., 2002) also depends on masking, since non-brain voxels

could otherwise skew the distribution of p-values on which it is based. Furthermore, mask-

ing can also partially alleviate a problem of implausible false positives occurring outside the

brain due to the very low variance in voxels with consistently low smoothed tissue density

— the extreme limit of the phenomenon described by Reimold et al. (2006). Finally, while

not specifically considered here, multivariate machine learning, classification or decoding ap-

proaches (Lao et al., 2004; Vemuri et al., 2008; Friston et al., 2008) can also benefit from
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masking as an initial feature selection or dimensionality reduction step.

Having emphasised above that smaller masks generally lead to higher sensitivity and

clarified interpretation, it is important to recognise the obvious risk that overly restrictive

masks will lead to false negatives, as potentially interesting voxels are excluded from the

statistical analysis. In this paper, we argue that there is a particular danger of false neg-

atives arising in VBM studies of pathological brains when computing the analysis mask

using a commonly employed approach with settings that appear reasonable a priori. This

approach is used by the popular Statistical Parametric Mapping (SPM) software (http:

//www.fil.ion.ucl.ac.uk/spm/). We recommend the use of different mask-generation

strategies, which we show to reduce this danger. In a three-part experiment using SPM, we

(a) use simulated data to investigate properties of preprocessing relevant to masking; (b)

explore the behaviour of standard and more novel methods of masking, considering variable

patient group composition; and (c) test the practical importance of our recommendation on

a particular example of a real VBM study. We propose two main masking options: one is a

fully objective parameter-free algorithm, which we hope will find wide-spread applicability;

the other allows expert knowledge to be exercised in cases where the automatic strategy is

found to be unsuitable.
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Methods

Masking strategies

The SPM software commonly used for VBM studies offers several alternatives to specify the

mask for statistical analysis. If available, a precomputed mask can be explicitly requested,

or the analysis mask can be automatically derived by excluding voxels in which any of the

images have intensity values below a certain threshold. This threshold can be specified as an

absolute value, constant for all the images, or as a relative fraction of each image’s ‘global’

value. The global value can itself either be precomputed or can be automatically calculated

as the mean of those voxel intensities which are above one eighth of the mean of all voxels.

This arbitrary heuristic aims to determine an average that is not biased by the presence

of potentially variable amounts of non-brain background in the field of view; it is explored

below.

In VBM studies where fairly pronounced atrophy is expected, such as those of Alzheimer’s

Disease (Karas et al., 2003) or Semantic Dementia (Mummery et al., 2000), it is probable

that some patients will have particularly low grey matter (GM) density in their most severely

affected regions. It seems undesirable to exclude such regions from the statistical analysis;

since this is likely to occur with SPM’s threshold masking, which effectively takes the inter-

section of all subjects’ supra-threshold voxels, we argue that a different strategy should be

used for the creation of a mask (which can then be specified as an explicit mask in SPM

or other software packages). We propose one such strategy here, based on the principle of

replacing the criteria that all subjects should have voxel intensity above the threshold, with

the relaxed requirement that some specified fraction of the subjects exhibit supra-threshold
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voxel values within the mask. In other words, voxels are included if there is a consensus

among some percentage of the subjects that they are above threshold. Vemuri et al. (2008)

used this approach in their image classification work, with a consensus of 50% and a threshold

of 0.1. SPM’s method is a special case of this, where the consensus fraction is 100%.

An alternative masking strategy is to threshold the mean of all subjects’ segmentations;

this might be expected to be similar to using a consensus of 50%, though it is not equivalent.

Here, we propose a novel idea to objectively select a threshold for the average image which

optimises an intuitively reasonable objective function. Based on the observation that the

average image appears to have qualitatively high probabilities over a visually appealing

region, it might be expected that a good threshold T would result in the binarised mask

M = A > T remaining highly correlated with the unthresholded original average image

A. We therefore determine an ‘optimal’ mask M∗ = A > T ∗ by finding the threshold that

maximises this criterion:1

T ∗ = arg max
T

ρ(A, A > T), (1)

where ρ(x, y) is the sample Pearson correlation (over pairs of voxels) between two images

x and y. This strategy has neither a tunable threshold nor a specified consensus fraction,

making it truly operator-independent.

1This simple maximisation problem can be solved with standard routines, for example using MATLAB’s
fminbnd to search for the best threshold between 0 and 1.
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Quantitative results using simulated images

The first experiment uses artificially generated MR images from the BrainWeb project (Co-

cosco et al., 1997; Aubert-Broche et al., 2006),2 derived from real MRIs of normal healthy

subjects. These images have known underlying tissue segmentation models, allowing quan-

titative evaluation of segmentation accuracy for each simulated subject. Given some quanti-

tative metric, we can therefore determine the optimal level at which a probabilistic segmen-

tation must be binarised. By considering the simple Jaccard Similarity coefficient (Crum

et al., 2006) between the binary (maximum probability) model of grey matter B and the

estimated probabilistic segmentation S after binarisation at a particular threshold T , the

optimal threshold may then be found as

T ∗ = arg max
T

J(B, S > T),

J(x, y) =
|x ∩ y|
|x ∪ y|

,

where |x| denotes the number of non-zero voxels in an image x, and the intersection and union

involve voxel-wise Boolean operations. We investigate the variation in the optimal threshold

with relation to preprocessing, visually and in terms of its proportionality to the global or

total signal. SPM’s estimated global averages are also compared to simple integrated totals

of the (probabilistic) voxel tissue volumes in litres.

2We use BW01 to denote the original BrainWeb data http://www.bic.mni.mcgill.ca/brainweb/
selection_normal.html, and BW04, etc. to denote subject numbers from the 20 new anatomical mod-
els http://www.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html.
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The effect of varying patient group composition

To provide a clearer characterisation of the impact of atrophy severity on mask construction,

the second experiment considers different subsets from a typical VBM cohort of 19 patients

with probable Alzheimer’s Disease (AD) (M:F 9:10, mean age 68.8) and 19 healthy con-

trols (M:F 8:11, mean age 68.3). T1-weighted volumetric images with a 24 cm field of view,

256x256 matrix, and 124 contiguous 1.5mm coronal slices were acquired using a spoiled fast

GRASS sequence on a 1.5T Signa scanner (GE Medical Systems, Milwaukee, WI). Acquisi-

tion parameters were as follows: repetition time = 15ms; echo time = 5.4ms; flip angle =

15◦; inversion time = 650ms. All subjects were recruited from the Cognitive Disorders Clinic

at the National Hospital for Neurology and Neurosurgery, London, UK, and gave written

informed consent. They were assessed using standard diagnostic criteria. The study was

approved by the local ethics committee. For further details see Schott et al. (2005).

This experiment focusses on the robustness of the generated masks with respect to

changes in the composition of the subject group, we begin with only the 19 controls, before

choosing (based on visual inspection of the scans) a single severely atrophied AD patient to

add before re-creating the masks, then finally the 18 remaining AD patients are included,

providing a typical balanced two-group comparison.

Practical importance on VBM of Fronto-Temporal Dementia

Finally, the potential for overly restrictive masks to exclude potentially interesting findings

in the most atrophied structures is highlighted through presentation of the SPM results for

a particular VBM study. A group of 14 Fronto-Temporal Dementia (FTD) patients (M:F
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7:7, mean age 63.5) with pronounced and focal temporal lobe atrophy, was compared to

a group of 22 approximately matched controls (M:F 10:12, mean age 65.8). All subjects

were recruited from a specialist dementia clinic and gave written informed consent. They

were assessed using standard diagnostic criteria. The study was approved by the local ethics

committee. MR protocols were as described for the AD study.

Results are presented using the masking strategy previously standard within our group,

and with an example following the new consensus masking strategy, chosen based on quali-

tative visual evaluation of the suitability of various masks, prior to performing the statistical

analysis.

Results and discussion

Simulated images

Figure 1 illustrates typical results for VBM preprocessing using SPM5’s unified segmentation

model (Ashburner and Friston, 2005). The estimated segmentation is in close agreement with

the simulation’s underlying model,3 but the inter-subject correspondence following spatial

normalisation is only approximate. This imperfect overlap necessitates smoothing, but we

can observe that even after smoothing there could be poor correspondence if the results were

binarised with a relatively high threshold.

[Figure 1 about here.]

3In fact, one of the most noticeable differences is that SPM’s use of prior tissue probability maps has
excluded some unrealistic dural ‘GM’ present in the simulation.
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In figure 2, we explore the results from using the thresholds which maximise the Jac-

card similarity coefficients between the binary segmentation from the underlying discrete

BrainWeb model and the binarised probabilistic segmentations with and without spatial

smoothing using an 8mm full-width at half-maximum (FWHM) Gaussian kernel. It can be

seen that while the original segmentation can be binarised successfully at a very high thresh-

old, after smoothing the results are visually not optimal even with the new Jaccard-optimal

threshold. The threshold must clearly be lowered to include all desired voxels; fig. 2(f) shows

the result from a much lower threshold, which, while often employed in VBM within our

group, appears here to be far too generous. This apparent generosity should be contrasted

with the findings shown later in figures 5 & 7. These results demonstrate the difficulty of

finding a truly optimal threshold for a single subject — even on simulated data with known

ground truth. It is for this reason that we allow the threshold to be varied in the consensus

masking strategy (in addition to the consensus fraction). Note that our new objective mask-

ing strategy is based on the average of the segmentations, so it does not need to estimate

optimal thresholds for individual images.

[Figure 2 about here.]

Briefly investigating the use of relative thresholding, table 1 compares the values of

SPM’s ‘global’ average to the totals from integrating over voxels, with three different sources

of input data for four simulated subjects. It is clear that the total value is insensitive to

the choice of these preprocessed source images, unlike the global value. Since the total also

has the additional merits of being much simpler to interpret clinically, and of not using an

arbitrary threshold (the 1/8 of the original mean), it seems preferable to use these totals as
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values for deriving proportional masking thresholds.4 As a quick check of the suitability of

these totals for relative threshold masking, table 2 presents the optimal absolute thresholds

for four subjects, and the fractions of the global or total values necessary to achieve these

thresholds. There is no apparent problem with using the totals, and limited evidence that

they in fact have a more consistent relationship with the optimal threshold than the globals.

[Table 1 about here.]

[Table 2 about here.]

Control and AD group composition

Continuing the comparison of SPM’s globals with the integrated tissue totals from the pre-

vious experiment, figure 3 shows a strong correlation between these two measurements over

all 38 subjects in the group of AD patients and matched controls.

[Figure 3 about here.]

A visual example of the range of atrophy present in this subject-group is given in fig-

ure 4. On rough inspection, it might appear from the preprocessed images that the spatial

normalisation and smoothing has adequately standardised even the most severely atrophied

patient.

[Figure 4 about here.]

4While not evaluated here, it would also seem reasonable to prefer these more interpretable and stable
values when adjusting for global volume in VBM, either through covariates or scaling-factors.
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However, figure 5 presents a range of masks generated from four different strategies, on

the three differently composed sub-groups. Table 3 gives the corresponding quantified mask

volumes. It is clear from row (a) that the default SPM absolute thresholding strategy is very

fragile with respect to the inclusion of atrophied patients. Adding the single severe individual

results in a noticeably smaller mask, with particular reductions in the frontal and temporal

lobes, and 100ml less total volume. The addition of the remaining 18 AD patients causes a

further 120ml reduction in mask volume — corresponding to a loss of approximately 15,000

2mm isotropic voxels. Potentially interesting frontal cortex would not be analysed if such

a mask was used. By lowering the consensus from SPM’s 100% to 70%, the results become

dramatically more robust to the inclusion of the patients. Row (b) of the figure shows only

visually minor reductions in the mask; the table reveals that the volume loss through adding

the severe case is just a tenth of that with the SPM strategy, though this rises to half when

the remaining patients are added.

[Figure 5 about here.]

[Table 3 about here.]

The use of relative thresholding should reduce the sensitivity to disease severity, since

more severely atrophied patients will have lower global values and hence lower relative thresh-

olds. However, example results (row c) using SPM’s relative threshold masking (based on

globals) still show a disturbing loss of cortical GM voxels from the mask with one patient,

worsening with the additional patients. The overall loss when adding all patients to just

the controls is 180ml (over 12% of the volume of the controls-only mask). Row (d) has the

most visually appealing masks, derived from a 70% consensus and a threshold relative to
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the integrated total volumes. The loss when adding all patients is now less than 2.5% of

the original controls-only mask volume. It is self-evident in this experiment that the mask

volume lost when adding a patient group to a control group could correspond to clinically-

significant tissue loss in the actual control-patient comparison of interest. That this lost

mask-volume can coincide with statistically-significant tissue differences is demonstrated in

the next experiment.

Finally within this experiment, one potential problem with over-generous masks is demon-

strated. In figure 6 some of the most significant voxels fall in regions where the majority

of images do not have substantial chance of being genuine GM tissue. It is difficult to

conclude confidently whether or not these are false positives, but the low variance and

greater residual roughness present at the illustrated voxel certainly cast some doubt on the

strength of the finding. On the other hand, it is also possible that cluster peaks for true-

positive findings could be shifted outside the brain due to the effect of smoothing. This is

a complex issue, which has received some attention in the literature (Reimold et al., 2006;

Acosta-Cabronero et al., 2008). Our recommendation is that the initial mask should not be

over-generous, but then if clusters are found which appear to spread beyond the analysis re-

gion, the contrast image (numerator from the t-statistic) should subsequently be investigated

over a larger mask, visually and/or with software such as that proposed by Reimold et al.

(2006) (http://homepages.uni-tuebingen.de/matthias.reimold/mascoi/), in order to

determine more accurately the extent of the effect.

[Figure 6 about here.]
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FTD example

The comparison of FTD patients with healthy controls reveals a pattern of tissue loss with

focal left temporal lobe atrophy. Unthresholded SPM t-maps are shown in figure 7 (a) and

(b); the two masks used for these analyses are overlaid in (c), where it is immediately obvious

that the 100% consensus mask has excluded tissue in the temporal lobes, particularly on the

left. The difference in volume of these two masks is over 300ml. Most importantly, (d) shows

that some of the statistically-significant voxels (pFWE < 0.05) found when using the more

reasonable mask will be ignored in the analysis using the standard 100% consensus mask.

This lost significant volume amounts to 8.19ml, or over 1000 2mm isotropic voxels, in exactly

the areas that these FTD brains are most atrophied.

[Figure 7 about here.]

Other masking strategies

Software for VBM analysis has recently been released as part of the FMRIB Software Library

(Smith et al., 2004), these scripts (http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html)

implement a different procedure for their mask creation. FSL-VBM includes voxels in the

mask if they meet both the following criteria: the maximum tissue probability over all sub-

jects is at least 0.1; the minimum over the subjects is non-zero. Unlike the SPM strategies so

far considered, which are derived from the smoothed (and optionally modulated) normalised

segmentations, as used for the statistical analysis, FSL’s VBM masking strategy is based on

unsmoothed and unmodulated segmentations (even when modulated data are analysed).

[Figure 8 about here.]
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Examples of this strategy are illustrated for the AD data-set in figure 8. The most

noticeable difference is that the use of unsmoothed segmentations leads to a much rougher

mask. For correction of FDR or permutation-based FWE control, this roughness is unlikely

to be a problem, but it may be detrimental for RFT-based correction of FWE. Worsley et al.

(1996b) reported that expressions for RFT thresholding of statistics appeared to be most

accurate for convex search regions, and they suggested that convoluted regions with high

surface-area to volume ratios offer no advantage in power over smoother regions with larger

volumes.

The lower panels of figure 8 show the results of applying FSL’s mask inclusion criteria to

the smoothed data which is actually analysed. In this case, smoothing leads to the presence

of non-zero voxels as far away from the brain edges as the size of the support of the smoothing

kernel used.5 This effectively leaves only the second criterion in place; that the maximum

over the segmentations be over 0.1. Now, we note that this criterion is simply a special

case of the consensus masking strategy, where the consensus fraction is the reciprocal of the

number of images, i.e. only one image (the maximum one for each voxel) need be above the

threshold.

[Figure 9 about here.]

Finally, we consider deriving masks from the average of all subjects’ smoothed normalised

segmentations. This approach has been reported by Duchesne et al.6 who binarised their

average of 3mm FWHM smoothed unmodulated normalised segmentations at a threshold of

5In SPM5, the kernel is non-zero for ±6 standard deviations.
6Unpublished manuscript, available online: http://www.bic.mni.mcgill.ca/users/duchesne/Proc/

NI2004a.pdf.
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0.3. Assuming that there is limited skew in the distribution of voxel intensities over subjects

(SPM goes further in assuming normality), the arithmetic mean will approximately equal

the median. Since the median by definition has 50% of the data beneath it, thresholding

the average should be approximately equivalent to the special case of our proposed masking

strategy with a consensus of 50% and the same threshold. In figure 9 we compare these two

approaches on the AD data, showing almost identical results. As one would expect from the

relatively low consensus fraction, there is very strong robustness to the addition of patients

to the control group.

An objective mask strategy

We now use the AD/control data-set to evaluate masks that maximise our proposed op-

timality criterion (1) based on each sub-group’s average image. In figure 10, we compare

the ‘optimal’ thresholds to arbitrarily chosen higher and lower thresholds. The volumes of

the optimal masks for the three subject groups are: 1.456, 1.456, and 1.444 litres — ex-

hibiting a loss of below 1% with the addition of the AD patients. This provides a simple

fully-automatic and operator-independent technique for creating a mask, which could form

a reasonable default option. However, the exact balance of the risks of false positives and

false negatives, and of other issues including peak-shifting due to smoothing (Reimold et al.,

2006) and unreliability of smoothness estimation outside the brain (discussed below) is a

subtle and difficult problem. Therefore it may not be possible to give a definitive masking

procedure that would be suitable for all data-sets. If the resulting mask is found to be un-

acceptable, then manual selection of a different threshold, and/or consensus fraction using
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the first technique proposed here, would allow expert quality assurance to be imparted.

[Figure 10 about here.]

Further discussion

VBM studies aiming to localise small lesions or patterns of atrophy in finer scale structures

require smaller smoothing kernels, due to the matched filter theorem (Worsley et al., 1996a).

The chance of losing interesting voxels from a mask created using absolute or relative thresh-

olding with the standard 100% consensus is likely to be even greater with less smoothing.

In a single subject with a severely atrophied small structure, greater amounts of smoothing

would permit neighbouring tissue to bring the average value at the atrophied voxels above

the threshold. However, it should also be noted that finer scale spatial normalisation (Shen

and Davatzikos, 2003; Ashburner, 2007) may counterbalance this effect, as atrophied struc-

tures can be better warped to match those of the template/average, with the information

about their atrophy being transferred to the deformation field.

In the introduction, we mentioned the need for masking in residual smoothness estima-

tion. This issue is known in the research community7 but seems not to appear in published

literature. Numerical instability in the smoothness estimation (Kiebel et al., 1999) within

regions of very low intensity, leads to abnormally high estimated roughness (observable in

SPM’s resels per voxel RPV image in studies that have used no explicit or threshold mask-

ing). Overestimated roughness will not invalidate the RFT results, but will make them

over-conservative, possibly to the extent that Bonferroni correction is preferable (SPM’s

FWE p-values are the more significant of the RFT and Bonferroni versions). A related point

7E.g. http://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind0701&L=SPM&P=8534

16



Issues with masking in VBM of atrophy. G. R. Ridgway, et al.

is that very low intensity voxels are non-negative, which might lead to a departure from

normality. Ashburner and Friston (2000) suggested that the use of logistic regression might

be preferable for this reason, though it has not proven popular to date.

We observed earlier that thresholds specified relative to some global measure of tissue

content have the desirable property of being lower for individuals with more severe atrophy.

However, modulated normalised images will also tend to yield lower global values for subjects

with smaller total brain volumes or total intracranial volumes (TIV), which is undesirable.

This is obvious for integrated segmentation totals, but also true of the standard SPM global

measure, where smaller TIV will result in a lower initial mean, letting the mean/8 include

more background, and hence reducing the secondary mean. If reliable estimates of TIV can

be derived (Whitwell et al., 2001) then it seems likely that a TIV-normalised total segment

volume8 would be the best measure on which to base relative thresholds. In our objective

masking strategy, the optimality criterion based on correlation with the average image also

lowers the threshold as more atrophied subjects are included in the average; this may be the

reason that it exhibited the least sensitivity to the composition of the subject group in the

AD/control study. It will again be sensitive to TIV, if using modulation, and hence might

be better with TIV-normalised images.

Future work could involve extension of the method of automatic threshold selection,

and/or selection of an optimal consensus fraction, perhaps using bootstrap methods or cross-

validation. It may also be helpful to base masks upon the voxel-wise statistical results,9

8Under the assumption that the TIV is approximately proportional to the determinant of the affine
component of the normalisation, totals from segments modulated only for nonlinear changes, as described
here http://dbm.neuro.uni-jena.de/vbm/segmentation/modulation/ should give similar results.

9SPM follows a related procedure for variance component estimation, only pooling over voxels which show
main effects above a certain level of statistical significance (Glaser and Friston, 2004).
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directly addressing the problem of false-positives in low-variance regions by excluding these

voxels.

Conclusions

With many diseases there is a spectrum of severity of focal atrophy; the most vulnerable

regions might also be the most likely to have outlying subjects with particularly severe ab-

sence of tissue. The standard masking procedure in the SPM software risks missing findings

in the most severely atrophied brain regions. It is important to note that the missed atrophy

when using overly restrictive masks might not be readily apparent from consideration of the

‘glass-brain’ maximum intensity projection commonly presented in VBM results. It seems

not to be standard practice for VBM papers to present the analysis region resulting from

their choice of masking strategy. We would recommend careful checking of the mask, and

would argue in favour of this occurring prior to the statistical analysis itself — a practice

which is simplified by using the mask-creation strategy recommended here. We would addi-

tionally suggest that the masking procedure be reported clearly enough to be reproducible,

as we have previously advocated (Ridgway et al., 2008).

In summary, our suggested protocol is to begin with the objective average-based mask,

and to check this before estimating the statistical model; if the mask appears unsuitable

we recommend expert visual assessment of masks using other thresholds or the consensus-

based strategy. After statistical analysis, if significant findings border the mask edges, we

would suggest re-evaluation of the contrast images over a more generous mask to clarify the

interpretation of these findings. Software is available to implement our proposed consensus-
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based and average-based mask-creation techniques.10
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Table 1: Comparison of SPM’s ‘Global’ averages with integrated totals (in litres) for four
BrainWeb subjects, based on native GM segmentations, modulated warped segmentations
without smoothing, and with 8mm FWHM smoothing.

Global Total
Subject Native Mod. Warped Smooth M.W. Native Mod. Warped Smooth M.W.

BW01 0.788 0.606 0.402 0.911 0.911 0.911
BW04 0.811 0.650 0.430 0.970 0.970 0.970
BW05 0.782 0.586 0.397 0.907 0.907 0.908
BW06 0.751 0.566 0.387 0.888 0.888 0.888



Table 2: Optimal thresholds, in terms of Jaccard similarity coefficient with BrainWeb model,
as absolute values, relative fractions of SPM ‘Globals’ and of Totals in litres, derived from
smoothed segmentations.

Subject Opt. Abs. Thr. Opt. Rel. G. Opt. Rel. T

BW01 0.364 0.904 0.400
BW04 0.379 0.881 0.390
BW05 0.373 0.939 0.411
BW06 0.361 0.934 0.407



Table 3: Mask volumes (in litres) for the masks presented in Figure 5. See figure caption for
row descriptions.

Method Controls Cs + severe all subjects

(a) 1.79 1.69 1.57
(b) 1.97 1.96 1.90
(c) 1.47 1.40 1.29
(d) 1.63 1.62 1.59
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(a) BW04 GM
MNI −17,−18,70 mm

(b) SPM c1 BW04

(c) SPM mwc1 BW04 (d) SPM mwc1 BW05

(e) SPM smwc1 BW04
8mm FWHM Gauss.

(f) SPM smwc1 BW05
Smoothed

Figure 1: Illustration of the accuracy of tissue segmentation and intersubject spatial nor-
malisation, and the effects of smoothing. (a) and (b) compare the grey matter model used
in the BrainWeb simulation to SPM’s grey matter segmentation of the simulated T1 image.
(c) and (d) show the anatomical correspondence between two different simulated subjects’
results after spatial normalisation with a few thousand basis functions. (e) and (f) show the
results following spatial smoothing.



(a) BW discrete GM
MNI −40,−18,−24 mm

(b) SPM native segm.

(c) Thresholding of (b)
at optimal level

(d) Smoothed version
of (b), 8mm FWHM

(e) Thresholding of (d)
at optimal level

(f) Thresholding of (d)
at level of 0.05

Figure 2: Optimal binarisation of probabilistic segmentations, and the interaction between
smoothing and thresholding. (a) The binary GM label for BW01, giving the voxels which
have greater probability of being GM than any other tissue. (b) SPM’s segmentation of the
corresponding simulated T1 image. (c) SPM’s segmentation thresholded at a level giving
the optimal Jaccard similarity coefficient with the BW01 label. (d) Spatially smoothed SPM
segmentation (8mm FWHM Gaussian). (e) and (f) comparison of thresholding of (d) at its
‘optimal’ level and at a more typical absolute masking threshold.
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Figure 3: Comparison of total probabilistic GM volumes in ml to SPM’s ‘global’ values. The
former come from the summation over all voxels of the segmentation probability multiplied by
the voxel volume; the latter come from the mean of the set of voxel segmentation probabilities
which exceeded one eighth of the original whole-volume mean.



(a) Random control T1 (b) Segmentation of (a)
normalised, modulated,
smoothed (8mm FWHM)

MNI −40,−18,−24 mm

(c) Random patient T1 (d) Processed (c), as (b)

(e) Severely atrophied
patient T1

(f) Processed (e), as (b)

Figure 4: Example subjects. On the left are the standard clinical T1 images; on the right
are their corresponding preprocessed segmentations. (a) and (b) are for a typical randomly
selected healthy control from the group of 19. (c) and (d) are for one of the 19 AD patients,
randomly chosen. (e) and (f) show the most severe AD patient, chosen in terms of visual
assessment of overall tissue volume.



Row (a) SPM’s
thresholding at
0.05 absolute
MNI 0,0,0 mm

Row (b) MM
0.05 absolute,
0.7 consensus

Row (c) SPM’s
thresholding at

0.4 relative

Row (d) MM
thresholding at

0.2 relative to total
0.7 consensus

Figure 5: Masking results for varying method and patient group composition. The left
column is for the group of 19 healthy controls; middle column, 20 images, including controls
and the most severely atrophied patient; right column, entire collection of 19 controls and
19 patients. Rows (a) and (b) present masks based on absolute thresholding at a level of
0.05, in (a) with SPM’s default strategy, and in (b) with a ”Majority Mask” (MM) requiring
70% of the images over threshold. Rows (c) and (d) investigate relative thresholds. (c) uses
SPM’s default strategy with thresholds of 0.4 times SPM’s global values. (d) requires 70%
of the images to exceed thresholds of 0.2 times the total value in litres.



Figure 6: Masks and GLM results for the comparison of controls and AD patients. (a)
shows the mask of Fig. 5(d, right column) overlaid on an over-generous mask requiring only
one of the images to exceed an absolute threshold of 0.05. (b-d) show the results from
GLM estimation using this generous mask, in terms of t-values, standard deviation, and
‘smoothness’, respectively. The latter is derived from the ‘resels per voxel’ image, for easier
visual interpretation.



Figure 7: Masks and regions of significance (pFWE < 0.05) for the comparison of FTD
subjects with controls. (a) and (b) show t-values for masking requiring either 70% (a) or
100% (b) of images to exceed a threshold of 0.05 (the latter corresponding to SPM’s default
strategy). (c) overlays the 100% mask on the 70% one. (d) overlaid on the group average
segmentation is the region of significance present when using the 70% mask which is excluded
from the analysis with the default SPM masking strategy.



(a) FSL−style mask
0.1 threshold of

unsmoothed and
unmodulated CONTROLS

MNI 0,0,0

(b) as (a) but for
all 38 subjects

(c) as (a) but on smoothed
and modulated images

(d) as (b) but on smoothed
and modulated images

JUNK

Figure 8: Comparison with the masking strategy used in FSL’s VBM implementation. The
top row derives masks from unsmoothed and unmodulated normalised segmentations, as in
FSL; the bottom row uses smoothed modulated segmentations, as for the other SPM masking
strategies discussed here. Left: for controls only; right: for all controls and AD subjects.



(a) Mean image
thresholded at 0.1
for CONTROLS

(b) as (a), but for
all 38 subjects

(c) MM thresholding at
0.1 with 0.5 consensus

for controls

(d) as (c), but for
all 38 subjects

Figure 9: Top row: masks derived from thresholding (at 0.1) the group mean of the smoothed
modulated normalised segmentations; bottom row similar masks using a 50% consensus of
the unaveraged segmentations and the same threshold. Left: for controls only; right: for all
controls and AD subjects.



Row (a) mean s8m

Row (b) mean with
0.1 threshold

Row (c) mean with
optimal threshold

Row (d) mean with
0.3 threshold

Figure 10: Further investigation of masks derived from the group average segmentation. Left
column, for the control group; middle column, controls plus one severe AD patient; right
column, all controls and AD subjects. Top row, the average segmentations themselves; row
(b) the means thresholded at 0.1 (as in Fig. 9); row (c) the mean images thresholded at
optimal levels of 0.203, 0.200, 0.189; bottom row, a higher than optimal threshold of 0.3.


