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A Weighted Least Squares Solution for Space
Intersection of Spaceborne Stereo SAR Data

Pu-Huai Chen and Ian J. Dowman

Abstract—The use of stereoscopic SAR images offers an alter-
native to interferometric SAR for the generation of digital eleva-
tion models (DEMs). The stereo radargrammetric method is ro-
bust and can generate DEMs of sufficient accuracy to geocode SAR
images. Previous work has shown that ground coordinates with ac-
curacy of four times the resolution cell can be obtained from ERS
data without using any ground control points (GCPs), where the
high accuracy of the orbit and satellite position of the order of
meters introduce insignificant errors into the intersection proce-
dure. The orbit data for RADARSAT is not as accurate as that for
ERS, and the perpendicular relationship between the resultant ve-
locity vector and the resultant range vector is uncertain in terms of
image geometry. Hence, it is necessary to refine the method to allow
for possible errors. This paper introduces a weighted space inter-
section algorithm based on an analysis of the predicted errors. A
radargrammetric error model for observation errors is also formu-
lated to predict the accuracy of the algorithm. The revised method
can be used without any GCPs, but this can lead to systematic er-
rors due to less accurate orbit data, and it has been found that the
use of two GCPs provides a reasonable solution. The method is in-
sensitive to the spatial distribution of GCPs, which is often critical
in traditional methods. The error statistics of the results generated
from 32 independent check points, distributed through the entire
SAR image, approach the predicted errors and give positional ac-
curacy of 38 m in three dimensions.

Index Terms—DEM, orbit, RADARSAT, stereo SAR.

I. INTRODUCTION

RADARSAT can provide images with a variety of bases
and look angles and so for the first time digital eleva-

tion models (DEMs) can be generated using stereoscopic prin-
ciples from spaceborne synthetic aperture radar (SAR) image
pairs on a routine basis. Experiments of the repeat-pass inter-
ferometric SAR (IfSAR) technique show that the method often
gives poor results due to poor scene coherence and to different
atmospheric conditions. For this reason, the stereoscopic SAR
method presents an important alternative for terrain mapping.

Several photogrammetric methods have been proposed to re-
construct DEMs from SAR data [1]. A major disadvantage of
these methods is that ground control points (GCPs) are needed
to determine the parameters of the stereo models [2], [3]. GCPs
are the reference points providing the basis for radargrammetric
model setup or the connections between coordinate transforma-
tions. If the GCPs are being used to carry out this transforma-
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tion, as opposed to being used as check points, then the radar-
grammetric algorithm can be sensitive to the number and the dis-
tribution of the GCPs required. It is often very difficult and time
consuming to determine a sufficient number of well distributed
GCPs in SAR images and this has proved to be a problem in
using SAR data for terrain mapping. Reducing the sensitivity of
the radargrammetric model to the number and the distribution
of GCPs required is therefore a major issue in the paper.

The previous work on shuttle image radar (SIR-B) data and
European remote sensing satellite (ERS-1) data at University
College London (UCL), London, U.K., suggests that the stereo-
scopic SAR approach is a promising tool for producing DEMs
from spaceborne SAR data [4]–[6]. The authors have proposed
particularly an analytic approach to carry out space intersection
by using a least squares adjustment for ERS-1 data and reported
results without using any GCPs when good quality orbit data are
available [7]. GCPs are used for systematic correction of coor-
dinate transformation for the resultant DEMs at the last stage if
necessary. The approach primarily utilizes two Doppler equa-
tions and two range equations to obtain the position of an un-
known ground point.

The need for GCPs is less when good orbit data is available
and when there are minimal errors in the orthogonal relation-
ship between the azimuth direction (the resultant velocity vector
considering the Earth rotation) and the range (the resultant range
vector relating the sensor to a ground point). Hence, reasonable
results have been obtained with ERS data with no GCPs [7].
However, the orbit data for RADARSAT is not as accurate as
for ERS and the reliability of the orthogonal relationship be-
tween the azimuth direction and the range is uncertain, hence it
is necessary to refine the intersection method to allow for these
possible errors. It is proposed in this paper that the weighting
matrix in the least squares adjustment be designed to solve these
problems. In general, the proposed weighting matrix helps make
the radargrammetric model insensitive to the effects from the
azimuth timing error as well as those from the uncertain orthog-
onal relationship between the azimuth direction and the range.
The method presented is designed to use the minimum number
of GCPs and to give a better solution than, or at least similar to,
the traditional methods. The use of the weighting matrix for de-
termining unknown ground points, leading to the generation of
DEMs [8], is described in Section II. A revised error model for
the algorithm is discussed in Section III to show the robustness
of the proposed method and to be compared with the test results.
The paper demonstrates the proposed radargrammetric model
is not only robust to the error from uncertain orthogonal rela-
tionship between the azimuth direction and the range, but also
independent from the need of accurate orbit data and of GCPs,
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thus showing that it is superior to other methods. GCPs are only
used for systematic correction and the minimal requirement of
the number of GCPs is two. The superiority and robustness of
the proposed technique is validated by the test results of 32 in-
dependent check points in Section IV.

II. THEORY

A. Rigorous Stereo Method

Two basic equations for each orbit can be treated as observa-
tion equations in space intersection.

Doppler equation

(1)

Range equation

(2)

is the Doppler central frequency,the wave length, and
the velocity vector of sensor and target, respectively,,

the position vector of sensor and ground point, respectively, and
the range timing value between sensor and ground point.is

the squint angle of the surface of a Doppler cone with respect to
the normal plane, which is perpendicular to the velocity vector

, as shown in Fig. 1.
When 0, a nominal zero-Doppler image is obtained, and

the resultant velocity vector ( ) is perpendicular to the
resultant range vector (- ), or 0. Thus, the problem of
space intersection could be solved for an unknown ground point

using (1) and (2) from two same-side orbits to form
observation equations

(3a)

(3b)

(3c)

(3d)

These are used to form the normal equation so that the sum of
the squares of the residuals can be minimized

(3e)

Fig. 1. Deflected range direction of a nonzero Doppler SAR image.

Equations (3a)–(3d) are four observation equations, and
is the residual of each observation equation. The ma-

trix [ ] denotes the coefficients of the partial derivatives of four
linearized observation equations with respect to the three un-
knowns of a ground point or the unknown matrix:

, which is the incre-
ment matrix of unknowns; , which is
the provisional values of unknowns; [], which is the matrix
of the constant terms, and [ ], which is the weighting ma-
trix. Each element of the coefficient matrix [] and [ ] in
(3e) is illustrated in [4]. If zero-Doppler processed images are
given, or 0, each linearly independent observa-
tion may be treated as having the same weight, i.e.,
or 1 in (3e). The provi-
sional values [ ] of the unknown ground points are given
by the scene center location and can be updated progressively
using the incremental magnitudes [ ] derived from the least
squares solution. The iterative updating process for the provi-
sional values of the ground coordinates of each ground point
will not go further if the criterion of a minimal increment mag-
nitude, i.e., 1.0 10 m, has been met. Following the iterative
procedures of the least squares adjustment of indirect observa-
tions as shown in (3e), the position vector of a ground point can
be derived [7]. If a SAR image and the header information give
definite geometry for range pixels and for azimuth lines, then
there remains only the problem with shifts of the image coordi-
nates. Such shifts in range and azimuth time data can be simply
corrected by two GCPs.

Any attempts to refine the relationships of image pixels needs
a great number of good quality GCPs with dense and appro-
priate spatial distribution, which is generally impractical and
cost-expensive. Furthermore, the quality of the provided GCPs
is not always reliable due to speckle, poor illumination of fea-
tures appearing in SAR images, mapping accuracy, and scale.
Therefore, it seems that using poor quality GCPs to set up a
geometric model causes more problems than if no GCPs are
used. An attempt has been made to avoid any involvement of
GCPs in the proposed geometric model and to use the minimal
number of GCPs for correcting systematic shifts only. In doing
so, the GCPs must be treated as unknown points and be solved
without using any other ground control. The derived coordi-
nates are compared with the real coordinates of GCPs to obtain
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the overall shifts in three-dimensional (3-D) space and then the
ground controls are collected, provided that the image geometry
is well defined and the resultant range vector is perpendicular to
the resultant velocity vector.

B. Formation of a Weighting Matrix

If the resultant velocity vector is not perpendicular to the re-
sultant range vector, and since the axes of the azimuth and range
components in the SAR image coordinate system remain or-
thogonal, then the deflected range vector does not correspond
to the nominal range vector (azimuth line) of that image. This
is clearly shown in Fig. 1. The range direction deflected by an
azimuth time error (converted to distance) produces a de-
viation in along-track direction of the ground position in
respect to the image coordinate system and gives

(4)

is the precision of prior estimation for observation.
is the nominal zero Doppler frequency given by image

header data (for a RADARSAT SAR standard image).is
the deflected range magnitude, which is relatively large: about
880 000 m for a RADARSAT SAR image compared with the
nominal along-track orbit error of 600 m.

Consider the difference between the range and the Doppler
equations. Apparently, increases in proportion to the mag-
nitude of . But the error is set as zero in the least squares
solution, under the assumption of an orthogonal relationship
between the azimuth line and range, which causes a relatively
large residual for the Doppler equation. If the same weights were
given to the Doppler and range equations in the least squares ad-
justment, a small error of anglecould be magnified to produce
a significant residual in (3a) and (3c) under the circumstances of
a relatively large range magnitude of spaceborne SAR images.
A suitable weighting matrix is then considered to suppress such
possible effects in the least squares adjustment.

The condition is that the effects from azimuth time error are
expected to be minimal, since observations are made in respect
to an orthogonal SAR image coordinate system. Let the preci-
sion of the prior estimation for the observation of the left
and the right image be and , respectively. Also, let the
precision of the slant range observation of each orbit be approx-
imately the same as . Generally, the weights of observations
are taken to be quantities proportional to the reciprocals of the
square of the precision (or the reciprocals of the variance) of
the observations. The other elements of the weight matrix are
all zero since linearly independent observations are assumed.

Hence, the weighting matrix [ ] of the normal equation in (3e)
is derived as

(5)

The location of a ground point decides the magnitude of the
resultant velocity vector . The velocity magnitude
of a ground point is identical to that of the Earth rotation
that changes according to the latitude of that ground point and
gives

(6)

For example, if the resultant vector between sensor and ground
velocity has achieved a maximal magnitude at low latitude, the
elements of the weighting matrix are given as

(7)

Numerically, let 0.056 56 m, 5 m (one slant range
pixel of the RADARSAT SAR standard image), the same sensor
speed assumed for both orbits 7460 m/s, the Earth rotation speed
at low latitude 400 m/s, and the along-track error as 600 m. The
weighting matrix is derived as

Similarly, the possible weights can be derived using (5) or
(7) under different circumstances, according to sensor speed,
latitude of test area, and slant range pixel size. The remote
sensing satellites always operate on nearly circular orbits, and
the journey of a spaceborne sensor within a SAR standard
image scene is less than 15 s. To change the location of the
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test site or the speed of the sensor on different orbits makes
insignificant effects on the weights.

Notice that the weights used in direct observations such as a
“weighting average” may change the magnitude of the object
explicitly and directly. But this is not the case of a least squares
adjustment of indirect observations in which the weights are
employed for achieving a balance of different qualities of ob-
servations of different classes. Namely, the use of weights can
potentially improve or optimize the precision of the calculated
results under the condition of reducing the effects of the less
reliable observations and emphasizing those of the good ones.
So the reduction of the effects of one component (say azimuth
line observations) must be paid by increasing the effects of the
other component (say range pixel observations). If the qualities
of observations of different classes are similar, there will be no
significant improvement for the calculated results by means of
using weighting techniques.

III. T HEORETICAL ERRORMODELS

In terms of terrain mapping, either automatic correlation or
manual measurement may introduce errors causing uncertain-
ties in the results derived from a radargrammetric model. In
order to demonstrate the robustness of the proposed method, it
is useful to investigate the theoretical error generated by the pro-
posed rigorous model for random observations. The theoretical
error model for the measurements of range pixels is explained
and shown in [7]. The error magnitude is decided by the in-
tersecting angle of two range vectors and the measuring error
of range pixel and is given by

(8)

when a greater weight is given to the range observations. The
error model for measurements of azimuth line must be revised
because the assumption of good orbit data was made in [7],
which is not always valid for every kind of spaceborne SAR
data. Because the weight for the range observation is relatively
large as shown in (5), the ground points are solved mainly using
distance observations. The greatest concern in space intersec-
tion is to find an intersecting point to satisfy a balance of range
shifts between and , the range vector from right and left
sensor, respectively, to the ground point, as shown in Fig. 2(a).
If we assume that the same weight is assigned to the range equa-
tion of each orbit, the deviation of range distance for each orbit
tends to be the same value in the least square adjustment. Again,
the weight for the Doppler equation of each orbit is assumed
to be the same. An intersecting point solved from space inter-
section must satisfy two conditions, i.e., the same but relatively
large weight for each range equation and the same but relatively
small weight for each Doppler equation. The range direction of
each orbit may swing slightly from one side to another and inter-
sect at a point where the range distance and the deflected angle
of range direction achieve a balance.

Notice that Fig. 2(b) is an enlargement of the right end of
Fig. 2(a). In Fig. 2(a) an error in the sensor position causes a
small error in the measurement of the azimuth lines. Change

of causes a shift in from to and that of from
to , as shown Fig. 2(b), i.e.,

Let be the intersecting point. The deviation in from to
, or to , must equal to that of from to , or to
, under the two conditions. Then

There are infinite points satisfying the criterion forming the
track of the line from to . Obviously, such a line is a bi-
sector of the convergent angleof two orbit tracks, as shown in
Fig. 2(b). There is only one intersecting point making a balance
between two Doppler equations, i.e., the deflected angletends
to be the same for each range direction as

(9)

and is the magnitude of and , respectively, and
is the error vector of the measurement of azimuth line.

The resultant error vector is derived as In general, both vec-
tors and are approximately perpendicular to each other.
Therefore, the magnitude of the resultant error vector for mea-
surements of one azimuth line and one range pixel in an image
is derived as

(11)

(10)

IV. TEST RESULTS

A. Procedures and Implementation

The proposed procedures start from a parallax file, which is
a data set of successfully correlated points. The parallax file
generated automatically by the pyramidal image correlation
scheme, or manually, must be transformed from screen to image
coordinate system with respect to each SAR image header
file. The automatic image correlation method employing a
region-growing technique developed for radar data is explained
in [8], revised from the algorithms illustrated in [9]–[11].
The image header files must include ephemeris data, scene
center time and location, Earth model parameters, image size,
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(a)

(b)

Fig. 2. (a) Swings of range directions in space intersection (top view of the two orbits) achieving a balance. Two range beams converge and intersect atthe ground
pointP . (b) Enlargement of the intersected location at the right part of Fig. 2(a).

TABLE I
THEORETICAL ERRORS FOROBSERVATIONS FROM A PAIR OF

RADARSAT SAR IMAGES

microwave length, ground-range-to-slant-range transformation
parameters, the azimuth time of each azimuth line, etc. The
ground points can be derived solving space intersection problem
as described in Section II. All GCPs are treated as unknowns
to be solved from measured image coordinates and are to be
compared with the corresponding map coordinates to derive a
difference between both coordinates that are used to correct

systematic shifts. The whole system has been implemented
and tested on a SUN SPARC4 workstation within a local area
network at UCL.

B. Theoretical Errors

Compared with the human operators, an automatic correla-
tion method such as a normalized cross-correlation measure, can
generate relative measuring deviations of2 pixels according
to [12]. The optimized pyramid image correlation strategy em-
ploying a least squares algorithm with a region-growing ap-
proach ensures that subpixel correlation can be achieved. Thus,
the observation error for image coordinates is estimated as1
pixels. Let two range values 1100 km and 880
km, respectively. If the ambiguity of the azimuth line of a SAR
image is 14 m and the convergent angle 9 , (9) gives an error
magnitude as 7.8 m. If the intersection angle 24 , and the
ambiguity of range pixel is given as 9.1 m, the range observation
error is derived as 22.4 m according to (8). Then (11) gives
a theoretical error in three-dimensional (3-D) space as 23.7
m for a SAR image. If the measuring errors exist on the left and
the right images, (11) gives a resultant error magnitude 28 m in
3-D, as in Table I. Obviously, the weighted stereo intersection
is less sensitive to the observation errors of azimuth lines than
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Fig. 3. Spatial distribution of 32 check points, and of two GCPs.

to those of range observations, according to (8) and (9), and any
possible effects from azimuth time error and the orthogonal re-
lationship between the azimuth line and range can be reduced.

C. Tests with Check Points

To evaluate the performance of the algorithm for space in-
tersection, 32 ground check points have been selected manu-
ally from three images of descending passes provided under the
RADARSAT Application Development and Research Opportu-
nity (ADRO) Program (no. 136). The 32 points are distributed
randomly within a 80 km 80 km area, as shown in Fig. 3. The
test images are located on the Aix-Marseilles test site of south
France as in Fig. 4. Table II shows the characteristics for the
test images. Two descending standard beam-7 (DS7a and DS7b)
SAR images are taken together with one of the descending stan-
dard beam-1 (DS1) images, individually, to form two stereo-
scopic pairs as case (1) and (2). The coordinates of the check
points were calculated using the new methods with weights,
and were compared with the coordinates measured from French
1 : 25 000 maps. The measuring errors of the ground coordinates
are estimated as 1 mm in easting (E) or northing (N) on maps,
or 25 m on the ground and 10 m in height (H), which leads to
an error vector with error magnitude of 37 m in 3-D space. The
results of weighted space intersection for the 32 check points,
as shown in Table III, demonstrate that the systematic shifts can
be eliminated using only two GCPs, and the resultant accuracy
is good compared with the theoretical values.

In Table IV, the results calculated using an equal-weighted
least squares adjustment show similar results to the weighted re-
sult. This shows that in this case, any error in the zero-Doppler
assumption has not caused significant error in the results, and it
also shows a balanced distribution of errors between E, N, and H
and also a smaller range of maximum (positive) and minimum
(negative) errors. This is the expected result from a weighted
least squares adjustment where observations of different quali-
ties are balanced to give an optimum result as explained in Sec-
tion II.

Fig. 4. Location of the Aix–Marseilles test site in south France (not to scale).

TABLE II
CHARACTERISTICS OF THETEST IMAGES FORSELECTING CHECK POINTS

TABLE III
ACCURACY STATISTICS OF CHECK POINTS FROM WEIGHTED SPACE

INTERSECTIONUSING RADARSAT DATA WITH TWO GCPs

TABLE IV
ACCURACY STATISTICS OFCHECK POINTS FROM A NONWEIGHTED SPACE

INTERSECTIONUSING RADARSAT DATA WITH TWO GCPs.

There are few published results with which to compare our
results. Reference [13] gives results from RADARSAT images,
but it is not clear what the number or quality of their GCPs is.
Two sets of results are given and shown in Table V. The first set
are comparable with those in Table III, but the second set are
considerable worse. These are derived from a stereo matching
algorithm, and further work at UCL [14] gives results for DEM
accuracy after stereo matching very similar to those given for
check points in Table III. The proposed algorithm and the results
obtained in the paper are comparable with other stereo radar-
grammetric methods, which generate DEMs with accuracy of
the order of 15 20 m, as reviewed in [15]. But our proposal is
particularly insensitive to the number and distribution of GCPs.
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TABLE V
ACCURACY STATISTICS OFGCPsAND ARBITRARY GROUND POINTS DERIVED

USING A TRADITIONAL APPROACH(QUOTED FROM [13])

TABLE VI
ACCURACY STATISTICS OF THERESULTANT DEMs USING THE WEIGHTED

LEAST SQUARESALGORITHM WITH TWO GCPs

D. Generation of DEMs

Four images, including those from descending (DS1DS7b)
and ascending (AS1AS7) orbits, as in Table II, have been
tested to generate DEMs. A subscene image of 10241024
pixels was extracted from each whole scene covering the urban
area of Marseille and the hilly area of Chaine de l’Etoile. The
terrain relief within the subimage varies from 0 m to 639 m
above mean sea level at Mountain St. Cyr. Each same-side
image pair of the descending orbits and the ascending orbits
forms a stereoscopic SAR image pair to be correlated together
to produce parallax files containing more than 200 000 points
[8]. The relative location of the generated DEM is shown in
Fig. 3.

As mentioned before, no GCPs are used as input for space
intersection. Two GCPs were used to correct systematic shifts
caused from inferior orbit information after stereo intersection.
The resultant DEMs were interpolated into a 25-m grid and
compared with a reference DEM in the same area, giving the
accuracy statistics as shown in Table VI. The root mean square
errors (RMSEs) from statistics of each resultant DEM is better
than 24 m, and this is reasonable compared to the predicted error
of 28 m in 3-D. Note that such accuracy can be achieved using
other methods, but a great number of good quality GCPs or tie
points for those methods are needed. Due to the limitations of
the automatic correlation method, layover effects, ambiguities
of image features, and speckle, 100% coverage DEM can hardly
be generated, and it is liable to produce some gaps in the results.
The resultant DEM image has been shown in [8].

V. CONCLUSIONS

The results calculated from RADARSAT data, using the re-
fined rigorous algorithm for space intersection with the use of
a weighting matrix, reduces the errors in the azimuth line com-
ponent. The use of the weighting matrix is not only essential in
the theory of least squares adjustment (such as the treatments
of different classes of observations), but also beneficial in prac-
tice (the reduction of the extent of errors in azimuth direction).
The paper demonstrates a flexible and rigorous radargrammetric
algorithm, which enables users to deal with observations of dif-
ferent classes (of different precision), i.e., the range and azimuth
line observations, to optimize the calculated results. This goal

has been achieved, as shown in Tables III and IV. Also, the
quality of the calculated results can be affected by many fac-
tors, not only the weights given in the least squares solution, but
the qualities of the GCPs used for systematic corrections and
those of the check points employed for objective comparisons.
Notice that the qualities of GCPs or check points that are mea-
sured manually are subject to variations from one to another.

However, GCPs of relatively poor quality make the use of the
traditional approach difficult and justify the use of the proposed
algorithm. The absolute position of the solved ground points
can be fixed by only two GCPs, which gives the accuracy of
a generated DEM as 24 m. This keeps the cost of providing
control at the lowest level without degrading the outcome. The
results are comparable with the theoretical errors of up to 28 m,
predicted by the proposed error model, and are superior to other
methods in terms of efficiency and cost.

Based on the quality of the results derived, it is suggested
that the main applications of DEMs generated from stereoscopic
SAR data may include the geocoding of SAR images, terrain
mapping at a small-scale, and numerous applications for envi-
ronmental monitoring. When map revision or terrain mapping is
difficult with optical data and IfSAR methods, and the requested
accuracy in 3-D is not better than the resolution of a SAR image,
stereo SAR is shown as being important as an alternative map-
ping tool.
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