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Abstract

It is shown that if (vj)n
1 is a sequence of norm 1 vectors in a complex

Hilbert space and (tj)n
1 , a sequence of non-negative numbers satisfying∑

t2j = 1,

then there is a unit vector z for which

|〈vj , z〉| ≥ tj

for every j. The result is a strong, complex analogue of the author’s
real plank theorem.

Introduction

The plank theorem, proved by the author in [1], states (slightly more than)

the following:

Theorem 1 If (φj)
∞
1 is a sequence of norm 1 linear functionals on a (real)

Banach space X and (tj)
∞
1 is a sequence of non-negative numbers whose sum

is less than 1, then there is a unit vector x in X for which

|φj(x)| > tj

for every j.
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The plank theorem can be viewed as a generalisation of the Hahn-Banach

Theorem, as a sharp quantitative version of the uniform boundedness prin-

ciple, or as a geometric “pigeon-hole” principle. For Hilbert space, the state-

ment was proved much earlier by Bang [4] whose article answered the noto-

rious plank problem of Tarski. The general case was conjectured by Bang.

The condition that the tj add up to 1 is obviously sharp, if X is the

space `1 and the φj are standard basis vectors of the dual `∞. For other

spaces, for example Hilbert space, one might expect to be able to improve

upon this condition. If the φj are orthonormal, then it is possible to “beat”

any sequence (tj) for which ∑
t2j = 1.

So, in particular, with n vectors, one might hope to beat the sequence

(1/
√

n)n
i=1. However, nothing remotely this strong is possible.

Consider 2n unit vectors in the plane, distributed uniformly around the

circle, and call them φ1, . . . , φ2n. Clearly, for any unit vector x in the plane,

there is a j for which

|〈φj, x〉| ≤ sin(π/2n)

and this is barely an improvement upon the result given by Theorem 1. (The

example was described using 2n vectors, but since they appear in opposite

pairs, there are really only n.)

The purpose of this article is to show that the situation changes dramat-

ically, if we replace real scalars with complex ones. The main theorem of the

article is the following.

Theorem 2 Let (vj)
n
1 be a sequence of norm 1 vectors in a complex Hilbert

space and (tj)
n
1 , a sequence of non-negative numbers satisfying∑

t2j = 1.

Then there is a unit vector z for which

|〈vj, z〉| ≥ tj
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for every j.

In between the publication of [1] and the present, there were a number

of other plank-type theorems discovered; in particular, Nazarov [6] found an

elegant and powerful approach to coefficient problems in harmonic analysis

which is very much in the same spirit as Theorem 1 and the work of Bang.

A delightful analogue of Nazarov’s Theorem, in a non-commutative setting,

was found by Lust-Piquard [5]. A survey of some of this material appears in

[3]. Nazarov’s main theorem is as follows.

Theorem 3 Let fj be unit functions in L1 which satisfy

∥∥∥∥∥∥
∑
j

ajfj

∥∥∥∥∥∥ ≤ M

∑
j

a2
j

1/2

for some M , and all sequences (aj). Let (tj) be a sequence of positive numbers

with ∑
j

t2j = 1.

Then there is a function g in L∞ with norm at most 15M2 and

|〈fj, g〉| ≥ tj

for every j.

On the face of it, the result of this article, Theorem 2, may appear to

have more in common with Nazarov’s Theorem than with Theorem 1 (since

the former imposes only quadratic control on the tj). In fact, the arguments

used here have something in common with those of the author’s previous

article but rather less connection with Nazarov’s. However, the important

point about Theorem 2 is that it is a genuinely complex result: among other

things, the proof involves the maximum modulus principle for holomorphic

functions.
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The question answered by this article was raised by D. Symes, [7], in

connection with the Hopenwasser conjecture concerning the Jacobsen radical

of a CSL algebra; but at present, the implications in this direction are still

unclear. Similar issues turn up in robust control theory. But perhaps the

most intriguing aspect of this theorem is the intrinsic information it provides

concerning the geometry of the sphere in Cn.

Some years after the publication of Theorem 1 the author used Bang’s

Theorem (or more precisely, its proof) to find efficient lattice packings of

spheres in high dimensional Euclidean spaces: [2]. An obvious question is

whether the complex theorem can be used to improve the sphere-packing

bound. It turns out, perhaps surprisingly, that the estimate given by the

complex result is asymptotically identical to the earlier one.

For the sake of clarity, most of the ensuing discussion will deal with the

special case of Theorem 2 in which

tj = 1/
√

n

for each j. The final section of the article describes the small modifications

needed to handle the general case. Section 1 contains a reformulation of

the problem which provides the starting point for the proof, as well as a

discussion which is intended to motivate the rest of the argument. The main

argument is found in Section 2.

1 Preliminaries

Any sequence (vj) of n (unit) vectors in a complex Hilbert space can be

regarded, for the present purposes, as belonging to Cn. Let A denote the

n × n matrix with these vectors as rows. The aim is to find a unit vector z

satisfying

|(Az)j| ≥ 1/
√

n
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for each j. Equivalently, we look for a vector z of norm
√

n for which

|(Az)j| ≥ 1

for each j.

Let 1 denote the vector (1, 1, . . . , 1) of length n. Any z of norm
√

n can

be written as U1 for some (indeed many) unitary matrices U . One way to

look for z is thus to look for a unitary matrix U satisfying

|(AU1)j| ≥ 1

for each j. If wj is chosen to be 1/(AU1)j for each j and W is the diagonal

matrix with diagonal entries w1, . . . , wn then |wj| ≤ 1 for each j and

WAU1 = 1. (1)

The last statement says that the vector 1 is an eigenvector of the matrix

WAU , with eigenvalue 1. An analogy with the argument used to prove

Theorem 1 suggests that one might hope that W and U can be chosen in

such a way that the matrix WAU is positive semi-definite, Hermitian. If so,

then WAU is the positive square-root of the matrix WAA∗W ∗ and equation

(1) is equivalent to the equation

WAA∗W ∗1 = 1.

The crucial advantage of using this equation is that the matrix U has disap-

peared.

Since the rows of A are unit vectors, the matrix H = AA∗ is a positive

semi-definite Hermitian matrix whose diagonal entries are all equal to 1: a

Gram matrix. Theorem 2 (with tj = 1/
√

n) is thus a consequence of the

following.

Theorem 4 Let H = (hjk) be an n×n (complex) Gram matrix. Then there

are complex numbers w1, . . . , wn of absolute value at most 1 for which

wj

∑
k

hjkw̄k = 1

for every j.
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The proof of this theorem will be the subject of the next section. But

in order to motivate the proof somewhat, it is worth comparing Theorem 4

with the lemma of Bang [4] used in the real case.

Lemma 5 Let H = (hjk) be an n × n real Gram matrix and r1, . . . , rn a

sequence of positive numbers. Then there are signs ε1, . . . , εn for which

εjrj

∑
k

hjkrkεk ≥ r2
j (2)

for every j.

Bang’s Lemma is proved by choosing the signs so as to maximise the

expression ∑
jk

εjrjhjkrkεk.

A similar argument gives the following complex analogue.

Lemma 6 Let M = (mjk) be an n×n (complex) Hermitian matrix. Suppose

that real numbers θ1, . . . , θn are chosen to maximise the sum∑
jk

eiθjmjke
−iθk .

Then for every j

eiθj
∑
k

mjke
−iθk

is real and at least as large as mjj.

Proof Let

F (θ1, . . . , θn) =
∑
jk

eiθjmjke
−iθk .

The partial derivative of F with respect to θj is

2<
(
ieiθj

∑
k

mjke
−iθk

)
.
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This is zero for each j and so

eiθj
∑
k

mjke
−iθk

is real for each j.

The second partial derivative of F with respect to θj is

−2<
(
eiθj

∑
k

mjke
−iθk

)
+ 2mjj.

Since this is non-positive at a maximum

eiθj
∑
k

mjke
−iθk ≥ mjj

for each j.

Lemma 6 looks as though it might provide a way to tackle Theorem 4.

Given a Gram matrix H = (hjk), and positive numbers r1, . . . , rn, one may

apply Lemma 6 to the matrix (mjk) given by

mjk = rjhjkrk

so as to find a sequence θ1, . . . , θn, so that for each j,

sj = eiθjrj

∑
k

hjkrke
−iθk

is real and no less than r2
j .

Now regard the vector (s1, . . . , sn) as a function of (r1, . . . , rn). Clearly,

if any rj is zero, then the corresponding sj is also zero. So, by renormalising

the vectors it is possible to regard the function as a map from the simplex to

itself, which preserves faces. If the map is continuous, then Brouwer’s fixed

point theorem guarantees a collection of rj for which

sj = 1
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for every j. The second part of Lemma 6 now ensures that these rj all have

absolute value at most 1.

The problem with this approach is that the vector s is constructed by

maximising over the θj and there is thus no reason why it should be a con-

tinuous function of r. For n = 2 it is trivially continuous, and oddly enough

it is continuous for n = 3. But for n ≥ 4 there seems to be no obvious way

to make a continuous selection from among possible maxima.

2 The proof of Theorem 4

The purpose of this section is to show that if H = (hjk) is an n×n (complex)

Gram matrix, then there are complex numbers w1, . . . , wn of absolute value

at most 1 so that

wj

∑
k

hjkw̄k = 1 (3)

for every j. From now on, we assume, as we may, that H is positive definite

(not merely semi-definite).

The equations (3) can be regarded as a system of 2n quadratic equations

in the real and imaginary parts of the wj. The real and imaginary parts of

the expressions

wj

∑
k

hjkw̄k

are obviously continuous functions of the real and imaginary parts of the wj,

but these functions do not seem to be “pinned down” in any ways that allow

the use of a fixed point theorem. However, the existence of a solution can be

shown directly using a variational argument.

Lemma 7 Suppose M = (mjk) is a positive definite Hermitian matrix and

the complex numbers u1, . . . , un are chosen so as to minimise the double sum

∑
jk

ujmjkūk,
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subject to the condition ∏
|uj| = 1.

Then for some positive λ,

uj

∑
k

mjkūk = λ2

for every j.

The proof of this lemma is an immediate application of Lagrange multi-

pliers. Clearly, once the uj have been found using the lemma, one can replace

them by wj = uj/λ so as to get 1 on the right hand side, instead of λ2.

The problem with this construction of the wj is that it forces us to use a

minimiser of the double sum, because the sum will not be bounded above,

on the (real) variety of points satisfying

∏
|uj| = 1.

But Lemma 6 of the last section shows that we should be trying to maximise

the double sum over sequences with specified absolute values, if we are to

find wj whose absolute values are small.

To deal with this problem, we apply Lemma 7, not to the Gram matrix

H, but to its inverse H−1, (roughly in the hope that a minimum for H−1 will

be converted into a maximum for H). Observe that if Lemma 7 yields uj so

that

uj

∑
k

(H−1)jkūk = 1

for each j, then the numbers

wj = ū−1
j

will satisfy

wj

∑
k

(H)jkw̄k = 1, (4)

9



for each j. Moreover, as long as the uj have been chosen using Lemma 7,

it is automatic that whenever cj are complex numbers for which
∏ |cj| = 1,

then ∑
jk

cjuj(H
−1)jkūkc̄k ≥ n. (5)

The problem is to show that |wj| ≤ 1 for each j.

To clarify the problem, define a new matrix M by

mjk = wjhjkw̄k

and observe that its inverse will be given by

(M−1)jk = uj(H
−1)jkūk.

Then for each j

|wj|2 = mjj

and in view of equations (4) and (5) it suffices to prove the following lemma.

Lemma 8 Suppose that M is a positive definite Hermitian matrix satisfying

1. M1 = 1

2. Whenever c = (cj) is a complex vector for which
∏ |cj| = 1, then

cM−1c̄ ≥ n.

Then mjj ≤ 1 for each j.

The second condition states that the sum

∑
jk

cj(M
−1)jkc̄k

achieves its minimum value over the set of vectors satisfying
∏ |cj| = 1,

at the vector 1. Clearly, it would be convenient to use only the fact that
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there is a local minimum at 1, since this property has a simple analytic

characterisation. Unfortunately, the lemma is false (even in dimension n = 3)

if global minimum is replaced by local. For this reason the proof of Lemma

8 requires a “jump” away from 1.

Proof of Lemma 8 Observe that if c = bM then

cM−1c̄ = bMb̄.

The second condition of the Lemma can thus be reexpressed in terms of M

as follows: whenever b = (bj) is a complex vector for which
∏ |(bM)j| = 1,

then

bMb̄ ≥ n.

Equivalently, for any vector b with

bMb̄ = n∏ |(bM)j| ≤ 1.

Suppose, for a contradiction, that some diagonal entry of M is too large;

m11 = r > 1, say. Let z2, z3, . . . , zn be the remaining entries in the first row

of M , so that M looks like

r z2 z3 . . . zn

z̄2 m22 . . .

z̄3 m32 . . .
...

z̄n


We shall examine the effect of M on vectors of the form

b = (z, 1, 1, . . . , 1)

for different complex numbers z. Notice that since M1 = 1

n∑
2

zk = 1− r

11



and hence
n∑
2

z̄k = 1− r.

Similarly, for each k ≥ 2,
n∑
2

mjk = 1− zk.

Hence ∏
|(bM)k| = |1− r + rz|.

n∏
2

|1− zk + zkz|. (6)

The quantity bMb̄ can also be expressed in terms of the zj,

bMb̄ = r|z|2 + 2<
(
z

n∑
2

zj

)
+

n∑
2

(1− zj)

= r|z|2 + 2(1− r)<z + r − 2 + n

The key will be to “dehomogenise” the hypothesis on M by examining only

those numbers z for which bMb̄ = n: ie. for which

r|z|2 + 2(1− r)<z + r − 2 = 0.

These are the numbers that lie on the circle with radius 1/r and centre

1−1/r. To obtain a contradiction it suffices to show that there is a z on this

circle where the product (6) is more than 1.

The first factor of the product, |1 − r + rz| = r|z − (1 − 1/r)|, is also

constant, with value 1, on the circle in question. So it suffices to show that

there is a point z on the circle where

n∏
2

|1− zj + zjz| > 1.

As a function on the circle, this product may have a local maximum at 1,

where the value is 1. But the product is the absolute value of a polynomial,

p(z) =
n∏
2

(1− zj + zjz).
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So, by the maximum modulus principle, it suffices to find a point in the

corresponding disc, where the product is greater than 1. But

p′(1) = 1− r < 0

so as a function on the disc, |p(z)| cannot have a local maximum at 1.

It is perhaps worth mentioning that the variational construction of the

wj, used in the proof, could be described without reference to polar decom-

position or to the Gram matrix associated with A. However, the proof that

the construction works, automatically brings in the Gram matrix.

3 The general case

Let A be an n× n complex matrix whose rows are unit vectors and t = (tj)

be a sequence of positive numbers with∑
j

t2j = 1.

The aim is to find a complex vector z of length at most 1, satisfying

|(Az)j| ≥ tj

for each j.

In this case z will be of the form Ut for some unitary matrix U , and by

the argument above it will suffice to prove the following.

Theorem 9 Let H = (hjk) be an n × n (complex) Gram matrix and tj a

sequence of positive numbers. Then there are complex numbers w1, . . . , wn

with |wj| ≤ tj for each j and

wj

∑
k

hjkw̄k = t2j

for every j.
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To find the wj, minimise the expression

∑
jk

uj(H
−1)jkūk

subject to the condition ∏
j

|uj|t
2
j = 1.

The rest of the argument is the same as that above, except that one has

to look for a large value of

n∏
2

|t2j − zj + zjz|t
2
j .

This is not necessarily the absolute value of a holomorphic function, but its

logarithm is subharmonic, and hence satisfies a maximum principle.
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