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1. Introduction

The increasing popularity of Geographic Information Systems/Science (GIS) in
archaeology can be linked to the development of user-friendly software and
corresponding improvements in spatial data handling techniques. As a result, GIS
is deployed commonly as an organisational tool, but rather less attention has
been paid to important developments in spatial statistics that can help make
sense of such datasets. Perhaps the most important new developments all relate
to the issue of scale, with respect to: (i) the problems encountered when
combining datasets collected at different resolutions (e.g., Gotway and Young,
2002); (ii) the scale- related biases inherent in aggregate analytical units (e.g.,
the Modifiable Areal Unit Problem: Openshaw, 1996; Harris this volume); (iii) or
techniques for multiscalar pattern recognition.

Here, we focus on the last of these three areas. Our paper reviews existing
statistical approaches to settlement patterning in archaeology, explores in detail
one useful multiscalar method - Ripley’s K function - and suggests both the
problems and potential of such techniques when interpreting the particular
evidence provided by landscape survey. We draw on case studies from the
Kythera Island Project (KIP), a multidisciplinary initiative designed to study the
cultural and environmental history of the island of Kythera, Greece (Broodbank,
1999). From the project’s onset in 1998, GIS has been used to store, manage, and
analyse a wide variety of KIP research contributions, including the results of
intensive archaeological survey, geoarchaeology, botany, historical geography
and archival studies (Bevan and Conolly, 2004).

2. Spatial Statistics and Settlement Patterns

Settlement analysis in archaeology seeks to build up from the static spatial distri-
bution of material culture and anthropogenic modifications visible in the
contem- porary landscape to an understanding of the dynamic cultural and
environmental processes of human settlement systems.

With the obvious exception of phenomenological approaches, most studies of
settlement and landscape accept that there is a need to adopt an empirical
approach to pursuing this goal, even if in so-doing, many then fail to embed their
conclusions within a wider inferential framework. Standard quantitative
methods tend to explore either: (i) correlations between settlement (or other
zones of human activity) and social or environmental variables (e.g., “predictive
modelling”), or; (ii) the degree to which new settlements or households are
located in physical relation to existing ones (we might call this “neighbourhood
dependence”). The traditional tools used by archaeologists include, respectively,
linear or logistic regression and nearest neighbour or quadrat analysis, but each
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of these raises methodological problems. The first two have the capacity to
mislead in contexts where spatial dependence can be shown to exist (i.e., most
geographic contexts: Fotheringham et al., 2002:162- 166), and the last two are
insufficient for detecting multiscalar spatial patterns. Here we concentrate on
the latter, but the need to integrate these approaches is raised again in
discussion at the end.

Settlement distributions are often described in terms of their configuration vis-
a-vis three idealized states - namely random, regular, or clustered - but rarely
do these states occur so clearly in practice (van Andel et al., 1986). In reality,
settlement patterns are more complex, and measures such of these need to be
contextually sensitive to the fact that the scale of analysis can change what
appears to be a nucleated or centralized pattern, to one better described as
dispersed. A regular or uniform pattern between contemporaneous sites has
been taken to reflect a form of competition between settlements, the existence of
site catchments or both (Hodder and Orton, 1976:54-85), sometimes because of
demographic growth from an initial random distribution (Perles 2000:132-147).
Clustering of sites may result from a number of factors, although localized
distribution of resources and the emergence of polities or regional centres have
often been highlighted (Roberts, 1996:15-37; Ladefoged and Pearson 2000). In
contrast, random distributions have usually been treated as the statistical null-
hypothesis, though several commentators provide good examples of how
apparent random distributions in fact can be condi- tioned by selected
environmental, biological, and social variables (Maschner and Stein, 1995;
Woodman 2000; Daniel 2001). Indeed, a problem we will return to later is that
point pattern analysis implicitly assumes spatial isotropy (i.e., invari- ance by
rotation) and homogeneity despite the fact that actual human landscapes offer
both topographically dependent movement environments and spatially hetero-
geneous natural resources (water, soils, etc.).

The favoured technique of archaeologists for detecting clustered or uniform
distributions is nearest neighbour analysis. Clark and Evans (1954) first
explored the utility of this method for ecological purposes, and it was soon being
used to understand settlement patterning (Dacey, 1960; Haggett, 1965). Its
application to archaeological settlement pattern analysis followed some time
later (Hodder and Hassall, 1971; Hodder, 1972; Whallon, 1973; Washburn, 1974;
Hodder and Orton, 1976), continued in the 1980s and 1990s, and the technique
retains its prominence today both in general textbooks (e.g, Wheatley and
Gillings 2002) and culturally specific studies (e.g., Ladefoged and Pearson 2000;
Perles 2001:134-138).

Clark and Evan’s nearest neighbour coefficient is probably popular in the
archaeological community for two reasons: (i) it is straightforward to calculate,
and; (ii) it provides an easily interpretable coefficient. However, nearest
neighbour analysis was not designed to detect spatial patterning at anything but
the 1st nearest neighbour. Increasing the nearest neighbour measurement to the
2nd, 3rd..nth neighbour may detect clustering at different scales, but the
statistical validation of patterning then becomes difficult (Hodder and Orton,
1976:41). Nearest neighbour analysis is also significantly influenced by the size



of the area to be analyzed, with regular, random, or clustered distributions
arising being dependent on the amount of surrounding area included in the
analysis (Hodder and Orton, 1976:41). While there are workarounds for these
problems, the technique remains a relatively coarse ruler with which to measure
point distribution patterns.

In particular, the focus on 1st neighbour distances may overlook more com- plex,
multiscalar, spatial patterns. Consider, for example, the point patterns in Figure
14.1. The left panel shows a hypothetical distribution of 56 sites. A single order
nearest neighbour analysis applied to the 56 points in the left panel would detect
the presence of clusters, and a K-means statistic could be employed to show that
the optimum number of clusters was likely to be 8 (Blankholm, 1990:65).
However, neither of these analyses would be able to identify the fact that there is
also a higher-order scale producing three clusters. Furthermore, if we include
the finer artefact-scale resolution represented on the right panel (rather than
just an approximation of the centre of the artefact distribution), then clustering
can be shown to exist at three different spatial scales: (i) artefacts forming sites
(clusters i-x); (ii) sites forming primary clusters (clusters 1-8); and (iii) primary
clusters forming secondary clusters (clusters A-C).

7 %
6... B °.'.o .
o
* o e © I o
o il m
® 8 : ° 0.. ° o,
o ® *
Vee® oV vi
og0 Qo o ®
° X 8 g
®q 0 4 V” IX )
oo .o.. o 0.. ® 0 o X
= 0
1 A ®q 0 C
°e oo o 5 e viil o
L 3' . )

Figure 14-1. Multiscalar point patterns.
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Figure 14-2. The influence of study area size on the detection and characterization of patterns
(after Goreaud and Pélissier 2000: 15).

Another major problem with nearest-neighbour analysis is the effect the size of
the study area has on the detection of patterning. For example, Figure 14.2
shows how adjusting the scale of analysis has a major influence on the
homogeneity, intensity and clustering tendencies of point distributions. In the
entire study area, Al, the pattern is homogenous with a clustered structure (i.e.,
clustering occurs relatively evenly) so that a frequency distribution of nearest
neighbour values would be normally distributed. At smaller scales, for example
in area A2, the pattern is heterogeneous with a strong left to right gradient. A
neighbourhood density function would be positively skewed with a bimodal
tendency. Area A3 is similarly hetero- geneous, although its density value is
significantly lower than A2. Area A4 has a high intensity and homogenous
distribution, although here it is far more regular than seen elsewhere.

These two scalar issues — one related to analytical resolution, the other related to
analytical area - although presented in abstract, are very real when attempting
to make sense of settlement distributions, given that the latter may show a
variety of characteristics depending on the resolution and the shape of the study
area. The fact that GIS-led approaches to the collection and management of
archaeological survey data are able to store data at several different scales
within the same environment (e.g., artefacts, sites and regions) underlines the
need for spatially sensitive ap- proaches to the analysis of distribution patterns.
Moreover, the dichotomy created by nearest neighbour analyses, dispersion vs.
nucleation, is useful only at a very general level. Measures that take into account
the intensity of settlement, its homogeneity, and the scale at which it is clustered
or dispersed are clearly superior.



We therefore propose the use of a broader range of statistical approaches to
point patterning, including methods that are inherently multiscalar such as
Ripley’s K-function that we consider in some detail. Ripley’s K-function (Ripley,
1976; 1997; 1981) was designed to identify the relative aggregation and
segregation of point data at different spatial scales. It is defined for a process of
intensity A, where AK(r) is the expected number of neighbours in a circle of
radius r at an arbitrary point in the distribution (Pélissier and Goreaud
2001:101). The K-distribution is a cumulative frequency distribution of average
point intensity at set intervals of r. Significance intervals are generated by Monte
Carlo simulation of random distributions of the points (Manly, 1991). These
estimates can be compared with the observed values of K to provide a
statistically robust measure of cluster size and cluster distance in the dataset. We
use an edge effect correction method proposed by Goreaud and Pélissier (1999).
For clarity of presentation, the cumulative K distribution is usually transformed

to L(r) =+/K(r)/m —r, where the expectation under randomness (L(r) =0) is a

horizontal line. L(r) < 0 means that there are fewer than expected neighbours at
distance r, suggesting a regular pattern, and L(r) > 0, means that there are more
neighbours at distance r, indicating a clustered pattern (Pélissier and Goreaud
2001:102).

3. Research Context

Our broad area of interest is human settlement in Mediterranean landscapes,
particularly the Aegean. The Aegean was first colonized by late Pleistocene pre-
modern humans, possesses the earliest farming communities in Europe and,
during the Bronze Age, was the setting for some of Europe’s first complex
societies. It saw the rise of the Greek Classical polis-states, and was subsequently
entangled in the geopolitics of the Roman, Byzantine, Ottoman, Venetian and
British empires. In the 19-20th century it was brought under the umbrella of the
modern Greek nation state, and most recently, in the 21st century, it is part of an
emerging European super-state. The impacts of these events on Aegean rural
landscape history have been the subject of an enviable breadth of intensive
survey projects that have provided high-resolution data on long-term dynamics
of Aegean settlement systems (e.g., Broodbank, 1999; Cherry et al.,, 1991; van
Andel et al., 1986; Bintliff and Snodgrass, 1985; Renfrew & Wagstaff, 1982, to
name but a few). The Aegean is of obvious importance for archaeologists
interested in long-term patterns and pro- cesses of human social and cultural
evolution, mobility and population dynamics, settlement systems and ecology.

In this study, our largest unit of analysis is the island of Kythera, which lies
approximately 15 km from Cape Malea on the southern tip of the Peloponnese
(Figure 14.3). Its geographical location between two distinctive and influential
regions, the Greek mainland and Crete, has been instrumental in shaping a
distinctive Kytherian history. The island’s role within, and contribution to, wider
(early Aegean, eastern and/or central Mediterranean, and later pan-European)
social and economic networks was one of the several thematic issues underlying
the estab- lishment of the Kythera Island Project (KIP) in 1998 (Broodbank,
1999). One way to explore the relationship between on- and off-island processes
is to consider the island’s settlement patterns, particularly for cycles of
nucleation and dispersion. Such cycles have been documented in other areas of



the Aegean, notably on Melos (Renfrew and Wagstaff, 1982), Kea (Cherry et al,,
1991:474) and in the southern Argolid, and interpreted as strategic responses to
the expansion and contraction of inter-regional trade and exchange. Although
such information does not offer a simple ruler to measure the islands and
islanders’ relationship to (political) eco- nomic cycles, it can offer insight into
how the island settlement and demographic structure responded to broader
trends in Aegean social and political history.

survey area

Figure 14-3. Kythera and the KIP survey area.

While our interest in exploring settlement patterning reflects this broader
concern with Aegean rural landscape history, our purpose here is primarily
methodological. Previous work by both of us (Bevan 2002; Bevan and Conolly
2004; Conolly 2000) have highlighted the influence of analytical scale on
constructing meaning from the archaeological record and this paper offers a
further contribution to this endeavour by assessing critically the statistical tools
available for quantifying nucleation/dispersal phenomena. We hope that this will
provide a sound analytical platform upon which further, more holistic analysis of
the Kythera material may proceed, and will also be of considerable use to others
who wish to makes sense of such landscape patterning at different spatial scales.

4. The KIP Dataset

Intensive archaeological survey between 1998 and 2001 has documented the
loca- tion and chronology of nearly 200 previously unknown prehistoric,
Classical, Roman, Medieval and Venetian settlements across a study area
covering about one third of the island. More comprehensive information about
the fieldwork can be found in Broodbank (1999) and Blackman (1999, 2000,
2001, 2002). For the purposes of this paper, we restrict ourselves to analysis of
settlement distributions from four chronological periods in the island’s history.
The first study considers the real spatial complexities behind an obvious feature
of the recent Greek landscape, nucleation of settlement into villages. The second



study then moves on to consider the additional issues raised in attempting to
make sense of a settlement landscape identified purely by archaeological survey,
specifically for Kythera in the Second Palace Period (‘“Neopalatial”, ca. 1700-
1450 BC). Some additional challenges - both temporal and multivariate - facing
the analysis of spatial pattern in a survey context are then introduced briefly
with respect to two further chronological periods on Kythera, the Early Bronze
Age (ca. 3100 -2000 BC) and the Classical (ca. 480- 323 BC). Our intention is
thereby to explore the viability of point pattern analysis under conditions of
increasing methodological complexity.

5. Results and Interpretation

Modern Buildings and Villages

Our first case study draws on a relatively modern dataset, primarily based on the
Greek Army’s mapping of standing buildings and villages identifiable on aerial
photographs of Kythera from the 1960s (see Bevan et al.,, 2004). This data has
been checked in the field by KIP and is relatively comprehensive (though
isolated field houses were often missed). Here we examine this phenomenon in
two stages, beginning with ca. 9,000 individual buildings and then considering
ca. 80 larger- scale “village” clusters (Figure 14.4).

We can calculate a Clark and Evans R statistic of 0.12-0.33 (depending on
whether we use a mean or median nearest neighbour value) for the spatial
aggre- gation of individual buildings on the island, suggesting a highly clustered
pattern. Indeed this is confirmed if we calculate a modified K function (L(r)). It
exhibits a large positive deviation from the upper confidence interval, even at the
largest distance examined (e.g.,, 5 km). This indicates clustering at all scales, but
more importantly, the existence of a heterogeneous pattern which is being
driven by more than one type of underlying process (Figure 14.5) - indeed we
might logically point to the known differences between the cultural factors
influencing the spacing of buildings within villages (e.g., community values,
shared resources) and those effecting the position of the more isolated
fieldhouses (e.g., deliberate spacing between land holdings). This kind of result is
problematic because the heavy clustering in certain areas hinders correct
interpretation of smaller-scale spatial structure in others.

One way to get round this problem is to analyse village and non-village areas
separately. Similarly, we can step up a typological level and consider the
distribu- tion of villages represented as single points. Such analysis will be
approximate because defining which building clusters constitute “villages” is
often subjective (it might be made less so by calculating a K means statistic but
this may cross-cut alternative political, administrative or economic definitions of
“a village”). Total estimates for the island can vary from 60 to 80 distinct
communities, even in the 20th century, and here we use a relatively maximal
estimate. An R-statistic of 0.74-0.84 (mean and median) suggests a slightly
clustered village pattern, reflecting the fact that many settlements concentrate in
inland areas next to the more suitable agricultural land. Figure 14.6 plots the
complete frequency distribution of nearest neighbour distances. Expected values
(the grey line) were estimated by Monte Carlo simulation (i.e. from the average
of a 1,000 sets, each n=80). Again, the observed pattern suggests that small inter-



village distances (300-400 m and 500-700 m are more frequent than we might
expect from a random distribution (significant at p<0.001, Kolmogorov-Smirnov
one-sample test).
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Figure 14-4. The distribution of extant buildings (left) and principal villages (right) on the island.
The top right window is a close up plan of the village of Chora as an example of the original detail
of the dataset.
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Figure 14-5. The modified K-distribution (L) for extant buildings. The K-distribution (dark line)
sits well above the (grey) line marking a clustered distribution (at p<0.1). Note that the upper
and lower boundaries are not ready distinguishable in this chart because of the scale of the y-

axis.



We can then narrow our focus to just the inland area where most villages cluster.
This is useful not least because in environmental terms, this region is relatively
homogenous, with similar topography, water resources and access to preferred
soils. Here the spatial distribution of villages is more regular and we get an
R=1.26 or 1.31 (mean/median), for the minimum convex polygon of the inland
villages. An L plot (Figure 14.7) also indicates a greater than expected regularity
at smaller scales (statistically significant up to ca. 300 m radius), but in addition,
shows that at larger scales, the pattern is not noticeably different from a random
one. This suggests that in this more consistent resource environment,
communities shared out the available space more evenly and establish clearer
individual catchments, probably linked to the spatial organisation of in-field land
holdings, refuse disposal and local political identity.
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Figure 14-6. The frequency distribution of nearest neighbour distances in 100 m bins. The grey
line represents an expected distribution derived fro
m 1,000 80 iterations.

The Second Palace Period

The previous example was chosen because it dealt with standing buildings and
an extant settlement pattern (though one with some time depth). However, for
most prehistoric and many historic settlement distributions, the only viable
technique for accessing regional scale information of this kind is intensive
surface survey. Traditional extensive reconnaissance and site recording are
usually incompatible with useful point pattern analysis (except for comparing
very large or prominent sites such as tells), because their coverage areas (and
intensity of search) are difficult to define and because they clearly miss so much
of the actual site distribution. Modern intensive survey produces far more
amenable results, not only because it is concerned with expressing accurate
coverage intensity, but also because, under the right conditions
(geomorphological and environmental), it can hope to recover a more



comprehensive impression of past settlement landscapes. Even so, survey only
produces proxy data (surface artefact scatters) for actual patterns of habitation
and land use: we will therefore first explore a relatively simple, well-dated
dataset—the Second Palace (“Neopalatial”, ca. 1700-1450 BC) Period sites
(Figure 14.8) - before briefly considering examples in which the problems of
using such proxy data are more severe. KIP has been able to document ca. 100
Second Palace sites, comprising one major port zone focused on Kastri, and
beyond it, a countryside covered quite densely in small scatters (nearly 2 per
km?). For a variety of reasons, these rural scatters appear to be the permanent or
semi- permanent dwellings of 1-2 families engaged in agricultural subsistence
(we could call them “farmsteads”: see Bevan 2002 for a preliminary analysis).
They can all be quite closely dated to within a couple of centuries of each other
(if not less) and therefore most are likely to have been contemporary
habitations.

250, Inland villages
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Figure 14-7. The modified K-distribution (L) for the principal villages in the inland area (as
defined by the minimum convex polygon as shown). The K-distribution (dark line) sits within the
upper (clustered) and lower (regular) boundaries with the exception of the range 150-300 m
range (thus suggesting that at this scale there is a more regular spacing of villages than is
statistically expected).

This settlement pattern is therefore a relatively simple case because it
represents a comparatively shallow temporal palimpsest and comprises a
limited set of site types and sizes. Even so, in order to explore the spatial
distribution effectively, we must exclude the influence of the major port site of
Kastri. This is because we infer that there are two separate groups of processes
dictating settlement patterning in the Second Palace Period: one group
generating the distribution of rural households in the hinterland of the island,
and another group of processes accounting for the pattern in the vicinity of
Kastri. The real influence of the clustering at Kastri becomes clear if we consider
the likely distribution of actual people across the landscape as suggested by site
size. If, for example, we weight the sites according to their relative size, randomly
placing one point within each site scatter area for every 0.5 ha of scatter (this



threshold is arbitrary, but for our purposes here, we might think of them as
crudely equivalent to notional nuclear households), then we produce a more
realistic model of the likely spatial distribution of the Second Palace population.
Almost all rural sites continue to be represented by a single point but the port
centre (which consists of several large adjacent scatters) is represented by many
more. If we run a Ripley’s K function on this data, it shows a huge positive
deviation from the confidence interval (Figure 14.9), again indicating significant
heterogeneity.
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Figure 14-8. The distribution of Second Palace Period sites within the survey area.

In contrast, if we exclude the Kastri zone as representing a separate
phenomenon, we are left with a more homogenous settlement landscape, at least
in terms of the theoretical population represented by each point in the analysis.
We can estimate a Clark and Evans R-value of 0.85/0.91 (mean/median, where
the expected values are estimated from 1,000 random sets, distributed only
within the intensively surveyed area, and not the Kastri zone), which is not
significantly different from a random pattern. We can also look at this across the
full frequency distribution of nearest neighbour values. Previous analysis, based
on the site data available in 2001 suggested certain site spacings were more
common than might be expected (e.g., ca. 300 m apart: Bevan 2002:227-231).
However, while these small site spacings remain highly prominent after the
dataset has been augmented by further field study (adding ca. 20 extra sites), it is
less clear that the pattern departs from one that might be expected by random
placement. A Ripley’s modified K function (Figure 14.9) suggests only a limited
tendency towards regular spacing at smaller scales (significant at p=0.05, but not



at p=0.01), and apparently random from r=200 to 500 m. From r=500 m to
r=1,000 m, sites cluster into statistically significant groups (p<0.01), reflecting
the exploitation of broadly preferred eco-zones, including two basins and a well-
watered plateau.
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Figure 14-9. The modified K-distribution (L) for all Second Palace Period sites (upper), and
Second Palace Period sites, excluding Kastri (lower).

6. Prospects

Aspects of the analysis above have already suggested that a major problem in
applying K-functions and related multiscalar techniques to real settlement
patterns is an underlying assumption of homogeneity; more precisely, such
techniques assume that there is a single stochastic process behind the observed



point distribution. A typical case is the distribution created by a pure Poisson
process, but there are real world examples as well (such as wind-dispersion of
seedlings from parent trees or forest stand thinning: Goreaud and Pélissier
2000:27). However, in archaeological cases, we deal with a bewildering variety
of heterogeneity, for example of both natural environments and of site sizes,
functions and dates. Furthermore, archaeological datasets exist in anisotropic
spaces (e.g., as-the-crow-flies distances rarely reflect the nature of movement
across real landscapes). In contrast, point pattern analysis tends to rely on
Euclidean distance measures, and while this may be an acceptable proxy at
smaller scales, it becomes more problematic the greater are the distances
involved.

The last of these concerns may in the future be addressed by developing more
terrain sensitive ways of creating inter-point distance matrices (e.g., cost surface
analysis, though not without its own problems: Douglas, 1994). This final section
considers three types of heterogeneous problem in greater detail: (i) landscape
variability; (ii) imperfect chronological resolution, and; (iii) variation in site size
or function. Possible responses to these problems are suggested.

Landscapes vary across space in terms of their provision of water resources,
soils, rainfall, solar irradiation, etc. The degree of spatial heterogeneity will itself
also vary between landscapes, with highly localized heterogeneity being a
defining feature of Mediterranean environments (Horden and Purcell 2000). In
terms of settlement patterns, this is unfortunate because ideally, we would want
to be able to distinguish static locational preferences (e.g., driven by favoured
soils) from dynamic processes such as the budding of satellite settlements from
parent ones. However, there are several possible solutions:

1. Deduce a study area where the influence of environment on site location
is relatively homogeneous (e.g., similar slopes, soils, access to water, etc.)
and only consider point patterns within this zone (for an ecological
example of such an approach: Goreaud and Pélissier , 1999:435-8).

2. Define such an homogeneous study area using more formal statistical
methods such as an analysis of the local density function (Fotheringham
etal., 2002:138-146).

3. Weight the intensity of random points so they follow the apparent
locational preferences of observed sites. This could be done by allocating
random points (during Monte Carlo simulation) according to a site
location probability surface (e.g., derived from predictive modelling) so
that the resulting probability distribution broadly matches the observed
one.

If we turn to the question of chronology, the EBA data from Kythera is a good
example of a “temporally fuzzy” settlement pattern. A KIP sample of 60) sites at
a density of nearly 1:5/km? represents in Aegean EBA terms a superb dataset
and K function analysis suggests sites have a tendency to cluster significantly at
r=500 m, with clustering maintained to about r=1250 m (Figure 14.10).
However, it is extremely unlikely that all of these sites were in use
contemporaneously or continuously throughout the ca. 1,000 year duration of



the EBA. Finer chronological resolution will be possible in the future (fabric
analysis can often distinguish three EBA sub-phases: Kiriatzi 2003), but the
degree of resolution will necessarily vary from site to site. A related problem is
one of continuity of occupation: Whitelaw (2000:147-150) is persuasive in
suggesting that in the EBA Aegean, occupation may often have been episodic
rather than continuous within any given phase. Given these difficulties, EBA
settlement pattern analysis is often extremely suspect, and the clustering is more
likely to be a reflection of repeated occupation of favourable environments for
small-scale subsistence farming, rather than any larger-scale social process.

These problems emphasize the need to find formal methods to incorporate
temporal uncertainty into our pattern analysis. Not only do we have to consider
distributions that have been “dated” to our period of interest with varying
degrees of diagnostic certainty (both at the scale of individual artefacts and for
the overall dating of sites), but we also have to contend with the possibility that
individual sites may have been discontinuously occupied throughout the finest
chronological divisions we can achieve and therefore may not be contemporary
landscape phenomena. On a practical level, these problems benefit from a min-
max approach in which analysis is run (i) on the sample of definite sites only, and
(ii) on all possible sites in the phase. If there are indications that
clustering/regularity persists in each of these cases then the pattern can be
considered a robust one. Similarly, one response to the possibility of
discontinuous settlement is to perturbate the site distribution artificially for any
given chronological phase by arbitrarily excluding a certain number of points —
again, if clustering or regularity persists despite repeated minor alterations of
this kind (the process is a kind of internal Monte Carlo test and is necessarily
laborious) then it can be interpreted with greater confidence.

The KIP Classical sites are a good instance of the problems of categorical
heterogeneity. We not only have sites and settlement clusters of varying sizes,
but also of varying functions, that preliminary analysis suggests probably include
a major port, permanent farmsteads, temporary shelters, sanctuaries, kiln sites
and metallurgical areas. We might consider the spatial relationships between
any one or two of these categories, but the results (Figure 14.10) become
meaningless the more functionally mixed the dataset becomes, except to show
some possible heterogeneity (in that the observed pattern barely comes down
within the confidence interval at large distances) and that from about r=250 m
there is strong clustering of (diverse) activity areas. The key is therefore to
compare like with like, reducing analysis to consider only one or two categories
(K-function analysis can be extend to consider bivariate spatial relationships). In
methodological terms this means careful assessment of function on a site by site
basis (e.g., “villas” in a Roman landscape). Likewise, even for a relatively
continuous variable such as site size, physical (population), economic
(permanent market) or political (formal municipal status) thresholds sometimes
exist that can guide sub-classification.
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Figure 14-10. The modified K-distribution (L) for EBA sites (upper) and Classical sites (lower).

7. Conclusions



This paper has emphasized the highly reflexive approach necessary for the
correct identification and interpretation of the processes behind settlement
patterns. In our opinion, the key challenges are: (i) to define a sample/study area
and its levels of search intensity appropriately (correcting for or exploring “edge
effects” statistically where necessary); (ii) to assess and sub-divide site size,
function and date range (analysing comparable features only and/or arbitrating
uncertain cases statistically); (iii) to account for the resource structure of the
landscape (either by only considering environmental homogenous sub-regions
or by factoring resource preferences into the significance-testing stage of
analysis), and (iv) to use techniques of analysis that are sensitive to detecting
patterns at different spatial scales. The latter in particular is an area increasingly
well-explored in other disciplines, but as yet with minimal impact on
archaeological practice. There remains some value in Clark and Evan’s nearest
neighbour function for identifying relationships between sites at one scale of
analysis, but it may fail to detect larger-scale patterning. More critically, the
dichotomy it encourages between “nucleated” and “dispersed” is at best an
overly simplistic model and, at worst, bears little relationship to the reality of
settlement organization, which at different scales can show both nucleated and
dispersed components. In our Kytheran case study, there is obviously further
work to be done, but even with the existing dataset, we have shown that using a
combination of Monte Carlo testing, frequency distributions, local density
mappings and Ripley’s K-function allows a more sensitive assessment of
multiscalar patters and therefore a more critical evaluation of the processes
underlying settlement distributions.
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