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Infiltration into inclined fibrous sheets
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The flow from line and point sources through an inclined fibrous sheet is studied
experimentally and theoretically for wicking from a saturated region and flow from a
constant-flux source. Wicking from a saturated line generates a wetted region whose
length grows diffusively, linearly or tends to a constant, depending on whether the sheet
is horizontal or inclined downwards or upwards. A constant-flux line source generates
a wetted region which ultimately grows linearly with time, and is characterized by
a capillary fringe whose thickness depends on the relative strength of the source,
gravitational and capillary forces. Good quantitative agreement is observed between
experiments and similarity solutions.

Capillary-driven and constant-flux source flows issuing from a point on a horizontal
sheet generate a wetted patch whose radius grows diffusively in time. The flow is
characterized by the relative strength of the source and spreading induced by the
action of capillary forces, γ . As γ increases, the fraction of the wetted region which is
saturated increases. Wicking from a saturated point corresponds to γ = γc, and spreads
at a slower rate than from a line source. For γ <γc, the flow is partially saturated
everywhere. Good agreement is observed between measured moisture profiles, rates
of spreading, and similarity solutions.

Numerical solutions are developed for point sources on inclined sheets. The moisture
profile is characterized by a steady region circumscribed by a narrow boundary
layer across which the moisture content rapidly changes. An approximate analytical
solution describes the increase in the size of the wetted region with time and source
strength; these conclusions are confirmed by numerical calculations. Experimental
measurements of the downslope length are observed to be slightly in excess of
theoretical predictions, though the dependence on time, inclination and flow rate
obtained theoretically is confirmed. Experimental measurements of cross-slope width
are in agreement with numerical results and solutions for short and long times. The
effect of a percolation threshold is observed to ultimately arrest cross-slope transport,
placing a limitation on the long-time analysis.

1. Introduction
Fibrous sheets are widely used for the absorption of fluids in the health sector,

for example in wound dressings, sanitary protection, and incontinence products
(Dutkiewicz 2003). Medical absorbents are often complex, having multi-layered
structures of varying geometry; disposable products often additionally include super-
absorbent polymers. The simplest class of these products is reusable bedpads, which
are large homogeneous rectangular fibrous sheets backed by an impermeable layer.
Despite the general nature and widespread use of such products, leakage is surprisingly
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common (Norris & Cottenden 1993). The distribution process within an incontinence
product begins with liquid being introduced into the material under pressure for a
short time. This is followed by a longer period during which capillary and gravitational
forces dominate to determine liquid distribution and storage within the material. In
order to understand how such products function, we need to first address the more
general problem of how fluid spreads in homogeneous fibrous sheets, and this forms
the basis of this paper.

Capillary forces play an important role in controlling liquid distribution within
fibrous and porous materials. The most common example of flow in a fibrous
medium can be found in candles where the vertical transport of wax from a molten
reservoir, through the wick, feeds the candle flame. The rate of wicking from a
reservoir can be used as a measure of the capillary transport potential of a textile
(Harnett & Mehta 1984). Liquid spreading through textiles is also important in
industrial processes such as resin impregnation in fibrous mats (Pillai & Advani
1996). Transport through porous materials such as soils has been studied much more
extensively than spreading in fibrous sheets, particularly in the context of groundwater
systems. Motivated by understanding the recharge of groundwater by rain, the
problem of a constant line (and point) flux issuing onto a porous material and driven
vertically downwards by gravity has been studied theoretically, experimentally and in
the field many times.

A starting point for interpreting and modelling infiltration into porous media
is through Washburn’s (1921) and Richards’ (1931) models. Richards’ analysis,
which we describe in § 2, is based on an analogy with Darcy flow, and requires
empirical relations to close the system of equations. While Richards’ equation has
been applied to a wide variety of practical problems, it has only been used in a few
instances to describe flow in thin fibrous sheets (see for example Chaterjee & Gupta
2002). Using closure relations drawn from soil physics, Eames et al. (2003) studied
numerically the flow from a weak point source on an inclined fibrous sheet, in which
the material did not become saturated. This problem is revisited here and studied
numerically, theoretically and experimentally, using empirically determined closure
relations.

Motivated by the two spreading phases observed for medical absorbents – source-
driven flow at the early stages of absorption and later distribution dominated by
capillary forces – we focus on two separate driving mechanisms: the flow generated
by fluid introduced at a constant rate, and wicking by capillary action from a
region maintained at saturation. The challenge is to determine closure relations
which permit a bulk description of the transport processes to be calculated. While
such closure relations have been developed for different soil types (for example
Brooks & Corey 1966; Van Genuchten 1980), they are less common or absent for
fabrics. Since the particular mode of transport may be sensitive to these empirical
closures, they must be determined before addressing more general problems. A
careful choice of closures enables Richards’ equation to be solved analytically in
some instances. Comparisons are made with experimental measurements of spreading
in thin sheets.

The paper is structured as follows. In § 2 we briefly review two modelling approaches
for describing flow in fibrous sheets, Washburn’s and Richards’ models. The closure
relations for Richards’ equation for a typical fibrous material used in medical
absorbents are determined in § 3. In § 4 and § 5 we describe analytical and numerical
solutions for line and point sources respectively, which are tested against experimental
measurements. The general conclusions are described in § 6.
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Figure 1. Sketch to illustrate the arrangement of a thin fabric sheet at inclination α. Liquid
is introduced into the sample as illustrated, with a line source leading to the development of a
wetted region of length lc .

2. Review of modelling approaches
2.1. Washburn’s model

Washburn’s description is often applied to capillary-driven flow from saturated
reservoirs in textiles (Kissa 1996). Figure 1 shows an inclined fabric sample with liquid
being introduced at one end. Washburn’s model of infiltration in such a situation is
based on a simplified description, in which the pore space is described as an assembly
of small parallel tubes. Physically, the flow is driven from a saturated region (with
zero pressure head) by a capillary pressure of magnitude Ψ ∗. The flow is resisted
by gravity and a viscous shear stress exerted by the tube walls. In combination, the
filtration velocity in the medium, u, is

u = −Ks[∇Ψ + ρg sinα x̂], (2.1)

where Ψ is the pressure, ρ is the density of the flowing liquid, g is gravitational
acceleration, α is the inclination of the tube, Ks is the saturated permeability and x̂
is a unit vector (shown in figure 1).

Integrating the momentum equation from the reservoir to the contact line, over a
distance lc, yields ∫ lc

0

u · dl = −Ks[Ψ + ρgx sin α]lcx=0. (2.2)

Imposing the boundary conditions Ψ (0) = 0, Ψ (lc) = −Ψ ∗, we obtain

lc
dlc

dt
= KsΨ

∗ − lcKsρg sinα, (2.3)

for a straight capillary tube.
Washburn’s equation (2.3) has been widely applied to describe liquid transport

in textiles (Hodgson & Berg 1987; Miller & Jansen 1982; Hollies et al. 1957). For
horizontal capillary tubes, the flow is driven by capillary forces at the meniscus and
the length of the wetted region grows diffusively according to

lc = (2KsΨ
∗t)1/2. (2.4)

When the capillary tubes are inclined downwards (α < 0), a balance between
gravitational acceleration and a retarding viscous drag force is ultimately established,
with the length increasing linearly with time, according to

lc = −Ksρgt sinα, (2.5)
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independent of the capillary pressure. When infiltration occurs in a strip of material
inclined upwards (α > 0), the encroachment distance ultimately tends to

lc → Ψ ∗

ρg sinα
, (2.6)

where a balance is established between capillary and gravitational forces. The difficulty
in relating Washburn’s model to a material having a void space of complex geometry
is that the flow behind the front is assumed to be saturated and the model is restricted
to unidirectional flow.

2.2. Richards’ model

Richards developed a continuum description of transport in porous materials which
now serves as the foundation for most models of infiltration. Drawing an analogy
with Darcy’s law for saturated flow, Richards proposed that the filtration velocity is
proportional to the gradient of pressure and dependent on the moisture content. For
the case of a thin sheet of porous or fibrous material where x̂ and ŷ are unit vectors
oriented parallel to the sheet in the down- and cross-slope directions respectively, the
filtration velocity is

u = −K(θ)(∇Ψ (θ) + ρg sinα x̂), (2.7)

where K is the permeability, which depends on the type and interconnection between
pores in the medium and on the liquid’s viscosity. Both permeability and capillary
pressure are functions of θ , the local moisture content. Coupling (2.7) with the
conservation of mass,

∂θ

∂t
= −∇ · u, (2.8)

yields a nonlinear advection diffusion equation,

∂θ

∂t
=

∂

∂x

(
K(θ)

∂Ψ

∂x

)
+

∂

∂y

(
K(θ)

∂Ψ

∂y

)
+ ρg sinα

∂K(θ)

∂x
, (2.9)

describing flow in a thin inclined porous sheet. Equation (2.9) is commonly referred
to as Richards’ equation in the mixed Ψ –θ form. A large number of studies have
focused on vertical infiltration (where α = ± π/2), for example in examining downward
infiltration into soils, but (2.9) has not been studied for point sources on inclined
fibrous sheets.

There are a number of difficulties encountered when applying Richards’ equation
to describe transport in porous materials. The variation of capillary pressure with
moisture exhibits hysteresis as the driving pressure is first increased and then decreased
(see § 3), with a fraction of the void space remaining filled with liquid after draining is
complete. This translates to the pressure–moisture (Ψ –θ) relation being multivalued
and precludes the application of (2.9) to a general description of infiltration, unless it
is modified or additional phenomenological relations are considered. In this paper we
restrict our analysis to flows where ∂θ/∂t � 0, and the Ψ –θ relationship is analytic.
Nevertheless in many absorbent applications, especially those where the material’s
geometry leads to localized draining and imbibition, hysteresis will be important in
determining the functional absorbency of a product.

Exact analytical and approximate solutions of Richards’ equation have been
obtained in a number of cases where the diffusivity–moisture content relation is
known and single-valued (e.g. Phillip 1955; Parlange 1971). In general the highly
nonlinear nature of the defining liquid-medium transport properties means that many
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Figure 2. (a) Experimental results showing the variation of capillary pressure (Ψ ) with
saturation (Θ = θ/θs) measured in the sample fabric. Measurements were made for liquid
absorption (∂Θ/∂t > 0), and desorption (∂Θ/∂t < 0) from an initially dry and saturated
material respectively. A pronounced hysteresis is clearly observed. (b) The variation of the
relative permeability (K/Ks) with moisture content is shown. The dashed curve shows the
region in which the moisture level was inhomogeneous.

infiltration problems can only be solved numerically. Numerical solutions to the
pressure-based form of the Richards equation have been shown to suffer from poor
mass conservation (Celia, Bouloutas & Zarba 1990) and there is an extensive literature
dealing with this problem. An explicit numerical scheme is challenging to develop,
unless saturated and unsaturated regions are separately solved and matched, because
the material becomes saturated and dθ/dΨ → 0.

3. Characterization of a fibrous sheet and experimental set-up
The fibrous material chosen for this study is a non-woven needlefelt fabric consisting

of circular cross-sectional polyester fibres of radius 11 µm. This material was used
because it has negligible swelling in water, is composed of a single fibre type and
is typical of the absorbents used in reusable incontinence products. The fabric was
∼ 0.55 cm thick with a void fraction, corresponding to the saturated moisture content
θs , of 93%. Experiments were carried out in a controlled environmental chamber
at 20◦C and 50% relative humidity. A variety of material-specific empirical closure
relations, between K , Ψ and θ , have been proposed for soils, many of which are built
around assumptions about pore size distribution and lengths (for example Mualem
1976). Since the geometrical structure of fibrous materials is completely different from
soils and granular media, these closure relations must be experimentally determined
for the chosen fabric.

The capillary pressure–moisture (Ψ –θ) relationship was measured using a Textiles
Research Institute autoporosimeter (Miller & Tyomkin 1994). For each applied
pressure the equilibrium moisture content was measured – and the time taken for
the moisture level to reach an equilibrium increased significantly at low capillary
pressures. Moisture content was measured in the case of both liquid entering and
draining from the sample (figure 2a) – this illustrates the pronounced hysteresis
between infiltrating and draining flows.

To find the relationship between permeability and moisture content, liquid was
introduced at a constant flow rate into a sample inclined vertically downwards (α < 0).
For high flow rates, the liquid was delivered using a computer-controlled pump, while
for low flow rates, a gravity-driven feed was employed. The high permeability and
low capillary pressure of the fabric samples means that, for constant-flux source flows
down an inclined strip of material, the length of the capillary fringe is small compared
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to the total wetted length in the sample. The permeability of the sample was estimated
from the speed of infiltration in a gravity-driven flow. Combining the conservation of
mass with Darcy’s equation for steady flow from a constant flux line source yields

−K(θ)ρg sinα = θ
dlc

dt
, (3.1)

which is in agreement with Washburn’s analysis (2.5) when θ = 1. Using a range of
flow rates to introduce liquid into the sample the permeability–moisture relationship
was determined from the translation speed of the wetting front. The moisture level
is uniform along the wetted length, except in the region close to the capillary fringe,
and θ can be directly determined. A similar method has been previously used to
determine the permeability in soils (Youngs 1964). The permeability became difficult
to determine at high flow rates where liquid pooled or ran over the fabric surface,
while at low flow rates (and low values of θ), the front of the invading liquid
becomes irregular, leaving dry patches as the front advances along the fabric. To
avoid problems at high flow rates the saturated permeability, and hence flow rate,
was measured by introducing liquid using a saturated source at zero pressure head.
Figure 2(b) shows the variation of the relative permeability with moisture content. The
dashed curve corresponds to the trend of the experimental results when the wetted
region is inhomogeneous. Other approaches have been developed (e.g. Childs &
Collis-George 1950) to measure the moisture diffusivity, defined for the porous
material by D = KdΨ/dθ , exploiting an analogy with diffusion, but this approach
is only useful when gravitational acceleration is not important.

Analytical functions need to be fitted to figure 2(a, b) in order that they may
be incorporated into Richards’ equation. Both the relatively good agreement with
measurements and a requirement that Richards’ equation is accessible to analytical
study, suggest we fit

K(Θ) = KsΘ
3, Θ = exp(Ψ/Ψ∗), (3.2a, b)

to figure 2(a, b), where Θ = θ/θs . The fit used for permeability is in good agreement
with the experimental results (with a correlation mean square of 0.89). Power-law
fits to permeability, such as (3.2a) have also been applied to soils and sands (e.g.
Brooks & Corey 1966), where an exponent of 3 is typical. An exponential relationship
between saturation and capillary pressure has been previously applied to describe the
hydraulic properties of soils (e.g. Gardner 1958; Russo 1988). A least-squares fit to the
experimental results gives Ψ ∗/ρg =1.36(±0.16) cm and ρgKs = 1.00(±0.14) cm s−1.
The large errors are attributed to the inherent variability in the properties of the
material. Note that the value of Ψ ∗/ρg is comparable to the sheet thickness (0.55 cm).
A common feature of many permeability relations (such as Haverkamp et al. 1977) is
the presence of a percolation threshold (typically around Θc ∼ 0.4) below which the
permeability rapidly becomes small. This has the tendency to sharpen the moisture
profile near the front, though this is not captured by (3.2a).

The methodology applied to characterise the material is the same as that employed
to study infiltration into the fibrous sheets. In these experiments, a small quantity of
dye was added to enable the wetted region to be visualized. The influence of dye on the
surface tension and contact angle at the water–air–fibre interface and the infiltration
properties was determined to be negligible. The fibrous sheet was placed on a flat
rigid board, over which a calibrated grid was laid. Experiments were recorded and
the images processed to extract measurements of the wetted region. The distribution
of moisture content within samples was measured using a direct gravimetric method,
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where sections of the fabric were cut and weighed, and compared to the mass of the
same dry sample. Other methods, such as X-ray attenuation, may also be applied to
find the moisture distribution within absorbent materials and give equivalent results
(e.g. Landeryou, Yerworth & Cottenden 2003).

4. Line sources
Wicking from saturated regions (with a zero pressure head) and constant-flux

source-driven flows are considered as they form the basis of the phases involved
in the absorption of liquid by an absorbent incontinence product. We first describe
capillary-driven flows, from saturated sources, followed by constant-flux-driven flows.
By combining (3.2) and (2.9), we obtain

∂Θ

∂t
=

∂

∂x

(
KsΨ

∗

θs

Θ2 ∂Θ

∂x

)
+

∂

∂x

(
Ksρg sin α

θs

Θ3

)
. (4.1)

We describe similarity and numerical solutions to (4.1) which are confirmed
experimentally.

4.1. Capillary-driven flow

When the sample is held horizontally (α =0) and saturated at the origin infiltration
is driven by capillary forces at the wetting front. The material is saturated only at a
single point, so that the characteristic scale for the moisture content is unchanged. By
applying Boltzmann’s transformation x̃ = x/X(t) (Gardner 1958; Boltzmann 1894;
Ruoff et al. 1959) where X(t) = (2KsΨ

∗t/θs)
1/2 and Θ̃(x̃) = Θ(x, t) (4.1) reduces to

−x̃
dΘ̃

dx̃
=

d

dx̃

(
Θ̃

2 dΘ̃

dx̃

)
, Θ̃(0) = 1. (4.2)

To find the unique solution an iterative method is used to determine when the volume
flux at the origin is consistent with the global volume constraint. Other iterative
methods to search for the solution have been described (e.g. Phillip 1955; Kirkham &
Powers 1972). The numerical calculations show that the length of the wetted region
lc = λC1X, where λC1 = 0.770. Since λC1 < 1, the rate of encroachment is slower than
(2.3) because the permeability is reduced for partially saturated flows. The dimensional
grouping

A =
lc

t1/2
, (4.3)

is applied to interpret the experimental measurements. Figure 3(a) shows experimental
measurements of the saturation profile during infiltration from a reservoir, where one
end of the sample is saturated but with no pressure head. X-ray images show that
infiltration is characterized by a markedly inhomogeneous moisture distribution, on a
scale comparable to the size of the needles used during manufacturing to consolidate
the material.† Liquid invasion appears to first advance the wetting interface through
higher capillary pressure regions, with subsequent back filling behind the wetting front.
Figure 3(b) shows the moisture profile during horizontal infiltration at different times,
normalized using the length of the wetted region. The experimental measurements
confirm that the moisture profile tends to a similarity form. A comparison with the

† These nonwoven fabrics are produced from a fibrous assemblage that is consolidated by being
passed through a bed of oscillating barbed needles.
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Figure 3. (a) The X-ray image (40 keV, 100mA, 0.6 s) shows the moisture distribution during
horizontal wicking from a large reservoir – the dark regions show wet fabric. The vertical white
band is a metal marker used as a reference scale which has been masked out. (b) Moisture
variation along a fabric section during horizontal wicking, when the front has infiltrated a
distance lc . Thin solid and dashed lines show averaged moisture distribution measurements
from wetted sections, using X-ray attenuation for lc = 8 and 16 cm respectively. The symbols
show gravimetric measurements of moisture content for lc = 50 (×) and 75 cm (�). The
moisture profile calculated using the similarity solution is plotted as a bold line.

similarity solution shows a major difference near the front of the wetted region,
where the profile is sharper than predicted. This was attributed to a percolation
threshold (see comments in § 3) which is not included in (4.1). By combining
experimentally determined values of Ks and Ψ ∗ (from § 3) with (4.3) we estimate
AT = 1.32 cm s−1/2, while experimental measurements show that AE = 1.1 cm s−1/2. The
effect of a percolation threshold is to slightly reduce AT , bringing it closer to the
experimental value AE .

When the sample is inclined below the horizontal (α < 0), and a balance between
viscous and buoyancy forces is ultimately achieved, the length of the wetted region
increases at a constant rate

lc = −K(θ)ρgt sin α

θ
. (4.4)

When the sheet is inclined above the horizontal, (α > 0), the moisture profile eventually
reaches a steady state with a balance between gravity and capillary forces yielding

Θ(x) = exp

(
− x sinα

Ψ ∗/ρg

)
. (4.5)

Figure 4 shows a comparison between (4.5) and experimental measurements of the
saturation profiles measured vertically for capillary-driven flows at a number of angles
of inclination. To prevent liquid redistribution during sectioning of the samples, the
sample was frozen once it had reached steady state, and a gravimetric method applied.
In this configuration, the local pressure decreases hydrostatically as Ψ/ρg = −x sin α

and is equivalent to the measurements described in figure 2(a). For very low angles of
inclination the variation of moisture across the fabric thickness became increasingly
important.

4.2. Source-driven flow

When fluid is introduced at a constant areal flux qa (where the areal flux includes
the effect of porosity) along a line source, (4.1) is solved in conjunction with a global
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Figure 4. Equilibrium moisture profile between wicking and gravity for a sample inclined at
an angle α above the horizontal from a large reservoir (×, α =30◦; �, 45◦; �, 60◦; �, 90◦).
Equation (4.5) is plotted as a full line.

volume constraint: ∫ lc

0

Θ dx = qat, (4.6)

where lc is the length of the wetted region.
We first consider the case of a horizontal sheet (α = 0). Physically, the moisture

level close to the source rapidly increases until it becomes saturated, after which
the saturated front and capillary fringe are advected with a constant speed along the
sheet. The initial saturation of the fibrous sheet, for Θ(0, t) < 1, can be calculated from
a similarity solution of the form Θ = Γ (t)Θ̃(x̃), where Γ (t) = (9q2

a θs/4KsΨ
∗)1/4t1/4,

X(t) = (4q2
aKsΨ

∗/9θs)
1/4t3/4, and x̃ = x/X(t), which reduces Richards’ equation (4.1)

to

d2Θ̃3

dx̃2
=

1

3
Θ̃ − x̃

3Θ̃2

dΘ̃3

dx̃
,

∫ λS1

0

Θ̃(x̃) dx̃ = 1. (4.7a, b)

The numerical solution which satisfies (4.7a) and the constraint (4.7b), corresponds
to λS1 = 1.36 and Θ̃(0) = 1.09. The similarity solution breaks down when the flow is
saturated, which first occurs at the origin when Θ(0, t) =Γ (t)Θ̃(0) = 1. Figure 5(a)
shows experimental measurements of the wetted length, compared to the similarity
solution for a number of low flow rates, and good agreement is observed, up to
time t/(A/qa)

2 = 0.26, after which the similarity solution (4.7a, b) is rendered invalid
because Θ = 1. In normalizing the experimental and theoretical results we use AE

and AT respectively. The experimental results are reproducible in this region, but
consistently lie beneath the similarity solution. This was attributed to a false time
and position origin caused by introducing the source at a finite, but small (∼ 0.5 cm)
distance from the end of the fabric. After a long time (t/(A/qa)

2 � 0.26) the moisture
profile is advected with speed qa and consists of a capillary fringe at the front of the
flow, behind which the material is saturated. Transforming (4.1) to the steady frame
advancing with the front of the fringe (lc) using x ′ = x − lc, yields

qa

dΘ

dx ′ =
KsΨ

∗

θs

d

dx ′

(
Θ2 dΘ

dx ′

)
, (4.8)
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Figure 5. (a) Experimental measurements of the wetted length with time for a constant
volumetric flux (qa = �, 0.02; �, 0.04; �, 0.05; �, 0.07; +, 0.08; ×, 0.1 cm s−1), applied to the
end of a 2 cm wide strip of fabric. The short-time similarity solution is plotted as a full line up
to the time (t/(A/q2

a ))
3/4 = 0.36. (b) Development of the wetted length during infiltration into

a horizontal fabric sample, plotted as (lc − qat) versus time. The short- (STS) and long- (LTS)
time similarity solutions are plotted as dashed lines, while the numerical solution is plotted as
a full line.

whose solution is Θ = (−2qax
′θs/KsΨ

∗)1/2 for x ′ > −KsΨ
∗/2qaθs . The front moves

with a speed qa because the fabric is saturated behind the capillary fringe. A measure
of the length of the capillary fringe is lc − qat , which for large time tends to

lc − qat =
KsΨ

∗

6qaθs

=
A2

12qaλ
2
C1

. (4.9)

Figure 5(b) shows the variation of the length of the capillary fringe with time t ,
along with a comparison between numerics, short- and long-time similarity solutions,
and experimental results. As infiltration progresses the sample eventually becomes
saturated close to the point of introduction. The scatter in figure 5(b) is due to errors
in measuring the wetted length arising because the front is irregular and the capillary
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fringe is small relative to the saturated length. The ultimate length of the capillary
fringe expected from (4.9) is also shown in figure 5(b), and agrees with the experimental
measurements, over a decade range in qa . Experimental measurements confirm the
initial increase in lc − qat . In the experiment liquid is not confined to the sample,
which is unable to sustain a positive pressure when saturated, and as a result liquid
tends to leak leading to a decrease in lc − qat after some time, a process not captured
by the model. The time and position offsets seen in figure 5(b) are the same as in
figure 5(a), which tends to explain the difference between the experimental results and
similarity solution.

When the fibrous sheet is tilted below the horizontal (α < 0), the moisture profile
is uniform along the length of the wetted region except close to the capillary fringe.
Over the uniformly wetted region the length lc is related via the mass conservation to
the rate of liquid introduction (from (4.6)), through

Θlc = qat. (4.10)

By combining (3.1) and (4.10), the permeability is estimated to be

K(Θ) = − qaθs

ρg sinα
. (4.11)

As described in § 3 (see (3.1)), this is essentially how the permeability is measured
experimentally. For K(Θ) = KsΘ

3 (combining (4.11) and (4.10)) the encroachment
distance is

lc = q2/3
a

(
−Ksρg sin α

θs

)1/3

t. (4.12)

For upslope flow (α > 0), a saturated liquid body is driven upwards by the source.
The similarity moisture profiles at the front of the capillary fringe for vertical upward
and downward infiltration have recently been studied by Witelski (2003).

5. Point sources
5.1. Spreading on a horizontal sheet (α = 0)

Ruoff et al. (1959) describe the application of Boltzmann’s transformation to radial
transport from a point into a sheet of paper. To calculate radial transport from
a saturated point the diffusivity–moisture relation was applied, this relation being
obtained using the moisture profile from a line source. We extend these calculations
to examine radial flow driven by a source.

The sheet is initially dry (Θ(x, y) = 0, at t = 0), and fluid is introduced at the origin.
Both source- and capillary-driven flows on a horizontal sheet generate a circular
wetted region whose radius grows with the square root of time and so they can be
treated within the same framework (with different boundary conditions). Rescaling
the radial distance as r̃ = r/R(t) where R = (2KsΨ

∗t/θs)
1/2 reduces Richards’ equation

(4.1) to

d2Θ̃3

dr̃2
=

(
− r̃

Θ̃2
−1

r̃

)
dΘ̃3

dr̃
,

∫ λS2

0

Θ̃r̃ dr̃ = γ, r̃Θ̃2 dΘ̃

dr̃

∣∣∣∣
r̃=r̃s

= −γ

2
, (5.1a, b, c)

where

γ =
Qaθs

4πKsΨ ∗ (5.2)
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expresses the rate of increase of the wetted region due to a driving source compared
to pure infiltration. The radius of the wetted region is rc = λS2R. The distance r̃s (see
(5.1c)), which is determined as part of the solution, corresponds to the point at which
the moisture level initially decreases.

For γ � 1, the flow is characterized by a saturated core and a thin capillary fringe so
that λS2 → (2γ )1/2 since r2

c = Qat/π. Near the front of the wetted region, the moisture
level Θ diminishes to zero. The local singularity in the gradient of the moisture at
r̃ = λS2 can be estimated from (5.1a) to be

Θ ∼ (2λS2)
1/2(λS2 − r̃)1/2. (5.3)

This expression for γ 	 1 provides a leading-order description of the moisture profile
everywhere except near the origin. But as the volume of fluid in the near-source region
is small we can apply (5.1b) to determine the relationship between λS2 and γ , which is

λS2 ∼ 151/3γ 1/3

25/6
. (5.4)

For capillary-driven flows, an additional constraint that the fabric is saturated at
the origin (Θ =1 at r̃ = 0) is applied. Since the flux is determined as part of the
solution, the size of the source has an effect on the infiltration rate. By systematically
reducing the source size we estimate γc =0.028, λC2 = rc/R = 0.40 for capillary-driven
infiltration.

Figure 6(a) shows experimental measurements of the variation of r2
c with time,

confirming that rc ∼ t1/2. For high flow rates, the fraction of the wetted region which
forms the capillary fringe decreases – at the highest flow rates, liquid tends to pool near
the source and the measured radius falls under the solid curve, r2

c = Qat/π, which
corresponds to complete saturation. Figure 6(b) shows the variation of λS2 = rc/R

with γ . Good agreement is observed between the experimental measurements and
the similarity solution. Figure 6(b) also shows the transition between a saturated and
unsaturated core, which corresponds to wicking from a reservoir at zero pressure
head, which is indicated by γ = γc.

Experimental measurements for wicking from a saturated point confirm the
Boltzmann scaling for rc, and a ratio between planar and point-source infiltration
of ∼ 1.54, compared with a theoretical value of λC1/λC2 = 1.93. These results also
show that the encroachment distance for infiltration from a saturated planar source
is greater than from a point source. Washburn’s analysis indicates that both should
proceed at the same rate.

The moisture profile changes substantially with γ . As indicated in figure 7, the
size of the capillary fringe decreases as γ increases. Agreement is observed between
the similarity solution and experimental measurements of the saturation for two
contrasting flow rates. Note, the measured moisture level in these experiments is
lower than 0.4 close to the front of the wetted region as a result of sectioned samples
including significant unwetted portions near the irregular front.

5.2. Spreading on an inclined sheet (α < 0) from a point source

Non-dimensionalizing (2.9) using

L = −Ψ ∗/ρg sinα, T = θsΨ
∗/Ksρ

2g2 sin2 α, x̂ = x/L, ŷ = y/L, t̂ = t/T , (5.5)

gives

∂Θ

∂t̂
+

∂Θ3

∂x̂
=

∂

∂x̂

(
Θ2 ∂Θ

∂x̂

)
+

∂

∂ŷ

(
Θ2 ∂Θ

∂ŷ

)
. (5.6)
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Figure 6. (a) Radius of the wetted region during horizontal infiltration from a point source
(Qa = �, 0.3; ×, 1; ∗, 2; +, 4; �, 9.8; �, 19.6; �, 39.1; � 48.9 cm2 s−1). The thick solid
line represents the growth of the wetted radius for a saturated material. (b) Experimental
measurements of λS2 = rc/R versus γ , the relative strength of source-driven to capillary-driven
flow. Capillary-driven flow from a saturated point corresponds to γ = γc . The dashed line is
the estimate (5.4), and the dotted line is λS2 = (2γ )1/2; the full curve is obtained from the
similarity solution.

According to (4.5), L is the characteristic distance fluid will infiltrate upstream of the
source (x < 0). Equation (5.6) is solved subject to the volume constraint

∫ X̂N

−X̂T

∫ Ŷ W

−Ŷ W

Θ dŷ dx̂ = 4πγ t̂, (5.7)

where γ is defined by (5.2) and is independent of the sheet angle. The length L

characterises the infiltration distance upslope of the source (see (4.5)). The maximum
half-width of the wetted region and downslope length (from the source) are denoted
by Ŷ W and X̂N respectively; the upstream wetted distance is X̂T .

When X̂N 	 1, corresponding to short time t̂ 	 1, the influence of downslope
gravitational acceleration is weak, and (5.6) and (5.7) reduce to (5.1). In this case
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Figure 7. Similarity radial moisture profiles generated by source-driven flows are plotted for
four values of γ . Experimental measurements of the moisture profiles for γ = 0.1, 0.5 are
plotted as � and � respectively. The moisture content was determined gravimetrically using
samples from a 10◦ triangular wedge of material.

the transport processes are understood from § 5.1, which recast in dimensionless
form yields X̂N = Ŷ W ∼ λS2

√
2t̂ . As t̂ increases, we anticipate and later confirm that

downslope gravitational acceleration becomes important and X̂N grows faster than
t̂1/2, while the cross-slope width Ŷ W ultimately grows more slowly than t̂1/2.

To explore the dynamics at intermediate and large time, we must appeal to full
numerical solutions. In contrast to a line source on an inclined sheet, (5.6) and (5.7)
do not admit a similarity solution for large time. By developing an approximate
description of the steady near-source flow, we are then able to calculate how X̂N and
Ŷ W vary with t̂ and γ .

5.2.1. Numerical solutions

Explicit and implicit time marching methods, accurate to second order in space, were
applied to solve (5.6). A volume source was introduced onto the right-hand side of
(5.6), located at the origin. For an explicit implementation, the computational domain
was partitioned into saturated and unsaturated regions which were solved separately
and matched. To cope with a wide range of t̂ (over 6 decades), the computational
domain was resized. Both the explicit and implicit implementations were tested against
one another and validated against the similarity solutions described in § 5.1.

As anticipated, the size of the pool of liquid increases with γ , which denotes the
ratio of source strength to wicking action. Figure 8(a, b) shows the variation of X̂N

and Ŷ W with time for γ =0.01, 0.1, and 1. For t̂ 	 1 the numerical results agree with
the similarity solutions (denoted by the dashed line) from § 5.1.

Figure 9 shows the moisture profiles for γ =0.01, 0.1 and 1, at three times. The
shaded region shows where the rate of change in the moisture level is smaller than
∂Θ/∂t < 2.5 × 10−4. The region where ∂Θ/∂t is small, occupies a finite fraction of the
wetted region and appears to grow in proportion to its dimensions. For large time,
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Figure 8. Numerical results describing the increase in (a) the downslope length, X̂N , and
(b) the cross-slope half width, Ŷ W , of the wetted region as a function of dimensionless time t̂ ,
for γ = 0.01, 0.1, 1. The dashed curves show the similarity solution Ŷ W = X̂N = λS2

√
2t̂ valid

for t̂ 	 1. The downslope length and cross-slope width are normalised using γ 1/2 in (c) and
γ 1/4 in (d), respectively.

the near-source region tends to a steady form. To interpret the growth of the wetted
region, we focus on the steady near-field component and develop an approximate
description of the moisture profile in this region. Figure 10 appears to show that the
shape of the wetted region tends to self-similar form.

5.2.2. Steady near-source moisture profile

For large time, the near-source flow ultimately tends to a steady state described by

∂Θ3

∂x̂
=

1

3

(
∂2

∂x̂2
+

∂2

∂ŷ2

)
Θ3, (5.8)

in those regions where the flow is not saturated, i.e. Θ < 1. The volume flux constraint
enters into the solution through the mass flux condition downstream of the source,∫ ∞

−∞
Θ3dŷ = 4πγ. (5.9)

The steady state is therefore described in the partially saturated region by a linear
advection–diffusion equation in Θ3.

A solution to (5.8) which satisfies (5.9), but for which Θ may be locally larger than
unity near the source, is

Θ(x̂, ŷ) = (6γ )1/3 exp
(

1
2
x̂
)[

K0

(
3
2
(x̂2 + ŷ2)1/2

)]1/3
(5.10)

(Bretherton 1961) where K0 is a modified Bessel function of the second kind
(Abramowitz & Stegun 1964). The agreement between (5.10) and the full numerical
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Figure 9. Contours of moisture saturation for (a) γ = 0.01, (b) 0.1 and (c) 1 for three times.
The moisture contours range from 0.1 to 1 in increments of 0.1, with the wetted region
shown by a contour of 0.01. The portion where the moisture content has reached steady state
(∂Θ/∂t < 2.5 × 10−4) is indicated by the shaded region.

solution is good (figure 11) for γ = 0.01 and 0.1, except very close to the source where
the analytical solution fails to describe the saturation. For γ = 1, the saturated region
(where Θ = 1) forms a large fraction of the region plotted and the agreement with
(5.10) in the near-source region is poor, but the agreement improves significantly far
from the source.

Far downstream from the source, gravity-driven downslope transport dominates
over capillary-driven cross-slope transport, and the moisture profiles tend to

Θ(x̂, ŷ) = (6γ )1/3

(
π

3

)1/6
1

x̂1/6
exp

(
−3ŷ2

4x̂

)
, (5.11)

since K0(z) ∼ (π/2z)1/2 exp(−z) (Abramowitz & Stegun 1964). According to (5.11),
Θ decays rapidly as ŷ → ∞. The width of the wetted region, Ŷ W , identified with a
contour of a particular value of Θ , is

Ŷ W =

[
4

3
x̂

(
− log Θ +

1

6
log

(
x̂

12πγ 2

))]1/2

. (5.12)

Since the moisture profile decays slowly with downslope distance, the width grows
approximately as ∼ (4x̂/3)1/2.
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Figure 10. Shape of the wetted region obtained from numerical simulation of infiltration
from a point source, characterized by (a) γ = 0.01, (b) 0.1, (c) 1 at t̂ =250, 500, 750, and 1000.
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Figure 11. Moisture profiles for the steady near-source flow, corresponding to (a) γ = 0.01,
(b) 0.1, and (c) 1. Full numerical solutions are plotted with a full line, while the analytical
approximation (5.10) is plotted as dashed lines. The contours of saturation increase from 0 to
1 in increments of 0.05, 0.1 and 0.2 for (a), (b) and (c) respectively.

5.2.3. Intermediate time scales

At intermediate and long times, similarity methods cannot be applied for constant-
flux source flows. An approximate description of the growth of the wetted region
may be developed by solving (5.6) subject to ∂Θ/∂t̂ =0, which enables the long-time
scalings for the dimensions of the wetted region to be estimated. The volume of fluid
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in this region is equal to

4πγ t̂ =

∫ X̂N

−X̂T

∫ ∞

−∞
Θ(x̂, ŷ) dŷ dx̂. (5.13)

Since the moisture level is approximately steady over a large fraction of the flow (see
figure 9), we approximate X̂T ∼ 0 and substitute (5.11) into (5.13) to obtain

4πγ t̂ ≈
∫ X̂N

0

2(12)1/6π2/3γ 1/3x̂1/3 dx̂. (5.14)

Integrating (5.14), we obtain the following estimates of the dimensions of the wetted
region:

X̂N (t̂) ∼ 2.0γ 1/2 t̂3/4, Ŷ W (t̂) ∼
[

4
3
X̂N

]1/2
= 3.5γ 1/4 t̂3/8. (5.15)

These expressions suggest how the dimensions of the wetted region scale with t̂ and
γ . Guided by (5.15), the numerical solutions are rescaled as X̂N/γ 1/2 and Ŷ W/γ 1/4 and
replotted in figure 8(c, d). The numerical calculations appear to confirm the depen-
dence of X̂N and Ŷ W on both t̂ and γ . Fitting the characteristic curves to figure 8(c, d),
we obtain

X̂N ∼ 2.7γ 1/2 t̂3/4, Ŷ W ∼ 2.2γ 1/4 t̂3/8. (5.16)

The use of the steady approximation in (5.14) means that the cross-slope width
is overpredicted, while the downslope length is underpredicted, as confirmed by
comparing the leading coefficients of (5.15) with (5.16).

5.2.4. Comparison with experimental results

To test experimentally the underlying scalings (5.16) for the wetted region, a wide
range of γ was required because of the insensitivity of X̂N and Ŷ W to γ , as indicated
in figure 8(a, b). Experiments were conducted at low and high flow rates (Qa = 0.49
and 39.1 cm2 s−1) corresponding to γ = 0.027 and 2.12 (respectively), and over a wide
range of α (between 1◦ and 50◦). Fabric sheets of 1 m square in size were used, and
liquid spreading recorded until it reached the bottom of the sample (having a typical
downslope distance of 75 cm).

Figure 12(a, b) confirms that for t̂ < 1, where downslope gravitational acceleration
is negligible, the measured wetted radii are consistent with the experiments and theory
for horizontal sheets in § 5.1. For large time, a pronounced asymmetry in the later
shape of the wetted region is observed, as shown in figure 12.

At longer times, the rescaled measurements of the downslope length (for high
and low values of γ ) collapse, though the model underpredicts the experimental
measurements. As indicated in figure 8 the time taken for the collapse of Ŷ W/γ 1/4

corresponds to approximately t̂ > 100 which is comparable to, or beyond, the timescale
of the experiments. The model slightly underpredicts the downslope length, but
overpredicts the cross-slope width of the wetted region. In this case the cross-slope
width tends to a constant value, and as a result liquid runs faster downslope than
expected. This is seen in figure 12(c) as an upturn in X̂N for t̂ > 100.

For large time, the width of the wetted region tends to a constant as a consequence
of a percolation threshold in moisture below which the permeability is small. While
a percolation threshold has a negligible impact on flows driven in one direction
(except near the nose of the wetted region), it does have a profound impact on
cross-slope transport. An upper limit of the wetted width can be estimated from
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Figure 12. Experimentally measured cross- and downslope widths for spreading from a
constant-flux source into an inclined fibrous sample. Liquid is introduced at two constant rates
(�, Qa = 0.49; ×, 39.1 cm2 s−1 corresponding to γ = 0.027 and 2.12) and the angle of inclina-
tion varied (α varied between 1o and 50o) to obtain results over a wide range of t̂ . The
downslope (X̂N ) and half-width (Ŷ W ) of the wetted regions were measured. The short-time

similarity solutions (X̂N = Ŷ W ∼ λS2

√
2t̂) are plotted as dashed lines in (a) and (b). In (c) and

(d) the down- and cross-slope dimensions of the wetted region are normalised by γ 1/2

and γ 1/4 respectively. The full lines in (c) and (d) are (5.16) which describes longer time
spreading.

mass conservation, by assuming the moisture profile level drops to the percolation
threshold Θc, 2YWK(Θc)ρg sinα ∼ Qaθs . In dimensionless form, the width tends to
Ŷ W ∼ 2πγ /Θ3

c . For a typical value of Θc ∼ 0.4 the maximum current width can be

estimated as Ŷ W ∼ 2.65, which compares well with Ŷ W ∼ 2.46 (for γ = 0.027). From
(5.16) we estimate that the long-time analysis breaks down at t̂ ∼ (2π/Θ3

c )
8/3γ 2 ∼ 18.3,

consistent with the measurements shown in figure 12(b). After this time the length
grows in proportion to time and the width tends to a constant.

The heuristic modelling approach adopted in this study means that the accuracy of
predictions is determined by the correctness of the closure relationships used.

5.3. Capillary-driven flow on an inclined sheet (α < 0) from a point source

At short time (t̂ 	 1), downslope gravitational acceleration is weak and the analysis of
§ 5.1 shows that the volume of fluid absorbed by the fabric increases linearly with time
and γc = QaΘs/4πKsΨ

∗ = 0.028. But at long time (t̂ > 1), gravitational acceleration
is important and numerical calculations confirm that the volume of absorbed fluid
increases with time, but at a slightly reduced rate. Thus while there is a significant
change in the asymmetric growth of the wetted region between short and long time,
the rate of absorption is only fractionally changed.
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6. Concluding remarks
We have presented a study of flows through inclined fibrous sheets, which are main-

tained either by wicking from saturated regions or by constant-flux sources.
The new aspect of this study lies in the application of Richards’ equation to describe

flow in thin layers (such as fibrous sheets) using empirically determined closure rela-
tions between permeability, capillary pressure and moisture. For fibrous materials,
the experimental methods – typically applied to porous media – were refined to cope
with high permeabilities and low capillary pressures. The major challenge here is that
the capillary wicking heights are, in many cases, only a few times the sheet thickness
and the influence of a weak reservoir pressure is pronounced.

In applying Richards’ continuum approach to the general problem of unsteady
multiple releases into fabrics, we also need to develop closure relations which account
for the hysteretic Ψ –θ relationship. The methodology described here, developing
material specific closure relations, can be applied more generally to other fluid
transport problems within fabrics. Recent measurements suggest that the semi-
empirical forms of the closure relations developed are similar for other non-woven
polyester needlefelts, and our general conclusions also apply.

The theoretical predictions were tested experimentally using intrusive (e.g. gravi-
metric) and non-invasive (e.g. optical and X-ray) methods, and the agreements were
satisfactory. Experimental measurements support the scalings of the downslope length
of the wetted region. However, for weak sources or long time, the existence of a
percolation threshold in the permeability has an impact on the spread of fluid. The
percolation threshold places a limit on the time up to which the analysis in § 5.2
holds. The inclusion of a percolation threshold into the model may be achieved by
modifying the permeability–moisture relationship.

Practical application of the models and closure relationships to medical adsorbents
is relatively straightforward, requiring representative incontinence pad geometry and
discharge rate. In these applications hysteresis is likely to play a significant role
(above all in geometries where α changes sign) and these additional effects must be
considered. A current challenge still remains in finding techniques to relate fabric
microstructures to their bulk fluid handling properties, and establishing new methods
for combining closure relations to model the effective properties of layered composite
materials. Preliminary progress has been made in resolving both these issues.
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