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The separation between molecular and mesoscopic length and time scales poses a severe limit to
molecular simulations of mesoscale phenomena. We describe a hybrid multiscale computational tech-
nique which addresses this problem by keeping the full molecular nature of the system where it is of
interest and coarse graining it elsewhere. This is made possible by coupling molecular dynamics with a
mesoscopic description of realistic liquids based on Landau’s fluctuating hydrodynamics. We show that
our scheme correctly couples hydrodynamics and that fluctuations, at both the molecular and continuum
levels, are thermodynamically consistent. Hybrid simulations of sound waves in bulk water and reflected
by a lipid monolayer are presented as illustrations of the scheme.
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Complex multiscale phenomena are ubiquitous in nature
in solid (fracture propagation [1]), gas (Knudsen layers
[2]), and liquid phases (fluid slippage past surfaces [3],
crystal growth from a fluid phase, wetting, membrane-fluid
dynamics, vibrational properties of proteins in water [4,5],
and so on). These phenomena are driven by atomistic
forces but manifest themselves at larger, mesoscopic, and
macroscopic scales which cannot be resolved by purely
large scale molecular simulations (with some notable ex-
ceptions [6]). On the other hand, coarse-grained meso-
scopic models have limited use due to the approxi-
mations necessary to treat the molecular scales intrinsic
to these methods. A viable solution to this dilemma is
represented by multiscale modeling via coupled models,
a protocol which is also well suited to new distributed
computing paradigms such as grids [7,8]. The idea behind
this approach is simple: concurrent, coupled use of differ-
ent physical descriptions.

The coupled paradigm is the underlying concept in
quantum-classical mechanics hybrid schemes [1] used to
describe fracture propagation in brittle materials and also
in hybrid models of gas flow [2]. During the past decade,
hybrid modeling of liquids has received important contri-
butions from several research groups (see the recent review
[9]). However, it has thus far lacked the maturity to become
a standard research tool for liquid and soft condensed
matter systems. Hybrid simulations of liquids have been
restricted to coarse-grained descriptions based on Lennard-
Jones particles, reducing the major advantage of this tech-
nique of maintaining full molecular specificity where
needed. Recently, new methods for energy controlled in-
sertion of water molecules [10] have finally opened the
way to treat real solvents such as water. So far, no hybrid
method has employed an accurate description of the mes-
oscale (from nanometers to micrometers) as the important
contribution of fluctuations has been neglected in the em-
bedding coarse-grained liquid. The hybrid method must
also ensure thermodynamic consistency, by allowing the

open molecular system to relax to an equilibrium state
consistent with the grand-canonical ensemble [11].
Finally, all previous nonequilibrium hybrid simulations
have been restricted to shear flow [9,12].

In this Letter, we present a coupled multiscale model
called ‘‘hybrid molecular dynamics’’ (MD) for simulation
of mesoscopic quantities of liquids (water) embedding a
nanoscopic molecular domain [Fig. 1(a)]. Hybrid MD
overcomes the limitations of previous hybrid descriptions
of liquids by coupling fluctuating hydrodynamics [13] and
classical molecular dynamics via a protocol which guar-
antees mass and momentum conservation. The present
method is designed to address phenomena driven by the
interplay between the solute-solvent molecular interaction
and the hydrodynamic flow of the solvent.

Fluctuating hydrodynamics model.—Our mesoscopic
description of fluid flow is based on the equations of
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FIG. 1 (color online). (a) The setup used for our hybrid mo-
lecular simulations and (b) a close-up of the hybrid interface.
The FH description, resolved by the finite volume method, is
coupled to a molecular model (MD) representing a dimyristoyl-
phosphatidylcholine (DMPC) lipid monolayer solvated with
water and restrained at the lipid head groups. We indicate by
‘‘P’’ and ‘‘C,’’ respectively, the particle and continuum cells
adjacent to the hybrid interface ‘‘H.’’ The buffer region of the
MD system ‘‘B’’ (overlapping the C cell) is indicated by trans-
lucent water molecules, and the water molecule density in the
buffer region is shown in (c).
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fluctuating hydrodynamics (FH) [13]. These equations are
stochastic partial differential equations which reduce to the
Navier-Stokes equations in the limit of large volumes. The
equations are based on the conservation equations @t� �
�r � J�, where � � ��r; t� is the density of any con-
served variable at location r. We consider an isothermal
fluid, so that the relevant variables are the mass and mo-
mentum densities � � f�; gg (here g � �v and v is the
fluid velocity). The mass and momentum fluxes are given
by J� � �v and Jg � �vv��� ~�, where � and ~�
are the mean and fluctuating contributions to the pressure
tensor, respectively. The mean pressure tensor is usually
decomposed as � � �p� ��1��S, where p is the ther-
modynamic pressure (given by the equation of state)
and the stress tensor is the sum of a traceless symmetric
tensor �S and an isotropic stress �. We consider a
Newtonian fluid for which �S

�� � ���@�v� � @�v� �
2D�1@�v�����,� � �	@�v�, where repeated indices are
summed, D is the spatial dimension, and � and 	 are the
shear and bulk viscosities, respectively. The components of
the fluctuating pressure tensor ~��� are random Gaussian
numbers [14].

Our continuum mesoscopic model is based on a finite
volume discretization of the FH equations [15], although
here in an Eulerian frame of reference and on a regular
lattice. Partitioning the space into several space-
filling volumes Vk, with k � 1; . . . ; N, centered at positions
rk, we integrate the conservation equations over each
volume Vk and apply Gauss’ theorem d

dt

R
Vk
��rk; t�dr �P

lAklJ
�
kl � ekl, where ekl is the unit surface vector pointing

towards cell k, and Akl is the surface area connecting cells k
and l. We then derive the following stochastic equations for
mass and momentum exchange:

 dMt
k �

X
l

gkl � eklAkldt; (1)

 dPtk �
X
l

�
�l

2
� ekl � gkl � eklvkl

�
Akldt� d~Ptk; (2)

where d~Pk is the momentum exchange due to the fluctuat-
ing pressure tensor ~�k, vkl � vk � vl, and gkl is approxi-
mated on the surface kl by gkl � 1

2 ��k � �l�
1
2 �vk � vl�. To

close the discrete conservation equations, we have to de-
vise a discretization of the dissipative and fluctuating parts
which ensures the validity of the fluctuation-dissipation
theorem. By choosing the discretization of the gradients
@��k !

P
lAkle

�
kl�k=�2Vk�, the discrete momentum fluxes

�k and d~Pk take the form given in Ref. [15]. The resulting
set of stochastic differential equations (1) and (2), may be
integrated using various stochastic integration schemes
[16]; in this work, we have used a simple Euler scheme.

Molecular dynamics.—The molecular description is
based on classical molecular dynamics and the
CHARMM27 force field [incorporating the three-point
transferable intermolecular potential (TIP3P) parametriza-
tion] which specifies bond, angle, dihedral and improper

bonded interactions, and nonbonded Lennard-Jones 6–12
and Coulomb interactions. The code is derived from a
stripped down version of NAMD [17]. We use a dissipative
particle dynamics (DPD) thermostat [18], ensuring local
momentum conservation in such a way that hydrodynamic
modes are not destroyed.

Coupling protocol.—In our computational implementa-
tion, the MD and FH components are independent coupled
models [8] which exchange information after every fixed
time interval �tc. We set �tc � nFH�t � nMD�t, where
�t and �t are the FH and MD time steps, and nFH and nMD

are integers which depend on the system being modeled;
e.g., for water as solvent, �tc � 100 fs, nFH � 10, and
nMD � 100. Conservation is based on the flux balance:
Both domains receive equal but opposite mass and mo-
mentum fluxes across the hybrid interface. This interface
(H) uniquely defines the total system [MD� FH; see
Fig. 1(b)] and, importantly, the total quantities to be con-
served. This contrasts with previous schemes [9] where
particle and continuum domains intertwine within a larger
overlapping region, preventing a clear definition of the
system.

The rate of momentum transferred across the hybrid
interface is given by FH � AJgH � e?, where e? is the
unit vector perpendicular to the surface and the momentum
flux tensor at H is approximated as JgH � �J

g
P � J

g
C�=2.

Note that JgC involves the evaluation of the discretized
velocity gradient at C and, thus, requires the mass and
momentum of the MD system at the neighboring P cell
averaged over the coupling time �tC: hMPi�tc and hPPi�tc ,
respectively [see Fig. 1(b)]. On the other hand, the mo-
mentum flux tensor at the P cell can be computed for the
microstate using the kinetic theory formula JgP �

h��vivi �Wi	i�tc , with i 2 P and Wi �
P
jrij � fij [19]

being the contribution of atom i to the virial.
Alternatively, JgP can be computed by introducing the
coarse-grained variables at the neighboring MD and FH
cells into the discretized Newtonian constitutive relation.
Both approaches provide equivalent results in terms of
mean and variance of the pressure tensor.

The force FH at the hybrid interface is imposed on the
FH domain using standard von Neumann boundary con-
ditions. In order to impose the force�FH on the molecular
system, we extend the MD domain to an extra buffer cell
[‘‘B’’ in Fig. 1(b)]. Particles are free to cross the hybrid
interface according to their local dynamics, but any atom
that enters B will experience an external force �FH=NB
which transfers the external pressure and stress. The
number of solvent molecules within the buffer NB�t� is
controlled by a simple relaxation algorithm: �NB �
�hNBi � NB��tc=
B, with 
B ’ 500 fs. The average hNBi
is set so as to ensure that B always contains enough
molecules to support the momentum transfer; here we
use hNBi � 0:75MC=m, where MC is the mass of the con-
tinuum cell C and m is the molecular mass. Figure 1(c)
shows the equilibrium number density profile of water at
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the buffer. Importantly, the density profile is flat around the
hybrid interface. Because of the external pressure, it
quickly vanishes near the open boundary. In fact, mole-
cules eventually reaching this rarefied region in B are
removed. If the relaxation equation requires �NB > 0,
new water molecules are placed in B with velocities drawn
from a Maxwellian distribution with the mean equal to the
velocity at the C cell. The insertion location is determined
by the USHER algorithm [10], which efficiently finds new
molecule configurations releasing an energy equal to the
mean energy per molecule. Momentum exchange due to
molecule insertion/removal is taken into account in the
overall momentum balance [11].

In fluid dynamics, the mass flux is not an independent
quantity but is controlled by the momentum flux [see
Eqs. (1) and (2)]. Consequently, we do not explicitly
impose the mass flux on the MD system. Instead, it arises
naturally from the effect of the external pressure on the
molecule dynamics near the interface. The mass flux
J�H � e? is thus measured (via simple molecule count)
from the amount of MD mass crossing the interface H
over the coupling time �tc. The opposite of this flux is then
transferred to the adjacent C cell via a simple relaxation
algorithm [11], using a relaxation time [
r 
 O�100� fs]
large enough to preserve the correct mass distribution at
the C cell but still much faster than any hydrodynamic
time. This guarantees mass conservation.

Results.—We first test the conservation of the total mass
M and momentum P. Results are shown in Fig. 2(a), where
we consider the equilibrium state of a hybrid MD simula-
tion of water in a 3D periodic box 50� 50� 735 �A3 (each
cell is 50� 50� 15 �A3). The embedded TIP3P water
domain (including the buffers) is 75 Å wide in the coupling
(z) direction and was preequilibrated at 1 atm and 300 K.
Figure 2(a) shows the mean error in mass and momentum
conservation. As stated above, mass conservation is en-
sured over a short time �tc �O�100� fs, as clearly re-

flected in Fig. 2(a). However, as the external force is
imposed within the buffers B, the momentum conservation
is ensured only on the ‘‘extended’’ system (MD� FH�
B). The variation of momentum of the total system (MD�
FH) is then a small bounded quantity whose time average
becomes smaller than the thermal noise after about 1 ps
[see Fig. 2(a)], i.e., faster than any hydrodynamic time
scale.

The FH description uses an accurate interpolated equa-
tion of state p��� � �3:84� 15:7�� 15:3�2�104 bars,
which fits for � � �0:54; 0:70	 �g=mol�= �A3, the outcome
of NPT simulations of TIP3P water at T � 300 K, and
provides a quasiperfect match of the mean pressure, den-
sity [see Fig. 2(b)], and sound velocity. The shear and bulk
viscosities of the FH model are assigned to match those of
the MD fluid (for water at T � 300 K, we used the values
reported in Ref. [20]). Also, in cases where the viscosity
varies locally, the FH model allows one to assign a differ-
ent viscosity for each cell. Momentum fluctuations at each
cell are consistently controlled by the DPD thermostat in
the MD region and via the fluctuation-dissipation balance
in the FH domain. Density fluctuations present a much
more stringent test of thermodynamic consistency. Each
fluid cell is an open subsystem, so, at equilibrium, its mass
fluctuation should be governed by the grand-canonical
(GC) prescription: ���	 � ��kBT=�Vkc2

T�	
1=2 [13] [where

� means standard deviation and c2
T � �@P=@��T is the

squared sound velocity at constant temperature]. Mass
fluctuations within the MD and FH cells are both in agree-
ment with the GC result [Fig. 2(b)], indicating that neither
the USHER molecule insertions [10] nor the mass relaxation
algorithm substantially alter the local equilibrium around
the interface H.

We now focus on transmission of sound waves which
thus far have remained an open problem in the hybrid
setting. In a slot of water between rigid walls, we perturb
the equilibrium state with a Gaussian density perturbation
(amplitude 5% and standard deviation 45 Å). As shown in
Fig. 3(a), the resulting traveling waves cross the MD
domain several times at the center of the slot. Sound waves
require fast mass and momentum transfer, as any signifi-
cant imbalance would generate unphysical reflection at the
hybrid interface. No trace of reflection is observed, and
comparison with full FH simulations shows statistically
indistinguishable results.

Finally, we validate the hybrid scheme against full MD
simulations of complex fluid flow [setup in Fig. 1(a)]. A
sound wave generated by a similar Gaussian perturbation
is now reflected against a lipid monolayer (DMPC)
[Fig. 3(b)]. Each lipid is tethered by the heavy atoms of
the polar head group with an equilibrated grafting cross
section of 53 �A2=lipid, close to the experimental cross
section of membranes. In the hybrid simulation, the MD
water layer close to the lipid membrane extends just 45 Å
above it [see Fig. 1(b)]. By contrast, in the MD simulation
we considered a large 180� 50� 50 �A3 box of explicit
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FIG. 2 (color online). (a) The normalized mean error in mass
EM�
� and momentum EP� �
� evaluated as E2

A�
� �
h�
Rt0�

t0 �A�t�dt=
	2it0=hMki

2, with �A � A� hAi. The dashed
and solid horizontal lines are, respectively, the normalized
standard deviation of mass and momentum within one cell
(��Mk	=hMki). (b) Density field in a hybrid MD equilibrium
simulation of water. The solid circles correspond to MD
cells. The error bars are the standard deviation of each cell
density. The GC result is h�i � 0:632 �g=mol�= �A3 and ���	 �
0:0045 �g=mol�= �A3.
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water containing around 50 K atoms. The wave velocity
near the layer is compared in Fig. 3(b) for the hybrid MD
and MD simulations. The excellent agreement demon-
strates that the coupling protocol accurately resolves fea-
tures produced by the molecular structure. In Fig. 3(b),
such effects are due to sound absorption by the lipid layer,
highlighted by comparison with a FH simulation of the
same wave impinging against a purely reflecting wall. The
present sound-wave simulations were done assuming an
isothermal environment. This is realistic if the rate of
thermal relaxation DTk2 (with DT � 1:5� 10�7 m=s2

the water thermal diffusivity and k � 2�=� the wave
number) is comparable with or faster than its sound fre-
quency ck. The present simulations �� 50 �A are just in
the limit of the isothermal sound regime [21], while waves
with � > O�10� �A propagate adiabatically and require
consideration of the energy flow [11].

In summary, we have presented a stable and robust
multiscale method (hybrid MD) for the simulation of the
liquid phase which embeds a small region, fully described
by chemically accurate molecular dynamics, into a fluctu-
ating hydrodynamics representation of the surrounding
liquid. Mean values and fluctuations across the interface
are consistent with hydrodynamics and thermodynamics.
Sound waves propagating through the MD domain and
flow behavior arising from the interaction with complex
molecules are both treated correctly. We considered sound
waves reflected by DMPC monolayers, but the scope of
this methodology is much broader, including inter alia the
study of vibrational properties of hydrated proteins (via
high frequency perturbations) [4,5], the ultrasound absorp-
tion of complex liquids [22], or the simulation of quartz
crystal oscillators [23] for the study of complex fluid
rheology or slip flow past surfaces [3].
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Opin. Solid State Mater. Sci. 1, 853 (1996).

[7] I. Foster, Science 308, 814 (2005).
[8] P. V. Coveney, G. De Fabritiis, M. J. Harvey, S. M. Pickles,

and A. R. Porter, Comput. Phys. Commun. 175, 389
(2006).

[9] P. Koumoutsakos, Annu. Rev. Fluid Mech. 37, 457 (2005).
[10] G. De Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney,

J. Chem. Phys. 121, 12 139 (2004); R. Delgado-Buscalioni
and P. V. Coveney, J. Chem. Phys. 119, 978 (2003).

[11] E. G. Flekkoy, R. Delgado-Buscalioni, and P. V. Coveney,
Phys. Rev. E 72, 026703 (2005); R. Delgado-Buscalioni
and P. V. Coveney, Phys. Rev. E 67, 046704 (2003).

[12] R. Delgado-Buscalioni, E. Flekkøy, and P. V. Coveney,
Europhys. Lett. 69, 959 (2005).

[13] L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Pergamon, New York, 1959).

[14] See EPAPS Document No. E-PRLTAO-97-062639 for
correlations and discretized equations. For more
information on EPAPS, see http://www.aip.org/pubservs/
epaps.html.
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FIG. 3 (color online). (a) Spatiotemporal diagram along z for
the density field of a three-dimensional simulation of two sound
waves traveling within a closed box filled with water. The region
of width 45 Å around the center of the box is described with MD,
while the rest of the domain is solved via FH. (b) The longitu-
dinal velocity arising from the interaction between a sound wave
and a grafted lipid layer [setup of Fig. 1(a)]. We compare hybrid
MD (solid line), full MD (circles), and full FH simulation using
purely reflecting walls (dashed line). Results are averaged over
15 nm from the monolayer; error bars indicate the standard
deviation over 10 runs.
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