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Teleportation fidelities of squeezed states from thermodynamical state space measures
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We introduce a “microcanonical” measure (complying with the ‘general canonical principle’) over the sec-
ond moments of pure bosonic Gaussian states under an energy constraint. We determine the average fidelity
for the teleportation of states distributed according to such a measure and compare it to a threshold obtained
from a feasible classical strategy. Furthermore, we show that, under the proposed measure, the distribution of
the entanglement concentrates around a finite value at the thermodynamical limit and, in general, the typical
entanglement of Gaussian states with maximal energyE is not close to the maximum allowed byE.
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Introduction – Besides having been at the core of theoretical
and experimental quantum optics right from its early stages,
Gaussian states have recently acquired a major role in quan-
tum information science, in the so called ‘continuous variable’
(CV) scenario [1]. Indeed, some of the most spectacular im-
plementations of quantum information protocols to date are
based on Gaussian states, with the prominent example of de-
terministic teleportation [2]. In the analysis of most suchim-
plementations, the proper assessment of figures of merit re-
quires the average over a distribution (a “measure”) of states
in which input quantum information is encoded. For instance,
in the case of quantum teleportation of coherent states, the
theoretical average fidelity (between input and output states)
is determined by assuming a particular distribution of input
coherent states [3]. In the present paper we propose a mea-
sure on the set of pure Gaussian states, whose introduction
will be thoroughly motivated by fundamental statistical ar-
guments [4]. We shall focus on the second moments of the
quadrature operators (while the measure usually employed to
analyze teleportation of coherent states [3] essentially encom-
passes first moments), covering the whole set of pure Gaus-
sian states with null first moments. As we will mention later,
first moments may be accomodated as additional variables in
the presented framework.

The importance of determining a suitable measure over a
set of states is not merely a theoretical issue, as the evaluation
of classical thresholds for the figures of merit is crucial ines-
tablishing whether practical realizations of quantum protocols
actually out-perform competing classical strategies [3].We
shall thus apply the proposed measure to determine the aver-
age teleportation fidelity of pure Gaussian states with varying
second moments, and shall compare such a fidelity to a cor-
responding “classical” threshold. Moreover, to further illus-
trate the potentialities of a measure on second moments, we
will address the “typical” entanglement [5] of pure Gaussian
states under an energy constraint. The very construction of
the measure will imply that the distribution of the von Neu-
mann entropy of any finite subsystem ‘concentrates’, both at
the thermodynamical limit and for finite numbers of modes,
around a finite ‘thermal’ average, well away from the allowed
maximum.
Preliminary facts and notation– We consider continuous

variable quantum mechanical systems described byn pairs
of canonically conjugated operators{x̂j , p̂j} with continuous
spectra. Grouping the canonical operators together in the vec-
tor R̂ = (x̂1, . . . , x̂n, p̂1, . . . , p̂n)T allows one to express the
canonical commutation relations as[R̂j , R̂k] = 2i Ωjk, where
the ‘symplectic form’Ω has entriesΩjk ≡ δj+n,k − δj,k+n

for j, k = 1, . . . , 2n. Any state of ann-mode CV sys-
tem is described by a positive, trace-class operator̺. For
any state̺ , let us define the2n × 2n matrix of second mo-
ments, or “covariance matrix” (CM),σ with entriesσjk ≡
Tr [{R̂j , R̂k}̺]/2 − Tr [R̂j̺]Tr [R̂k̺]. In the following, we
will refer to the ‘energy’ of a state̺as to the expectation value
of the operatorĤ0 =

∑n

j=1
(x̂2

j + p̂2
j) (note that, in our con-

vention, the vacuum of a single mode has energy2). This defi-
nition corresponds to the energy of a free electromagnetic field
in the optical scenario (and to decoupled oscillators in thegen-
eral case). Neglecting first moments, the energy is determined
by the second moments according toTr (̺Ĥ0) = Tr (σ).

Gaussian states are defined as the states with Gaussian char-
acteristic functions and quasi-probability distributions. All
pure Gaussian states can be obtained by transforming the vac-
uum under unitary operations generated by polynomials of the
second order in the canonical operators. Operations gener-
ated by first order polynomials in the quadratures correspond
to local displacements in the first moments, and will thus be
disregarded. As for second order transformations, they can
be mapped into the groupSp2n,R of realsymplectic transfor-
mations, by virtue of the so calledmetaplectic representation
(recall thatS ∈ SL(2n,R) : S ∈ Sp2n,R ⇔ STΩS = Ω).
As a consequence of such a mapping, the CMσ of any pure
Gaussian state can be written asσ = STS [1, 6].
General canonical principle and microcanonical measure.–
We will now proceed to define a measure over the set of pure
Gaussian states, which will be referred to as ‘microcanoni-
cal’ (for reasons which will be clear shortly). Henceforth,the
shorthand notationx will stand for the average of the quan-
tity x with respect to such a measure. Since we will adopt a
constructive approach, based on the gradual enforcement of
specific conditions on the measure, the notationx will appear,
with no ambiguity, before the definition of the measure itself.

Because the symplectic group is non-compact, an invariant
Haar measure on the whole group (from which a measure for
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the second moments of pure Gaussian states could be derived
via the equationσ = STS) would be non-normalizable (and
thus “unphysical”, giving rise to distributions with unbounded
statistical moments). The first natural prescription to tame the
non-compact nature of the group consists in the introduction
of a constraint on the total energy of the system, which we
will denote byE (hence the designation “microcanonical” at-
tached to the measure). Even so, no natural invariant measure
emerges. However, let us recall that an arbitrary symplectic
transformationS can be decomposed asS = O′(Z ⊕Z−1)O,
whereO, O′ ∈ K(n) ≡ Sp(2n,R) ∩ SO(2n) are orthogo-
nal symplectic transformations, whileZ is ann × n diagonal
matrix with eigenvalueszj ≥ 1 for 1 ≤ j ≤ n [7]. The
set of transformations of the formZ ⊕ Z−1 is a non-compact
subgroup ofSp2n,R (corresponding to local squeezings). The
virtue of such a decomposition, known as the ‘Euler’ decom-
position, is immediately apparent, as it allows one to distin-
guish between the degrees of freedom of the compact sub-
group (‘angles’, collectively denoted byϑ, which do not affect
the energy) and the degrees of freedomzj ’s with non-compact
domain. In particular, applying the Euler decomposition tothe
CM σ of generic pure states leads toσ = OT(Z2 ⊕ Z−2)O.
Moreover, we recall that the compact subgroupK(n) is iso-
morphic toU(n) [7]. As dictated by the Euler decomposi-
tion, we assume then2 parametresϑ of the transformation
O ∈ K(n) to be distributed according to the Haar measure of
the compact subgroupK(n), which can be carried over from
U(n) through the isomorphism recalled above and whose in-
finitesimal element will be denoted bydµH(ϑ).

We are thus left with the parameterszj ’s alone, for which
a ‘natural’ measure has not yet emerged. To constrain the
choice of such a measure, we will invoke a fundamental statis-
tical argument. In their alternative, ‘kinematical’ approach to
statistical mechanics, Popescuet al. [4] define a general prin-
ciple, which they refer to asgeneral canonical principle, stat-
ing that “Given a sufficiently small subsystem of the universe,
almost every pure state of the universe is such that the subsys-
tem is approximately in the ‘canonical state’̺c.” The ‘canon-
ical’ state̺c is, in our case, a Gaussian thermal state, with
CM σc = (1 + T/2)1. Here the ‘temperature’T is defined
by passage to the thermodynamical limit, that is forn → ∞
andE → ∞, (E − 2n)/n → T (assumingkB = 1 for the
Boltzmann constant). For ease of notation, in the following,
the symbol≃ will imply that the equality holds at the ther-
modynamical limit,e.g.: (E − 2n)/n ≃ T . Because the state
̺c is Gaussian with null first moments, the general canonical
principle can be fully incorporated into our restricted (Gaus-
sian) setting. To this aim, let us recast the principle in terms of
mathematical conditions to be fulfilled by the underlying mea-
sure on pure Gaussian states. Recall that partial tracing (ob-
viously a Gaussian operation) amounts, at the level of CM’s,
to simply pinching the submatrix ofσ pertaining to the rele-
vant modes. Then, in order for the measure to comply with
the general canonical principle, one has to require

σjk ≃ (1 + T/2)δjk , σ2
jk ≃ (1 + T/2)2δjk . (1)

The second condition rephrases the prescription “almost ev-
ery pure state”, requiring ‘concentration of measure’ at the
thermodynamical limit (in fact, in conjunction with the first
equation, it implies that the variance of the entries of the CM
vanishes at the thermodynamical limit). The previous condi-
tions, which are highly desirable to single out a measure nat-
urally endowed with physical and statistical significance,will
greatly restrict the possible choices for the distributionof the
variableszj ’s.

In order to show this, we first work out the averages of the
entries ofσ over the Haar measure of the compact subgroup.
This task can be accomplished relying only on some basic
properties of the integration over the unitary group, derived
from simple symmetry arguments (see [10], a detailed deriva-
tion can be found in [6]), leading to

σjk =
1

2n

[

n
∑

l=1

(z2
l + z−2

l )
]

δjk ≡ 1

2n

[

n
∑

l=1

El

]

δjk . (2)

The convenience of a parametrisation through the variables
Ej ≡ (z2

j +z−2

j ), representing the local energies of the decou-
pled modes, is now apparent. The same arguments, based on
symmetry and normalization (reflecting orthogonality), can be
applied to the averageσ2

jk , leading to

σ2
jk =

1

4n2

[

n
∑

l1,l2=1

El1El2

]

δjk . (3)

Now, the desired agreement of Eqs. (2,3) with Eq. (1) single
out a restricted class of measures for the variablesEj ’s. Most
notably,any measure such that the local energies{Ej} are,
at the thermodynamical limit, independent, identically dis-
tributed (“i.i.d.”) variables with averageE ≡ (T + 2) com-
plies with the general canonical principle[8]. In point of fact,
at the thermodynamical limit, only the averagesEjEk with
j 6= k matter in the computation of the variance, as their num-
ber scales asn2, while the number of terms inE2

j is clearly
linear inn, and their contribution gets suppressed by the fac-
tor 1/n2 (deriving from the integration over the Haar measure
of a term of degree two in the compact transformations’ en-
tries). The same argument holds for the square of the quantity

σjk of Eq. (2). For i.i.d. variables,Ej ≃ E andEjEk ≃ E
2

∀ j 6= k, thus implying the vanishing of the variance at the
thermodynamical limit.

To complete the definition of the measure, we have to spec-
ify a distribution of theEj ’s in agreement with the previous
requirements. Recovering the energy constraintE, we will as-
sume a Lebesgue (‘flat’) measure for the local energiesEj ’s
inside the regionΓE = {E : |E| ≤ E}, bounded by the lin-
ear hypersurface of total energyE (here,E = (E1, . . . , En)
denotes the vector of energies, while|E| =

∑n

j=1
Ej). More

explicitly, denoting byd p(E) the probability of the occur-
rence of the energiesE and byV = (E − 2n)n/n! the
volume of the regionΓE , one hasd p(E) = dnE/V ≡
(d E1 . . . d En)/V if E ∈ ΓE andd p(E) = 0 otherwise.
Notice that such a flat distribution is the one maximising the
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entropy in the knowledge of the local energies of the decou-
pled modes. In this specific sense such variables have been
privileged, on the basis of both mathematical (Euler decom-
position and Haar averaging over the compact subgroup) and
physical (general canonical principle and analogy with themi-
crocanonical ensemble) grounds. In full analogy with the
equivalence of statistical ensembles, theEj ’s become i.i.d.
at the thermodynamical limit. In fact, the marginal density
of probability Pn(Ej , E) for each of the energiesEj given

by Pn(Ej , E) = n
E−2n

(

1 − Ej−2

E−2n

)n−1

. At the thermody-

namical limit, the upper integration extremum for eachEj

diverges andPn(Ej , E) → e−
Ej−2

T /T , so that the decou-
pled energies are distributed according to independent Boltz-
mann distributions with the parameterT playing the role of
a temperature, and their averages satisfy Eq. (1). The micro-
canonical measure is thus consistent with the general canon-
ical principle [9]. The ‘microcanonical’ averageQ over pure
Gaussian states at energyE of the quantityQ(E, ϑ) deter-
mined by the second moments alone will thus be defined as
Q = N

∫

dµH(ϑ)
∫

ΓE
dEQ(E, ϑ), where the integration

over the Haar measure is understood to be carried out over
the whole compact domain of the variablesϑ.
Typical entanglement– Here, we concisely address the sta-
tistical properties of the bipartite entanglement of pure Gaus-
sian states under the microcanonical measure [6]. Let us con-
sider the von Neumann entropyS of the reduced state̺m

of a finite number of modesm with CM γ, thus quantify-
ing its entanglement with the remaining(n − m) modes of
the globally pure state. At the thermodynamical limit the dis-
tribution of the CMγ concentrates,with vanishing variance,
around a thermal state with CM(T/2 + 1)1, according to
the general canonical principle. Therefore, the distribution
of the von Neumann entropy of the reductionS concentrates
around the von Neumann entropy of a thermal state [6]. In

formulae: S ≃ mf(1 + T/2) and (S2 − S
2
) ≃ 0, where

f(x) ≡ (x+1) log2[(x+1)/2]/2−(x−1) log2[(x−1)/2]/2.
Notice that the maximal local von Neumann entropy of any
(finite or infinite) subsystem diverges at the thermodynamical
limit (as, in principle, all the infinite energy could be concen-
trated in only two modes – owned by the two distinct sub-
systems –, thus yielding an infinite entropy for each subsys-
tem). For finiten, the microcanonical measure is apt to be
investigated numerically by direct sampling, allowing oneto
study the distribution of the von Neumann entropy for differ-
entm, n andE. Even for smalln – well before the onset of
thermodynamical concentration of measure around the finite
thermal average – the entanglement of pure Gaussian states
distributes, for small enough energies, around values gener-
ally distant from the finite allowed maximum (e.g., for m = 1
andE = 10n, the difference between the maximum and the
averageS is, respectively,4.0 and13.6 standard deviations for
n = 5 andn = 20). This is at striking variance with results
obtained, adopting different measures, in finite dimensional
systems [5]. The equipartition of energy, imposed by the gen-
eral canonical principle, prevents the entanglement of finite
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FIG. 1: Average teleportation fidelity forr = 1 (blue curve) and
r = 0.5 (green curve) versus the heterodyne threshold (red dots), as
functions of the maximal energyE.

subsystems from concentrating around the maximum. Notice
that the concentration of measure would also occur for a distri-
bution of states withfixedtotal energyE (and all the variables
{Ej} still Lebesgue-distributed under such a constraint). This
is the case as such a measure is equivalent, at the thermody-
namical limit, to the one we are considering (they both con-
verge to exactly the same Boltzmann distribution).
Teleportation fidelities– Let us now consider a practical situ-
ation, in which two parties (Alice and Bob) want to commu-
nicate through quantum teleportation. Instead of contenting
themselves with coherent states, Alice and Bob are interested
in exchanging single-mode pure Gaussian states with arbitrary
CM (wherein the quantum information is encoded). To this
aim, they employ the usual CV teleportation scheme, based
on homodyne measurements and on the sharing of a two-mode
squeezed state with squeezing parameterr (essentially quan-
tifying the entanglement exploited in the teleportation pro-
cess, see [1] for a detailed description of the scheme). Sup-
pose, quite reasonably, that Alice generates (and sends to Bob)
states with a flatly distributed energy up to a maximal value
E and random optical phase, whose distribution is thus de-
scribed by the microcanonical measure. The microcanonical
average fidelityF (defined as the average, over the distribu-
tion of input states and of measurement outcomes, of the over-
lap |〈in|out〉|2 between the input state|in〉 and output state
|out〉) can be straightforwardly determined [11], and found to
beF = 2 e2r(

√
1 + e−4r + E e−2r − 1 − e−2r)/(E − 2).

To properly assess the effectiveness of the standard teleporta-
tion protocol in transmitting second moments, let us compare
the previously obtained fidelity to an appropriate “classical
threshold”Fcl (as customary in the literature on teleportation,
“classical” refers to a procedure where no entanglement is ex-
ploited). The kind of classical strategy we will consider is
as follows: Alice measures her mode by heterodyne detec-
tion (corresponding to the positive operator valued measure-
ment with elements|α〉〈α|/π, where|α〉 is a coherent state
[12]) and sends her result (a complex numberα, represent-
ing the heterodyne signal) to Bob who reproduces a centered,
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pure state (belonging to the original distribution) [13]. Bob’s
choice, depending onα, has been optimised numerically and
the resulting fidelity has been averaged over the input distri-
bution of states, to obtain the “heterodyne” classical threshold
Fcl (lower bounding the actual classical threshold). For suffi-
ciently smallE, one can also approximate such a threshold –
obtained numerically – asFcl ≈ 1 − k arcsinh(

√
E − 2), for

k = 0.317576 (such a fit is reliable within0.002 in the range
2 ≤ E ≤ 8). Comparing the experimental average fidelity to
the previous formula would tell Alice and Bob whether their
precious quantum entanglement is offering an actual advan-
tage over a viable, ‘cheaper’ protocol based on disjoint mea-
surements and reconstructions of the states [14]. Fig. 1 shows
that, for a givenr, the classical strategy beats CV teleporta-
tion for small enoughE. Actually, this fact is not surprising:
it simply results from the inadequacy of the standard telepor-
tation protocols when the input alphabet is overly restricted,
and occurs in the teleportation of coherent states as well, if
the choices of the coherent amplitudes are sufficiently con-
strained (the reader might think about the limiting instance for
which the vacuum is the only input state: then the teleporta-
tion protocol, completely based on probabilistic measurement
outcomes, fails to yield a fidelity equal to one, whereas the
classical protocol is set to always return the vacuum in such
an instance). However, there always exists a value ofE above
which the CV protocol starts outperforming the classical strat-
egy. For instance, in the experimentally realistic caser ≈ 1,
such a threshold is remarkably low, being aroundE ≈ 2.16.
On the other hand, for any value ofE, the teleportation proto-
col may always exceed the classical threshold for high enough
r. Clearly, for any finiteE, one haslimr→∞ F = 1 (tele-
portation with unlimited resources is always perfect). Also,
numerics unambiguously show thatlimE→∞ Fcl = 0. Like-
wise however, for any finiter, one haslimE→∞ F = 0. This
limiting behaviour is quite remarkable and might inspire fu-
ture inspection into the matter: when the alphabet of statesis
enlarged to encompass all the possible second moments, the
fidelity of the standard teleportation protocol vanishes (as op-
posed to what happens for coherent states, where the fidelity
stays constant even if the alphabet is extended over an un-
bounded domain). This suggests that, possibly, a modified
protocol where Bob can act unitarily on the second moments
could grant better fidelities when the teleportation of second
moments is concerned.
Outlook – The study of generic entanglement and of figures
of merit for teleportation are only examples of the potential
applications of the microcanonical measure. For instance,
the compliance with the general canonical principle renders
the measure suitable to describe the thermalization of systems
in dynamical situations [15]. Relating the measure to distri-
butions derived from a randomizing process (in the spirit of
Ref. [16]) is a further line of development opened up by the
present investigation.
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