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Teleportation fidelities of squeezed states from thermodyaimical state space measures

Alessio Serafini, Oscar C.O. Dahlsten, and Martin B. Plenio
Institute for Mathematical Sciences, 53 Prince’s Gate, éngl College London, London SW7 2PG, UK
and QOLS, Blackett Laboratory, Imperial College Londonndon SW7 2BW, UK

We introduce a “microcanonical” measure (complying with tgeneral canonical principle’) over the sec-
ond moments of pure bosonic Gaussian states under an ermgiraint. We determine the average fidelity
for the teleportation of states distributed according tochsa measure and compare it to a threshold obtained
from a feasible classical strategy. Furthermore, we sha tinder the proposed measure, the distribution of
the entanglement concentrates around a finite value at génendaynamical limit and, in general, the typical
entanglement of Gaussian states with maximal enérgg/not close to the maximum allowed k.

PACS numbers: 03.67.Mn, 05.70.-a

Introduction — Besides having been at the core of theoreticalvariable quantum mechanical systems describea Ipairs
and experimental quantum optics right from its early stagesof canonically conjugated operatdfs;, p;} with continuous
Gaussian states have recently acquired a major role in quaspectra. Grouping the canonical operators together indbe v
tum information science, in the so called ‘continuous alga  tor R = (#1,...,&n,P1,--.,Pn)" allows one to express the
(V) scenariolIll]. Indeed, some of the most spectacular imeanonical commutation relations H%]», Rk] = 2 Q;;, where
plementations of quantum information protocols to date arehe ‘symplectic form’2 has entrie€2;;, = 0j4n.x — dji4n
based on Gaussian states, with the prominent example of déor j,k = 1,...,2n. Any state of ann-mode CV sys-
terministic teIeportatiorﬂZ]. In the analysis of most siith ~ tem is described by a positive, trace-class operatoi~or
plementations, the proper assessment of figures of merit reny statep, let us define thé&n x 2n matrix of second mo-
quires the average over a distribution (a “measure”) oestat ments, or “covariance matrix” (CM)r with entriesoj;, =
in which input quantum information is encoded. For instanceTr [{ &;, Ry }o]/2 — Tr [R; 0] Tr [Rie]. In the following, we
in the case of quantum teleportation of coherent states, thgill refer to the ‘energy’ of a state as to the expectation value
theoretical average fidelity (between input and outpues)at of the operatoil, = Z;‘:l(;g? + p?) (note that, in our con-
is determined by assuming a particular distribution of inpu vention, the vacuum of a single mode has en&@jgy his defi-
coherent states|[3]. In the present paper we propose a mesition corresponds to the energy of a free electromagnetit fi
sure on the set of pure Gaussian states, whose introductiafthe optical scenario (and to decoupled oscillators ingtire-
will be thoroughly motivated by fundamental statistical ar eral case). Neglecting first moments, the energy is detenin
guments|[4]. We shall focus on the second moments of they the second moments accordinglto(oHy) = Tr (o).
quadrature operators (while the measure usually emplayed t Gaussian states are defined as the states with Gaussian char-
analyze teleportation of coherent stalés [3] essentiatipe-  acteristic functions and quasi-probability distribuonAll
passes first moments), covering the whole set of pure Gaugure Gaussian states can be obtained by transforming the vac
sian states with null first moments. As we will mention later, yum under unitary operations generated by polynomialsef th
first moments may be accomodated as additional variables i§econd order in the canonical operators. Operations gener-
the presented framework. ated by first order polynomials in the quadratures corredpon
The importance of determining a suitable measure over & local displacements in the first moments, and will thus be
set of states is not merely a theoretical issue, as the di@iua disregarded. As for second order transformations, they can
of classical thresholds for the figures of meritis cruciaégd  be mapped into the groufy.,, r of realsymplectic transfor-
tablishing whether practical realizations of quantum@cots ~ mations by virtue of the so calledhetaplectic representation
actually out-perform competing classical strategEés [Ble (recallthatS € SL(2n,R) : S € Spanr & STQS = Q).
shall thus apply the proposed measure to determine the aves a consequence of such a mapping, the &Mf any pure
age teleportation fidelity of pure Gaussian states withiwary ~Gaussian state can be writtenaas= ST [1, 6].
second moments, and shall compare such a fidelity to a coGeneral canonical principle and microcanonical measure.
responding “classical” threshold. Moreover, to furthéust  We will now proceed to define a measure over the set of pure
trate the potentialities of a measure on second moments, w@aussian states, which will be referred to as ‘microcanoni-
will address the “typical” entanglemerﬂ [5] of pure Gauasia cal’ (for reasons which will be clear shortly). Hencefortihe
states under an energy constraint. The very construction ahorthand notatiom will stand for the average of the quan-
the measure will imply that the distribution of the von Neu- tity = with respect to such a measure. Since we will adopt a
mann entropy of any finite subsystem ‘concentrates’, both atonstructive approach, based on the gradual enforcement of
the thermodynamical limit and for finite numbers of modes,specific conditions on the measure, the notaiiavill appear,
around a finite ‘thermal’ average, well away from the allowedwith no ambiguity, before the definition of the measure ftsel
maximum. Because the symplectic group is non-compact, an invariant
Preliminary facts and notation— We consider continuous Haar measure on the whole group (from which a measure for
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the second moments of pure Gaussian states could be derivétie second condition rephrases the prescription “almost ev
via the equatiorr = ST.5) would be non-normalizable (and ery pure state”, requiring ‘concentration of measure’ & th
thus “unphysical”, giving rise to distributions with unbmded  thermodynamical limit (in fact, in conjunction with the firs
statistical moments). The first natural prescription togdhe  equation, it implies that the variance of the entries of thé C
non-compact nature of the group consists in the introdactio vanishes at the thermodynamical limit). The previous cendi
of a constraint on the total energy of the system, which weions, which are highly desirable to single out a measure nat
will denote byFE (hence the designation “microcanonical” at- urally endowed with physical and statistical significangi,
tached to the measure). Even so, no natural invariant measugreatly restrict the possible choices for the distributibthe
emerges. However, let us recall that an arbitrary symlectivariablesz;’s
transformatior can be decomposed &s= O'(Z @ Z~1)0, In order to show this, we first work out the averages of the
whereO, 0’ € K(n) = Sp(2n,R) N SO(2n) are orthogo- entries ofo over the Haar measure of the compact subgroup.
nal symplectic transformations, whilgis ann x n diagonal  This task can be accomplished relying only on some basic
matrix with eigenvalues; > 1forl1 < j < n [Iﬂ] The  properties of the integration over the unitary group, destiv
set of transformations of the forz & Z ! is a non-compact from simple symmetry arguments (s@ [10], a detailed deriva
subgroup ofSp2, g (corresponding to local squeezings). Thetion can be found irﬂ6]), leading to
virtue of such a decomposition, known as the ‘Euler’ decom- n
position, is immediately apparent, as it allows one to disti — _ { 7} = { }
guish between the degrees of freedom of the compact sub- **  2n 2 (4o = ZEI o
group (‘angles’, collectively denoted Iy which do not affect ) o _
the energy) and the degrees of freedgia with non-compact The convenience of a parametrisation through the variables
domain. In particular, applying the Euler decompositiot’nm Ej = (27 +2; %), representing the local energies of the decou-
CM o of generic pure states leadsdo= 0T (22 & Z-2)0. pled modes is now apparent. The same arguments, based on
Moreover, we recall that the compact subgrdin) is iso- ~ Symmetry and normalization (reflecting orthogonality)) ba
morphic toU(n) [7]. As dictated by the Euler decomposi- applied to the average?, , leading to
tion, we assume the? parametres) of the transformation N
O € K(n) to be distributed aceording to the H_aar measure of P 1 [ Z M} i 3)
the compact subgroufi (n), which can be carried over from
U(n) through the isomorphism recalled above and whose in-
finitesimal element will be denoted faly:; (19). Now, the desired agreement of EqS[]2,3) with Ed. (1) single
We are thus left with the parametergs alone, for which ~ outarestricted class of measures for the variablgs. Most
a ‘natural’ measure has not yet emerged. To constrain thBotably,any measure such that the local energ{ds; } are,
choice of such a measure, we will invoke a fundamental statisat the thermodynamical limitindependent, identically dis-
tical argument. In their alternative, ‘kinematical’ appot to ~ tributed (*i.i.d") variables with averagels = (7" + 2) com-
statistical mechanics, Popesetal. [@I] define a general prin- Plies with the general canonical principf]. In point of fact,
ciple, which they refer to ageneral canonical principlestat- ~ at the thermodynamical limit, only the averagesk), with
ing that “Given a sufficiently small subsystem of the unieers J # k matter in the computation of the variance, as their num-
almost every pure state of the universe is such that the subsyber scales aa?, while the number of terms |E2 is clearly
tem is approximately in the ‘canonical state’” The ‘canon-  linear inn, and their contribution gets suppressed by the fac-
ical’ state, is, in our case, a Gaussian thermal state, withtor 1/n? (deriving from the integration over the Haar measure
CM o. = (1 + T/2)1. Here the ‘temperaturd is defined  of a term of degree two in the compact transformations’ en-
by passage to the thermodynamical limit, that is#for oo tries). The same argument holds for the square of the quantit
andE — oo, (E —2n)/n — T (assumingkp = 1 forthe  7j; of Eq. (2). Fori.i.d. variablest; ~ E andE; Ej, ~ E
Boltzmann constant). For ease of notation, in the followingv j - k, thus implying the vanishing of the variance at the
the symbol~ will imply that the equality holds at the ther- thermodynamical limit.
modynamical limite.g: (E — 2n)/n ~ T. Because the state  To complete the definition of the measure, we have to spec-
oc is Gaussian with null first moments, the general canonicaify a distribution of theE;’s in agreement with the previous
principle can be fully incorporated into our restricted (Ga  requirements. Recovering the energy constrainte will as-
sian) setting. To this aim, let us recast the principle im&of  sume a Lebesgue (‘flat’) measure for the local energigs
mathematical conditions to be fulfilled by the underlyingame inside the region's = {E : |E| < E}, bounded by the lin-
sure on pure Gaussian states. Recall that partial tracing (0 ear hypersurface of total energy(here,E = (E1, ..., E,)
viously a Gaussian operation) amounts, at the level of CM'sdenotes the vector of energies, whilg| = Z ' E;). More
to simply pinching the submatrix af pertaining to the rele-  explicitly, denoting byd p(E) the probability of the occur-
vant modes. Then, in order for the measure to comply withrence of the energie® and by = (E — 2n)"/n! the
the general canonical principle, one has to require volume of the regio'g, one hasdp(E) = d"E/V =
L (dFE;...dE,)/Vif FE €T'ganddp(E) = 0 otherwise.
o~ (1+T/2)0 , o?k ~ (1+T/2)%6; . (1)  Notice that such a flat distribution is the one maximising the
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entropy in the knowledge of the local energies of the decou- 1 :
pled modes. In this specific sense such variables have been -
privileged, on the basis of both mathematical (Euler decom- 90
position and Haar averaging over the compact subgroup) and .
. ) L S 0.8 .
physical (general canonical principle and analogy withrtfie w .
crocanonical ensemble) grounds. In full analogy with the 0.7 C.
equivalence of statistical ensembles, thgs become i.i.d. T
at the thermodynamical limit. In fact, the marginal density 0.6 T
of probability P,(E};, E) for each of the energieE; given To.
by P,(E;,E) = 72~ (1— gf_’gi)n 1. At the thermody- 0.5 5 3 a 5 6 5
namical limit, the upper integration extremum for eakh E

diverges and?,(E;, E) — efw/T, so that the decou-

pled energies are distributed according to independerizBol FIG. 1: Average teleportation fidelity for = 1 (blue curve) and
mann distributions with the parameté&rplaying the role of =05 (green curve_) versus the heterodyne threshold (red dats), a
a temperature, and their averages satisfy q. (1). The micrdunctions of the maximal energy.

canonical measure is thus consistent with the general eanon

ical principle E}]. The ‘microcanonical’ averagg over pure

Gaussian states at energyof the quantityQ(E, 1)) deter-  sybsystems from concentrating around the maximum. Notice
mined by the second moments alone will thus be defined agat the concentration of measure would also occur for aidist

Q = N [dun(¥) [, dEQ(E,?), where the integration pution of states witliixedtotal energy (and all the variables
over the Haar measure is understood to be carried out oveig;} still Lebesgue-distributed under such a constraint). This
the whole compact domain of the variables is the case as such a measure is equivalent, at the thermody-
Typical entanglement- Here, we concisely address the sta-namical limit, to the one we are considering (they both con-
tistical properties of the bipartite entanglement of pueai&  verge to exactly the same Boltzmann distribution).

sian states under the microcanonical measiire [6]. Let us cofTeleportation fidelities- Let us now consider a practical situ-
sider the von Neumann entrogy of the reduced state,,  ation, in which two parties (Alice and Bob) want to commu-
of a finite number of modes: with CM +, thus quantify-  nicate through quantum teleportation. Instead of comenti
ing its entanglement with the remainiig — m) modes of  themselves with coherent states, Alice and Bob are intstest
the globally pure state. At the thermodynamical limit the-di i exchanging single-mode pure Gaussian states with anpitr
tribution of the CM+~ concentratesyith vanishing variance  CM (wherein the quantum information is encoded). To this
around a thermal state with CNI'/2 + 1)1, according to  aim, they employ the usual CV teleportation scheme, based
the general canonical principle. Therefore, the distithut on homodyne measurements and on the sharing of a two-mode
of the von Neumann entropy of the reductiSrconcentrates  squeezed state with squeezing parametessentially quan-
around the von Neumann entropy of a thermal stdte [6]. Inifying the entanglement exploited in the teleportation-pr
formulae: S ~ mf(1 4+ T/2) and (52 — §2) ~ 0, where cess, see[tl] for a detailed description of the scheme). Sup-
f(z) = (x+1)logy(x+1)/2]/2—(x—1)logy[(x—1)/2]/2.  pose, quite reasonably, that Alice generates (and sendzp B
Notice that the maximal local von Neumann entropy of anystates with a flatly distributed energy up to a maximal value
(finite or infinite) subsystem diverges at the thermodynainic £ and random optical phase, whose distribution is thus de-
limit (as, in principle, all the infinite energy could be came  scribed by the microcanonical measure. The microcanonical
trated in only two modes — owned by the two distinct sub-average fidelityF (defined as the average, over the distribu-
systems —, thus yielding an infinite entropy for each subsystion of input states and of measurement outcomes, of the over
tem). For finiten, the microcanonical measure is apt to belap |(in|out)|? between the input statén) and output state
investigated numerically by direct sampling, allowing doe |out)) can be straightforwardly determin[ll], and found to
study the distribution of the von Neumann entropy for differ be 7 = 2e?"(vV1+ e ¥ + Ee 2" — 1 — e~ 2")/(E — 2).
entm, n andE. Even for smalln — well before the onset of To properly assess the effectiveness of the standard tédepo
thermodynamical concentration of measure around the finitdon protocol in transmitting second moments, let us cormpar
thermal average — the entanglement of pure Gaussian statdse previously obtained fidelity to an appropriate “claakic
distributes, for small enough energies, around valuesrgenethreshold”F,,; (as customary in the literature on teleportation,
ally distant from the finite allowed maximure.g, form =1 “classical” refers to a procedure where no entanglementis e
and E = 10n, the difference between the maximum and theploited). The kind of classical strategy we will consider is
averages is, respectively}.0 and13.6 standard deviations for as follows: Alice measures her mode by heterodyne detec-
n = 5 andn = 20). This is at striking variance with results tion (corresponding to the positive operator valued measur
obtained, adopting different measures, in finite dimeresion ment with element$a)(«|/m, where|«) is a coherent state
systemsl__[l5]. The equipartition of energy, imposed by the gen[lﬂ]) and sends her result (a complex numbemrepresent-
eral canonical principle, prevents the entanglement ofefini ing the heterodyne signal) to Bob who reproduces a centered,
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