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Dissipation-induced symmetry breaking in a driven optical lattice
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We analyze the atomic dynamics in an ac driven periodic optical potential which is symmetric
in both time and space. We experimentally demonstrate that in the presence of dissipation the
symmetry is broken, and a current of atoms through the optical lattice is generated as a result.
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Brownian motors [1, 2, 3, 4, 5, 6, 7] are devices which
rectify the random motion of Brownian particles, gener-
ating in this way a current. Quite recently a large amount
of work has been devoted to the study of Brownian mo-
tors [8, 9, 10, 11, 12, 13, 14, 15, 16, 17], as they seem to
have important applications in very different areas. On
one hand, Brownian motors may be the key for the un-
derstanding of the working principle of molecular motors,
tiny biological engines which transform the energy pro-
duced in chemical reactions into unidirectional motion
along periodic structures which are macroscopically flat
[8]. On the other hand, the mechanism of rectification of
fluctuations identified in the study of Brownian motors
may lead to new electron pumps, and indeed the study of
solid state devices which implement Brownian motors is
at present a very active area of research [18, 19, 20, 21].

The realization of a Brownian motor is a quite subtle
task, and requires to overcome the limitations imposed
by the second principle of thermodynamics and to break
the symmetries which inhibit directed motion. Indeed, as
the second principle of thermodynamics does not allow
the appearance of a current in a system at thermal equi-
librium, Brownian motors are realized by driving Brown-
ian particles out of equilibrium, as identified in the early
proposals for flashing [1] and rocking [2, 3] ratchets. In
order then to obtain directed motion in the system out
of equilibrium, relevant symmetries have to be broken.

Theoretical work [3, 14] clearly identified the symme-
tries which in the Hamiltonian limit, i.e. in the ab-
sence of dissipation, inhibit directed motion. However,
in the presence of dissipation the scenario may change
[14, 15, 16] and it was theoretically shown that the sym-
metry properties of the system are modified by the pres-
ence of dissipation and a current can be generated even
when the symmetries of the Hamiltonian would prevent
current generation in the Hamiltonian limit [14, 15].

In this work we demonstrate experimentally the phe-
nomenon of dissipation-induced symmetry breaking us-
ing cold atoms in an ac driven periodic optical potential
[22] which is symmetric in both time and space. We show
that in the presence of dissipation the symmetry is bro-
ken, and a current of atoms through the optical lattice is
generated as a result.

Before describing our experimental observations, it
is essential to introduce the relevant symmetries which
control the current generation in the Hamiltonian limit

[3, 14, 15]. We consider a particle in a spatially symmet-
ric periodic potential, periodically rocked by a zero-mean
force F (t) of period T = 2π/ω. In this case there are two
relevant symmetries which need to be examined to deter-
mine whether current generation is possible. Following
the notations of Ref. [15] we say that F (t) possesses F̂s

symmetry if F (t) is symmetric, after some appropriate
shift: F (t + τ) = F (−t + τ). Moreover, if F (t) satisfies
F (t) = −F (t + T/2), we say that F possesses Fsh sym-

metry. The symmetry F̂sh of the driving implies that
the system is invariant under the shift-transformation
Ŝa : (x, p, t) → (−x,−p, t + T/2), while the symmetry

F̂s leads to invariance under the time-reversal transfor-
mation Ŝb : (x, p, t) → (x,−p,−t). The invariance of
the system under any of these two transformations for-
bids the appearance of a directed current [14, 15]. To
elaborate further, we consider the specific form for F (t):

F (t) = F0[A cos ωt + B cos(2ωt + φ)] . (1)

The presence of both harmonics (F0, A, B 6= 0) breaks
the shift symmetry Fsh, independently of the value of
the relative phase φ. On the other hand, whether or
not the Fs symmetry is broken depends on the value of
the phase φ: for φ = nπ, with n integer, the symmetry
Fs is preserved, while for φ 6= nπ it is broken. There-
fore for φ = nπ current generation is forbidden in the
Hamiltonian limit, while for φ 6= nπ is allowed. Per-
turbative calculations [14] show that the average current
of particles is, in leading order, proportional to sinφ, in
agreement with the symmetry considerations discussed
above. The limit in which the effect of dissipation on the
symmetries is negligible was already experimentally ex-
amined in Ref. [23] where the dependence I ∼ sin φ was
demonstrated.

Consider now the case of weak, nonzero dissipation.
The presence of dissipation breaks the invariance under
time-reversal transformation Ŝb even if the driving is F̂s-
symmetric. Therefore for a biharmonic force of the form
of Eq. (1) both time-reversal and shift symmetries are
violated in the presence of dissipation. A current can be
generated as a result. An interesting issue is how the
dependence of the current on the phase φ is modified by
the presence of dissipation. Calculations done by solving
the kinetic Boltzmann equation for an ensemble of inter-
acting particles [15] showed that in the presence of weak
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dissipation the average current of particles I still shows
an approximate sinusoidal dependence on the phase φ,
but a phase lag φ0 appears as a result of dissipation:

I ∼ sin(φ − φ0) . (2)

The phase lag φ0 vanishes in the Hamiltonian limit and
is an increasing function of the relaxation rate [15]. This
dependence is consistant with the previous observation
that weak dissipation breaks the time-reversal symme-
try of the system and leads to the generation of current
also for φ = nπ. In other words, the shift φ0 is a signa-
ture of the phenomenon of dissipation-induced symmetry
breaking, and in our experiment φ0 will precisely be the
quantity examined to detect the phenomenon.

In our experiment we demonstrate the phenomenon
of dissipation-induced symmetry breaking by using cold
atoms in an ac driven near-resonant optical lattice [22].
This is the same system used previously to demonstrate
the rectification of fluctuations [24] and to investigate the
phenomenon of resonant activation [25]. These investi-
gations clearly showed that near-resonant optical lattices
represent an ideal model system to investigate phenom-
ena of statistical physics. In fact, in near-resonant optical
lattices the laser fields create both a periodic potential
for the atoms and introduce dissipation. More precisely,
the interference of the laser fields creates one periodic
potential for each ground state of the atoms. The laser
fields also introduce stochastic transitions (optical pump-
ing processes) between different ground states. This leads
to damping, an effect named Sisyphus cooling, and a fluc-
tuating force. As a result of the fluctuations, the atoms
undergo a random walk through the periodic potential,
and indeed normal diffusion was observed for atoms in
dissipative optical lattices [26].

The experimental set-up is the same as the one used
in our previous work [24, 25]. Cesium atoms are cooled
and trapped in a 3D optical lattice created by four laser
beams arranged in the so-called umbrella-like configura-
tion. One beam (beam 1) propagates in the z-direction;
the three other beams (beams 2–4) propagate in the op-
posite direction, arranged along the edges of a triangular
pyramid having the z direction as axis. For further detail
on the lattice beams arrangement, as lattice beams’ an-
gles and polarizations, we refer to Ref. [24]. A zero-mean
oscillating force of the form (1) can be applied by phase
modulating one of the lattice beams. More precisley [24]
a phase modulation of beam 1 of the form

α(t) = α0[A cosωt +
B

4
cos(2ωt − φ)] (3)

will result, in the accelerated frame in which the opti-
cal lattice is stationary, in an homogeneous force in the
z direction of the form of Eq. (1) with F0 = mω2α0/2k,
where m is the atomic mass and k the laser field wavevec-
tor.

Before describing the experimental results, it is nec-
essary to analyze theoretically our system to determine

whether the description of the dissipation-induced sym-
metry breaking in terms of a phase lag φ0 derived for
an ensemble of particles in the presence of collisions [15]
applies also to the present case of non-interacting atoms,
with the dissipation associated to the scattering of pho-
tons. For the sake of simplicity, and to make the analysis
more transparent, we consider the simplest atom-light
configuration in which Sisyphus cooling takes place: a
Jg = 1/2 → Je = 3/2 atomic transition, and a 1D
light configuration consisting of two linearly polarized
laser fields, counterpropagating and with orthogonal po-
larizations – the so called lin⊥lin configuration [22]. This
atom-light configuration results in two optical potentials
U± for the atoms, one for each ground state |±〉, in phase
opposition: U± = U0[−2 ± cos 2kz]/2, where z is the
atomic position along the axis Oz of light propagation
and U0 is the depth of the optical potential. The damping
arises from stochastic transitions between the two optical
potentials U±. These stochastic transitions correspond
to the absorption and subsequent spontaneous emission
of photons. Quantitatively, the departure rates γ±→∓(z)
from the |±〉 states can be written in terms of the photon
scattering rate Γ′ as γ±→∓ = Γ′(1± cos 2kz)/9 [22]. The
level of dissipation can therefore be quantitatively char-
acterized by the photon scattering rate Γ′, which can be
controlled experimentally by varying the lattice fields pa-
rameters.
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FIG. 1: Results of semiclassical Monte Carlo simulations
for a sample of n = 104 atoms in an ac driven 1D lin⊥lin
optical lattice. The average atomic velocity, in units of the
atomic recoil velocity vr = ~k/m, is shown as a function of the
phase difference φ between the two harmonics of the driving
force, see Eq. (1). Different data sets correspond to different
scattering rates Γ′, expressed in units of the recoil angular
frequency ωr. The lines are the best fits of the data with the
function v/vr = A sin(φ − φ0). The calculations were done
for a lattice with depth U0 = 100Er. The parameters of the
driving are: A = 1.5, B = 6, α0 = 0.2 · π, ω = 0.75ωv , where
ωv is the vibrational frequency of the atoms at the bottom of
the wells.
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We studied the atomic dynamics in the presence of
bi-harmonic driving by semi-classical Monte-Carlo simu-
lations [22]. For a given optical potential depth U0, we
calculated the average atomic velocity v as a function of
the phase difference φ between driving fields, for different
values of the scattering rate. The results of our calcula-
tion are shown in Fig. 1. The atomic current shows a
dependence of the type of Eq. 2, with the phase lag φ0

vanishing in the Hamiltonian limit (Γ′ → 0) and increas-
ing for increasing scattering rate. Values for φ0 as a func-
tion of the scattering rate, determined by fitting data as
those of Fig. 1 with A sin(φ − φ0), are reported in Fig. 2
for two different values of the driving force amplitude.
It can be seen that although the magnitude and sign of
the phase lag φ0 are different for the two different driv-
ing strengths considered, the general behavior described
above is observed in both cases. For completeness, we
mention here that also the sign and magnitude of the
amplitude A varies depending on the driving strength.
We notice that the dependence of the sign of φ0 and A
on the driving strength is consistant with previous obser-
vations of current reversals as a function of the driving
amplitude at a given relative phase φ between the two
driving fields [24].

These results for the phase lag φ0 are in agreement with
general symmetry considerations [14] and also extend the
validity of the theoretical results obtained for an ensem-
ble of interacting particles [15] to the present system of
non-interacting atoms, with the dissipation associated to
the scattering of photons.
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FIG. 2: Numerically calculated phase shift φ0 as a function of
the scattering rate Γ′. The phase shift is determined by fitting
data as those in Fig. 1 with the function v/vr = A sin(φ−φ0).
Different data sets correspond to different driving strength,
i.e. to different values of A, with the ratio of the strengths
of the two harmonics kept fixed: B = 4A. All the other
parameters are the same as for Fig. 1.

The experimental procedure followed closely the ap-
proach of our numerical simulations. Pre-cooled cesium
atoms are loaded in a near-resonant optical lattice. The

phase modulation α(t) is then slowly turned on. By di-
rect imaging the atomic cloud with a charge-coupled de-
vice camera, we then derived the average atomic veloc-
ity. By repeating the experiment for different values of
the phase difference φ, we determined the average atomic
velocity as a function of the phase φ.

Different sets of measurements were taken for different
values of the scattering rate Γ′ at a constant depth of
the optical potential. This was done by varying simul-
tanously the intensity IL and detuning ∆ of the lattice
beams, so to keep the potential depth U0 ∝ IL/∆ con-
stant while varying the scattering rate Γ′ ∝ IL/∆2. We
notice that as IL and ∆ can be varied only within a fi-
nite range, we cannot suppress completely dissipation,
i.e. obtain Γ′ = 0. However, as we will see, for the driv-
ing strength considered in the experiment, the smallest
accessible scattering rate results in a phase shift which is
zero within the experimental error, i.e. this choice of pa-
rameters well approximates the dissipationless case. By
then increasing Γ′ it is possible to investigate the effects
of dissipation.
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FIG. 3: Experimental results for the average atomic veloc-
ity, in units of the recoil velocity, as a function of the phase
φ. The lines are the best fit of the data with the function
v/vr = A sin(φ − φ0). The optical potential is the same for
all measurements, and corresponds to a vibrational frequency
ωv = 2π · 170 kHz. Different data sets correspond to different
lattice detuning ∆, i.e. to different scattering rates as the
optical potential is kept constant. The data are labeled by
the quantity Γs = [ωv/(2π)]2/∆ which is proportional to the
scattering rate. The parameters of the driving are ω = 2π ·100
kHz, A = 1, B = 4, α0 = 27.2rad. The errors on v/vr are of
the order of 0.05.

The results of our measurements, reported in Fig. 3,
demonstrate clearly the phenomenon of dissipation-
induced symmetry-breaking. In agreement with our nu-
merical calculations and with previous theoretical work
[14, 15], the measured current of atoms is well approx-
imated by A sin(φ − φ0). Therefore, by fitting data
as those reported in Fig. 3 with the function v/vr =
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A sin(φ−φ0) we were able to determine the phase shift φ0

as a function of Γ′, as reported in Fig. 4. The measured
phase shift φ0 is zero, within the experimental error, for
the smallest scattering rate examined in the experiment.
In this case, no current is generated for φ = nπ, with n
integer, as for this value of the phase the system is invari-
ant under time-reversal transformation. The magnitude
of the phase shift φ0 increases at increasing scattering
rate, and differs significantly from zero. The nonzero
phase shift corresponds to current generation for φ = nπ,
i.e. when the system Hamiltonian is invariant under the
time-reversal transformation. This clearly demonstrates
the breaking of the system symmetry by dissipation.
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FIG. 4: Experimental results for the phase shift φ0 as a func-
tion of Γs = [ωv/(2π)]2/∆, which is proportional to the scat-
tering rate. All the other parameters are kept constant, and
are the same as for Fig. 3.

In conclusion, we demonstrated experimentally the
phenomenon of dissipation-induced symmetry breaking
with cold atoms in an optical lattice. We analyzed
the atomic dynamics in an ac driven periodic optical
potential which is symmetric in both time and space.
These symmetries forbid the generation of a current. We
showed that in the presence of dissipation the symmetry
is broken, and a current of atoms through the optical lat-
tice is generated as a result. Our results also show the
generality of the phenomenon, in particular extending the
results [15] previously obtained for an ensemble of inter-
acting particles in the specific framework of the kinetic
Boltzmann equation to a system in which the dissipa-
tion mechanism is of completely different nature. The
present work is of relevance for the research on control of
transport by time-dependent fields in a variety of system,
ranging from optical tweezer set-ups [27] to quantum dots
and wires [28].
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nancial support.
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