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ABSTRACT

The Shear TEsting Programme, STEP, is a collaborative project to improve the accuracy
and reliability of all weak lensing measurements in preparation for the next generation of
wide-field surveys. In this first STEP paper we present the results of a blind analysis of simu-
lated ground-based observations of relatively simple galaxy morphologies. The most success-
ful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that
have been used to constrain cosmology, we find weak lensing shear measured to an accuracy
that is within the statistical errors of current weak lensing analyses, with shear measurements
accurate to better than 7%. The dominant source of measurement error is shown to arise from
calibration uncertainties where the measured shear is overor under-estimated by a constant
multiplicative factor. This is of concern as calibration errors cannot be detected through stan-
dard diagnostic tests. The measured calibration errors appear to result from stellar contami-
nation, false object detection, the shear measurement method itself, selection bias and/or the
use of biased weights. Additive systematics (false detections of shear) resulting from residual
point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of
0.001, an order of magnitude below cosmic shear distortionson the scales probed by current
surveys.

Our results provide a snapshot view of the accuracy of current ground-based weak lensing
methods and a benchmark upon which we can improve. To this endwe provide descriptions of
each method tested and include details of the eight different implementations of the commonly
used Kaiser et al. (1995) method (KSB+) to aid the improvement of future KSB+ analyses.

Key words: cosmology: observations - gravitational lensing - large-scale structure.
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1 INTRODUCTION

Gravitational lensing provides an unbiased way to study thedis-
tribution of matter in the Universe. Derived from the physics of
gravity, where gravitational light deflection is dependentsolely
on the distribution of matter, weak gravitational lens theory de-
scribes a unique way to directly probe dark matter on large scales
(see the extensive review by Bartelmann & Schneider 2001). This
tool has many astronomical applications; the detection of weak
shear around galaxy clusters yields an estimate of the totalclus-
ter mass (see for example Wittman et al. 2003; Margoniner et al.
2005) and enables a full mass reconstruction of low redshiftclusters
(see for example Clowe et al. 2004; Gray et al. 2002; Dahle et al.
2002); the average weak tangential shear of distant galaxies around
nearby galaxies constrains the ensemble average properties of dark
matter halos (see for example Hoekstra et al. 2004; Sheldon et al.
2004); the weak lensing of background galaxies by foreground
large-scale structure directly probes the evolution of thenon-linear
matter power spectrum, hence providing a signal that can constrain
cosmological parameters (see review by Van Waerbeke & Mellier
2003). This last application has the great promise of being able
to tightly constrain the properties of dark energy with the next
generation of wide-field multi-colour surveys (Jain & Taylor 2003;
Bernstein & Jain 2004; Benabed & Van Waerbeke 2004; Heavens
2003; Refregier et al. 2004).

Technically, weak lensing is rather challenging to detect.It re-
quires the measurement of the weak distortion that lensing induces
in the shapes of observed galaxy images. These images have been
convolved with the point spread function (PSF) distortion of the
atmosphere, telescope and camera. The accuracy of any analysis
therefore depends critically on the correction for instrumental dis-
tortions and atmospheric seeing. Weak lensing by large-scale struc-
ture induces percent level correlations in the observed ellipticities
of galaxies, termed ‘cosmic shear’. This cosmological application
of weak lensing theory is therefore the most demanding technically,
owing to the fact that for any weak lensing survey, the instrumen-
tal distortions are an order of magnitude larger than the underlying
cosmic shear distortion that we wish to detect. We thereforefocus
on the demands of this particular application even though our find-
ings will be beneficial to all weak lensing studies.

The unique qualities of weak lensing as a dark mat-
ter and dark energy probe demand that all technical chal-
lenges are met and overcome, and this desire has lead to
the development of some of the most innovative methods
in astronomy. The first pioneering weak lensing measurement
methods by Tyson et al. (1990), Bonnet & Mellier (1995) and
Kaiser et al. (1995) (KSB) have improved (Luppino & Kaiser
1997; Hoekstra et al. 1998) (KSB+) and diversified (Rhodes etal.
2000; Kaiser 2000; Bridle et al. 2001; Bernstein & Jarvis 2002;
Refregier & Bacon 2003; Massey & Refregier 2004). Novel meth-
ods to model the spatial and temporal variation of the PSF have
also been designed to improve the success of the PSF correction
(Hoekstra 2004; Jarvis & Jain 2004). In addition, diagnostic tech-
niques have been developed and implemented to provide indica-
tors for the presence of residual systematic non-lensing distortions
(Bacon et al. 2003; Crittenden et al. 2002; Schneider et al. 2002;
Brown et al. 2003).

Rapid technical development has mirrored the growth in ob-
servational efforts with the cosmic shear analysis of several wide-
field optical surveys yielding joint constraints on the matter den-
sity parameterΩm and the amplitude of the matter power spectrum
σ8 (Maoli et al. 2001; Rhodes et al. 2001; Van Waerbeke et al.

2001; Hoekstra et al. 2002; Bacon et al. 2003; Refregier et al.
2002; Jarvis et al. 2003; Brown et al. 2003; Hamana et al. 2003;
Massey et al. 2005; Rhodes et al. 2004; Van Waerbeke et al. 2005;
Heymans et al. 2005; Jarvis et al. 2005; Hoekstra et al. 2005;
Sembolini et al. 2005) and also constraints on the dark energy
equation of state parameterw (Jarvis et al. 2005; Hoekstra et al.
2005; Sembolini et al. 2005). The results from these effortsare
found to be in broad agreement and are fast becoming more cred-
ible with the most recent publications presenting the results from
several different diagnostic tests to determine the levelsof sys-
tematic error. Table 1 lists the most recent cosmic shear results
from different authors or surveys, the two-point statistics used
in the cosmological parameter analysis and the statistics used to
determine levels of systematic errors through an E/B mode de-
composition (Crittenden et al. 2002). See Schneider et al. (2002)
and Brown et al. (2003) for details about each two-point statis-
tic and their E/B mode decomposition and Massey et al. (2005),
Van Waerbeke et al. (2005) and Heymans et al. (2005) for different
discussions on which statistics are best to use. For such a young
field of observational research, the∼ 2σ agreement between the
results, shown in Table 1, is rather impressive. The differences be-
tween the results are, however, often cited as a reason for caution
over the use of cosmic shear as a cosmological probe. For thisrea-
son the Shear TEsting Programme1 (STEP) was launched in order
to improve the accuracy and reliability of all future weak lensing
measurements through the rigorous testing of shear measurement
pipelines, the exchange of data and the sharing of technicaland
theoretical knowledge within the weak lensing community.

The current differences seen in cosmic shear cosmological pa-
rameter estimates could result from a number of sources; inaccurate
source redshift distributions that are required to interpret the cosmic
shear signal; sampling variance; systematic errors from residual in-
strumental distortions; calibration biases in the shear measurement
method. Contamination to cosmic shear analyses from the intrin-
sic galaxy alignment of nearby galaxies is currently thought to be
a weak effect that is measured and mitigated in Heymans et al.
(2004) (also see King & Schneider 2003; Heymans & Heavens
2003; King & Schneider 2002, and references therein). With the
next generation of wide-field multi-colour surveys many of these
problems can swiftly be resolved as the multi-colour photometric
redshifts will provide a good estimate of the redshift distribution
(see for example Brown et al. 2003) and the wide areas will min-
imise sampling variance. In addition, all new instrumentation has
been optimised to reduce the severity of instrumental distortions
improving the accuracy of future PSF corrections. Implementing
diagnostic statistics that decompose cosmic shear signalsinto their
lensing E-modes and non-lensing B-modes (Crittenden et al.2002;
Schneider et al. 2002; Brown et al. 2003) immediately alertsus to
the presence of systematic error within our data set. B-modesys-
tematics can then be reduced through the modification of PSF mod-
els (Van Waerbeke et al. 2005; Jarvis & Jain 2004) or merely the
selection of angular scales above or below which the systematics
are removed. Calibration bias is therefore perhaps of greatest con-
cern as, in contrast to additive PSF errors, it can only be directly
detected through the cosmic shear analysis of image simulations,
although see the discussion on self-calibration in Hutereret al.
(2005) and Hirata et al. (2004) and Mandelbaum et al. (2005) for
model-dependent estimates of shear calibration errors in the Sloan
Digital Sky Survey. With the statistics currently used to place

1 www.physics.ubc.ca/∼heymans/STEP.html
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constraints on cosmological parameters, a shear calibration error
contributes directly to an error inσ8. The recent development of
statistics which are fairly insensitive to shear calibration errors
(Jain & Taylor 2003; Bernstein 2006) are certainly one solution to
this potential problem. Also see Ishak (2005), where shear calibra-
tion uncertainties are marginalised over in the cosmological param-
eter estimation.

Bacon et al. (2001), Erben et al. (2001) and Hoekstra et al.
(2002) presented the first detailed cosmic shear analyses ofartifi-
cial image simulations using the KSB+ method. Bacon et al. (2001)
found that the KSB+ method was reliable to∼ 5% provided a cal-
ibration factor of0.85 was included in the analysis to increase the
KSB+ shear estimator. The calibration factor has since beenin-
cluded in the work of Bacon et al. (2003), Brown et al. (2003) and
Massey et al. (2005) who implement the KSB+ pipeline tested in
Bacon et al. (2001). Erben et al. (2001) found that dependingon
the PSF type tested and the chosen implementation of the KSB+
formula, described in section 2.1, the KSB+ method was reliable
to ±10 − 15% and did not require a calibration correction. The
artificial images tested by Hoekstra et al. (2002) included cosmic
shear derived from ray-tracing simulations. They found that the in-
put lensing signal could be recovered to better than10% of the
input value. The difference between these three conclusions is im-
portant. All papers adopted the same KSB+ method, but subtledif-
ferences in their implementation resulted in the need for a calibra-
tion correction in one case but not in the others. It is therefore not
sufficient to cite these papers to support the KSB+ method as ev-
ery individuals’ KSB+ pipeline implementation may differ slightly,
introducing a discrepancy between the results.

For the cosmic shear, galaxy-galaxy lensing and cluster mass
determinations published to date,6 10% errors are at worst com-
parable to the statistical errors and are not dominant. Muchlarger
surveys now underway will, however, reduce statistical errors on
various shear measurements to the∼ 2% level, requiring shear
measurement accurate to∼ 1%. In the next decade, deep weak-
lensing surveys of thousands of square degrees will requireshear
measurements accurate to∼ 0.1%. The technical challenges as-
sociated with measuring weak lensing shear must therefore be ad-
dressed and solved in a relatively short period of time.

Whilst KSB+ is currently the most widely used weak lens-
ing method, promising alternative methods have been developed
[Rhodes et al. 2000 (RRG); Kaiser 2000 (K2K); Smith 2000
(ellipto); Bridle et al. 2001 (Im2shape); Bernstein & Jarvis 2002
(BJ02); Refregier 2003 (shapelets); Massey & Refregier 2004 (po-
lar shapelets)] and implemented in cosmic shear analyses [see
for example Rhodes et al. 2004 (RRG); Wittman et al. 2001 (el-
lipto); Jarvis et al. 2003 and Jarvis et al. 2005 (BJ02); Chang et al.
2004 (shapelets)], and cluster lensing studies [see for exam-
ple Bardeau et al. 2004 (Im2shape); Dahle et al. 2002 (K2K);
Margoniner et al. 2005 (ellipto)]. Thorough testing of these newer
techniques is however somewhat lacking in the literature, although
see Refregier & Bacon (2003) and Massey et al. (2004) for tests of
the shapelets method.

In this paper we present the first of the STEP initiatives; the
blind2 analysis of sheared image simulations with a variety of weak
lensing measurement pipelines used by each author in their previ-
ously published work. Authors and methods are listed in Table 2.
Modifications to pipelines used in published work have not been al-
lowed in light of the results and we thus present our results openly

2 CH, LV and KK knew the input shear of the simulations.

Author Key Method

Bridle & Hudelot SB Im2shape (Bridle et al. 2001)

Brown MB KSB+ [Bacon et al. (2000) pipeline]

Clowe C1 & C2 KSB+

Dahle HD K2K (Kaiser 2000)

Hetterscheidt MH KSB+ [Erben et al. (2001) pipeline]

Heymans CH KSB+

Hoekstra HH KSB+

Jarvis MJ Bernstein & Jarvis (2002)
Rounding kernel method

Kuijken KK Shapelets to12th order
Kuijken (2006)

Margoniner VM Wittman et al. (2001)

Nakajima RN Bernstein & Jarvis (2002)
Deconvolution fitting method

Schrabback TS KSB+
[Erben et al. (2001) + modifications]

Van Waerbeke LV KSB+

Table 2.Table of authors and methods. The key identifies the authors in all
future plots and Tables.

to provide the reader with a snapshot view of how accurately we
can currently measure weak lensing shear from galaxies withrela-
tively simple morphologies. This paper will thus provide a bench-
mark upon which we can improve in future STEP initiatives. Note
that some of the methods evaluated in this paper are experimen-
tal and/or in early stages of development, notably the methods
of Kuijken (2006), the deconvolution fitting method of Nakajima
(2005 in preparation), and the Dahle implementation of K2K.The
results from these particular methods should therefore notbe taken
as a judgment on their ultimate potential.

This paper is organised as follows. In Section 2 we review
the different shear measurement methods used by each authorand
describe the simulated data set in Section 3. We compare eachau-
thors’ measured shear with the input simulation shear in Section 4
investigating forms of calibration bias, selection bias and weight
bias. Note that our discussion on the issue of source selection bias
is indeed relevant for many different types of survey analysis, not
only the lensing applications detailed here. We discuss ourfindings
in Section 5 and conclude in Section 6.

2 METHODS

In the weak lensing limit the ellipticity of a galaxy is an un-
biased estimate of the gravitational shear. For a perfect ellipse
with axial ratioβ at position angleθ, measured counter-clockwise
from thex axis, we can define the following ellipticity parameters
(Bonnet & Mellier 1995)

(

e1

e2

)

=
1 − β

1 + β

(

cos 2θ
sin 2θ

)

, (1)

and the complex ellipticitye = e1 + ie2. In the case of weak shear
|γ| ≪ 1, the shearγ = γ1 + iγ2 is directly related to the average
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Survey Analysis Pipeline Description σ8 Statistic E/B decomposition Area(deg2) zm

Hoekstra et al. (2002) Hoekstra et al. (1998) 0.86+0.09
−0.13 〈Map

2〉 〈Map
2〉 〈M2

⊥
〉 53.0 0.54 − 0.66

Refregier et al. (2002) Rhodes et al. (2000) 0.94 ± 0.24 〈γ2〉 〈Map
2〉 〈M2

⊥
〉 0.36 (s) 0.9 ± 0.1

Brown et al. (2003) Bacon et al. (2000) 0.72 ± 0.09 ξ± P κκ P κκ P κβ P ββ 1.25 0.85 ± 0.05

Hamana et al. (2003) Hamana et al. (2003) 0.78+0.55
−0.25 〈Map

2〉 〈Map
2〉 〈M2

⊥
〉 2.1 0.6 − 1.4

Rhodes et al. (2004) Rhodes et al. (2000) 1.02 ± 0.16 〈γ2〉 none 0.25 (s) 1.0 ± 0.1

Van Waerbeke et al. (2005) Van Waerbeke et al. (2000)0.83 ± 0.07 〈Map
2〉 ξE 〈Map

2〉 〈M2
⊥
〉 ξE ξB 8.5 0.8 − 1.0

Jarvis et al. (2005) Bernstein & Jarvis (2002) 0.72+0.17
−0.14 〈γ2〉 〈Map

2〉 〈Map
2〉 〈M2

⊥
〉 75.0 0.6 ± 0.1

Massey et al. (2005) Bacon et al. (2000) 1.02 ± 0.15 ξ± ξE ξB 4.5 0.8 ± 0.08

Heymans et al. (2005) Heymans et al. (2005) 0.68 ± 0.13 ξ±, P κκ ξE ξB P κκ P κβ P ββ 0.22 (s) 1.0 ± 0.1

Table 1. The most recent cosmological parameter constraints on the amplitude of the matter power spectrumσ8 from each author or survey, for a matter
density parameterΩm = 0.3. Quoted errors onσ8 are1σ (68% confidence) except in the case of Jarvis et al. (2005) where the errors given are2σ (95%
confidence). Several different statistics have been used toconstrainσ8, as detailed, where〈Map

2〉 is the mass aperture statistic,〈γ2〉 is the top-hat shear
variance,ξ± are the shear correlation functions andP κκ is the shear power spectrum. The statistics used to determine the level of non-lensing B-modes in
each result are also listed where〈M⊥

2〉 is the B-mode mass aperture statistic,ξE andξB are E and B mode correlators,P ββ is the B-mode shear power
spectrum, andP κβ is the E/B cross power spectrum. See Schneider et al. (2002) and Brown et al. (2003) for details about each two-point statistic and their
E/B mode decomposition. The shear measurement pipeline that has been used for each result is listed for reference, alongwith the area of the survey and the
median redshift estimate of the surveyzm. Space-based surveys are denoted with an (s) in the area column.

galaxy ellipticity,γ ≈ 〈e〉. In this section we briefly review the dif-
ferent measurement methods used in this STEP analysis to estimate
galaxy ellipticity in the presence of instrumental and atmospheric
distortion and hence obtain an estimate of the gravitational shearγ.
Common to all methods is the initial source detection stage,typi-
cally performed using theSExtractor(Bertin & Arnouts 1996) soft-
ware. The peak finding toolhfindpeaksfrom theimcat3 software is
used as an alternative in some KSB+ methods, listed in Appendix
Table A1. In order to characterise the PSF, stars are selected in all
cases from a magnitude-size plot.

2.1 KSB+ Method

Kaiser et al. (1995), Luppino & Kaiser (1997) and Hoekstra etal.
(1998) (KSB+) prescribe a method to invert the effects of thePSF
smearing and shearing, recovering a shear estimator uncontami-
nated by the systematic distortion of the PSF.

Objects are parameterised according to their weighted
quadrupole moments

Qij =

∫

d2θ W (θ) I(θ) θiθj
∫

d2θ W (θ) I(θ)
, (2)

whereI is the surface brightness of the object,θ is the angular dis-
tance from the object centre andW is a Gaussian weight function
of scale lengthrg, whererg is some measurement of galaxy size.
For a perfect ellipse, the weighted quadrupole moments are related
to the weighted ellipticity parameters4 εα by

(

ε1

ε2

)

=
1

Q11 + Q22

(

Q11 − Q22

2Q12

)

. (3)

3 www.ifa.hawaii.edu/∼kaiser/imcat/
4 The KSB+ definition of galaxy ellipticity differs from equation 1. If the
weight functionW (θ) = 1 in equation 2, the KSB+ ellipticity|ε| =
(1−β2)/(1+β2), whereβ is the axial ratio (see Bartelmann & Schneider
2001).

Kaiser et al. (1995) show that if the PSF distortion can be described
as a small but highly anisotropic distortion convolved witha large
circularly symmetric seeing disk, then the ellipticity of aPSF cor-
rected galaxy is given by

εcor
α = εobs

α − P sm
αβ pβ, (4)

wherep is a vector that measures the PSF anisotropy, andP sm

is the smear polarisability tensor given in Hoekstra et al. (1998).
p(θ) can be estimated from images of stellar objects at positionθ

by noting that a star, denoted throughout this paper with∗, imaged
in the absence of PSF distortions has zero ellipticity:ε∗ cor

α = 0.
Hence,

pµ = (P sm∗)
−1
µα ε∗obs

α . (5)

The isotropic effect of the atmosphere and weight function can be
accounted for by applying the pre-seeing shear polarisability tensor
correctionP γ , as proposed by Luppino & Kaiser (1997), such that

εcor
α = εs

α + P γ
αβγβ , (6)

whereεs is the intrinsic source ellipticity andγ is the pre-seeing
gravitational shear. Luppino & Kaiser (1997) show that

P γ
αβ = P sh

αβ − P sm
αµ (P sm∗)

−1
µδ P sh∗

δβ , (7)

whereP sh is the shear polarisability tensor given in Hoekstra et al.
(1998) andP sm∗ andP sh∗ are the stellar smear and shear polar-
isability tensors respectively. Combining the PSF correction, equa-
tion (4), and theP γ seeing correction, the final KSB+ shear esti-
matorγ̂ is given by

γ̂α = (P γ)−1
αβ

[

εobs
β − P sm

βµ pµ

]

. (8)

This method has been used by many of the authors although differ-
ent interpretations of the above formula have introduced some sub-
tle differences between each authors’ KSB+ implementation. For
this reason we provide precise descriptions of each KSB+ pipeline
in the Appendix.
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2.2 K2K Method

One drawback of the KSB+ method is that for non-Gaussian PSF
distortions, the KSB PSF correction is mathematically poorly de-
fined. Kaiser (2000) (K2K) addresses this issue by properly ac-
counting for the effects of a realistic PSF. It also proposesmea-
suring shapes from images that have been convolved with a re-
circularising PSF, where the re-circularising PSF is a90◦ rota-
tion of a modeled version of the PSF. Section 2.3.6 of Dahle etal.
(2002) provides a condensed description of the K2K shear estima-
tor which has been applied to the STEP simulations by Dahle (HD).

2.3 Shapelets

The shapelets formalism of Refregier (2003) allows galaxy im-
ages to be decomposed into orthogonal basis functions whichtrans-
form simply under a variety of operations, in particular shear and
(de)convolution. The expansion is based on a circular Gaussian, but
inclusion of higher orders allows general shapes to be described
well.

Kuijken (2006) uses the shapelets formalism of Refregier
(2003) to derive individual shape estimators that differ from
the method of Refregier & Bacon (2003). We briefly review this
method which is based on the ‘constant ellipticity object’ estimator
of Kuijken (1999), referring the reader to Kuijken (2006) for fur-
ther details. Each galaxy image is fitted as an intrinsicallycircular
source that has been sheared and then smeared by the PSF. These
operations are efficiently expressed in terms of shapelets as

Gmodel = P · (1 + γ1S1 + γ2S2) · C (9)

whereGmodel is the model for the galaxy image,P is the known
PSF convolution operator (expressed as a matrix operating on
shapelet coefficients),Si are the first-order shear operators,γi are
the shear distortions that are fitted, andC is a general circular
source of arbitrary radial luminosity profile (expressed asa super-
position of shapelets). Note thatP is determined from stellar ob-
jects whose shapelet coefficients are interpolated separately across
the field of view to the position of each observed galaxy. Fitting
this model to each observed galaxy image yields a best-estimate
(γ1, γ2) shear distortion value for each galaxy, which can then be
averaged or correlated to yield shear estimators. In this paper, we
useγi = 〈γi〉/(1 − 〈γ2〉) as an estimate for the shear from the
ensemble population. The factor in the denominator is the response
of the average ellipticity of a population of elliptical sources to an
overall shear (BJ02). To cope with possible centroiding errors, an
arbitrary translation is included in the fit as well. The uncertainties
on the pixel values of each galaxy image can be propagated into the
shapelet coefficients, and to the estimates of theγi. This method is
exact for galaxies that are intrinsically circular or elliptical. Kuijken
(1999) shows that this method also works well for galaxies whose
ellipticity or position angle varies with radius.

2.4 Im2shape

Im2shape (Bridle et al. (2001), Bridle et al. 2005, in prep) fits a sum
of elliptical Gaussians to each object image, taking into account
unknown background and noise levels. This approach followsthat
suggested by Kuijken (1999).

SExtractoris used to define postage stamps containing each
object5 and galaxies and stars are selected from the size magni-
tude plot from theSExtractoroutput. The galaxies are modeled
by Im2shape using two concentric Gaussians, with 6 free param-
eters for the first Gaussian, and 2 additional free parameters (size
and amplitude) for the second Gaussian. The noise is assumedto
be uncorrelated, Gaussian and at the same level for all pixels in
the postage stamp. The background level is assumed to be constant
across the postage stamp. Including the noise and background lev-
els there are 10 free galaxy parameters in total. Two Gaussians are
used for the stars in all the images, except for PSF 2, for which the
amplitude of the second Gaussian was found to be so small thatone
Gaussian was used instead. Where two Gaussians were used to fit
the stars, the Gaussians were taken to have totally independent pa-
rameters, with 12 free parameters for the Gaussians, plus the noise
and background levels, making 14 free parameters in total. To es-
timate these free parameters fast and efficiently, Im2shapemakes
use of the BayeSys engine (written by Skilling & Gull). This im-
plements Markov-Chain Monte Carlo sampling (MCMC) which is
used to obtain samples from the probability distribution ofthe un-
known parameters. Estimates of the free parameters are thentaken
from the mean value of the parameter across the MCMC samples,
and the uncertainties are taken from the standard deviation. With
this data set the MCMC analysis takes∼ 15 seconds per galaxy
image on the COSMOS6 supercomputer.

To account for the PSF a grid of5 × 5 points was defined
on each image, and the PSF at each point was estimated by taking
the median parameters of the nearest five stars (note that Im2shape
was run on all the stellar-like objects and cuts were then used to
remove outliers). For each galaxy, the PSF shape was taken from
the grid point closest to the galaxy in question. The trial galaxy pa-
rameters were then combined with the PSF parameters analytically
to calculate the convolved image shape. The intensity in thecentre
of each pixel is calculated and this is corrected for the integration
over the pixel using the curvature of the Gaussian at the centre of
the pixel (for both star and galaxy shape estimation). The final ellip-
ticity values for each galaxy (equation 1) are found from averaging
over all the MCMC samples. Only galaxies with ellipticity uncer-
tainties less than 0.25 were included in the final catalogue,as for
higher ellipticity uncertainties the error estimates are less reliable
resulting from the probability distribution becoming lessGaussian.
To obtain an estimate of the shear from these ellipticity estimates
the ellipticities are weighted by the inverse square of the elliptic-
ity uncertainties added in quadrature with the intrinsic ellipticity
dispersionσe of the galaxies, found to beσe = 0.2.

2.5 Wittman method with ellipto

This method uses a re-circularising kernel to eliminate PSF
anisotropy, and ‘adaptive’ moments (moments weighted by the
best-fit elliptical Gaussian) to characterise the ellipticity of the
source galaxies. It is a partial implementation of BJ02, discussed
in section 2.6, and primarily differs from BJ02 by using a simpler
re-circularising kernel.

SExtractor is used for initial object detection.SExtractor
centroids and moments are then input to theellipto program

5 The postage stamps used for this analysis were16 × 16 pixels centered
on theSExtractorposition.
6 www.damtp.cam.ac.uk.cosmos, SGI Altix 3700, 1,3 GHz Madison pro-
cessors
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(Smith et al. 2001; Smith 2000) which measures the adaptive mo-
ments.ellipto also re-measures the centroid and outputs an error
flag when the centroid differs from the SExtractor centroid.This
typically happens with blended objects or those with nearbyneigh-
bours, whose measured shapes may not be trustworthy in any case.
Stars are selected with an automatic routine which looks fora
dense locus at a constantellipto size. The selection is then visually
checked. In real data,∼5% of images require manual tweaking of
the star selection, although this manual stage was not required for
the STEP simulations. The spatial variation of the adaptivemo-
ments is then fit with a second-order polynomial for each CCD of
each exposure. This fit is then used to generate a spatially vary-
ing 3× 3 pixel re-circularising kernel, following (Fischer & Tyson
1997). Note that a3×3 kernel may be too small to properly correct
a well-sampled, highly elliptical PSF; the practical limitappears to
be∼ 0.1 ellipticity. In those cases, the re-circularisation step may
be applied iteratively, mimicking the effect of larger kernels. For
the STEP simulations, only PSF 3 required a second iteration, but
three iterations were applied to all PSFs.

After re-circularisation, the object detection andellipto mea-
surements are repeated to generate the final catalogue. Notethat
object detection on the re-circularised image in principleeliminates
PSF-anisotropy-dependent selection bias. Objects are rejected from
the final catalogue if: theellipto error is non-zero; measured (pre-
dilution-correction) scalar ellipticity> 0.6 (simulations show that,
with ground-based seeing, most of these are blends of unrelated ob-
jects); or size< 120% of the PSF size. The adaptive moments are
then corrected for dilution by an isotropic PSF and a responsivity
correction using the formulae of BJ02. Weighting is not applied to
the data. Note that this method has been used for cluster analyses
but not for any published cosmic shear results.

2.6 Bernstein and Jarvis Method: BJ02

The Jarvis (MJ) and Nakajima (RN) methods each extend theel-
lipto technique by methods detailed in BJ02. Both are based upon
expansions of the galaxy and PSF shapes into a series of orthogonal
2D Gaussian-based functions, the Gauss-Laguerre expansion, also
known as ‘polar shapelets’ in Massey & Refregier (2004). Both the
Jarvis (MJ) and Nakajima (RN) methods move beyond the approx-
imation, inherent in both theellipto and KSB methods, that the PSF
asymmetry can be described as a first-order perturbation to acircu-
lar PSF. The Jarvis (MJ) method applies ‘rounding kernel’ filters
from size3 × 3 pixels and up to the images in order to null several
asymmetric Gauss-Laguerre coefficients of the PSF, not justthe
quadrupoles. Note that for PSF ellipticities of order∼ 0.1, a3 × 3
pixel kernel is sufficient to round out stars up to approximately 30
pixels in diameter. The galaxy shapes are next measured by the
best-fit elliptical Gaussian; formulae proposed by Hirata &Seljak
(2003), are used to correct the observed shapes for the circularising
effect of the PSF.

The ‘deconvolution fitting method’ by Nakajima (RN) imple-
ments nearly the full formalism proposed by BJ02, which is further
elaborated in Nakajima et al (2005, in prep): theintrinsic shapes
of galaxies are modeled as Gauss-Laguerre expansions (to8th or-
der). These are then convolved with the PSF and fit directly tothe
observed pixel values in a similar fashion to Kuijken (1999). This
should fully capture the effect of highly asymmetric PSFs orgalax-
ies, as well as the effects of finite sampling. Note that both methods
use the weighting scheme described in section 5 of BJ02.

A difference between the BJ02 approaches and the
Refregier & Bacon (2003) shapelets implementation is that the lat-

ter uses a circular Gaussian basis set, whereas the BJ02 method
shears the basis functions until they match the ellipticityof the
galaxy. This in principle eliminates the need to calculate the ‘shear
polarisabilities’ that appear in KSB.

3 STEP SIMULATION DATA

For this analysis we have created an artificial set of survey im-
ages using theSkyMakerprogramme7. A detailed description of
this software and the galaxy catalogue generator,Stuff8, can be
found in Erben et al. (2001) and Bertin & Fouqué (in prep) andwe
therefore only provide a brief summary here. In short, for a given
cosmology and survey description, galaxies are distributed in red-
shift space with a luminosity and morphological-size distribution
as defined by observational and semi-analytical relations.Galax-
ies are made of a co-axial de Vaucouleurs-type spheroid bulge and
a pure oblate circular exponential thin disk (see Bertin & Arnouts
1996, for details). The intrinsic flatteningq of spheroids is taken
between0.3 and 1, and within this range follows a normal dis-
tribution with 〈q〉 = 0.65 andσq = 0.18 (Sandage et al. 1970).
Note that we assume the same flattening distribution for bulges and
ellipticals, even if there is some controversy about this (Boroson
1981). Inclination anglesi are randomly assigned following a flat
distribution, as expected from uniformly random orientations with
respect to the line of sight. The apparent axis ratioβ is given by
β =

√

q2 sin2 i + cos2 i for the spheroid component, and given
by β = cos i for the thin disk. The bulge plus disk galaxy is finally
assigned a random position angleθ on the sky and the bulge and
disk intrinsic ellipticity parameters are then calculatedfrom equa-
tion 1.

It has been known for some time that pure oblate cir-
cular disks, oriented with a flat distribution of inclination an-
gles, do not provide a good match to the statistics from real
disk galaxies (Binney & de Vaucouleurs 1981; Grosbol 1985;
Lambas et al. 1992): in particular, observations show a striking
deficiency of galaxies with zero ellipticities. Although surface-
brightness selection effects are not to be ignored (see for exam-
ple Huizinga & van Albada 1992), there is now general agreement
that this phenomenon mostly betrays intrinsic ellipticities of disk
planes. The origin of these intrinsic ellipticities is not completely
clear (see Binney & Merrifield 1998), and is thought to originate
partly from non-axisymmetric spiral structures and/or a tri-axial
potential (Rix & Zaritsky 1995). The simulations used in this anal-
ysis ignore these aspects, and the simulated galaxies are therefore
intrinsically ‘rounder’ on average than real galaxies. This should
not impact on the lensing analysis that follows, except in the cases
where weighting schemes are used that take advantage of the sen-
sitivity of intrinsically circular galaxies to measure weak lensing
shear. These schemes will have an apparent signal-to-noiseadvan-
tage in the current simulations, which is expected to decrease given
real data.

A series of five different shears are applied to the galaxy cata-
logue by modifying the observed intrinsic source ellipticity to cre-
ate sheared galaxies where

e =
e(s) + g

1 + g∗e(s)
, (10)

(Seitz & Schneider 1997) andg is the complex reduced shear.

7 http://terapix.iap.fr/cplt/oldSite/soft/skymaker
8 ftp://ftp.iap.fr/pub/fromusers/bertin/stuff
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PSF ID PSF type Ellipticity

0 no anisotropy 0.00

1 coma ∼ 0.04

2 jitter, tracking error ∼ 0.08

3 defocus ∼ 0.00

4 astigmatism ∼ 0.00

5 triangular (trefoil) 0.00

Table 3. The SkyMakersimulations are convolved with this series of uni-
form PSF models.

For this set of simulations, the convergenceκ = 0, hence
the reduced shearg = γ/(1 − κ) = γ, where γ1 =
(0.0, 0.005, 0.01, 0.05, 0.1), γ2 = 0.0. Sheared bulge and disk ax-
ial ratios and position angles are then calculated from equation (1)
and the model galaxy images are created. Stars are simulatedas-
suming a constant slope of 0.3 per magnitude interval for theloga-
rithm of differential stellar number counts down to and I-band mag-
nitudeI = 25. Model galaxy images and stellar point sources are
then convolved with a series of six different optical PSFs that are
listed in Table 3 and shown in Figure 1. These PSF models were
chosen to provide a realistic representation of the types ofPSF dis-
tortions that are seen in ground-based observations, through ray-
tracing models of the optical plane. They also include atmospheric
turbulence, where the seeing scale is chosen such that when the tur-
bulence is combined with the PSF anisotropy, all stars have FWHM
of 0.9 arcsecs. The ellipticity of the PSF from real data is typically
of the order of5%, which is similar to the coma model PSF 1. PSF
2 which features a jitter or tracking error is very elliptical in com-
parison. The other PSF models test the impact of non-Gaussian PSF
distortions. A uniform background with surface brightness19.2
mag arcsec−2 is added to the image, chosen to match the I-band
sky background at the Canada-France-Hawaii Telescope site. Pois-
son photon shot noise and Gaussian read-out noise is then applied.

The combination of6 different PSF types and5 different ap-
plied shears gives30 different data sets where each set consists
of an ensemble of64 4096 × 4096 pixel images of pixel scale
0.206 arcsecs. For computational efficiency the data in each set
stems from the same base catalogue, and as the sky noise levels
are the same for each data set, many of the parameters required for
theSExtractorsource detection software are the same for each data
set. Aside from this time-saving measure of setting some of the
SExtractorsource detection parameters only once, prior informa-
tion about the simulations have not been used in the cosmic shear
analyses. Each image contains∼ 15 galaxies per square arcminute
resulting in low level shot noise from the intrinsic ellipticity dis-
tribution at the0.1% level for each data set. Stellar object density
is ∼ 10 stars per square arcminute of which roughly 150 per im-
age were sufficiently bright for the characterisation of thePSF. This
density of stellar objects is slightly higher than that found with typ-
ical survey data and was chosen to aid PSF correction. It doeshow-
ever increase the likelihood of stellar contamination in the selected
galaxy catalogue. Although the PSF is uniform across the field of
view, uniformity has only been assumed in one case (RN).

The reader should note that theSkyMakersimulations should,
in principle, provide an easy test of our methods as many shear
measurement methods are based on the assumption that the galaxy
shape and PSF are smooth, elliptical and in some cases Gaussian.

Figure 1. SkyMakerPSF models, as described in Table 3. The upper panel
shows the PSF core distortion, with contours marking3%, 25% and90% of
the peak intensity. The lower panel shows the extended diffraction spikes,
with contours marking0.003%, 0.03%, 0.3%, 3% and25% of the peak
intensity.

In reality the shapes of faint galaxies can be quite irregular and,
particularly in the case of space-based observations, the PSF can
contain significant structure. In addition, theSkyMakergalaxies
have reflection symmetry about the centroid which could feasibly
cause any symmetrical errors to vanish. We should also note that
some of the authors have previously usedSkyMakersimulations
to test their methods (see Erben et al. 2001; Hoekstra et al. 2002).
These issues will therefore be addressed by two future STEP pub-
lications with the blind analysis of a more realistic set of artificial
images that use shapelet information to include complex galaxy
morphology (Massey et al. 2004). With these shapelet simulations
we will investigate the shear recovery from ground-based observa-
tions (Massey et al. in prep) and space-based observations (Rhodes
et al. in prep).

4 ANALYSIS

In this section we compare each authors’ measured shear cata-
logues with the input to eachSkyMakersimulation. We match ob-
jects in each authors’ catalogue to the input galaxy and stellar cat-
alogue, within a tolerance of 1 arcsec. Table 4 lists severalgen-
eral statistics calculated from the PSF model 0 (no anisotropy)
γ = (0.005, 0.0) set which is a good representation of the STEP
simulation data. The source extraction method used by each author
is listed in Table 4 as well as the average number density of se-
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Author Ngals (perarcmin2) % stars % false % stars′ % false′ Software SNR S/Ns S/N ′
s

SB 18 1.9 3.8 1.5 3.9 SExtractor 6 7 6

MB 14 7.1 0.1 − − hfindpeaks 8 10 −

C1 12 2.6 0.0 1.1 0.0 hfindpeaks & SExtractor 9 9 11

C2 12 2.7 0.0 1.2 0.0 hfindpeaks & SExtractor 9 9 11

HD 17 44.8 0.0 − − hfindpeaks 7 8 −

MH 14 3.9 0.0 2.4 0.0 SExtractor 12 11 14

CH 12 2.9 0.0 − − SExtractor 7 11 −

HH 16 10.8 0.0 0.1 3.6 hfindpeaks 8 10 11

MJ 9 0.0 3.6 0.0 1.0 SExtractor 16 8 22

KK 9 0.8 0.0 0.3 0.0 SExtractor 10 10 12

VM 13 3.8 0.0 − − SExtractor 10 10 −

RN 9 0.9 0.4 1.5 0.1 SExtractor 19 10 24

TS 10 1.4 0.0 0.9 0.0 SExtractor 12 11 14

LV 13 0.0 0.0 0.0 0.0 SExtractor 11 11 12

Table 4.Table to compare the different number density of selected sources per square arcmin, Ngals, and the percentage of stellar contamination (% stars) and
false detections (% false) in each authors’ catalogue. Eachcatalogue has been created using either theSExtractorand/or thehfindpeakssoftware. Where authors
use object weights, the weighted percentage of stellar contamination (% stars′) and false detections (% false′) are also listed. The final columns give estimates
of the signal-to-noise of the resulting shear measurement as described in the text. SNR= γtrue

i /σγ is the signal-to-noise ratio of the shear measurement. S/Ns

is the signal-to-shot-noise determined from the galaxies selected by each author. Where authors use object weights, the signal-to-weighted-shot-noise S/N ′
s is

also determined.

lected sources per square arcmin, Ngals. To minimise shot noise
we wish to maximise the number of sources without introducing
false detections into the sample (note the percentage of false detec-
tions listed in the ‘% false’ column in Table 4) or contaminating
the sample with stellar objects (note the percentage of stellar con-
tamination listed in the ‘% stars’ column in Table 4). Both false
objects and stars add noise which can dilute the average shear mea-
surement. Typically the number of false detections are negligible
and the stellar contamination is below 5%. The notable exception
is the Dahle (HD) method that suffers from strong stellar contam-
ination for all PSF types, a problem that can easily be improved
upon in future analyses. Where authors use object weightswi in
their analysis, the weighted percentage stellar contamination (%
stars′ = [Σi=stars wi /Σi=all wi] × 100%) and weighted percent-
age of false object contamination (% false′) are also listed. This
shows, for example, that in the case of Hoekstra (HH), the10%
stellar objects are given a very low weight and therefore do not sig-
nificantly contribute to the weighted average shear measurement.

Average centroid offsets measured from each authors selected
catalogues, were found to be< 0.001 pixels forSExtractorbased
catalogues and∼ 0.005 ± 0.001 pixels forhfindpeaksbased cata-
logues. Centroid accuracy is however likely to be data dependent,
and S/N dependent (see Erben et al. 2001). Thus care should still be
taken in determining centroids to prevent the problems described
in Van Waerbeke et al. (2005) where errors in theSExtractorcen-
troiding in one field were found to be the source of strong B-modes
on large scales. Note that starting from version 2.4.3,SExtrac-
tor provides iterative, Gaussian-weighted centroid measurements
XWIN IMAGE and YWIN IMAGE which have been shown to be
even more accurate than previousSExtractorcentroid measures
(Bertin & Fouqué in prep).

For each data set we calculate the mean (weighted) shear mea-
sured by each author, treating each of the64 images as an inde-
pendent pointing. We take the measured shear for each data set γi

to be the mean of the measurements from the64 images and as-
sign an errorσγ given by the error on the mean. The final three
columns of Table 4 demonstrate the effect of weights and galaxy
selection on the signal-to-noise of the measurement. The signal-to-
noise of the shear measurement is defined asSNR = γtrue

i /σγ ,
whereγtrue

i is the input shear (γtrue
1 = 0.005 for the data analysed

in Table 4). The signal-to-shot-noise is defined asS/Ns = γtrue
i /σ

whereσ is the error on the mean galaxy ellipticitye (equation 1)
measured from the64 images. Note that the shot noiseσ is calcu-
lated from the known input ellipticities of galaxies selected by each
author. The final column applies to authors who use weights, where
the signal-to-weighted-shot-noise is defined asS/N′

s = γtrue
i /σ′

whereσ′ is the error on the mean weighted galaxy ellipticity.

Several things can be noted from the signal-to-noise calcula-
tions. Firstly, the high magnitude, as weak shear has not been mea-
sured from data with SNR> 10. One must not forget however that
if weak lensing shear was constant across large areas of sky,shear
would have been measured with such high signal-to-noise. Sec-
ondly we find that the signal-to-shot-noiseS/Ns is not strongly de-
pendent on the number of galaxies used in the analysis. We findthat
instead the shot noise is more dependent on the galaxies thathave
been selected in the analysis, but note that this statement is unlikely
to apply to data where the shear varies. Taking Im2shape (SB)and
BJ02 (MJ) as an example we find∼ 2 times as many galaxies se-
lected for the Im2shape (SB) analysis as for the BJ02 (MJ) analysis,
but very similar values for the signal-to-shot-noiseS/Ns. As dis-
cussed in section 3 the distribution of galaxy ellipticities is strongly
non-Gaussian with more intrinsically round galaxies than is seen in
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real data. The galaxy selection of Im2shape (SB) results in asmaller
proportion of these intrinsically round galaxies being included in
the analysis increasing the1σ variation of the selected galaxy ellip-
ticities. Several of the KSB+ analyses make galaxy selection based
on galaxy ellipticity, removing the most elliptical galaxies, again
this reduces the shot noise, independent of the number of galax-
ies used in the analysis. Lastly, comparing the signal-to-shot-noise
S/Ns and the signal-to-weighted-shot-noiseS/N′

s we see the ef-
fectiveness of some of the weighting schemes used in this analy-
sis. The BJ02 weighting scheme (MJ,RN) puts more weight on the
intrinsically round galaxies, this effective weighting scheme pro-
duces the highest signal-to-noise measurements in the STEPanal-
ysis, although see section 5.6 for the implication of using this ag-
gressive weighting scheme.

4.1 Calibration bias and PSF contamination

In this section we measure the levels of multiplicative calibration
bias and additive PSF contamination in each authors’ shear mea-
surement. Calibration bias will result from a poor correction for the
atmospheric seeing that circularises the images. Selection bias and
weight bias are also forms of calibration bias which we investigate
further in sections 4.2 and 4.3. PSF contamination will result from
a poor correction for the PSF distortion that coherently smears the
image.

We calculate the mean shearγi for each data set as described
above. For each author and PSF type we then determine, from the
range of sheared images, the best-fit parameters to

γ1 − γtrue
1 = q(γtrue

1 )2 + mγtrue
1 + c1 , (11)

whereγtrue
1 is the external shear applied to each image. Figure 2

shows fits to two example analyses of PSF 3 simulations using
KSB+ (HH implementation) and BJ02 (MJ implementation). In the
absence of calibration bias we would expectm = 0. We would also
expectc1 = 0 in the absence of PSF systematics and shot noise,
andq = 0 for a linear response of the method to shear. In the case
where the fitted parameterq is consistent with zero, we re-fit with
a linear relationship, as demonstrated by the KSB+ example in fig-
ure 2.

For all simulations the external applied shearγtrue
2 = 0 and

we therefore also measure for each PSF typec2 = 〈γ2〉, averaged
over the range of sheared images. In the absence of PSF systematics
and shot noise, we would expect to findc2 = 0. From this analysis
we found the values ofm andq to be fairly stable to changes in PSF
type and we therefore define a measure of calibration bias to be〈m〉
and a measure of non-linearity to be〈q〉 where the average is taken
over the 6 different PSF sets. We find the value of〈ci〉 averaged
over the 6 different PSF sets to be consistent with shot noiseat the
0.1% level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore defineσc as
a measure of our ability to correct for all types of PSF distortions,
whereσ2

c is the variance ofc1 andc2 as measured from the 6 dif-
ferent PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets.σc

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distor-
tions will be analysed in Massey et el (in prep) to address theissue
of PSF-dependent bias more rigorously.

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation,lower panel)
comparing the measured shearγ1 and input shearγtrue

1 . The best-fit to
equation 11 is shown dashed, and the optimal result (whereγ1 = γtrue

1 )
is shown dot-dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameterc) and low 1% calibration errors
(fitted slope parameterm). The weighting scheme used in the BJ02 analysis
introduces a non-linear response to increasing input shear(fitted quadratic
parameterq), reducing the shear recovery accuracy for increasing shear. The
accuracy of the KSB+ analysis responds linearly to increasing input shear
and so these results were re-fit with a linear relationship, i.e.q = 0.

Figure 3 shows the measures of PSF residualsσc and cali-
bration bias〈m〉 for each author, where the author key is listed
in Table 2. For the non-linear cases whereq 6= 0, denoted with a
circle, the best-fit〈q〉 parameter is shown with respect to the right-
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Figure 3. Measures of calibration bias〈m〉, PSF residualsσc and non-
linearity 〈q〉 for each author (key in Table 2), as described in the text. For
the non-linear cases where〈q〉 6= 0 (points enclosed within a large circle),
〈q〉 is shown with respect to the right-hand scale. In short, the lower the
value ofσc, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of〈m〉, the lower the level
of calibration bias. The higher theq value the poorer the response of the
method to stronger shear. Note that for weak shearγ < 0.01, the impact
of this quadratic term is negligible. Results in the shaded region suffer from
less than7% calibration bias. These results are tabulated in Table 5.

hand scale. Results in the shaded region suffer from less than 7%
calibration bias. All methods which have been used in a cosmolog-
ical parameter cosmic shear analysis lie within this region. With
regard to PSF contamination, these results show that PSF residuals
are better than1% in all cases and are typically better than0.1%.
Note that for clarity the results plotted in Figure 3 are alsotabulated
in Table 5.

In the weakγ 6 0.01 regime, the most successful method is
found to be the BJ02 technique (MJ,RN) producing percent level
accuracy. For stronger shear distortions, however, this methodol-
ogy breaks down which can be seen from the high〈q〉 value. This
method is therefore unsuitable for low redshift cluster mass re-
constructions where shear distortions of∼ 10% are not uncom-
mon, although see the discussion in section 5.6 for a solution to
this issue of non-linearity. Over the full range of shear distortions
tested,0 < γ < 0.1, the most successful method is found to be
the Hoekstra implementation of the Kaiser et al. (1995) method
(KSB+), producing results accurate to better than 2%. All KSB+
pipelines are accurate to better than∼ 15% but the wide range of
accuracy in these results that are based on the same methodology
is somewhat disconcerting. It is believed that this spread results
from the subtly different interpretation and implementation of the
KSB+ method which we detail in the Appendix. The results from
the Dahle implementation of K2K (HD) are non-linear, suffering
from calibration bias at∼ 20% level for weak shearγ < 0.01. The
Wittman/Margoniner method (VM) (see section 2.5) fares as well
as the Hetterscheidt (MH) and Schrabback (TS) implementation of
KSB+ with an accuracy of∼ 15%. Im2shape (Bridle et al. 2001)
(SB) and the Kuijken (2006) (KK) implementation of shapelets typ-
ically fare as well as the methods used in cosmological parameter
cosmic shear analyses with an accuracy of∼ 4%.

4.2 Selection Bias

Selection bias is an issue that is potentially problematic for many
different types of survey analysis. With weak lensing analyses,
which relies on the fact that when averaging over many galax-
ies, the average source galaxy ellipticity〈e(s)〉 = 0, removing
even weak selection biases is particularly important. Whencom-
piling source catalogues one should therefore consider anyforms
of selection bias that may alter the mean ellipticity of the galaxy
population. This bias could arise at the source extraction stage if
there was a preference to select galaxies oriented in the same direc-
tion as the PSF (Kaiser 2000) or galaxies that are anti-correlated
with the gravitational shear (and as a result appear more circu-
lar) (Hirata & Seljak 2003). Selection criteria applied after source
extraction could also bias the mean ellipticity of the population
if the selection has any dependence on galaxy shape. In this sec-
tion we determine the level of selection bias by measuring the un-
weighted mean intrinsic source ellipticity〈e(s)〉 (unlensed, equa-
tions 1 and 10) from the ‘real’ galaxies selected by each author
for inclusion in their shear catalogue (false detections are thus ex-
cised from the catalogue at this stage). We follow a similar analysis
to section 4.1, by determining for each author and each PSF type,
from the range of sheared images, the best-fit parameters to

〈e
(s)
1 〉selc = mselcγ

true
1 + cs

1

〈e
(s)
2 〉selc = cs

2. (12)

〈mselc〉 averaged over the 6 different PSF data sets gives a measure
of the shear-dependent selection bias and(σs

c)
2, the variance of

cs
1 andcs

2 as measured from the 6 different PSF models, gives a
measure of the PSF-anisotropy-dependent selection bias. We find
that PSF-anisotropy dependent selection bias is very low withσs

c <
0.001 for all methods. Shear-dependent selection bias is< 1% in
most cases with some notable exceptions in the cases of Clowe(C1
& C2), Schrabback (TS), Dahle (HD) and Nakajima (RN) as shown
on the vertical axis of Figure 4. The significant variation between
the different PSF data sets ofmselc measured with the Clowe (C1
& C2) catalogues suggests that the selection criteria of this method
are affected by the PSF type.

Figure 4 also shows the value of〈muncontaminated〉 deter-
mined from equation (11) using the authors’ measured shear cat-
alogues now cleansed of false detections and stellar contamina-
tion, with author-defined object weights. With unbiased weights
and an unbiased shear measurement method (where the shear is
measured accurately but the source selection criteria are poten-
tially biased), points should fall along the 1:1 line plotted. We can
therefore conclude from Figure 4 that in many cases the calibra-
tion bias seen in section 4.1 cannot be solely attributed to selec-
tion bias. See section 5 for a discussion on sources of selection
bias. The results plotted in Figure 4 are also tabulated in Table 5.
Comparing the calibration biases measured from the original cat-
alogues〈m〉 in Section 4.1, and from the ‘uncontaminated’ cata-
logues〈muncontaminated〉 shows the impact of false detections and
stellar contamination in each authors’ catalogue. Typically the im-
pact is low with< 3% changes found for the average measured
shear of most authors. One noticeable exception is the result from
the Brown (MB) pipeline, where the underestimation of the shear
by∼ 7% is found to be predominantly caused by the diluting∼ 7%
stellar contamination in the object catalogues.
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Figure 4. Measures of selection bias〈mselc〉, for each author (key in Ta-
ble 2), as described in the text. The lower the absolute valueof 〈mselc〉 the
lower the level of selection bias. Selection bias can be compared to the
calibration bias〈muncontaminated〉 measured from catalogues cleansed
of false detections and stellar contamination. Unbiased shear measurement
methods, where the shear is measured accurately but the source selection
criteria are potentially biased, would fall along the 1:1 line over-plotted.
These results are tabulated in Table 5.

4.3 Weight Bias

In this section we investigate the impact of the different object-
dependent weighting schemes used by Bridle (SB), Clowe (C1 &
C2), Hetterscheidt (MH), Hoekstra (HH), Kuijken (KK), Schrab-
back (TS) and Van Waerbeke (VW). All other methods use unit
weights, except for the methods of Jarvis (MJ) and Nakajima (RN)
which will be discussed at the end of this section. An optimal
weighting scheme should reduce the noise on a measurement with-
out biasing the results. Using the author defined weights we com-
pare the average unweighted and weighted mean intrinsic galaxy
ellipticity, performing a similar analysis to sections 4.1and 4.2. For
each author and PSF type we calculate from the range of sheared
images, the best fitting parameters to

〈e
(s)
1 〉selc − 〈e

(s)
1 〉′selc = mweightγ

true
1 + cw

1 , (13)

where 〈e
(s)
1 〉selc is an unweighted average and〈e(s)

1 〉′selc is a
weighted average. In the absence of PSF dependent weight bias,
cw
1 should be consistent with zero and we find this to be the case

for all the weighting schemes tested. In the absence of shearde-
pendent weight bias,mweight should be consistent with zero. All
weighting schemes are found to introduce low percent level bias as
shown in Table 5, where〈mweight〉 is averaged over the 6 differ-
ent PSF models. In most cases these biases are small (< 2%) and
we can therefore conclude the cases of calibration bias seenin sec-
tion 4.1 cannot be solely attributed to weight bias. For percent level
precision in future analyses the issue of weight bias will need to be
considered.

The Jarvis (MJ) and Nakajima (RN) analyses make use of
the ellipticity-dependent weighting formulae in BJ02 Section 5.
This weighting scheme takes advantage of thee = 0 peak in
the shape distribution of galaxies to improve the signal-to-noise of
weak shear measurement. This is evidenced by the high signal-to-

noise results with the Jarvis (MJ) and Nakajima (RN) methodsas
listed in Table 4. Shearing the galaxies does change the assigned
weights, but the BJ02 formulae explicitly account for this effect via
a factor called the responsivity. The non-linear response to shear
seen in the results of the Jarvis (MJ) and Nakajima (RN) methods
is an undesirable consequence of this weighting scheme which we
discuss further in section 5.6.

4.4 Shear measurement dependence on galaxy properties

The simulations analysed in this paper were sheared uniformly
across the field-of-view. In reality however, the gravitational shear
experienced by each galaxy is dependent on position and more
importantly redshift. High redshift galaxies have a lower apparent
magnitude and smaller angular size when compared to their lower
redshift counterparts. It is therefore important that shear measure-
ment methods are stable to changes in galaxy magnitude and size.
For each author, we measure the average shear as a function ofmag-
nitude and input disk size. In general, we find that the average shear
binned as a function of magnitude and disk size varies< 1% to the
average shear measured from the full data set, and an exampleplot
of shear measured as a function of galaxy magnitude is shown from
the KSB+ implementation of HH in Figure 5. The dot-dashed line
shows the averageγ1−γtrue

1 measured from the full galaxy sample
which is dominated by the faint magnitude galaxies. For thispar-
ticular analysis the shear measured from bright galaxies isslightly
underestimated, and the shear from faint galaxies is slightly over-
estimated. The reader should note however that the shear measured
from each magnitude bin is< 1σ from the average for all but one
case and that for weaker input shears, this effect is even less promi-
nent.

Investigating the dependence of shear on galaxy propertieswe
found that some methods introduced correlations between shear
and magnitude, whilst others between shear and disk size. Inter-
estingly however all methods revealed very different dependencies
on galaxy properties that we were unable to directly parameterise.
As such we cannot fully address the issue of shear measurement
dependence on galaxy properties at this time. For percent level pre-
cision in future analyses this issue will certainly need to be revisited
and it will be addressed further in future STEP projects using sim-
ulations with constant shear and constant galaxy magnitude.

5 DISCUSSION

In this section we discuss some of the lessons that we have learnt
from the first STEP initiative and highlight the areas where we can
improve our methods in future analyses.

5.1 KSB+

The subtle differences between the eight tested KSB+ pipelines,
detailed in the Appendix, introduces an interesting spreadin the
KSB+ results. Using the information in the Appendix, KSB+ users
can now modify pipelines to improve their results. The different
ways of implementing KSB+ and the effect of using different meth-
ods will be discussed in more detail in a future paper (Hetterscheidt
et al in prep), but comparing methods and results makes clearwhich
interpretations of the KSB+ method are best for ground-based data.
A good example of this is the PSF correction method of Heymans
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Author 〈m〉 σc 〈q〉 〈muncontaminated〉 〈mselc〉 〈mweight〉 σ8 analysis ?

SB −0.048 ± 0.027 0.0018 - −0.017 ± 0.030 0.006 ± 0.004 0.007 ± 0.002 ×

MB −0.071 ± 0.015 0.0008 - −0.009 ± 0.021 −0.008 ± 0.002 -
√

C1 −0.100 ± 0.018 0.0006 - −0.090 ± 0.018 −0.046 ± 0.022 0.011 ± 0.004 ×

C2 −0.084 ± 0.018 0.0115 - −0.074 ± 0.018 −0.045 ± 0.022 0.010 ± 0.003 ×

HD 0.219 ± 0.036 0.0005 −2.40 ± 0.27 0.217 ± 0.028 −0.021 ± 0.006 - ×

MH −0.161 ± 0.014 0.0008 - −0.142 ± 0.015 −0.017 ± 0.001 0.032 ± 0.003 ×

CH −0.032 ± 0.028 0.0035 - 0.004 ± 0.027 −0.010 ± 0.003 -
√

HH −0.015 ± 0.006 0.0008 - 0.018 ± 0.004 −0.001 ± 0.001 0.006 ± 0.001
√

MJ 0.002 ± 0.027 0.0003 1.39 ± 0.23 0.011 ± 0.027 0.005 ± 0.006 -
√

KK −0.031 ± 0.023 0.0017 - −0.029 ± 0.023 0.006 ± 0.003 0.020 ± 0.002 ×

VM −0.164 ± 0.028 0.0014 - −0.116 ± 0.021 −0.015 ± 0.006 - ×

RN −0.011 ± 0.011 0.0004 1.47 ± 0.09 0.001 ± 0.013 −0.037 ± 0.009 - ×

TS −0.167 ± 0.011 0.0003 - −0.158 ± 0.010 −0.045 ± 0.006 0.024 ± 0.003 ×

LV −0.068 ± 0.025 0.0006 - −0.068 ± 0.025 −0.001 ± 0.002 0.005 ± 0.001
√

Table 5. Tabulated measures of calibration bias〈m〉, PSF residualsσc and non-linearity〈q〉 for each author (key in Table 2), as described in Section 4.1
and plotted in Figure 3 . For the non-linear cases where〈q〉 6= 0, 〈q〉 is listed. ‘Uncontaminated’ calibration bias〈muncontaminated〉 is measured from
object catalogues cleansed from stellar contamination andfalse object detections. This can be compared to the measured selection bias〈mselc〉 as described
in Section 4.2 and plotted in Figure 4. Weight bias〈mweight〉, described in Section 4.3, is also tabulated. For reference, the final column lists which pipelines
have been used in cosmic shear analyses that have resulted inmeasurements of the amplitude of the matter power spectrum,σ8, as detailed in Table 1.

Figure 5. An example plot of the difference between measured shearγ1

and input shearγtrue
1 as a function of galaxyI band magnitude. This plot

is taken from the KSB+ analysis of HH using the PSF 0 simulations with
an input shearγtrue

1 = 0.05. The dot-dashed line shows the averageγ1 −
γtrue
1 measured from the full galaxy sample.

(CH) and Clowe (C2) where the correction is calculated as a func-
tion of galaxy size. For ground-based data where the PSF ellipticity
is fairly constant at all isophotes (although note that thiswas not the

case with PSF 2), a PSF correction determined only at the stellar
size produces a less noisy and more successful PSF correction, as
shown by the success of the PSF correction by other KSB+ users.
This however would not necessarily be the case for space-based
data where the PSF ellipticity varies with size (see for example
Heymans et al. 2005) which will be tested in a future STEP anal-
ysis of simulated space-based observations. The Schrabback (TS)
method produces a more successful size-dependent PSF correction
by limiting the image region about stellar objects over which the
PSF correction parameterpµ(rg) is calculated (θmax = 3r∗g , see
Appendix A2). This measure reduces the noise onpµ(rg) thus im-
proving the overall correction.

For several methods selection bias is well below the percent
level from which we can conclude that current source detection
methods are suitable for weak lensing analyses and that any se-
lection bias seen with other methods has been introduced after the
source extraction stage. The first clue to understanding theselec-
tion bias we see in some cases comes from comparing〈mselc〉 for
the Hetterscheidt (MH) and Schrabback (TS) results in Figure 4.
These two analyses stem from the sameSExtractorcatalogue. The
main differences between these two methods are the technique used
to correct for the PSF distortion and the catalogue selection criteria
where Schrabback (TS) places more conservative cuts on galaxy
size defined by theflux radius parameter ofSExtractor. Whilst
there is no correlation within the simulations for intrinsic galaxy
ellipticity with disk size, we find that the measuredhfindpeaksrg

parameter and the measuredSExtractor flux radius andFWHM
parameters are somewhat correlated with galaxy ellipticity. For this
reason galaxy size selection criteria based onrg, flux radius or
FWHM will introduce a bias. This finding is one of the first lessons
learnt from this STEP initiative which can now be improved upon
in future STEP analyses.
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5.2 K2K

The Dahle (HD) K2K results appear noisier than other pipelines
which could result from an upper significance cut in order to re-
move big, bright galaxies, which in real data are at low redshift un-
lensed galaxies. This step rejects∼ 24% of the objects. The method
is optimised for mosaic CCD data with a high number of galaxies
for each exposure, it therefore suffers somewhat from the low num-
ber of objects in each4096 × 4096 STEP image. In addition, as a
space-saving measure, images were stored in integer format, this
may have introduced some extra noise in the ‘re-circularised’ im-
ages. In considering the success of K2K applied to STEP simula-
tions one should keep in mind that the man-hours invested in testing
and fine-tuning KSB+ is at least an order of magnitude more than
for any of the other methods. With the STEP simulations future
tests and optimisation are now feasible, the results of which will be
demonstrated with the next STEP analysis of shapelet based image
simulations.

5.3 Shapelets

In the first, blind Kuijken (KK) analysis of the simulations all
sources were fitted to8th order in shapelets, which gives a good
fit to the PSF-convolved sources. This, however, resulted ina sys-
tematic underestimate of the shear amplitude of some 10%. Later
investigation showed that even without any PSF smearing or noise,
the ellipticity of an exponential disk is only derived correctly if the
expansion is extended to12th order. As this method has, to date, not
been used in scientific analyses, it was decided that a re-analysis of
the simulations with12th order shapelets would be permitted. The
results of the non-blind re-analysis are shown in this paper. Using
the higher order shapelet terms removed the systematic underesti-
mate for the high S/N sources. There is still a tendency for noisy
sources to have their ellipticities underestimated however and this
is still under investigation.

5.4 Im2shape

Im2shape uses MCMC sampling to fit elliptical Gaussians to the
image. Before the STEP analysis it was believed that using too few
iterations in the MCMC analysis would add noise to the ellipticities
of each galaxy but would not systematically bias them. It became
apparent during this STEP analysis however, that a bias is infact
introduced as the number of iterations is decreased. The number
of iterations was chosen by systematically increasing the number
of iterations in the analysis of a subsample of the data untilthe
measured average shear converged.

5.5 Wittman method with ellipto

A post-STEP analysis of the shape catalogue revealed that the mea-
sured galaxy shape distribution resulting from this methodhad
rather asymmetric tails. The core of the distribution reflected the
shear much more accurately than did the mean of the entire distri-
bution. This method could thus be greatly improved by some type
of weighting or robust averaging scheme. For example, a simple
iterative 3σ clip reduced the15% underestimate of the strongest
applied shear, whereγ = 0.1, to an 8% underestimate, while reject-
ing only2.2% of the sources. A slightly harsher clip at2.8σ further
reduced the underestimate to3.5%, while still rejecting only3.9%
of the sources. The stellar contamination rate of3.8% is presum-
ably responsible for the remaining underestimate. Note that the real

data to which this method has been applied is much deeper thanthe
STEP simulations. The stellar contamination rate would therefore
be much lower, as the galaxy counts rise more steeply with magni-
tude in comparison to the star counts.

Of course, one would prefer to understand the origin of the
asymmetric outliers rather than simply clipping them at theend. A
brief analysis shows that they are not highly correlated with the ob-
vious variables such as photometric signal-to-noise or size relative
to the PSF. Therefore a simple inverse-variance weighting scheme
would not be enough to solve the problem. The prime task for im-
proving this method would thus be understanding the cause ofthis
asymmetric tail and developing a mitigation scheme.

5.6 Bernstein & Jarvis Method: BJ02

The ellipticity-dependent weighting scheme of BJ02 is responsi-
ble for the significant increase in the signal-to-noise of the STEP
shear measurements, as shown in Table 4. It has, however, also been
found to be the cause of the non-linear response of the Jarvis(MJ)
and Nakajima (RN) methods to shear. After the blind testing phase,
the results of which are shown in this paper, Jarvis (MJ) re-ran the
analysis with shape-independent weights finding a linear response
to the range of weak shears tested such that the non-linearity param-
eter,q, measured by equation 11 became consistent with zero. The
signal-to-noise dropped, however, by a factor of 1.5. We canthus
recommend that weak shear studies use aggressive weights which
help to probe small departures of〈γ〉 from zero, while studies of
stronger shear regions use unweighted measurements to minimise
the effects of non-linearity.

The false detections in the Nakajima (RN) analysis were in-
vestigated and found to be either double objects detected bySEx-
tractor as a single object or diffraction spikes. Double object de-
tections could be reduced by varying SExtractor parametersto en-
courage the deblending of overlapping sources. When the data is
taken in several exposures an additional measure to reduce the num-
ber of false detections can be introduced. This approach, taken by
Jarvis et al. (2003), demands that a source is detected in at least
two of the four exposures taken of each field. The STEP simula-
tions were single exposure images and so this procedure could not
be implemented. These false detections will generally be faint and
highly elliptical in the case of diffraction spikes. Thus, with the
weighting scheme implemented in both the Jarvis (MJ) and Naka-
jima (RN) analyses, these down-weighted objects do not affect the
overall average measured shear.

6 CONCLUSION

In this paper we have presented the results of the first Shear TEst-
ing Programme, where the accuracy of a wide range of shear mea-
surement methods were assessed. This paper has demonstrated that,
for smooth galaxy light profiles, it is currently feasible tomeasure
weak shear at percent level accuracy using the Bernstein & Jarvis
(2002) method (BJ02) and the Hoekstra implementation of the
KSB+ method. It has also shown how important it is to verify shear
measurement software with image simulations as subtle differences
between each individuals implementation can result in discrepancy.
We therefore strongly urge all weak lensing researchers to subject
their pipelines to a similar analysis to ensure high accuracy and re-
liability in all future weak lensing studies. To this end theSTEP
simulations will be made available on request.

The removal of the additive PSF anisotropic distortion has
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been successful in all methods, reduced to an equivalent shear of
∼ 0.001 in most cases. Significant calibration bias is however seen
in the results of some methods which can be explained only in
part by the use of biased weights and/or selection bias. Using the
simulations analysed in this paper, errors can now be pin-pointed
and corrected for, and modifications will be introduced to remove
sources of calibration error. For authors using the KSB+ method,
detailed descriptions have been given of each pipeline tested in
this analysis to aid the improvement and development of future
KSB+ methods. One positive aspect of the KSB+ method is that
its response to shear has been shown to be very linear. This iscon-
trast to the BJ02 method tested in this paper, where the ellipticity-
dependent weighting scheme was found to introduce a non-linear
response to shear. For this reason KSB+ or an unweighted version
of the BJ02 method is currently the preferred method for measur-
ing weak shear around nearby galaxy clusters. Cosmic shear,on
average, is very weak, but with the next generation of cosmicshear
surveys covering large areas on the sky and thus imaging regions
of both high and low shear, cosmic shear measurement also re-
quires a method that is linear in its response to shear. Thus KSB+
or an unweighted version of the BJ02 method is currently the pre-
ferred cosmic shear measurement method. In the weakest regime of
galaxy-galaxy lensing, the weighted BJ02 method measures shear
at a higher signal-to-noise with a better accuracy than KSB+and
thus appears to be the most promising of the methods that have
been tested in this analysis for galaxy-galaxy lensing studies.

Selection bias has been shown to be consistent with zero in
some cases, from which we can conclude that current source detec-
tion methods are suitable for weak lensing analyses. Some object
weighting schemes were found to be unbiased at the below percent
level. The use of such schemes may however require revision in the
future when low level biases become important. All the methods
tested were found to exhibit rather different< 1% dependences on
galaxy magnitude and size. For real data where shear scales with
depth and hence magnitude and size, these issues will need tobe
addressed.

In this paper we have provided a snapshot view of how accu-
rately we can measure weak shear today from galaxies with rela-
tively simple galaxy morphologies. We are unable to answer the
question, what method ought I to use to measure weak lensing
shear? KSB+, used with care, and BJ02 clearly fare well, but some
of the methods tested here that are currently still in their devel-
opment stage may still provide a better method in the future.For
the cosmic shear, galaxy-galaxy lensing and cluster-mass determi-
nations published to date,6 7% calibration errors are within sta-
tistical errors and are certainly not dominant.σc < 0.01 is also
small enough to be sub-dominant in present work. We voice cau-
tion in explaining the∼ 2σ differences in cosmological parameter
estimation from cosmic shear studies by the scatter in the results
that we find in this analysis. The true reason is likely to be more
complex involving source redshift uncertainties, residual systemat-
ics and sampling variance in addition to the calibration errors we
have found. Many of these sources of error will be significantly
reduced with the next generation of surveys where the large ar-
eas surveyed will minimise sampling variance and the multi-colour
data will provide a photometric redshift estimate of the source red-
shift distribution. The now widespread use of diagnostic tools to
determine levels of non-lensing residual distortions alsoallows for
the quantification and reduction in systematic errors. Calibration
errors, however, can only be directly detected through the analysis
of image simulations.

This first STEP analysis has quantified the current levels of

calibration error, allowing for improvement in calibration accuracy
in future shear measurement methods. The upcoming next gener-
ation of wide-field multi-colour optical surveys will reduce statis-
tical errors on various shear measurements to the∼ 2% level, re-
quiring calibrations accurate to∼ 1%. In the next decade, deep
weak-lensing surveys of thousands of square degrees will produce
shear measurements that will be degraded by calibration accuracies
& 0.1%, well below even the precision of the current STEP tests.
Similarly the additive errors represented byσc will ultimately have
to be reduced to a level ofσc <≈ 10−3.5 if this spurious signal is
to be below the measurement limits imposed by cosmic variance of
full-sky surveys. The collective goal of the weak lensing commu-
nity is now to meet these challenges.

The next STEP project will analyse a set of ground and space-
based image simulations that include complex galaxy morpholo-
gies using a ‘shapelet’ composition (Massey et al. 2004). Initial
tests with shapelet simulations suggest that complex morphology
rather complicates weak shear measurement for methods thatas-
sume Gaussian light profiles. Further STEP projects will address
the issue of PSF interpolation and modeling, and the impact of us-
ing different data reduction and processing techniques (Erben et al.
2005). These future STEP projects will be as important as this first
STEP analysis in order to gain more understanding and further im-
prove the accuracy of our methods. We conclude with the hope
that by using the shared technical knowledge compiled by STEP,
all future shear measurement methods will be able to reliably and
accurately measure weak lensing shear.
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APPENDIX A: KSB+ IMPLEMENTATION

The KSB+ method, used by a large percentage of the authors,
has been shown in this STEP analysis to produce remarkably dif-
ferent results. In this Appendix, to aid the future understanding
of these differences, we detail how different authors have imple-
mented KSB+ with their weak lensing pipelines, as summarised in
Table A1.

A1 Source detection, centroids and size definitions

Most authors use theSExtractorsoftware (Bertin & Arnouts 1996)
to detect objects and define galaxy centroids. Exceptions are Hoek-
stra (HH) and Brown (MB) who usehfindpeaksfrom theimcatsoft-
ware. The Gaussian weight scale lengthrg is then either set to the
flux radius SExtractorparameter or the ‘optimal’rg value de-
fined byhfindpeaks. Clowe (C1&2) uses both pieces of software
using a version ofhfindpeaksto determine the optimal weight scal-
ing rg that keeps the centroid fixed to theSExtractorco-ordinates.
Hetterscheidt (MH) and Schrabback (TS) measure half light radii
rh and refine theSExtractorcentroids using the iterative method
described in Erben et al. (2001).

A2 Quadrupole moments and integrals

The weighted ellipticityε (equation 3), and the smear and shear
polarisability tensorsP sm andP sh are calculated for each object
using software developed from theimcatsubroutinegetshapes. The
continuous integral formula are calculated from the discrete pix-
elised data by approximating the integrals as discrete sums. The
weighted ellipticityε is calculated from the quadrupole moment
which in its discrete form can be written as follows

Qij =

θmax
∑

θi,θj=−θmax

∆θ2 W (θi, θj) I(θi, θj) θiθj

θmax
∑

θi,θj=−θmax

∆θ2 W (θi, θj) I(θi, θj)

, (A1)

whereθ is measured, in pixel units, from the source centroid. Ta-
ble A1 lists each authors’ chosen values forθmax and∆θ. For real
values ofθ, the intensityI(θi, θj), known at pixel positions, is es-
timated from a first-order interpolation over the four nearest pixels
to (θi, θj) (denoted ‘interpolation’ in Table A1). The interpolation
stage is by-passed by some authors by setting∆θ = 1 pixel and
approximatingI(θi, θj) ≈ I(Int[θi], Int[θj ]) (denoted ‘Approx’
in Table A1), or by exchanging the value ofθ, in the above formula,
for its nearest integer valueInt[θ] (denoted ‘Integer’ in Table A1).
P sm andP sh are functions of weighted moments, up to fourth or-
der, that includeθiθj terms. Some authors treat these second order
terms inθ differently using the nearest integer values ofθ (denoted
‘Integer’ in theP sh andP sm estimate column of Table A1).

A3 Anisotropic PSF modeling

Stellar objects are selected by eye from the stellar locus ina size-
magnitude plane and are then used to produce a polynomial model
of the PSF as a function of chip position. Hetterscheidt (MH), Hey-
mans (CH) and Schrabback (TS) fit directly topµ (equation 5)
which, in the case of Heymans (CH) and Schrabback (TS), is
measured for varyingrg (Hoekstra et al. 1998). This is in contrast
to Hetterscheidt (MH) who measurespµ with rg = r∗g . Brown
(MB), Clowe (C1&2), Hoekstra (HH) and Van Waerbeke (LV) cre-
ate models ofε∗obs

α , P sm∗ andP sh∗ separately where for Brown
(MB), and the first Clowe method (C1) stellar shapes are measured
with rg = r∗g . The second Clowe method (C2), the Hoekstra (HH)
method and the Van Waerbeke (LV) method measures the stellarpa-
rameters for varyingrg. Note that the Van Waerbeke (LV) method
fits each component of theP sm∗ andP sh∗ tensors. With PSF mod-
els in hand observed galaxy ellipticities are corrected according to
equation (4).

A4 Isotropic P γ correction

The application of the anisotropic PSF correction leaves aneffec-
tively isotropic distortion making objects rounder as a result of
both the PSF and the Gaussian weight function used to measure
the galaxy shapes. To correct for this effect and convert weighted
galaxy ellipticitiesε into unbiased shear estimatorsγ̂, we use the
pre-seeing shear polarisability tensorP γ , equation (7).P γ is cal-
culated for each galaxy from the measured galaxy smear and shear
polarisability tensors,P sm andP sh, and a term that is dependent
on stellar smear and shear polarisability tensors;(P sm∗)−1

µδ P sh∗
δβ .

Brown (MB) and the first method of Clowe (C1) use the stellar
smear and shear polarisability tensors measured with a Gaussian
weight of scale sizerg = r∗g . Hetterscheidt (MH), Heymans (CH),
Hoekstra (HH), Schrabback (TS), Van Waerbeke (LV) and the sec-
ond method of Clowe (C2) calculate this stellar term as a function
of smoothing scalerg. Comparing the C1 and C2 results therefore
demonstrates the impact of the inclusion of scale size at this stage.

P γ is a very noisy quantity, especially for small galaxies. This
noise is reduced somewhat by treatingP γ as a scalar equal to half
its trace (note that the off diagonal terms ofP γ are typically an
order of magnitude smaller than the diagonal terms). None ofthe
methods tested in this analysis uses the fullP γ tensor correction
(see Erben et al. (2001) to compare the results achieved whenus-
ing a tensor and scalarP γ correction). In an effort to reduce the
noise onP γ still further, P γ is often fit as a function ofrg, al-
though note that this fitting process has recently been shown, with
the Brown (MB) pipeline, to be dependent on which significance
cuts are made when selecting galaxies (Massey et al. 2005). Ta-
ble A1 details which method is used by each author. In the case
of Clowe (C1&2),P γ is also fit as a function ofε, and with the
method of Van Waerbeke,P γ is also fit as a function of magnitude.

In real data Hoekstra (HH) has previously found a clear depen-
dence ofP sh on ε. To correct for this shape dependence the Hoek-
stra pipeline multipliesP sh by (1 − ε2/2) at theP γ correction
stage. This modification is not used in any of the other analyses.

A5 Weights

Some authors employ a weighting scheme in their analysis. Hoek-
stra (HH) and Van Waerbeke (LV) use weights based on the error
in the ellipticity measurement. These weights are derived in Ap-
pendix A1 of Hoekstra et al. (2000). Clowe (C1&2), Hetterscheidt
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KSB Author Brown Clowe Clowe Hetterscheidt

Key MB C1 C2 MH

Source Detection hfindpeaks hfind+ SExt hfind+ SExt SExtractor

PSF: 2ndorder 3rdorder 3rdorder 3rdorder
2D polynomial toε∗and toε∗, P sm∗, P sh∗ to ε∗, P sm∗, P sh∗ to pµ(r∗g)

model P sm∗, P sh∗ (P sh/P sm)(rg) 3.5σ clipping

Galaxy sizerg from hfindpeaks from hfindpeaks from hfindpeaks flux radius

Quadrupole estimate Approx Approx Approx Interpolation
θmax and∆θ Int[4rg], 1 pix Int[3rg], 1 pix Int[3rg], 1 pix 3rg , 0.25 pix
P sh andP sm estimate Approx Approx Approx Interpolation

P γ correction Fit of FitP γ
ii(rg , e) Fit P γ

ii(rg , e) 1
2
Tr[P γ ]

1
2
Tr[P γ ](rg) (P sh/P sm)(r∗g ) (P sh/P sm)(rg) (no fit)

Weights none < γ2 >−1 (rg, ν) < γ2 >−1 (rg, ν) < γ2 >−1 (rg ,mag)

γ correction Calibration Close-pair Close-pair
γcor = γ/0.85 γcor = γ/0.95 γcor = γ/0.95

Ellipticity cut |εobs|6 0.5 |εobs| 6 0.8
Size cut rg > r∗g r∗g < rg < 6 pix r∗g < rg < 6 pix rh > r∗h
Significance cut ν > 5 ν > 10 ν > 10

P γ cut P γ
ii > 0.15 P γ

ii > 0.15 1
2
Tr[P γ ] > 0

γ cut
Other |d| < 1pix |d| < 1pix |d| < 3pix

SEx class<0.8 SEx class<0.8
No sat/bad pix No sat/bad pix

KSB Author Heymans Hoekstra Schrabback Van Waerbeke

Key CH HH TS LV

Source Detection SExtractor hfindpeaks SExtractor SExtractor

PSF: 2ndorder 2ndorder 3rdorder 2ndorder
2D polynomial topµ(rg) and toε∗(rg), to pµ(rg) to ε∗(rg)

model (P sm∗)−1
αβP sh∗

βγ (rg) P sm∗(rg) andP sh∗(rg) P sm∗(rg) andP sh∗(rg)

Galaxy sizerg flux radius from hfindpeaks flux radius flux radius

Quadrupole estimate Approx Interpolation Interpolation Approx
θmax and∆θ Int[4rg], 1 pix 3rg , 0.25 pix Int[4rg], 1 pix
P sh andP sm estimate Integer Interpolation Interpolation Approx

P γ correction 1
2
Tr[P γ ] P sh → (1 − ε2/2)P sh 1

2
Tr[P γ ] Fit in (rg ,mag)

(no fit) Fit to (no fit) to 1
2
Tr[P γ ]

1
2
Tr[P γ ](rg)

Weights none Hoekstra et al. < γ2 >−1 (rg ,mag) Hoekstra et al.
eqn A8,9 eqn A8,9

γ correction

Ellipticity cut |εobs| 6 0.5 |εcor| 6 0.8
Size cut 1.2r∗g < rg < 7pix rh selection rh > 1.2r∗h
Significance cut ν > 10 ν > 5 ν > 15

P γ cut 1
2
Tr[P γ ] > 0

γ cut |γ| < 2
Other Close pairs |d| < 3 pix

< 10pix
removed

Table A1. The stages implemented by different authors using the KSB+ method described in section 2.1. Table notation; pix = pixel units; P (rg) implies that
parameterP is measured as a function of scale sizerg ; P (r∗g) implies that parameterP is measured at the stellar scale sizer∗g . See the Appendix text for
more details.
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(MH) and Schrabback (TS) use a weighting scheme based on the
inverse of〈γ2〉 for all galaxies within a given amount ofrg and
magnitude (TS,MH) or significanceν (C1&2) of the galaxy using
a minimum of 20/50 (TS,MH/C1&2) galaxies. Note that this type
of weighting applied to galaxies that have experienced a constant
shear will introduce a stronger bias that when the same weights are
applied to data where the shear varies.

A6 Selection criteria and calibration correction

After applying the KSB+ method to the data each author has in-
cluded a set of selection criteria, listed in Table A1. Thesecrite-
ria are based on object significanceν, ‘optimal’ sizerg, half light
radiusrh, observed ellipticityεobs, corrected ellipticityεcor, mea-
sured shearγ, SExtractorstellar class (1 = star,0 = galaxy), mea-
sured/modeledP γ and so on. Theimcatsoftwaregetshapesdeter-
mines the offset of the flux averaged galaxy centroid (first moment)
from the given input galaxy centroid, scaled by the galaxy flux. This
measure,d, is used by Clowe (C1&2) to select ‘good’ galaxies.
A similar selection criterion is included in the methods of Hetter-
scheidt (MH) and Schrabback (TS), where objects are only selected
if their iterative refinement of the centroid position converges and
fixes the position to better than2× 10−3 pixels independently inx
andy. imcatalso flags up saturated and bad pixels which add noise
to the quadrupole moments. Clowe (C1&2) removes galaxies with
any saturated or bad pixels within3rg of the centroid.

Brown (MB) includes a calibration correctionγcor = γ/0.85
as suggested from the analysis of image simulations in Baconet al.
(2001). Clowe (C1 & C2) includes a close-pair calibration correc-
tion γcor = γ/0.95 to account for the diluting effect of blended
objects. Normally Clowe visually inspects data to remove double
objects classified as a single source and sources with tidal tails in
addition to optical defects such as stellar spikes and satellite trails.
This is feasible with the typical amounts of data analysed inclus-
ter lensing analyses. For wide-field cosmic shear surveys however
visual inspection becomes rather time consuming. For this analy-
sis Clowe therefore visually inspected 10 images from the simula-
tion resulting in the rejection∼ 5% of the objects. This process
was found to increase the average shear measured in the visually
inspected images by∼ 5%. Thus Clowe includes a close-pair cor-
rection factor in the STEP analysis to account for this effect in the
whole simulation set.
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