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Synchronization of active mechanical oscillators by an inertial load
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Motivated by the operation of myogenic (self-oscillatory) insect flight muscle, we study a model
consisting of a large number of identical oscillatory contractile elements joined in a chain, whose
end is attached to a damped mass-spring oscillator. When the inertial load is small, the serial
coupling favors an antisynchronous state in which the extension of one oscillator is compensated by
the contraction of another, in order to preserve the total length. However, a sufficiently massive load
can sychronize the oscillators and can even induce oscillation in situations where isolated elements
would be stable. The system has a complex phase diagram displaying quiescent, synchronous and
antisynchrononous phases, as well as an unsual asynchronous phase in which the total length of the
chain oscillates at a different frequency from the individual active elements.

PACS numbers: 05.45.Xt,87.19.Ff,87.16.Nn

The origin of movement in biological systems can fre-
quently be traced to molecular motors — specialized pro-
teins that convert chemical energy to mechanical work.
Kinesin and dynein, which travel along microtubules, and
myosin, which pulls on actin filaments, are typical exam-
ples [1, 2]. In many cases, such as muscle contraction or
intracellular transport, molecular motors generate uni-
directional motion. But there are also a number of phys-
iological systems which incorporate motor proteins that
display oscillatory dynamics. These include eucaryotic
flagella and cilia whose undulation is driven by dynein
molecules, and the flight muscles of many insects which
contract rythmically at a frequency that is out of step
with the excitory neural impulses [3, 4, 5, 6, 7, 8]. Appar-
ently these systems are self-oscillatory, and the dynamical
instability that leads to vibration is directly generated by
the action of the motor proteins; it is usually attributed
to delayed stretch activation, which can be caused by
a variety of different microscopic mechanisms (reviewed
in Refs. [6] & [7]). Oscillations have also been observed
in the sarcomeres of skeletal muscle in non-physiological
conditions [9, 10, 11, 12] and in experiments that probe
the interaction between individual dynein molecules and
microtubules [13]. Even normal muscle fibers can display
a damped oscillatory response to sudden changes in load
[14].

Theoretical analysis has demonstrated that a single fil-
ament interacting with an ensemble of motors can have
an anomalous force-velocity relation [15, 16], whereby
two different sliding speeds, one positive and one neg-
ative, can occur at a given load. Experimental confir-
mation of this phenomenon has been obtained in glid-
ing motility assays for both actin- [17] and microtubule-
based systems [18]. In such a situation the motors can
collectively generate oscillations when the filament is con-
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FIG. 1: Model system: A chain of serially coupled active Hopf
oscillators is attached to a damped inertial oscillator.

nected in series with an elastic element [19, 20, 21], be-
cause the solution for the sliding speed then switches pe-
riodically between the two stable branches. However,
direct application of this model to muscle fibers, com-
posed of hundreds of sarcomeres (contractile units) in
series, omits a crucial point: the oscillations will only be
macroscopically observable if there is at least some de-
gree of synchrony between the oscillations of individual
sarcomeres. How might this occur? One possibility is
that the activity of myosin motors in different sarcom-
eres is coordinated by some chemical signaling. An al-
ternative suggestion is that torsion of actin filaments is
involved [11]. In this Letter, we propose a mechanism
of synchronization that does not rely on any such spe-
cific molecular process. We investigate the dynamics of a
chain of active mechanical elements each of which, when
isolated, can undergo a dynamical instability from a qui-
escent (stable) to an oscillatory (unstable) regime. In
the case where each element is individually stable, we
show that the entire chain can be set into synchronized
vibration by the application of a sufficiently massive in-
ertial load at its end. In the alternative case where each
contractile element is unstable, we demonstrate the ex-
istence of a variety of dynamical regimes, including an
unusual asynchronous state in which individual elements
oscillate at a faster frequency than the mass to which
they are connected.

The model system that we investigate is shown in
Fig. 1. Each contractile element in the chain is an ac-
tive mechanical system whose displacement xi is coupled
nonlinearly to an internal variable yi (which might, for
example, be the fraction of bound motors, or the concen-
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tration of a regulator). We suppose that an element may
either stay still or generate self-sustained oscillations, de-
pending on the value of a control parameter. In the vicin-
ity of the critical point where the quiescent state becomes
unstable, the dynamics may be described by the canoni-
cal equation for a Hopf bifurcation. Writing the complex
variable zi = xi + iyi, we have

żi = (iω + ǫ)zi − B |zi|
2 zi + F/ζ , (1)

where ǫ is the control parameter and ω is the character-
istic frequency of each active oscillator. F is the force
acting on each of the oscillators in the chain, due to
the coupled mass-spring system and is determined by its
equation of motion:

F = −M

N
∑

i=1

Re
(

z̈i + Ω2zi + γżi

)

, (2)

where M is the mass of the load, γ is a measure of the
damping and Ω is the natural frequency of the mass-
spring system. In order to proceed further with the anal-
ysis and obtain numerical solutions, we replace Eq. (2)
with a first-order differential equation by inserting z̈i

from the first derivative of Eq. (1)

Ḟ = −
ζ

NM
F +

ζ

N

N
∑

i=1

(

−ǫ Re żi + ω Im żi

+ B Re
d(z2

i
z∗

i
)

dt
− Ω2 Re zi − γ Re żi

)

, (3)

where the terms containing żi can be substituted from
Eq. (1).

These equations constitute a system of globally cou-
pled oscillators [22, 23, 24, 25] (the oscillators interact
with each other via the single variable F ). However, our
model differs in a crucial way from classical models of
synchronization, such as the Kuramoto model [26], in
that the coupling variable F is determined by a first-order
differential equation (Eq. 3), rather than as a function of
the variables zi. By expressing all frequencies in terms
of ω and amplitudes in terms of

√

ω/B, and assuming
N ≫ 1, the number of model parameters is reduced to
four: ǫ/ω, Ω/ω, γ/ω and ζ/NMω.

We start our analysis by considering the situation in
which the active elements would be stable if isolated,
ǫ < 0. With ǫ fixed, the frequency of the inertial oscil-
lator Ω acts as a control parameter for the system as a
whole. We can identify a transition between a quiescent

phase (for Ω < Ωc) in which the entire system is at rest,
and a synchronized phase (for Ω > Ωc) in which all of
the contractile elements and the massive load oscillate
together (see Fig. 2). At the critical value Ω = Ωc the
system undergoes a Hopf bifurcation. In its vicinity we
can use linear stability analysis, because the amplitude
tends to zero there. In the synchronized phase, all oscil-
lators have identical displacement zi ≡ z = x + iy and
Eqs. (1) & (3) form a system of three coupled differential
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FIG. 2: Phase diagram (Q quiescent; S synchronous; Anti
antisynchronous; A asynchronous) as a function of the con-
trol parameter ǫ of the active elements and the frequency Ω
of the inertial oscillator. Other parameters have the values
ζ/NMω = 0.3125 and γ/ω = 0.2. The diagram was estab-
lished by numerical solution of Eqs. (1) & (3). The phase
boundary of the synchronous state is given by Eq. (4) for ǫ < 0
and can be determined by perturbation theory for ǫ > 0.

equations for x, y and F . The characteristic equation for
the eigenvalues of the Jacobian reads λ3 − (ǫ − ζ/NM −
γ)λ2 +(Ω2−ǫγ−2ǫζ/NM)λ−Ω2ǫ+(ǫ2+ω2)ζ/NM = 0.
The transition occurs when the real part of the complex
eigenvalue pair changes sign, giving

Ωc =

√

ω2/

(

1 +
NMγ

ζ

)

+ ǫ

(

γ − ǫ + 2
ζ

NM

)

. (4)

The frequency f of synchronized oscillations at the bi-
furcation is given by the imaginary part of the complex
eigenvalues:

f =
√

ω2/ (1 + γNM/ζ) − ǫ2 . (5)

Note that it is always the case that Ωc < f < ω. Away
from the bifurcation, Ω < Ωc, the synchronized oscilla-
tions have a frequency lower than f , thus f represents
the maximal frequency of the system.
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FIG. 3: The asynchronous state. (a) Phase φi = arg(zi) of
each of the N = 128 active elements as a function of time.
The phase velocity φ̇i of a particular element is slow for a
number of periods of oscillation, then speeds up over a few
periods, then slows again. The average frequency of the ac-
tive elements is therefore faster than the speed of propaga-
tion of the the high-density area in the phase space, which
is the frequency of the inertial load. (b) Total extension

x = Σi Re zi (in units N
√

ω/B) as a function of time, il-
lustrating the lower frequency of the inertial oscillator. Pa-
rameters: ζ/NMω = 0.3125, γ/ω = 0.2, ǫ/ω = 0.6 and
Ω/ω = 0.83.

To interpret this result in terms of the underlying phys-
ical model, we can consider two different ways of adjust-
ing the load. In the first, illustrated in Fig. 2a, we fix
the mass and the damping of the inertial oscillator (thus
M = const, γ = const) and change the stiffness of the
spring (a stiffer spring implies a higher frequency Ω and
vice versa). Then a sufficiently strong spring, such that
Ω > Ωc, will always maintain the stability of the system.
But decreasing the stiffness can provoke a transition to
synchronized oscillations, provided that the control pa-
rameter ǫ lies above some threshold value, determined by
the solution Ωc = 0 of Eq. (4) (i.e. the active elements
must be sufficiently close to their dynamical instability).
We also note that the chain can oscillate synchronously
even when the inertial oscillator itself is overdamped
(i.e. Q = Ω/γ < 1). In the second situation, we vary the
mass M of the inertial oscillator while keeping the spring
stiffness MΩ2 and the damping Mγ constant. Now we
find that the system will remain quiescent if the mass is
sufficiently small, but that a larger mass can make the
system oscillate provided that ǫ > −ω/

√

1 + NMγ/ζ.

We continue the analysis by considering the situa-
tion where the active elements are individually unstable,
ǫ > 0, and would oscillate spontaneously if isolated. In
this case the system displays a greater variety of phases,
as indicated in Fig. 2. For small values of Ω, there is a
synchronous phase as described above. For large values
of Ω there is an antisynchronous phase: All of the active
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FIG. 4: Frequency and amplitude of oscillations as a func-
tion of Ω for a fixed, positive value of the control param-
eter (ǫ/ω = 0.6). These parameters correspond to moving
up the right vertical axis of Fig. 2a. The system transits
from the synchronous (S), to the asynchronous (A), to the
antisynchronous (Anti) phase. Black curves show the fre-
quencies of the inertial load (continuous) and of the active
elements (dashed). Gray curves show the RMS amplitude

of the mass (continuous) in units N
√

ω/B and that of each

active element (dashed) in units
√

ω/B. Other parameters:
ζ/NMω = 0.3125, γ/ω = 0.2.

elements oscillate with the same frequency ω, but with
a distribution of phases φi = arg(zi) such that the sum
of their extensions is always zero; thus the massive load
remains stationary. When the inertial frequency Ω quite
closely matches the characteristic frequency ω of the ac-
tive oscillators, there is a remarkable phase in which the
individual elements oscillate at one frequency, while the
total extension oscillates at a different, lower frequency.
We label this phase asynchronous. As shown in Fig. 3,
active oscillators form clusters with different phases φi

and their phase velocities φ̇i periodically slow down and
speed up. The number of oscillators in each cluster gen-
erally decreases with increasing ǫ/ω and can be as small
as one, which is the case in the example shown in Fig. 3.
The ensemble of oscillators resembles a set of vehicles on
a congested ring road, which repeatedly enter a traffic
jam. Because vehicles enter the jam at its rear end and
leave at the front, the jam progresses more slowly than
the average speed of an individual vehicle. In our model,
the total extension depends on the phase of the major-
ity of active oscillators, and the oscillation frequency of
the inertial load therefore corresponds to the speed of
propagation of the traffic jam.

The dependencies on Ω of the frequencies of individ-
ual elements, and of the total displacement, are shown
in Fig. 4. Also shown are the corresponding amplitudes
of motion. In the synchronous phase, both frequencies
are equal and the amplitude of the inertial load is N
times greater than that of each active element. In the
asynchronous phase, the amplitude of the inertial oscil-
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lator falls towards zero, while that of the active elements
approaches

√

ǫ/B — the amplitude of spontaneous os-
cillations for an isolated element. At the same time, the
frequency of the active oscillators approaches their char-
acteristic frequency ω. In the antisynchronous phase the
frequency and amplitude of the active elements remain
unchanging at these limiting values, and the inertial mass
does not move. For large values of ǫ all transitions are
second order, and the system passes directly from the
synchronized, to the asynchronous, to the antisychronous
phase as Ω increases. For small, positive values of ǫ the
transitions become first order and there is a region in
which the synchronous phase and the asynchronous phase
coexist as two metastable states. At intermediate values
of ǫ, a complex asynchronous phase arises in which three
or more clusters of oscillators are synchronized within
each cluster, but the clusters are out of phase with each
other (see Fig. 2b).

One experimental situation which appears to corre-
spond to the regime ǫ > 0 is the spontaneous oscilla-
tory contraction (SPOC) of skeletal muscle in conditions
of high ADP/ATP ratio. Oscillations of the length of
a myofilament have been observed when its end was at-
tached to a flexible microneedle [11], and oscillations in
the length of individual sarcomeres have been seen when
the total length was held fixed [9]. These correspond
to the synchronous and antisynchronous phases of our
model. Additionally a ‘metachronal’ phase, in which con-
tractile waves propagate along a myofilament, has been
observed [10]. This cannot be explained by our model. It
would require either chemical signaling between adjacent
sarcomeres, or a gradient in one or more of the sarcomere
properties (e.g. the number of myosin molecules inter-
acting with the thin filament) as suggested by Smith and
Stephenson [27].

The mechanics of insect flight muscle has been inves-
tigated in detail by Machin and Pringle [4, 5]. They

found that a sudden increase in fiber length caused a
subsequent rise in tension — the phenomenon known as
‘delayed stretch activation’. Consequently a muscle sub-
jected to a sinusoidal change of length produced net work
[5]. They also observed that a muscle could be made to
oscillate by attaching it to an inertial load [4], provided
that the damping was not too great. They suggested that
the load must be resonant (i.e. Q = Ω/γ > 1) for oscilla-
tions to occur, and found that the frequency of vibration
was primarily determined by the inertia and elasticity
of the load. All of these results are consistent with our
model in the regime ǫ < 0 and ζ/NMω ≪ 1. But we
predict that it is not in general necessary for the load
to be resonant; oscillations should be observable when-
ever Ω is smaller than Ωc, given by Eq. (4). And we
note that the oscillation frequency generally depends on
the characteristic frequency ω of the sarcomeres, as well
as on the nature of the inertial load. It is often stated
that the wings and thorax of insects provide a resonant
load whose oscillation is maintained by energy supplied
by the flight muscles [7, 8]. In the light of our investi-
gation, it would be interesting to conduct experiments
in which the mass and damping of this load is modified,
to verify whether the muscles can generate oscillations in
the absence of resonance.
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