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For the description of nonsequential double ionization (NSDI) of rare-gas atoms by a strong lin-
early polarized laser field, the quantum-mechanical S-matrix diagram that incorporates rescattering
impact ionization is evaluated in the strong-field approximation. We employ a uniform approxima-
tion, which is a generalization of the standard saddle-point approximation. We systematically
analyze the manifestations of the electron-electron interaction in the momentum distributions of
the ejected electrons: for the interaction, by which the returning electron frees the bound electron,
we adopt either a (three-body) contact interaction or a Coulomb interaction, and we do or do not
incorporate the mutual Coulomb repulsion of the two electrons in their final state. In particular,
we investigate the correlation of the momentum components parallel to the laser-field polarization,
with the transverse momentum components either restricted to certain finite ranges or entirely
summed over. In the latter case, agreement with experimental data is best for the contact interac-
tion and without final-state repulsion. In the former, if the transverse momenta are restricted to
small values, comparison of theory with the data shows evidence of Coulomb effects. We propose
that experimental data selecting events with small transverse momenta of both electrons are par-
ticularly promising in the elucidation of the dynamics of NSDI. Also, a classical approximation of
the quantum-mechanical S matrix is formulated and shown to work very well inside the classically
allowed region.

PACS numbers: 32.80.Rm,32.80.Fb

I. INTRODUCTION

Double and multiple ionization of atoms by intense
laser fields is a very important process for laser-plasma di-
agnostics. As long as electrons are ripped off one by one,
usually at the leading edge of the laser pulse while the in-
tensity is rising [1], the process can be straightforwardly
described in terms of rate equations and the Ammosov-
Delone-Krainov (ADK) rates [2]. However, as early as
1983 experimental evidence was found for the significance
of a nonsequential channel where several electrons are
ejected in one coherent process [3]. Nonsequential double
and multiple ionization in an intense laser field is of great
fundamental interest, since it requires electron-electron
correlation as a necessary precondition. If one electron
did not notice the other, all multiple ionization would
be sequential. In most other intense-laser atom pro-
cesses, such as high-order harmonic generation or above-
threshold ionization, footprints of electron-electron cor-
relation are hard to find [4]. In contrast, in double ioniza-
tion of helium below saturation, the nonsequential path-
way was observed to be dominant by many orders of mag-
nitude [5].
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The search for the physical mechanism that is capable
of producing an effect of this magnitude remained incon-
clusive until experimental information became available
that went beyond mere ion counting, that is, beyond total

double-ionization probabilities. The advent of the cold-
target recoil-ion momentum spectroscopy (COLTRIMS)
technique, also known as reaction microscope [6], com-
bined with high-repetition-rate lasers, has opened the
way towards acquisition of multiply differential cross sec-
tions of the double-ionization process. The first step was
taken by the observation of the momentum distributions
(all three components) of the doubly charged ion [7, 8]. In
principle, this technique enables one to record all six mo-
mentum components of two particles of opposite charge
produced in some reaction. For double ionization, to the
extent that the momentum transfer by the laser field is
negligible, this amounts to complete kinematical charac-
terization of the process. For a recent review, see Ref. [9].

As a result, for the low-frequency high-intensity lasers
that were employed in the COLTRIMS experiments,
rescattering [10] has emerged as a dominant mecha-
nism. This is the same mechanism that is responsible for
high-order harmonic generation and high-order above-
threshold ionization: an electron set free via tunneling
is driven back by the field to its parent ion where it can
rescatter, recombine, or dislodge another electron (or sev-
eral electrons). Even though rescattering appears to be
the dominant mechanism, many features of the data re-
main unexplained. An example is the behavior of the
multiply differential cross sections near and below the
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classical threshold [11]. This realm is inaccessible to clas-
sical methods, and the data are not compatible with the
results of the quantum descriptions.

The unequivocal imprint on the data caused by the
simplest version of rescattering – that is, electron-impact
ionization – is a double-humped distribution of the mo-
mentum component pion‖ of the doubly charged ion paral-
lel to the (linearly polarized) laser field [7, 8]. The humps
are centered near pion‖ ≈ ±4

√
UP , where UP is the pon-

deromotive potential of the laser field [12]. This simple
estimate is a straightforward prediction of the rescatter-
ing model [13, 14].

Various routes have been followed in the theoretical
description of nonsequential double ionization (NSDI).
The most ab initio approach is the numerical solution of
the time-dependent Schrödinger equation in three spatial
dimensions for each electron [15, 16]. Owing to the ex-
treme demands on computing power, no explicit results
have been obtained yet for the near-infrared frequencies
used in experiments. A significant simplification occurs
if the inner electron is allowed to respond to the outer,
but not vice versa [17]. Much more work has been done
on the corresponding problem in one spatial dimension
for each electron [18, 19, 20, 21, 22].

An alternative quantum-mechanical approach has at-
tempted to identify the dominant contribution to the S-
matrix element for the NSDI process [23, 24], out of
the multitude of diagrams that contribute. For low-
frequency, high-intensity lasers, this has turned out to
be the one that describes rescattering. It has been eval-
uated by several groups with different approximations
[13, 25, 26, 27, 28, 29, 30, 31]. Of these, the evalua-
tion with saddle-point methods [27, 28, 29, 30] requires
the least computational effort and affords good physical
insight.

Until recently, the theoretical effort concentrated on
the computation of total NSDI rates. Only a few theoret-
ical results exist for the differential yields that have been
obtained with the help of the COLTRIMS method. These
were obtained from the solution of the one-dimensional
time-dependent Schrödinger equation [22], by a classical
analysis of excited two-electron configurations in a time-
dependent electric field [32], and by three-dimensional
classical-trajectory methods [33, 34]. The latter have
produced good agreement with those data that are suffi-
ciently far in the classical regime. Other than that, thus
far the calculation of multiply differential yields has been
the domain of the S-matrix approach. In the latter, a
crucial element is the form of the electron-electron inter-
action by which the returning electron frees the second
bound electron. This interaction is treated in the lowest-
order Born approximation. The most natural choice ap-
pears to be the Coulomb interaction. However, astonish-
ingly, a three-body contact interaction at the position of
the ion produces better agreement with the experimental
data, at least for neon [35].

In this paper, we perform a systematic investigation
of the rescattering contribution to the S-matrix element

that describes NSDI. We calculate the distributions of
the electron momentum components parallel to the laser
field, and integrate over the components perpendicular
to the field either completely or partly. Experiments cor-
responding to the latter situation have been carried out
recently. For example, the data were analyzed by bin-
ning the transverse momentum of the observed electron
according to its magnitude [36, 37]. This is a further
step towards the ultimate goal of kinematically complete
experiments. It should help one disentangle mere phase-
space effects from the nontrivial dynamics of electron-
electron correlation and find clear signatures of the very
interaction that is instrumental for the ejection of the
second electron. We compare the two extreme limits
of this crucial electron-electron interaction, namely the
infinite-range Coulomb potential and the zero-range con-
tact potential. In addition, we exactly implement the
Coulomb repulsion between the two electrons in the fi-
nal state [38] and study its effect on the afore-mentioned
electron distributions.

We treat the problem in terms of quantum orbits
[39, 40]. Such orbits are closely related to the electron
trajectories obtained classically within the rescattering
model. Their contributions are, however, superposed
in the fashion of the quantum-mechanical path integral.
Moreover, being complex they account for the electron
tunneling from its initial bound state into the contin-
uum owing to the action of the laser field. Indeed, the
quantum-orbit approach is capable of describing interfer-
ence effects, and it remains applicable in energy regions
that are out of reach to classical methods, where the
rescattering process is classically forbidden (in a sense
to be defined below in Sec. II B). Furthermore, this
approach is computationally much less demanding and
more transparent than other quantum-mechanical treat-
ments.

Our computations are performed within a specific uni-
form approximation [30, 41], which is a generalization
of the standard saddle-point approximation, widely used
in the context of atoms in strong laser fields [40]. The
standard saddle-point approximation requires that the
saddles be well isolated, whereas the uniform approxi-
mation in question only needs the saddles to occur in
pairs, regardless of their separation. The latter condi-
tion is always satisfied by the quantum orbits which oc-
cur in intense-laser-atom processes [39]. In fact, for a
specified final state, contributing orbits always come in
pairs, one having a longer travel time than the other. At
the boundaries between classically allowed and forbidden
energy regions, these two orbits almost coalesce. Such a
boundary causes a “cutoff” in the energy spectrum, such
that the yield decreases steeply when the associated pa-
rameter proceeds into the classically forbidden region.

We also present and evaluate a very simple model to
describe rescattering impact ionization that is classical
in the following sense: The first electron enters the con-
tinuum by quantum-mechanical tunneling, which is de-
scribed by a rate formula that is highly nonlinear in the
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applied field, such that ionization predominantly takes
place near the maxima of the field. The process of im-
pact ionization is governed by the square of the form
factor that occurs in the quantum calculation. Every-
thing else is described in classical terms. Under the con-
dition that the kinetic energy of the returning electron
be much larger than the second ionization potential, the
results of this classical model agree extremely well with
the quantum-mechanical results.

The paper is organized as follows. In the next section,
we provide the necessary theoretical background, namely
the transition amplitude for NSDI in the strong-field ap-
proximation (Sec. II A) and the saddle-point and uni-
form approximations (Sec. II B). This formalism is sub-
sequently applied to compute momentum distributions
of electrons for the contact or Coulomb interaction, in-
cluding or not including the final-state electron-electron
repulsion (Secs. III B and III C, respectively). In Sec. IV
we formulate and evaluate the just mentioned classical
model of rescattering-induced NSDI. In Sec. V we relate
our results to the existing experiments, and in the con-
cluding Section VI we assess the merits and shortcomings
of our approach.

II. BACKGROUND

A. Transition amplitude

In the strong-field approximation (SFA), the transition
amplitude for the NSDI process, caused by laser-assisted
inelastic rescattering, is given by [13, 23]

M = −
∫ ∞

−∞

dt

∫ t

−∞

dt′〈ψ(V)
p1p2

(t)|V12U
(V)
1 (t, t′)V1

⊗U (0)
2 (t, t′)|ψ0(t

′)〉, (1)

where V1 and U
(V)
1 (t, t′) denote the atomic binding po-

tential and the Volkov time-evolution operator acting

on the first electron, U
(0)
2 (t, t′) is the field-free prop-

agator acting on the second electron, and V12 is the
electron-electron interaction through which the second
electron is freed by the first. Equation (1) can be inter-
preted as follows. Initially, both electrons are bound in
their ground state |ψ0(t

′)〉, which is approximated by the

product |ψ(1)
0 (t′)〉 ⊗ |ψ(2)

0 (t′)〉 of the one-electron ground

states |ψ(n)
0 (t′)〉 = ei|E0n|t′ |ψ(n)

0 〉 with ionization poten-
tials |E0n|. At the time t′, the first electron is released
through tunneling ionization, whereas the second elec-
tron remains bound in its initial state. Subsequently, the
first electron propagates in the continuum, gaining en-
ergy from the field. At the later time t, it undergoes an
inelastic collision with its parent ion, dislodging the sec-
ond electron in this process. The final electron state is
taken either as the product state of one-electron Volkov
states, or as a two-electron Volkov state [38], with asymp-
totic momenta p1 and p2. The two-electron Volkov state

exactly accounts for the electron-electron Coulomb repul-
sion, in addition to the interaction with the laser field.

The SFA is commonly made in semi-analytical calcu-
lations of laser-atom processes effected by high-intensity
low-frequency laser fields. Briefly, it consists in neglect-
ing the influence of the binding potential on the propa-
gation of the electron in the continuum, and the action
of the laser field on the bound electron. In addition,
there are other physical ingredients of the exact transi-
tion amplitude that are not part of the approximation
(1): for example, when the first electron tunnels out or
when it returns to the ion or in both instances, it may
promote the bound electron into an excited bound state,
from which the latter will tunnel out at a later time. This
process tends to produce electron with low momenta, as
discussed below. Moreover, except in the initial wave
function, the presence of the ion is not accounted for.

Expanding the Volkov time-evolution operator in
terms of Volkov states,

U (V)(t, t′) =

∫

d3k|ψ(V)
k (t)〉〈ψ(V)

k (t′)|, (2)

where

〈r|ψ(V)
p (t)〉 = (2π)−3/2 exp{i[p + A(t)] · r}

× exp

(

−i
∫ t

dτ [p + A(τ)]2
)

, (3)

the amplitude (1) can be written as

M = −
∫ ∞

−∞

dt

∫ t

−∞

dt′
∫

d3kVpkVk0 exp[iSp(t, t′,k)],

(4)
with the action

Sp(t, t′,k) = −1

2

[

2
∑

n=1

∫ ∞

t

dτ [pn + A(τ)]2

+

∫ t

t′
dτ [k + A(τ)]2

]

+ |E01|t′ + |E02|t. (5)

Here A(t) denotes the vector potential of the laser field,
p ≡ (p1,p2) the final electron momenta, and k the drift
momentum of the first electron in between ionization and
recollision. We use the length gauge, and we employ
atomic units throughout. The binding potential V1 of
the first electron and the electron-electron interaction V12

enter through their form factors

Vpk = 〈p2 + A(t),p1 + A(t)|V12|k + A(t), ψ
(2)
0 〉 (6)

and

Vk0 = 〈k + A(t′)|V1|ψ(1)
0 〉. (7)

In this paper, for the binding potential V1 we choose

a Coulomb potential and for the wave functions ψ
(i)
0 (r)

ground-state hydrogenic wave functions.
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B. Saddle-point and uniform approximations

For sufficiently low frequencies and high laser intensi-
ties, Eq. (4) can be evaluated to a good approximation
by the method of steepest descent, which we will also re-
fer to as the saddle-point approximation. Thus, we must
determine the values of k, t′ and t for which Sp(t, t′,k) is
stationary, so that its partial derivatives with respect to
these variables vanish. This condition gives the equations

[k + A(t′)]
2

= −2|E01|, (8a)
2

∑

n=1

[pn + A(t)]2 = [k + A(t)]2 − 2|E02|, (8b)

∫ t

t′
dτ [k + A(τ)] = 0. (8c)

Equations (8a) and (8b) express energy conservation at
the ionization and rescattering times, respectively, while
Eq. (8c) determines the intermediate electron momen-
tum such that the first electron returns to the ion. Ob-
viously, the solutions t′s (s = 1, 2, . . . ) of Eq. (8a) cannot
be real. In consequence, then, ts and ks are complex,
too.

Equation (8b) describes energy conservation in the
rescattering process. From the point of view of the first
electron, rescattering is inelastic, since it donates energy
to the second electron. Let us ignore, for the moment,
the ionization potential |E01| and consider linear polar-
ization. Then, k = −A(t′), and k and t′ are real. For
given t′, Eqs. (8a) and (8c) then determine the rescat-
tering time t and the momentum k. In the space of the
final momenta p = (p1,p2), Eq. (8b) is the equation
of the surface of a six-dimensional sphere with its cen-
ter at (−A(t),−A(t)) and its squared radius given by
[k+A(t)]2 − 2|E02|. We only consider times t′ such that
the latter is positive. Then all possible electron momenta
that are classically accessible in the process where the
first electron is ionized at the time t′ are located on the
surface of this sphere. The union of all these spheres
upon variation of t′ contains all final electron momenta
that are in this sense classically accessible. Below, we will
frequently refer to it as the “classically accessible region”.
Leaving this region along any path in the (p1,p2) space,
we experience a sharp “cutoff” in the yield. Quantum
mechanics allows a nonzero yield outside the classically
allowed region, which, however, decreases exponentially
with increasing distance from its boundary. Formally,
this is accomplished by the fact that the exact solutions
of the saddle-point equations (8), which are always com-
plex, exhibit rapidly increasing imaginary parts. For a
detailed analysis of the solutions of Eq. (8) for the closely
related case of above-threshold ionization, cf. Ref. [39].

In the standard saddle-point method, the action (5) in
the matrix element (4) is expanded to second order about
the solutions to the saddle-point equations (8), where-
upon the integrations can be carried out with the result

M (SPA) =
∑

s

As exp(iSs), (9a)

Ss = Sp(ts, t
′
s,ks), (9b)

As = (2πi)5/2 Vpks
Vks0

√

detS′′
p(t, t′,k)|s

. (9c)

Here the index s runs over the relevant saddle points,
those that are visited by an appropriate deformation
of the real integration contour, viz. the (t, t′,k) plane,
to complex values, and S′′

p(t, t′,k)|s denotes the five-
dimensional matrix of the second derivatives of the ac-
tion (5) with respect to t, t′ and k, evaluated at the
saddle-points. This approximation can only be applied
when all the saddle points are well isolated. However,
as already mentioned, the saddle-point solutions come
in pairs, whose two members approach each other very
closely near the classical cutoffs, i.e., near the boundaries
of the classically allowed region. Furthermore, beyond
the classical cutoffs, one of the two saddle points would
yield an exponentially increasing contribution. This sad-
dle point is not visited by the afore-mentioned deformed
integration contour. Hence, this solution has to be dis-
carded from the sum (9a). Such a procedure leads to
cusps in the cutoff region, which are particularly prob-
lematic for nonsequential double ionization. A detailed
analysis of this problem is given in Ref. [30].

In this paper, we will use a more general uniform ap-
proximation [42], which has been successfully applied
to above-threshold ionization [41], high-order harmonic
generation [43], and in an exemplary fashion to NSDI
[30]. The uniform approximation is nearly as simple
as the standard saddle-point approximation, but much
more powerful. It requires the same input as the for-
mer, namely the amplitudes As(s = i, j) and the actions
Ss(s = i, j) for each pair (i, j) of saddle-point solutions.
In the classically allowed region, the transition amplitude
then is given by

Mi+j =
√

2π∆S/3 exp(iS̄ + iπ/4)

×
{

Ā[J1/3(∆S) + J−1/3(∆S)]

+ ∆A[J2/3(∆S) − J−2/3(∆S)]
}

, (10)

∆S = (Si − Sj)/2, S̄ = (Si + Sj)/2,

∆A = (Ai − iAj)/2, Ā = (iAi −Aj)/2.

If the two saddle points are sufficiently far apart, the
parameter ∆S is large, and the standard saddle-point
approximation (9) can be retrieved with the help of the
asymptotic behavior

J±ν(z) ∼
(

2

πz

)1/2

cos(z ∓ νπ/2 − π/4) (11)

of the Bessel functions for large z .
In the classically forbidden region, one of the saddles is

avoided by the contour. This is accounted for by taking
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an appropriate functional branch of the (multi-valued)
Bessel functions, which will automatically be selected by
requiring a smooth functional behavior at a Stokes tran-
sition [44, 45]. The transition occurs at

ReSp(ti, t
′
i,ki) = ReSp(tj , t

′
j ,kj). (12)

and signifies that one of the saddles drops out of the
steepest-descent integration contour. The energy posi-
tion of such a transition approximately coincides with
the boundary between the classically allowed and forbid-
den energy regions. Beyond the Stokes transition,

Mi+j =
√

2i∆S/π exp(iS̄)

×
[

ĀK1/3(−i∆S) + i∆AK2/3(−i∆S)
]

. (13)

Again, the result of the saddle-point approximation may
be recovered using the asymptotic form

Kν(z) ∼
( π

2z

)1/2

exp(−z) (14)

for large z. Inserting Eq. (14) into (13), it is easy to show
that only one saddle point contributes to the saddle-point
approximation in this energy region.

III. DISTRIBUTION OF ELECTRON

MOMENTA

In the following, we will evaluate the matrix element
Mi+j [Eq. (10) or (13)]. We will restrict ourselves to
the two shortest orbits, as explained below at the end of
Sec. III A. Its modulus square specifies the distribution
of the asymptotic momenta of the two electrons gener-
ated in the process of NSDI. Following the analysis of the
experimental data, we decompose the electron momenta
into components parallel and perpendicular to the (lin-
early polarized) laser field, so that pn ≡ (pn‖,pn⊥) (n =
1, 2). In a typical reaction-microscope experiment, the
momentum of one electron and the momentum of the
doubly charged ion are measured (usually, it is not pos-
sible to record all six components). Thereafter, the mo-
mentum of the other (undetected) electron is calculated
from the assumption of momentum conservation. Even
in the case where all six components of the final electron
momenta were known, plotting the results would require
to integrate over some of them. In most experiments, the
momentum components (of the detected electron) trans-
verse to the laser polarization are either not recorded at
all, or binned into certain intervals. Correspondingly,
we will compute the momentum correlation function by
either integrating entirely or partly over the transverse
momenta. Hence, we shall calculate an integral of the
type

D(p1‖, p2‖) =

∫

d2p1⊥d
2p2⊥|Mi+j |2, (15)

where the integration extends over some range of the final
momenta, i.e. of their magnitudes and/or their relative
orientation.

We consider the monochromatic linearly polarized
laser field

A(t) = A0 cosωt x̂, (16)

which satisfies A(t+T/2) = −A(t) with T = 2π/ω. Elec-
trons generated by a recollision event at a time within the
interval −T/4 ≤ t ≤ T/4 (modulo T ) tend to populate
the third quadrant of the (p1‖, p2‖) plane, while those
from T/4 ≤ t ≤ 3T/4 (modulo T ) mostly populate the
first quadrant. In each time interval, there are two con-
tributing saddle-point solutions, referred to above as i
and j, which have to be added coherently in the matrix
element Mi+j . If the laser intensity is sufficiently low,
the two populations are practically disjoint. However,
with increasing laser intensity, the classical boundaries
expand, and the two populations begin to overlap signif-
icantly in the region where the momenta p1‖ and p1‖ are
small. In this case, in principle, we have to superpose all
four contributions coherently, viz., in Eq. (15) we have
to integrate |Mi+j(−T/4 ≤ t ≤ T/4) +Mi+j(T/4 ≤ t ≤
3T/4)|2. Rather, we will neglect their interference by
taking |Mi+j(−T/4 ≤ t ≤ T/4)|2 + |Mi+j(T/4 ≤ t ≤
3T/4)|2. This simplifies the calculation significantly, be-
cause it allows us to take advantage of the symmetry
|M(t, t′,p)| = |M(t + T/2, t′ + T/2,−p)|. This proce-
dure is justified by the fact that the relative phase be-
tween them is a rapidly oscillating function. Indeed, we
have checked for the case where p1‖ = p2‖ that the exact
and the approximate calculation produce virtually iden-
tical results, definitely so when the transverse momenta
are integrated over.

A. The “classically allowed” regime of parallel

momenta

Rewritten in terms of the parallel and perpendicular
momentum components pn‖ and pn⊥, the saddle-point
equations (8) read

[k +A0 cosωt′]
2

= −2|E01|, (17a)
2

∑

n=1

[

pn‖ +A0 cosωt
]2

= [k +A0 cosωt]
2

−2|E02| −
2

∑

n=1

p2
n⊥, (17b)

with

k = − 1

ω(t− t′)
A0(sinωt− sinωt′)x̂ ≡ kx̂. (17c)

Equation (17b) defines a circle in the (p1‖, p2‖) plane with
its center at p1‖ = p2‖ = −A0 cosωt and the square of its
radius given by the right-hand side. For p1⊥ = p2⊥ = 0,
its interior is the projection onto the (p1‖, p2‖) plane of
the six-dimensional surface mentioned below Eqs. (8).
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Inside any such circle, the rescattering process is clas-
sically allowed. The radii decrease with increasing trans-
verse kinetic energies of the final electrons. In effect, the
transverse kinetic energies add to the second ionization
potential |E02|, up to the point where the classically al-
lowed region shrinks to zero. Note that both the center
and the radii of the circles defined above depend on the
rescattering time t. The union of all circles defines the
entire classically allowed region in the (p1‖, p2‖) plane
[46]. Depending on the intensity and the second ioniza-
tion potential |E02|, it may or may not include the origin
p1‖ = p2‖ = 0 [48].

The presence of the cutoffs at the boundary of the
classical region and their dependence on pn⊥ pose a se-
rious problem for the application of the standard saddle-
point approximation in computations of momentum dis-
tributions. In fact, the integration over an interval of
transverse momenta will lead to a situation with many
Stokes transitions, whose energy positions vary continu-
ously. As a direct consequence, the artifacts coming from
the breakdown of the saddle-point approximation at the
cutoffs will affect the resulting yield over a large inter-
val of longitudinal momenta pn‖. Therefore, the uniform
approximation is not only a desirable, but a necessary
tool for the computation of the momentum distributions
for NSDI in terms of quantum orbits. This problem is
discussed in detail in Ref. [30].

For fixed final momenta, the saddle-point equations
(17) may have a large number of relevant solutions,
which can be ordered by the length of their “travel time”
Re(t − t′). Below, we will consider the pair of the two
shortest quantum orbits, i.e. those two having the short-
est travel time. Due to spreading of the associated wave
packets, usually these two make the dominant contribu-
tions [49]. Of these, the longer orbit is associated with a
“slow-down collision”, that is, an electron along this or-
bit is decelerated by the laser field when it is approaching
the crucial collision with the bound electron. In classi-
cal one-dimensional model calculations, these orbits have
been shown to be particularly efficient for NSDI [20]. A
detailed discussion of these orbits is given in [30].

B. No electron-electron repulsion in the final state

In this subsection, we neglect the Coulomb repulsion of
the two final-state electrons, so that the final state is the

product state of one-electron Volkov states, |ψ(V)
p1p2

(t)〉 =

|ψ(V)
p1

(t)〉 ⊗ |ψ(V)
p2

(t)〉.
The form factor Vpk then is given explicitly by

Vpk =
1

(2π)9/2

∫

d3r1d
3r2e

i[p1+A(t)]·r1e−i[k+A(t)]·r1

×ei[p2+A(t)]·r2V12(r1, r2)ψ
(2)
0 (r2) + (p1 ↔ p2),(18)

where V12 is the electron-electron interaction in question
that is responsible for freeing the second electron.

Let us consider an electron-electron interaction of the
form

V12 ≡ V12(r1, r2) = v12(r1 − r2)V2(r2), (19)

where v12(r) only depends on the interparticle separa-
tion. Of course, in a truly microscopic description, there
would be no potential V2, but we may want to interpret
V12 as an effective potential that incorporates the pres-
ence of the ion (which is positioned at the origin). Then,
the form factor (18) can be rewritten as

Vpk = [ṽ12(p1 − k) + ṽ12(p2 − k)]

×
∫

d3r2e
−i[p1+p2−k−A(t)]·r2V2(r2)ψ

(2)(r2), (20)

where ṽ12(p) is the Fourier transform of v12(r). Of
course, Vpk is symmetric upon the exchange of p1 ↔ p2,
but this does not hold if only individual components are
interchanged, viz. p1i ↔ p2i where i = x, y, or z. Only
in the case where v12(r) is of very short range, so that
ṽ12(p) is constant, does this exchange symmetry hold
component by component. On the other hand, this addi-
tional symmetry holds regardless of the shape of V2. The
effect of these symmetries will be encountered below.

In the next two subsections, we will consider the two
extreme cases for the interaction V12(r1, r2), the contact
interaction with zero range and the Coulomb interaction
with infinite range.

1. Contact interaction

First, we investigate the three-body contact interaction

V12(r1, r2) = δ(r1 − r2)δ(r2), (21)

which confines the electron-electron interaction to the po-
sition of the ion. For this interaction, the form factors
Vpk and Vk0 are constants. In this case and only in this
case, one does not have to resort to the saddle-point ap-
proximation: the matrix element (1) can be obtained an-
alytically up to one quadrature [13, 50]. For any other
potential, the exact evaluation requires a numerical com-
putation of multiple integrals.

In Fig. 1, we display the momentum distributions (15)
computed for this potential with the uniform approxima-
tion, for various ranges of |pn⊥| (n = 1, 2) and with the
relative angle between p1⊥ and p2⊥ integrated over. In
Fig. 1(a), the transverse momenta are entirely summed
over. The features obtained, i.e., regions of circular shape
around the two maxima at p1‖ = p2‖ = ±2

√

Up, are in
excellent agreement with those in Ref. [28].

The saddle-point equation (17b) shows that the trans-
verse kinetic energies add to the second ionization po-
tential. In consequence, the higher the second ioniza-
tion potential is and the lower the intensity, the more
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FIG. 1: Momentum correlation function (15) of the electron
momenta parallel to the laser field for nonsequential double
ionization computed with the uniform approximation using
the contact interaction (21). The field frequency is ω = 0.0551
a.u. and the ponderomotive energy UP = 1.2 a.u., which cor-
responds to an intensity of 5.5 × 1014W/cm2. The first two
ionization potentials are |E01| = 0.79 a.u. and |E02| = 1.51
a.u. corresponding to neon. Panel (a) shows the yield for
the case where the transverse momenta pn⊥ (n = 1, 2) are
completely integrated over, whereas in the remaining panels
they are restricted to certain intervals. In panels (b) and

(c), p2⊥ is integrated, while 0 < p1⊥/[Up]1/2 < 0.1 and

0.4 < p1⊥/[Up]1/2 < 0.5, respectively. In panels (d), (e),
and (f), both transverse momenta are confined to the inter-

vals 0 < pn⊥/[Up]1/2 < 0.5, 0.5 < pn⊥/[Up]1/2 < 1, and

1 < pn⊥/[Up]1/2 < 1.5, respectively.

closely are the momentum correlation functions concen-
trated around the momenta p1‖ = p2‖ = 2

√
UP . This

effect can be verified by comparing panels (a) and (f): in
(f) both transverse momenta are large such that the to-
tal transverse kinetic energy is between UP and 2.25UP ,
while in (a), where all transverse momenta are summed
over, the result is dominated by the contributions from
the smaller ones. In panel (b), one transverse momen-
tum is very small. Hence, the distribution is broader, as
if the intensity were higher and/or the second ionization
potential smaller than it actually is. Panels (d) and (e),
where both transverse momenta are restricted to very
small or moderately small values, have an appearance
very different from the other panels. The distributions
are ring-shaped and concentrated near the boundary of
the classically allowed region, while the region around
p1‖ = p2‖ = 2

√
UP is almost unpopulated. Below, in

Section IV, we will be able to understand these features
qualitatively as well as quantitatively from classical con-
siderations.

FIG. 2: Same as Fig. 1, but calculated for the Coulomb in-
teraction (22).

2. Coulomb interaction

In this subsection, we perform a similar analysis for
the Coulomb interaction

V12(r1, r2) =
1

|r2 − r1|
. (22)

This appears to be a more realistic description of the in-
teraction, by which the first electron releases the second.
In an ab-initio Born-series calculation, this interaction
constitutes the lowest order. The ion is not accounted
for, that is, the potential V2(r2) of Eq. (19) is absent.
The corresponding form factor,

Vpk ∼ 1

(p1 − k)2[2|E02| + (p1 + p2 − k + A(t))2]2

+p1 ↔ p2, (23)

is a function of the electron velocities pn + A(t) and
k + A(t) just after and just prior to, respectively, the
crucial rescattering event.

Using the uniform approximation, we again compute
momentum distributions (15) for various transverse-
momentum ranges regardless of the relative orientation
of the transverse momenta. (We postpone showing a few
distributions for fixed relative angle till the very end of
Sec. III.) These distributions are shown in Fig. 2. The
form factor (23) favors small p1−k and/or small p2+A(t)
[or small p2−k and/or small p1 +A(t)], which is equiva-
lent with small momentum transfer of the returning elec-
tron to the bound electron and the bound electron being
set free with small velocity [51]. This means that the
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maxima of the distribution are expected for small p1 and
large p2 (or large p1 and small p2), i.e., away from the
p1‖ = p2‖ diagonal, since the vector potential is near its
maximum at the rescattering time t while the drift mo-
mentum k is small. When the transverse momenta are
summed over [Fig. 2(a)], the result is in agreement with
Ref. [28]. In Figs. 2(b) and 2(c), we restrict the trans-
verse momentum of one of the electrons. In comparison
with the case of the contact interaction in Fig. 1, this has
a lesser effect on the momentum correlations. The sig-
nature of the Coulomb interaction – one electron having
a small and the other a large momentum – is rather sta-
ble against summing over various parts of the transverse
phase space. If both transverse momenta are restricted
[panels (d), (e), and (f)], we again observe, as in Fig. 1,
that the most significant contributions to the yield oc-
cur near the boundaries of the classically allowed region,
whose area decreases for increasing transverse momenta.
The shape of the distribution in panel (f), where both
transverse momenta are large, then does not look very
different from Fig. 1(f). It is, however, concentrated at
smaller values of p‖.

All panels of Figs. 1 and 2 exhibit inversion symme-
try with respect to the origin, that is, symmetry upon
(p1‖, p2‖) ↔ (−p1‖,−p2‖). This is an immediate con-
sequence of the symmetry A(t + T/2) = −A(t) of a
monochromatic laser field (16). With the exception of
Figs. 2(b) and (c), all panels also show reflection sym-
metry with respect to the diagonal p1‖ = p2‖. Since the
action (5) is invariant upon interchanging all or some
components of p1 and p2, the presence or absence of
this additional reflection symmetry is related to the cor-
responding symmetry properties of the form factor Vpk,
which are discussed below Eq. (20). In panels (b) and (c)
of Figs. 1 and 2, the transverse momentum components of
the detected electron (electron 1) are binned, while those
of the other electron (electron 2) are summed over. For
the contact interaction (21), Vpk is constant and, there-
fore, trivially symmetric upon interchanging all or only
some of the components of p1 and p2. This is not so
for the Coulomb interaction (22). Hence, panels (b) and
(c) of Fig. 1 do, and of Fig. 2 do not, exhibit reflection
symmetry about the diagonal p1‖ = p2‖.

Panels (b) and (c) of Fig. 2 show that the longitudinal
momentum of electron 1 (the one whose perpendicular
momentum is restricted) has a higher propensity to be
small than the same momentum component of electron
2, in violation of the reflection symmetry. This can be
traced to the term (p1 − k)−2 = [p2

1⊥ + (p1‖ − k)2]−1

of the form factor (23), the term that is related to the
momentum transfer from the returning electron to the
rest of the system. If p2

1⊥ is small, then the form factor
is largest if p1‖ is small as well, since the drift momentum
k of the returning electron is small.

In principle, the presence or absence in the data of
the reflection symmetry allows one to draw conclusions
regarding the actual form of the interaction (19). Indeed,
experimental data that resolve the transverse momentum

of the detected electron do show a violation of the p1‖ ↔
p2‖ symmetry [36, 37]. However, there are experimental
reasons that also lead to such a violation: the detector
has a bias to detect the electron that arrives first, which
is the faster one of the two electrons.

Another important conclusion derived from the com-
parison of Figs. 1 and 2 is that the influence of the
electron-electron interaction V12 on the correlation func-
tions is most pronounced if both transverse electron mo-
menta are restricted to small values. Except for the fact
that both respect the classical boundary, the distribu-
tions of Fig. 1(d,e) on the one hand and Fig. 2(d,e) on
the other could hardly be more different. Notice, also, the
dramatic difference between Fig. 1(a) and Fig. 1(d), while
there is comparatively little difference between Fig. 2(a)
and Fig. 2(d). For the contact interaction, which does
not allow for any dynamics (apart from energy conser-
vation), phase space is the all-important feature, while
for the Coulomb interaction the dynamical form factor
overshadows the consequences of phase space. These
facts combined suggest that experiments for different rare
gases with restricted transverse momenta of both elec-

trons might be best suited to unravel the differences be-
tween the electron-electron correlation in different atoms.

One should note that the results obtained for the
Coulomb-type interaction are strongly dependent on the
gauge. Computations of NSDI yields in the velocity
gauge [23, 25, 26] give momentum distributions that are
more concentrated near the diagonal p1‖ = p2‖ and the
origin p1‖ = p2‖ = 0. This is due to the fact that in the
velocity gauge the form factor (23) is lacking the vector
potential A(t) in the second factor of the denominator.
Hence, the mechanism described above, which favors un-
equal momenta, is upset, and the form factor plainly de-
creases for increasing momenta p1 and p2. The absence
of the vector potential implies that the form factor does
not depend on the instantaneous velocities at the time of
rescattering (as it does in the length gauge), but on the
drift momenta.

C. Electron-electron repulsion in the final state

In this section, we take into account the repulsion of
the two electrons in the final state. We do so by replacing
in the matrix element (1) the product Volkov state by the
exact correlated two-electron Volkov state whose wave
function is [38]

Ψ(V,C)
p1p2

(r1, r2, t) = ψ(V)
p1

(r1, t)ψ
(V)
p2

(r2, t)

× 1F1(−iζ; 1; i(pr − p · r))C(ζ), (24)
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FIG. 3: Same as Fig. 1, but including Coulomb repulsion of
the two electrons in the final state. The transverse momenta
of the two electrons are antiparallel, φ = π.

FIG. 4: Same as Fig. 3, but the transverse momenta are at
right angles, φ = π/2.

where r = r1 − r2, p = (p1 − p2)/2,

ζ = |p1 − p2|−1, (25)

and 1F1(a; b; z) denotes the confluent hypergeometric
function. The normalization factor is

C(ζ) = e−πζ/2Γ(1 + iζ), (26)

so that

|C(ζ)|2 =
2πζ

exp(2πζ) − 1
. (27)

FIG. 5: Same as Fig. 3, but the transverse momenta are par-
allel, φ = 0.

FIG. 6: Same as Fig. 3, but the relative orientation of the
transverse momenta is integrated over.

The two-electron Volkov state has the simple form (24)
since, owing to the dipole approximation, the laser field
couples only to the center of mass of the two electrons,
while the Coulomb repulsion only affects their relative
position. The prefactor (26) will be found to have strong
influence on the NSDI yields, since it strongly favors un-
equal momenta.

The corresponding form factor Vpk, originally defined
in Eq. (6), is now to include the entire spatial part of
the two-electron Volkov function (24). Hence, in place of
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Eq. (18) we have

Vpk =
C∗(ζ)

(2π)9/2

∫

d3r1d
3r2e

i(p1−k)·r1ei[p2+A(t)]·r2

×V12(r1, r2)ψ
(2)
0 (r2) 1F1(iζ, 1,−i(pr − p · r)). (28)

1. Contact interaction

For the contact interaction (21), the Coulomb-
repulsion-modified form factor (28) is just

Vpk ∝ C∗(ζ), (29)

which is directly proportional to the prefactor (26). Note
that it does not depend on the electron momentum in the
intermediate state, but only on the final-state momenta,
so that it can be taken out of all integrals in Eq. (4).
Its influence on the momentum distributions is shown
in the subsequent figures, in which the cases of parallel,
perpendicular, and antiparallel transverse momenta are
investigated.

Figure 3 deals with the case of antiparallel transverse
momenta, i.e., the electron momenta transverse to the
field polarization form an angle of φ = π. For this an-
gle, electron-electron repulsion is expected to play the
least important role. If the magnitudes of the transverse
momenta are completely integrated over [Fig. 3(a)], the
momentum distribution in the (p1‖, p2‖) plane looks very
similar to the case without repulsion [cf., Fig. 1(a)], ex-
cept that it is slightly broader in the direction perpen-
dicular to the diagonal p1‖ = p2‖. As one of the mo-
menta is restricted to relatively low values [Fig. 3(b)],
each maximum near ±2

√

Up splits into two, which are
positioned symmetrically with respect to p1‖ = p2‖. As
this momentum range is shifted to higher values, the
two maxima start to merge originating a plateau that
extends across the diagonal [Fig. 3(c)]. These features
are physically expected, since Coulomb repulsion is more
pronounced for small electron momenta. The influence
of Coulomb repulsion can also be seen very clearly if
both transverse momenta are restricted to small values
[Fig. 3(d)]. Indeed, there is a whole region around the
diagonal p1‖ = p2‖ for which the yield completely van-
ishes in comparison with the case without repulsion [i.e.,
Fig. 1(d)]. An analogous, less extreme effect is present for
slightly larger momenta [Fig. 3(e)]. In fact, as compared
to its counterpart without repulsion [Fig. 1(e)], there is a
noticeable decrease in the yield along and in the vicinity
of p1‖ = p2‖. For large transverse momenta, on the other
hand, Coulomb repulsion makes hardly any difference [cf.
Fig. 3(f)].

The case when the transverse momenta of the two
electrons form a right angle, i.e., φ = π/2 is interme-
diate (Fig. 4). If the transverse momenta are integrated
over, the (p1‖, p2‖)-momentum distribution considerably
broadens in the direction perpendicular to p1‖ = p2‖,
as compared with the case without repulsion and with

the previous case. If one of the momenta is restricted
to small values, the distribution, again, exhibits the two
distinct sets of maxima observed in the antiparallel situa-
tion, with the main difference that such maxima are now
more pronounced and occur even if one of the momenta
is not so small [e.g., in Fig. 4(c)]. If both momenta are
small, the yield looks almost identical with that observed
in the antiparallel case. As before, Coulomb repulsion
has no noticeable effect, when both transverse momenta
are large [panels (f)].

Finally, in Fig. 5 we address the most extreme situa-
tion, when both transverse momenta are parallel (φ = 0).
A general feature in this case is the sharp decrease in the
yield near p1‖ = p2‖, with two distinct sets of maxima,
symmetric with respect to p1‖ = p2‖, for all ranges of the
transverse momenta, restricted or not.

Figure 6 shows the corresponding results when the rel-
ative angle φ is also integrated over. As expected, it looks
much like an average of the momentum distributions of
Figs. 3 – 5.

2. Coulomb interaction

For the Coulomb interaction (22), the form factor Vpk

can be evaluated with the help of the integral [52]
∫

d3r

r
eia·r

1F1(iν; 1; i(kr − k · r))

= 4π(a2)iν−1[(a − k)2 − k2]−iν . (30)

This yields

Vpk ∼ C∗(ζ)

(p1 − k)2[2|E02| + (p1 + p2 − k + A(t))2]2

×
[

1 − (p1 − k) · (p1 − p2)

(p1 − k)2

]−iζ

+ (p1 ↔ p2). (31)

Comparing this with the form factor (23) without final-
state repulsion, we see that the former is now multiplied
with the normalization factor (26) as well as with the fac-
tor in square brackets. The latter now does depend on
k, so it cannot, in principle, be pulled out of the integral.
However, for given p in the classically allowed regime, the
two saddle-point solutions ks of the respective pair of so-
lutions are almost equal and, moreover, almost real. The
contribution of the factor in square brackets in Eq. (31)
is then negligible as it is raised to a complex power. In
the classically forbidden regime, its effect may be more
significant, but in this regime the absolute yields are very
small. All in all, the dominant effect of the final-state re-
pulsion is due to the normalization factor |C(ζ)|2, as we
observed already in Eq. (29) for the contact interaction.
This has been confirmed by the identical results obtained
taking both the exact form factor (31) or the Coulomb
form factor without repulsion multiplied by this factor
(not shown).
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FIG. 7: Same as Fig. 1, but calculated for the Coulomb inter-
action (22) and final-state Coulomb repulsion. The transverse
momenta of the final electrons are antiparallel, φ = π.

FIG. 8: Same as Fig. 7, but the transverse momenta are per-
pendicular, φ = π/2.

Once more, in Figs. 7–9, we investigate NSDI for the
transverse electron momenta being antiparallel, perpen-
dicular, and parallel, respectively. The parallel case in
Fig. 9 presents a very extreme example of the influence
of Coulomb repulsion: the momentum correlation func-
tion has shrunk to four spots, which are pushed away

FIG. 9: Same as Fig. 7, but the transverse momenta are par-
allel, φ = 0.

FIG. 10: Same as Figs. 7–9, but the relative orientation of
the transverse momenta is integrated over.

from the diagonal to the very edge of the classically al-
lowed region. Figure 9 should be compared with the cor-
responding results for the contact interaction in Fig. 5,
where this effect is much less dramatic, except in the case
where both transverse momenta are either large [panels
(f)] or small [panels (d)].

The case where both transverse momenta are restricted
to small values can be compared with two-electron one-
dimensional model calculations. Indeed, momentum cor-
relation functions calculated in this context from the nu-
merical solution of the time-dependent Schrödinger equa-
tion [22] look very much like those in panels (d) of Figs. 7–
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FIG. 11: Momentum correlation function for the Coulomb
form factor (23) in the absence of final-state repulsion for
specific relative angles φ: for φ = π (a), φ = π/2 (b), and φ =
0 (c). The other parameters are as in Fig. 1(a), in particular,
the transverse momenta are completely summed over.

9. For these very small transverse momenta, their rela-
tive orientation hardly matters anymore, and the corre-
lation function is concentrated in the four small regions
p1‖ = 0, p2‖ = ±2

√
UP and p2‖ = 0, p1‖ = ±2

√
UP on

the axes. The very same feature can be observed in the
results of Ref. [22].

Finally, in Fig. 10 we present the results of integrating
over the relative orientation φ.

Panels (b) and (c) of Figs. 7 – 10 again exhibit the
lack of the p1‖ ↔ p2‖ symmetry, which was discussed
above in connection with Fig. 2. As above the asym-
metry is strongest in panels (b), where the transverse
momentum p1⊥ is restricted to the smallest values. The
factor |C(ζ)|2, which incorporates final-state repulsion, is
invariant upon p1 ↔ p2 component by component, since
it depends on |p1−p2|. Therefore, the asymmetry is not
affected when final-state repulsion is turned on.

To conclude this Section, we investigate the momen-
tum correlation as a function of the relative angle be-
tween the momenta of the final electrons in the absence

of final-state repulsion. For the contact interaction, is
does not depend on this angle at all; for the Coulomb
interaction (23), it is presented in Fig. 11. We only show
the case, where the transverse momenta are entirely in-
tegrated. The dependence on the relative angle is weak:
only a slight recess of population away from the diago-
nal is observed when the relative orientation turns from
back-to-back to side-by-side [from panel (a) to (b)]. In
the other cases (not shown), corresponding to panels (b)
– (f) of the previous figures, the dependence is similarly
weak if not weaker.

IV. CLASSICAL MODELS

The saddle-point equations (8) pinpoint the crucial
stages of NSDI: initial tunneling of the first electron, in-
elastic scattering, and free propagation in between these
two events. Apart from the initial tunneling, the respec-
tive physics can largely be envisioned as classical, inso-
much as the final electron momenta are classically acces-
sible, and the better so the higher above threshold the

inelastic rescattering takes place. Therefore, in this sec-
tion we will explore a completely classical model.

Let us then consider the following expression for the
NSDI yield (up to a constant factor) such that two elec-
trons are generated with drift momenta p1 and p2,

F (p1,p2) =

∫

dt′R(t′)δ

(

1

2
[p1 + A(t)]2

+
1

2
[p2 + A(t)]2 + |E02| − Eret(t)

)

|Vpk|2

=

∫

dt′R(t′)δ

(

1

2
(p2

1⊥ + p2
2⊥) − ∆E

)

|Vpk|2 (32)

with

∆E ≡ ∆E(p1‖, p2‖, t) ≡ Eret(t) − |E02|

−1

2
[p1‖ +A(t)]2 − 1

2
[p2‖ +A(t)]2. (33)

Here the first electron appears in the continuum with zero
velocity at the time t′ according to the time-dependent
rate R(t′) ≡ R(E(t′)), for which we take R(t′) ∼
|E(t′)|−1 exp

[

−2(2|E01|)3/2/(3|E(t′)|)
]

[53]. Starting
from the position of the ion, the electron is acceler-
ated by the laser field. The time t ≡ t(t′) > t′, at
which the electron returns to the ion with kinetic energy
Eret(t) = (1/2)[k + A(t)]2 is calculated classically along
the lines of the simple-man model [54]. At this time,
the electron dislodges the second bound electron in an
inelastic collision. The δ-function in Eq. (32) expresses
energy conservation in this inelastic collision. In fact, it
is nothing but the saddle-point equation (8b) with real
t, t′ and k. The actual distribution of final momenta is
governed by the form factor |Vpk|2, whose shape depends
on the (effective) electron-electron interaction potential.

Several features are absent in this model that are part
of the quantum-mechanical description: (i) spreading of
the electronic wave packet from the ionization time t′ to
the return time t. (ii) For given p1 and p2, there are
several solutions t ≡ t(t′) (cf. the discussion at the end
of Sec. III A). In quantum mechanics, their contributions
are added coherently in the amplitude, while in the to-
tal classical yield (32), the probabilities corresponding to
the various solutions are added. (iii) Below the classical
threshold, the argument of the δ function in Eq. (32) is
nonzero for any ionization time t′, and the yield is zero.
Quantum mechanics admits larger energy transfer from
the laser field to the charged particles, so that the yield
remains nonzero, though it becomes exponentially small
when the parameters move farther into the nonclassical
regime. This implies that the classical model becomes
already unreliable near the boundaries of the classical
region.

We want to evaluate the distribution of the momen-
tum components parallel to the laser field for particular
configurations of the transverse components. This is gov-
erned by distribution functions of the type (15). In most
cases, we are not interested in the relative orientation
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of the transverse momenta, and we restrict their magni-
tudes to certain ranges. This requires calculating

D(p1‖, p2‖;P
2
1 , P

2
2 ) = 2π

∫ P 2

1

0

dp2
1⊥

∫ P 2

2

0

dp2
2⊥

∫ 2π

0

dφF (p1,p2). (34)

As in the quantum-mechanical considerations, we shall
investigate the two extreme cases for the electron-
electron potential V12.

A. Contact interaction

In this case, the form factor is a constant independent
of the momentum of the returning electron as well as the
momenta of the two final electrons. Therefore, the distri-
bution of the final momenta is governed only by energy
conservation at the instant of rescattering as expressed
in the δ function in Eq. (32), and by the available phase
space. The model is sufficiently simple that we can carry
out integrations over the tranverse momenta analytically.
To this end, we may, for example, replace the δ function
by its Fourier transform,

δ(x) =

∫ ∞

−∞

dλ

2π
exp(−iλx).

Finite or infinite integrations over pn can then be carried
out straightforwardly, and the remaining integration over
λ is done with the help of [55]

∫ ∞

−∞

dλ

(iλ+ ǫ)ν
eipλ =

2π

Γ(ν)
pν−1
+ , (35)

where xν
+ = xνθ(ν), with θ(ν) the unit step function and

ǫ→ +0.
This procedure yields

D(p1‖, p2‖;P
2
1 , P

2
2 ) = 2π2

∫

dt′R(t′) [2∆E

+(2∆E − P 2
1 − P 2

2 )+

−(2∆E − P 2
1 )+ − (2∆E − P 2

2 )+
]

. (36)

Note that this distribution is symmetric upon p1‖ ↔ p2‖.
Special cases include

D(p1‖, p2‖;∞,∞) = 4π2

∫

dt′R(t′)(∆E)+, (37)

where the transverse momenta are entirely integrated
over [as in panels (a) of the figures of this paper],

D(p1‖, p2‖;P
2,∞) = 4π2

∫

dt′R(t′)min

[

1

2
P 2, (∆E)+

]

,

(38)

FIG. 12: Same as Fig. 1, but calculated from the classical
model for the contact interaction. Expression (37) underlies
panel (a), expression (38) panels (b) and (c), and expression
(39) panel (d).

where one electron is binned [cf. panels (b)], or

D(p1‖, p2‖;P
2, P 2) = 4π2

∫

dt′R(t′)θ(∆E)θ(P 2 − ∆E)

×
[

∆Eθ(P 2 − 2∆E) + (P 2 − ∆E)θ(2∆E − P 2)
]

.,(39)

where both transverse momenta are restricted to the
same range [cf. panels (d)]. The other distributions that
we plotted can be obtained similarly.

Momentum correlation functions calculated from
Eqs. (37) – (39) are shown in Fig. 12. Generally, they
agree very well with the quantum-mechanical results of
Fig. 1. The minor differences that exist are most visible
in the case where both transverse momenta are restricted
to small intervals [panels (d) and (e)]. Here, the classical
model emphasizes the boundary of the classical region
projected onto the (p1‖, p2‖) plane even more strongly
than the quantum calculation. Of course, the latter ex-
tends into the classically forbidden region, but this is not
visible on the scale of Fig. 1.

The classical model and the expressions (36) – (39) de-
rived from it explain the dependence of the correlation-
function distributions on the values of the transverse
momenta and, in particular, the peculiar behavior vis-
ible in panels (d) and (e) of Figs. 1 and 12. In or-
der to satisfy the δ-function condition in Eq. (32), ∆E
must be small (large) for small (large) transverse mo-
menta. Let us consider the case of large momenta



14

first. For given t, the quantity ∆E is largest around
p1‖ = p2‖ = −A(t), and, as a function of t, its absolute
maximum is ∆Emax ≡ 3.17UP − |E02|. Large transverse
momenta are only possible near rescattering times cor-
responding to this maximum and, therefore, are concen-
trated around p1‖ = p2‖ = ±2

√
UP [56]. This is very visi-

ble in Fig. 12(f). The integrated correlation function (37)
has its maximum at about the same momenta. However,
it is broader, since it receives additional contributions
from times t′, where ∆E(t) is smaller, as well as from
smaller transverse momenta. If one transverse momen-
tum is binned with small values, the applicable distribu-
tion is given in Eq. (38). Comparing this with Eq. (37),
we see that large ∆E are now less favored and, in conse-
quence, the maximum of the distribution moves to lower
values of pn‖, and the distribution is still broader. This is
clearly visible in panel (b) of Figs. 1 and 12. When both
transverse momenta are small such that 0 ≤ |pn⊥| ≤ P ,
the pertinent distribution (39) shows that this requires
∆E ≤ P 2. For Fig. 12, P 2 = 0.25, so ∆E must be small.
For times t such that Eret is much larger than |E02| this
requires that p1‖ + A(t) and p2‖ + A(t) be large, which
produces the ring-shaped population. There are contri-
butions, too, from times t where Eret is not much larger
than |E02|. They populate the interior of the rings, but
they are much weaker, since their ionization times are
significantly below the maxima of R(t′). It is important
to recall that the features just discussed only depend on
phase space and on the highly nonlinear form of the injec-
tion rate R(t′). Any deviation from the patterns depicted
in Figs. 1 and 12 is due to the form factor Vpk favoring
certain momenta over others. Hence a comparison of the
measured momentum correlations with those of Figs. 1
and 12 does yield information about the actual electron-
electron correlation mechanism.

With the method described above, arbitrary compo-
nents of the final momenta can be summed over. In par-
ticular, single-electron momentum distributions in coin-
cidence with NSDI can be computed by integrating over
the momentum of one electron. This will not be pursued
in this paper.

B. Electron-electron Coulomb interaction

The distribution function (34) can also be evaluated
analytically in the presence of the Coulomb form factor
(23), which depends on p2

1⊥, p2
2⊥, and the relative angle

φ between p1 and p2. For arbitrary upper limits P 2
1

and P 2
2 , again all integrals (up to the integration over

t′) can be carried out analytically: First, the integral
over φ leads to a compact expression. Subsequently, the
integration over p2

2⊥ can be carried out trivially by means
of the δ function in Eq. (32), so that

1

2
(p2

1⊥ + p2
2⊥) − ∆E = 0, (40)

FIG. 13: Same as Fig. 12, but including electron-electron
repulsion in the final state. The transverse momenta are per-
pendicular, φ = π/2.

with ∆E defined in Eq. (33). The remaining integral
over p2

1⊥ then leads to a result that is too lengthy to be
written down, but still analytical. The only integration
that requires a numerical effort is the integration over
the ionization time t′. Results of this procedure will be
presented elsewhere.

C. Coulomb repulsion between the final-state

electrons

Finally, the Coulomb repulsion between the two elec-
trons in the continuum can be incorporated by replacing

|Vpk|2 → |Vpk|2|C(ζ)|2 (41)

with the function C(ζ) from Eq. (26). This was exact
for the contact potential [cf. Eq. (29)] and approximate
for the Coulomb potential [cf. Eq. (31)]. Including this
factor precludes, in general, performing the integration
(36), for the contact as well as for the Coulomb inter-
action, over the tranverse momenta in analytical form,
owing to the functional form of |C(ζ)|2. There is one
exception: if the final transverse momenta of the two
electrons are perpendicular, p1⊥ · p2⊥ = 0, then ζ−2 =
(p1‖−p2‖)

2 +p2
1⊥+p2

2⊥, and we have p2
1⊥+p2

2⊥ = ∆E by

Eq. (40). In this case, the function |C(ζ)|2, which cannot
be integrated in analytical form, actually does not have
to be integrated over.
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The results of such a calculation for the case φ = π/2
are presented in Fig. 13. Comparison with the corre-
sponding quantum-mechanical calculation in Fig. 8 again
shows agreement well into small details. Virtually the
only discrepancies are located near the diagonal, which
the classical model clears of any population even more
efficiently than the quantum-mechanical version.

V. COMPARISON WITH EXPERIMENTAL

DATA

The cold-target recoil-ion momentum spectroscopy
(COLTRIMS) or reaction-microscope technique [6] al-
lows, in principle, recording all three components of the
momentum vectors of two particles with opposite charge
ejected in some reaction process. In so much as the mo-
mentum imparted by the laser field can be neglected,
this permits a complete kinematical analysis of laser-
induced double ionization. Experiments so far have con-
centrated on the rare gases helium, neon, and argon. In a
first round of experiments, the momentum of the doubly
charged ion was registered for helium [7], neon [8], and
argon [57]. The second stage focused on the correlation
of the two electrons [11, 35, 36, 37, 58, 59]. Typically,
the momentum components parallel to the (linearly po-
larized) laser field of one of the two electrons and of the
ion were recorded, regardless of the components perpen-
dicular to the laser field. The momentum of the sec-
ond electron is then inferred from momentum conserva-
tion. In Figs. 1–10, our results corresponding to such an
analysis of the data are presented in the panels labeled
(a). The most detailed results are available for argon,
for which the correlation of the parallel components is
analyzed [36, 37], while the transverse component of the
momentum of the detected electron is binned into certain
intervals. The theoretical results for such a situation, but
for the parameters of neon, are displayed in panels (b)
and (c) of Figs. 1–10. In the panels (d), (e), and (f),
the transverse momenta of both electrons are confined to
certain ranges. Such data have not been published yet.
In a recent experiment [31], the correlation of the trans-
verse momenta was investigated, with the longitudinal
components summed over.

In the experiments, characteristic differences have been
established between NSDI of argon and helium on the
one hand, and neon on the other. In argon, a significant
number of events is found where the momenta p1‖ and
p2‖ are either both small or such that they correspond
to back-to-back emission, so that they come to lie in the
second or fourth quadrant of the (p1‖, p2‖) plane [36, 58].
Very few such events are seen in neon [35]. There is some
consensus that these events are caused by the recolliding
first electron exciting the second bound electron into an
excited bound state from which it tunnels out at a later
time [59, 60]. This mechanism is not part of the model
considered in this paper (in one spatial dimension, it has
been incorporated in Ref. [13]). The different behavior

of helium/argon versus neon has been attributed to the
different energy dependence of the pertinent electron-ion
cross sections for excitation and ionization of the respec-
tive ions [61].

For a detailed comparison between the results of the
models presented in this paper and the data, for precisely
the conditions of the latter, we refer to Ref. [62]. In what
follows, we will just compare the tendencies of our current
results with those derived from the data. For neon, the
momentum correlation functions calculated for the con-
tact potential and integrated over all transverse momenta
[Fig. 1(a); see also Ref. [28]] agree quite well with the data
of Ref. [35] (and also with those of Ref. [36]; see below).
Note that these theoretical results do not include the
Coulomb repulsion in the final state. For the case where
the transverse momentum of one electron is binned, data
exist for argon only, while all of our calculations are for
neon. However, our model does not crucially depend on
the atomic species, and we plotted all momentum distri-
butions on the scale of p/

√
UP . Keeping in mind that the

distributions broaden when the second ionization poten-
tial decreases [13], we expect the tendencies that emerge
in our results for neon to apply to argon as well. In-
specting, then, the argon data [36] where one transverse
momentum is binned to the interval 0 ≤ |p⊥| ≤ 0.5 a.u.,
we notice a slight but distinct broadening of the distribu-
tion away from the diagonal p1‖ = p2‖. This is similar to
the tendency visible in panels (b) and (c) of Fig. 6, which
do include the final-state Coulomb repulsion. Note that
these data show no similarity with panels (b) and (c)
of Figs. 10, which also include the final-state Coulomb
repulsion, but are calculated for the case where V12 is
given by the Coulomb potential (22). However, the data
are also compatible with panels (b) and (c) of Fig. 2,
which correspond to the Coulomb potential for V12 and
no final-state repulsion.

Another set of electron-electron correlation data in ar-
gon [37] has accomplished even tighter binning of the
transverse momenta. Here, too, for |p⊥| ≤ 0.3 a.u. the
tendency of the distributions to broaden away from the
diagonal p1‖ = p2‖ is obvious. For the very smallest bin,
0 ≤ |p⊥| ≤ 0.1 a.u. (Fig. 1a of Ref. [37]), the measured
distribution in the (p1‖, p2‖) plane now does show a pat-
tern with four well-separated maxima located on the p1‖

and p2‖ axes. This is reminiscent of the panels (b) of
Figs. 7–10, which are calculated for about the same bin-
ning and intensity (though for neon) and include both
the final-state repulsion and the Coulomb potential V12.
The contrast of the measured distribution, however, is
much less pronounced than in Figs. 7–10. All in all, the
data agree better with a symmetrized version of Fig. 2(b),
which takes the Coulomb interaction for V12, but does not
include the final-state Coulomb repulsion.

It is remarkable that, apart from the case last men-
tioned, the data show little similarity with the model
calculations that take the Coulomb repulsion for V12. In
no case do they agree with what one might expect to be
the optimal description: the Coulomb potential for V12
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plus final-state Coulomb repulsion.

VI. CONCLUSIONS

In this paper, we have performed a systematic in-
vestigation of the electron-electron dynamics in non-
sequential double ionization within the strong-field-
approximation framework. We have evaluated the SFA
transition amplitudes by means of the uniform approx-
imation [30, 41], which, apart from being valid in all
energy regions, considerably simplifies the computations
compared with a numerical evaluation [25, 26, 31] or
the solution of the time-dependent Schrödinger equation
[15, 16].

Our main concern is the effect of the electron-electron
interaction on the correlation of the electron-momentum
components parallel to the polarization of the laser field,
for the case where the transverse components are either
not detected at all or restricted to certain intervals. First,
we ask the question of whether the effective interaction
V12, which frees the second electron and is treated in
lowest-order Born approximation, is of short range or
long range. Second, we do include or we do not include
the electron-electron Coulomb repulsion in the final two-
electron state.

The results of such investigations are at first sight very
surprising: When the transverse momenta are integrated
over, the apparently crudest approximation – where the
electron-electron interaction by which the second electron
is kicked out is treated as an effective three-body contact
interaction, and electron-electron repulsion in the final
state is ignored – yields the best agreement with the data.
Comparison of the available data with the model cal-
culations reveals some evidence of Coulomb effects only
when one of the transverse momentum components is
very small. Unfortunately, the available experimental
data have not been analyzed to extract momentum cor-
relations where both transverse momenta are small. In
this case, the four variants of the strong-field S-matrix
model that we investigate – three-body contact interac-
tion vs. Coulomb interaction and Coulomb repulsion vs.
no Coulomb repulsion in the final state – exhibit the most
pronounced differences. Owing to this high sensitivity,
one is led to surmise that such an analysis of the data
might most clearly unveil the fundamental dynamics.

Another property of the correlation of the electron mo-
menta pn‖ parallel to the laser field that can be traced
back to the crucial electron-electron interaction V12 is a
lack of symmetry upon the interchange p1‖ ↔ p2‖, as
discussed below Eq. (20). It occurs when the two elec-
trons are not treated on equal footing in the data anal-
ysis: the transverse momentum of the detected electron
is binned while the other one is integrated over. The
symmetry then is violated for the case where V12 is given
by a Coulomb potential and observed when it is contact
interaction, regardless of whether or not the Coulomb re-
pulsion between the final electrons is taken into account.

However, there are also experimental causes unrelated to
this fundamental reason that lead to a violation of the
symmetry.

The most relevant aspect of the contact-interaction
model, be it the quantum-mechanical S-matrix formu-
lation or the classical version, might be its bare-bones
character: arguably, there is no simpler model that ac-
counts for NSDI and incorporates tunneling, rescattering
and energy conservation in this process, and the conse-
quences of three-dimensional phase space. In this sense,
its results provide a benchmark. An example that intri-
cate structures may be created by these simple ingredi-
ents is provided by the momentum correlations presented
in Figs. 1(c,d) and 12(c,d): the ring-shaped populations
may suggest the action of a repulsive force, which actu-
ally is not there.

It seems that the most important ingredient that is
missing from the present analysis is the interaction of
the electrons in the intermediate state and the final
states with the ion. To some very elementary extent,
this is accounted for if we employ the three-body con-
tact interaction for the crucial electron-electron inter-
action V12, while it is definitely not when we take the
electron-electron Coulomb interaction [50]. In reality, the
presence of the ion will shield the fundamental electron-
electron Coulomb repulsion to some extent, which is
taken into account in an extreme fashion by the contact
interaction. This argument is supported by the good
agreement of classical-trajectory (CT) [34] calculations
with both the experimental data and the results of our
most rudimentary model, since these calculations include
all particle interactions at any stage of the process. The
particular importance of the ion is also surmised in a re-
cent comparison of the experimental transverse electron-
ion correlation with an S-matrix calculation [31].

The excellent agreement between the results of our
quantum-mechanical S-matrix calculations and those of
the corresponding classical model of Section IV can be
invoked to justify such a classical calculation from the
outset, provided the parameters are sufficiently far above
the classical threshold. This has recently been done in a
computation of NSDI by a few-cycle laser pulse as a func-
tion of the carrier-envelope phase [63]. The agreement
also lends additional credit to the three-dimensional CT
results in the regime sufficiently well inside the classical
realm. A corresponding agreement between quantum and
classical results has also been observed in the context of
one-dimensional model calculations [20]. We can make
contact with such models by restricting the transverse
momenta to values near zero. Of course, recent measure-
ments of NSDI at and below the classical threshold [11]
are outside the reach of the classical approach.
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discussions and D.B. Milošević for providing subroutines.



17

In particular, we are highly indebted to E. Lenz for his
help with the code. This work was supported in part by

the Deutsche Forschungsgemeinschaft.

[1] S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, and
J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989).

[2] M.V. Ammosov, N.B. Delone, and V.P. Krainov, Zh.
Eksp. Theor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64,
1191 (1986)].

[3] A. L’Huillier, L.A. Lompré, G. Mainfray, and C. Manus,
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Höhr, H. Rottke, C. Trump, M. Wittmann, G. Korn, K.
Hoffmann, and W. Sandner, J. Phys. B 36, L113 (2003).

[36] R. Moshammer, B. Feuerstein, J. Crespo López-Urrutia,
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