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ABSTRACT

Fasciola hepatica, a parasitic trematode, is the causative agent of liver fluke 

disease. It has been shown previously, that both the migratory and adult worm 

stage of the parasite secrete multiple cysteine proteinases when they are 

cultured overnight (Dalton & Heffernan, 1989). In this study, one of these 

proteinases has been purified by standard chromatographic techniques. The 

purified enzyme was characterised as a cathepsin L-like proteinase using 

synthetic substrates, inhibition studies, N-terminal sequencing and 

immunolocalisation studies. This is the first cathepsin L-like proteinase to be 

identified in a parasitic trematode. This cathepsin L-like proteinase is capable 

of cleaving immunoglobulin molecules, and is able to protect newly excysted 

juveniles from destruction by immune-effector cells when it is included in an 

eosinophil adherence assay. Antibodies to the purified proteinase are able to 

neutralise its proteolytic activity in vitro. A partial gene fragment encoding the 

cathepsin L-like proteinase has been obtained using PCR and subcloning 

techniques. The cathepsin L-like proteinase is present in all stages of F. 

hepatica and, hence, is considered an ideal target molecule at which to design 

a vaccine and/or drug, for use in the control of this agriculturally important 

parasitic disease.
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ABBREVIATIONS

BCIP 5-bromo-5-chloro-3-indolyl phosphate

Bisacrylamide N, A/“-Methylene bisacrylamide

BSA Bovine serum albumin

DMSO Dimethyl sulphoxide

DPC Diethylpyrocarbonate

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid disodium salt

E-64 fra/7s-epoxysuccmyl-L-leucylamido(4-guanidino)

butane

FCS Foetal calf serum

FITC Fluorescein isothiocyanate

Hepes N-[2-hydroxyethyl] piperazine-N’[2-ethane

sulphonic acid]

IPTG Isopropyl-B-thiogalactopyranoside

NBT Nitro blue tétrazolium

PAGE Polyacrylamide gel electrophoresis

PBS Phosphate buffered saline

PMSF Phenylmethylsulphonyl fluoride

RPMI Roswell Park Memorial Institute

SDS Sodium dodecyl sulphate

TEMED N, N, N’, N’-tetramethylethylenediamine

Tris tris-(hydroxymethyl)-methylamine (2-amino-

hydroxylmethyl) propane-1,3-diol 

Z-F-A-CHN2 /V-benzyloxcarbonyl-L-phenylalanine-L-alanine-

2



Z-F-R-AMC

Z-R-AMC

Z-R-R-AMC

diazomethylketone

A/-benzyloxcarbonyl-L-phenylalanine-L-arginine-7-

amino-4-methylcoumarîn.HCI

/V-benzyloxcarbonyl-L-arginine-7-amino-4-

methylcoumarin.HCI

A/-benzyloxcarbonyl-L-arginine-L-arginine-7-amino-

4-methylcoumarin.HCI

3



CHAPTER ONE 
INTRODUCTION
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1.0 INTRODUCTION

In 1947, Professor Stoll drew attention to the worldwide presence of 

helminth parasites in his article “This wormy world”. Helminth parasites 

infected 70 % of the then world population of approximately 2 billion (Stoll, 

1947). Since that time, the prevalence of helminth infections has kept pace 

with the growth of the world population. If the trend continues till the year 2100, 

a predicted world population of 7-15 billion would harbour 5-10 billion 

helminth infections, unless special control measures are undertaken 

(Crompton, 1987).

The term “helminth” (derived from the Greek words helmins or helminthos), 

literally means “worm”, zoologically speaking however, it has a more precise 

connotation and is currently restricted to members of the phyla 

Platyhelminthes, Nematoda and Acanthocephala (Smyth, 1976). The study of 

helminths is now regarded as being confined to the study of parasitic worms. 

Helminths typically parasitise vertebrates, although invertebrates act as 

intermediate hosts. The helminth diseases in man and domestic animals are 

caused by three groups of parasites belonging to the classes of trematoda 

(flatworms), nematoda (roundworms), and cestoda (tapeworms), and are 

distributed throughout the world (Singh & Sharma, 1991). There are 

approximately 200 recognised helminth parasites of man. Table 1.1 lists the 

parasites which are most common in humans.

For most helminth infections the relationship between between infection and 

disease is complex, and disease is not necessarily an automatic outcome of 

infection (Bundy etal., 1992). Only a small proportion of those individuals with 

heavy infections are likely to develop overt disease. There is a low 

mortality/high morbidity rate associated with helminth infections, so although
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Table 1.1

Parasitic helminth infections which are common to man, an example of a 

causative agent of each infection, and the numbers infected. Data obtained 

from Hopkins, (1992).

Parasite infection & example Millions infected

Ascariasis (Ascaris lumbricoides) 1000
Hookworm (Ancylostoma duodenale) 900
Trichuriasis (Trichuris trichiura) 750
Schistosomiasis (Schistosoma mansoni) 250
Filariasis (Wuchereria bancrofti) 90
Taeniasis (Taenia saginata) 70
Onchocerciasis (Onchocerca volvulus) 30
Fascioliasis (Fasciola hepatica) 17
Trichinosis (Trichinella spiralis) 11

millions of people may be infected with helminths, relatively few will actually 

die as a result of infection, which seems to prevent well-focused investigation 

into their control and treatment (Parkhouse & Harrison, 1989). In fact it is 

estimated that at least one quarter of the worlds population is infected with 

helminthic parasites (Bundy, 1992), and about 150,000 die each year as a 

result of these infections (Bundy, 1990).

One feature in the evolution of some animals is the increasing complexity of 

their alimentary, respiratory and circulatory systems. The development of such 

systems was, of course, advantageous to these evolving organisms, but it was 

not without some inherent disadvantages. As each new organ system evolved,
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especially those containing cavities or surfaces, it presented a habitat for 

potential parasites. These cavity containing organs appeared especially in 

vertebrates and every part of the vertebrate body capable of supporting 

parasitic life has been invaded (Smyth, 1976). A majority of helminths use the 

gastrointestinal tract as their favourite niche; however some parasites may also 

invade musculature, the blood circulatory system, and other parts of the body 

such as lungs, liver, lymphatics, and eyes, producing serious clinical 

complications.

Traditionally the control of helminth infections has relied heavily on the use 

of anthelmintic drugs, along with improvements in hygiene and reductions of 

vector populations. However, within a few years of their introduction, cases of 

resistance to anthelmintic drugs were reported (reviewed in Craig, 1993 and in 

Jackson, 1993). Resistance occurs when a portion of a population is able to 

tolerate doses of a compound that is effective against other populations (Craig,

1993). Resistance has been reported in many countries throughout the world, 

against anthelmintic drugs which are commonly used by the livestock 

industries (Jackson, 1993). More recently resistance to praziquantel treatment 

has been induced in laboratory mice infected with Schistosoma mansoni 

worms (Paul Brindley, personal communication).

The increasingly widespread problem of resistance to chemotherapeutic 

agents, has made the search for new ways of combating these helminth 

diseases even more important in terms of controlling helminthic infections. The 

successful eradication of all helminth diseases would involve more effective 

and economically viable drugs, with new modes of action, broad specificity and 

minimal toxicity to the host, combined with an immunisation program designed 

to enhance host resistance to reinfection. The final effective vaccines would be
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multivalent with broad specificity. However to optimise the chances of success 

such vaccines would have to be closely modelled on each individual parasite 

life-cycle.

To invade the body of another species of animal, and to live and multiply in 

or on it, could not have been achieved without considerable morphological, 

physiological, biochemical and immunological adaptations by the parasite. 

Proteinases are enzymatic molecules which hydrolyse peptide bonds, and as 

such can be associated with all the adaptations which a parasite may have to 

undergo in order to survive in its parasitic environment. Proteinases are 

essential for life. The study of parasite antigens has focused mainly on surface 

molecules and secretions- both easily accessible targets. However it is unlikely 

that a parasite would express essential molecules on its surface. Indeed such 

an act would be suicidal, and would inevitably lead to the disappearance of the 

parasite through evolution. Excretory/secretory molecules have been shown to 

contain a variety of enzymatic activities. Some of these molecules may be 

essential to the survival of the parasite and would be suitable candidates for 

studies as targets for vaccine or rational drug design.

Table 1.2 lists the proteinases that are associated with helminths. In this 

report, we review the proteinases which have been well characterised but not 

extensively reviewed previously, and assess their potential as targets for 

immuno- or chemo- therapy in the eradication (full or partial) of helminthic and 

helminth associated diseases.
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Table 1.2

A list of the proteinases activities which have been identified in helminth 

parasites.

Species Class of proteinase Ref

Trematoda

Schistosoma mansoni
Egg cysteine Asch & Dresden, ‘79 

Sung & Dresden, ‘86

Cercariae serine McKerrow & Doenhoff, ‘88 
McKerrow etal., ‘91

47 kDa serine Chavez-Olortegui etal., ‘92

Schistosomula cysteine Zerda et a!., '88

Miracidia cysteine Yoshino etal., ‘93

Adult cysteine Timms & Bueding, ‘59 
Dresden & Deelder, ‘79 
Chappell & Dresden, ‘86 
Lindquist etal., ‘86 
Chappell etal., ‘87 
Chappell & Dresden, '87 
Ruppel etal., ‘85, ‘87 
Davis etal., ‘87 
el Meanway etal., ‘90 
Klinkert etal., ‘87, ‘88, ‘89 
Felleisen etal., ‘88 
Felleisen & Klinkert, ‘90 
Gotz & Klinkert ‘93 
Smith etal., '94b

metalloproteinase Auriault etal., ‘81

calpain Andresen etal., ‘91

leucine aminopeptidase Xu & Dresden, '86
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Species Class of proteinase Ref.

S. mansoni (cont) 
Adult

Fasciola hepatica 
NEJ

Adults

dipeptidyl amino- 
peptidase I and II

cysteine

serine
dipeptidylpeptidase

cysteine

serine
dipeptidylpeptidase

Fasciola gigantica
cysteine

Fasciola sp.
cysteine

Paragonimus westermani
cysteine

Bogitsh & Dresden, ‘83

Dalton & Heffernan, ‘89 
Carmona etal., ‘93 
McGinty et al., '93

Carmona etal., '94

Howell, '66, ‘73 
Simpkin etal., ‘80 
Chapman & Mitchell, '82 
Dalton & Heffernan, ‘89 
Rege etal., '89a 
McGinty etal., ‘93 
Carmona etal., ‘93 
Smith etal., ‘93a, ‘93b, '94a 
Dowd etal., ‘94a 
Heussler & Dobbelaere, ‘94

Carmona etal., ‘94

Fagbemi & Hillyer, ‘91

Aoki etal., ‘83 
Yamasaki etal., ‘89, ‘92 
Yamasaki & Aoki, ‘93

Yamakami & Hamajima, '87,
‘89 and '90
Song & Dresden, '90
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Species Class of proteinase Ref.

Nematoda

Ancylostoma caninum

Dictyocaulus viviparus

Haemonchus contortus

metalloproteinase

cysteine

metalloproteinase 
cysteine & serine 
cysteine

metalloproteinase
cysteine

Nippostrongylus brasiliensis
metalloproteinase

Necator americanus
invasive
proteinase

Ostertagia ostertagi
cysteine

Strongyloides stercoralis
metalloproteinase

Ascaris suum
hemoglobinase
serine

Anisakis simplex
proteinase

11

Hotez & Cerami, '83 
Hotez etal., ‘85, '90 
Dowd etal., ‘94b

Britton etal., ‘92 

Rege etal., ‘89b

Gamble etal., ‘89 
Cox etal., ‘90 
Pratt et a i, ‘90, ‘92a 
Knox & Jones, ‘90 
Knox etal., ‘93

Healer etal., ‘91

Matthews, ‘82

Pratt etal., ‘92b

McKerrow etal., ‘90

Maki et al., '85 
Knox & Kennedy, ‘88

Kennedy etal., ‘88



Species 

Brugia malayi 

Brugia pahangi 

Dirofilaria immitis

Onchocerca volvulus 

Cestoda

Spirometra mansoni 

Taenia solium

proteinase

metalloproteinase

cysteine

proteinase

cysteine

metalloproteinase
aspartic
cysteine

Class of proteinase

Petralanda etal., ‘86

Hong etal., ‘93

Maki et al., '85 
Tamashiro etal., ‘87

Petralanda etal., ‘86

Song & Chappell, ‘93 

White etal., ‘92

Ref.
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Schistosomes, or blood flukes, are the causative agent of the parasitic 

disease schistosomiasis, also known as Bilharzia, which afflicts more than 250 

million people in tropical regions. There are three species of schistosome, 

Schistosoma mansoni, Schistosoma japonicum and Schistosoma 

haematobium. Proteinases of S. japonicum and S. haematobium are less well 

characterised than those of S. mansoni. For this reason, only the proteinases 

associated with S. mansoniwlW be dealt with in detail in this review.

Infection follows penetration of the skin by cercariae, the aquatic larvae. 

Cercariae develop in an intermediate host, the fresh-water snail, and find their 

human host by following a thermal gradient (Stirewalt, 1974). During human 

infection, cercariae transform into schistosomula which migrate to the lungs, 

and then to the liver, finally taking up residence in the vasculature of the 

intestines or bladder. Here adult females release numerous eggs each day, 

and can do so for many years. The eggs move through the intestinal wall and 

are liberated into the lumen of the bowel. Eggs are also carried with the 

circulation and are deposited in various body organs particularly in the liver. 

The hosts inflammatory response to the eggs causes the tissue pathology 

associated with schistosomiasis (Mahmoud & Wahals, 1990)

Proteinases are known to be secreted from S. mansoni parasites at several 

stages during migration in the mammalian host. Serine proteinases released 

by transforming cercariae and adult schistosomes are thought to be involved in 

a variety of functions including skin penetration and nutrition. These 

proteinases have been extensively reviewed previously (McKerrow &

Doenhoff, 1988; McKerrow, 1989; McKerrow eta i, 1991) and for this reason 

will not be dealt with in this report.
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Schistosomes feed on red blood cells, providing the parasites with the 

nutrients they require for growth and development. In the worm’s digestive 

tract, ingested red blood cells are lysed and the hemoglobin released (Bogitsh, 

1978). Proteolytic degradation of hemoglobin was first described by Timms 

and Bueding, (1959). They established that the proteinase was an acidic 

enzyme, found in highest concentration in female worms, which hydrolysed 

hemoglobin, but not natural blood proteins. Dresden & Deelder (1979), 

characterised the enzyme further by showing it was inactivated by inhibitors of 

thiol proteinases, but not by agents which inactivate serine, metallo, or 

carboxyl proteinases. Two forms of the cysteine proteinase have been purified 

from S. mansoniextracts. The more active form is capable of degrading 

hemoglobin, has a high specific activity on the synthetic substrate 

carbobenzoxy-arginyl-arginyl-7-amino-4-trifluoromethylcoumarin and is also 

highly immunogenic in infected animals (Chappell & Dresden, 1986a). 

Reduced glutathione, which in addition to the major constituent, hemoglobin, is 

also present in host red blood cells, has been shown to be effective in the 

activation of this proteinase (Chappell etal., 1987). It is possible that the 

“hemoglobinase" is activated in vivo by this mechanism. Immunofluorescence 

studies using monoclonal antibodies have confirmed the gut localisation of the 

proteinase in adult worms (Chappell & Dresden, 1987). In addition there is 

strong evidence that this proteinase is also expressed at days 8-10 in in vitro 

cultured larvae, but it has not been detected in cercariae or eggs (Zerda etal., 

1988).

Ruppel etal., (1985) demonstrated that natural infections in mice led to the 

early and predominant formation of antibodies against a 31 kDa protein of 

adult S. mansoni, the origin of which appeared to be the gut rather than the

14



tegument, suggesting that this protein may be present in the 

excretory/secretory products of worms. S. mansoni adult antigens were tested 

for cross-reactions with sera obtained from patients infected with S. japonicum 

using immunoblotting techniques. The sera consistently recognised a doublet 

of bands, which had molecular weights of approximately 31 and 32 kDa. 

Immunofluorescence assays performed with sera of S. japonicum patients 

confirmed the localisation of the Sm 31 and Sm 32 antigens to the gut of S. 

mansoni (Ruppel eta!., 1987).

Hence, the Sm 31 and Sm 32 antigens induced a strong and consistent 

antibody response in prepatent as well as long-standing infections of man and 

experimental animals. These antigens were considered to be potential targets 

for sero-diagnosis under field conditions, and to this end were expressed as 

fusion proteins with the 13-galactosidase gene of Escherichia coli. Using mouse 

and human infection sera, recombinant clones specific for a 31/32 kDa doublet 

were selected (Klinkert etal., 1987). However, the fusion proteins were found 

to be unsuitable for use, as the 13-galactosidase protein cross reacted with anti- 

R-galactosidase antibodies present in human sera. In order to be effective in 

immunodiagnosis the sera would have to be preadsorbed with E. coli extracts 

before use, making the employment of these recombinant antigens for routine 

diagnosis impractical.

To overcome this difficulty the Sm 31 and Sm 32 antigens were expressed 

as fusion proteins with the bacteriophage MS2 RNA polymerase (Klinkert et 

al., 1988). However, other problems arose when trying to purify the fusion 

proteins free of contaminating E. coli antigens. These E. coli antigens were 

recognised by human infection sera and it was possible that if used, they 

would lead to false positives and hence, incorrect diagnosis. Infection sera did

15



not recognise the fusion proteins as well as it did native proteins, hence 

sensitivity was also quite low. Tests revealed that an array of epitopes was 

probably required for the reliable immunodiagnosis of schistosomiasis in the 

field (Klinkert etal., 1988; Felleisen etal., 1988). It was thought that the failure 

to reproduce the full reactivity of the native Sm 31 protein using fusion proteins 

was possibly due to conformational modifications in the antigenic sites of the 

recombinant molecules (Felleisen etal., 1988). Alternative methods of 

expressing the molecules in their native conformation were sought. This would 

serve to develop the use of the antigens as diagnostic proteins and to 

characterise the molecules further.

Davis etal., (1987) isolated cDNA clones encoding S. mansonigenes by 

immunologically screening an expression cDNA library with antisera raised 

against purified hemoglobinase. The recombinant fusion protein encoded by 

one cDNA clone exhibited the ability to degrade globin and was 

immunologically cross reactive with hemoglobinase isolated from adult worms. 

It was proposed that this molecule was responsible for hemoglobin digestion in 

the adult schistosome (Davis etal., 1987). In 1989, Klinkert etal. published the 

primary structures of the Sm 31 and Sm 32 diagnostic proteins of S. mansoni. 

These sequences were derived from the nucleotide sequences of cDNA 

clones, isolated from a cDNA library which was screened with mouse and 

human infection sera. Both molecules were identified as acid proteinases. 

Based on the nucleotide and deduced amino acid sequence data, Sm 31 was 

found to be similar to the mammalian lysosomal enzyme, cathepsin B, and Sm 

32 was found to be identical to the proposed schistosome “hemoglobinase” 

described by Davis etal., (1987). This report by Klinkert etal., (1989) seemed 

to provide conclusive evidence that the “hemoglobinase” and the cathepsin B-
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like enzyme were two separate proteinases.

However, there was no evidence to prove that the Sm 32 molecule, “the 

hemoglobinase”, was responsible for hemoglobin degradation. It had been 

shown that purified preparations of the “hemoglobinase” were found to be 

contaminated with S. mansonicathepsin B activity (el Meanawy eta!., 1990), 

and also that the sequence of the Sm 32 molecule did not exhibit homology 

with published sequences of any other proteinases (Davis et al., 1987). In 

contrast, since cathepsins had been implicated in the breakdown of 

hemoglobin as a source of nutrition in other parasites, Felleisen & Klinkert 

revised their original theory, that the cathepsin B proteinase and the 

hemoglobinase were separate enzymes, and suggested that the schistosome 

cathepsin B (Sm 31) was in fact responsible for the hemoglobinase activity of 

adult worms (Felleisen & Klinkert, 1990).

Purification of the Sm 31 and Sm 32 proteinases from the 

excretory/secretory products or extracts of adult S. mansoni worms was not 

possible due to the presence of contaminating proteins with similar physical 

properties (Chappell & Dresden, 1986b; Lindquist etal., 1986). Expression of 

both molecules would provide the opportunity to characterise them further. 

Following its successful expression in insect cells, the Sm 31 molecule was 

shown to be capable of degrading hemoglobin (Gotz & Klinkert, 1993). Its 

substrate specificity, as well as its sensitivity to naturally occurring and 

synthetic inhibitors in vitro, proved it to have characteristic properties of the 

cysteine proteinase, cathepsin B. Hence, it was concluded that the Sm 31 

molecule was a cathepsin B-like proteinase, and it was proposed that this 

proteinase was involved in hemoglobin degradation in the schistosome 

digestive tract (Gotz & Klinkert, 1993). The identification of the Sm 32 molecule,
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the original “hemoglobinase", as a cysteine proteinase remains unverified, and 

its true function remains unknown (Gotz & Klinkert, 1993).

Whilst the recombinant Sm 31 molecule is capable of cleaving hemoglobin 

(Gotz & Klinkert, 1993), there has been no evidence to prove that the native 

proteinase is also capable of degrading hemoglobin in vivo. Furthermore, the 

participation of other proteinases in hemoglobin degradation has not been 

overruled (Bogitsh & Dresden, 1983; Kramer & Bogitsh, 1985; Bogitsh and 

Kirschner, 1987).

The work carried out, to date, on the Sm 31 molecule concentrated on 

recombinant fusion proteinases because of the problems encountered when 

purification of the native molecule was attempted. Using partially purified 

material from adult schistosomes, an enzyme was shown to be capable of 

degrading hemoglobin and synthetic peptides containing arginine (Dresden 

etal., 1981). Sm 31 was believed to be the proteinase responsible for this 

activity, and it was thought that this cathepsin B proteinase was the principle 

enzyme responsible for proteolytic hydrolysis in adult worms.

Indeed it was considered, that helminths in general only synthesised 

cathepsin B-like proteinases. However, in a series of studies on the related 

parasitic trematode Fasciola hepatica, Smith etal., (1993a, 1993b) and 

Carmona etal., (1993) isolated and characterised a cathepsin L-like 

proteinase from medium in which adult and juvenile F. hepaticawere 

maintained. This was the first trematode cathepsin L-like proteinase to be 

characterised and will be dealt with in more detail later. The identification of 

cathepsin L activity in F  hepatica led to a study on the proteolytic activities in 

S. mansoniand S. japonicum. A full length, cathepsin L cDNA clone has been 

isolated from an adult S. mansoni cDNA library, using PCR gene fragments
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which encoded a cathepsin L-like proteinase, as a probe (Smith etal., 1994b). 

Cathepsin L-like activity has been demonstrated as being dominant over 

cathepsin B-like activity in extracts of both adult S. mansoni and S. japonicum 

worms. The specific activity of the cathepsin L proteinase in these extracts was 

shown to be sixty-fold greater than that of the cathepsin B proteinase (Smith et 

at., 1994b). These authors believe that it would not be impossible for the 

cathepsin L-like proteinase to play a greater role in hemoglobin digestion than 

cathepsin B.

So although it seemed that the roles of the Sm 31 and Sm 32 molecules 

had been resolved, in that the Sm 31 recombinant protein was proposed as a 

hemoglobinase, while there was little proof that the Sm 32 molecule was even 

a proteinase, now the proposed role of the Sm 31 proteinase as a major factor 

in hemoglobin degradation is questioned by the discovery of the more 

powerful and highly active cathepsin L-like proteinase in extracts of adult S. 

mansoni worms.

Fasciola hepatica, a parasitic trematode, related to S. mansoni, is the 

causative agent of liver fluke disease in mammals. The most common hosts for 

F. hepatica are agriculturally important animals such as cattle and sheep. 

Human fascioliasis has become an increasing problem in some tropical and 

developing countries (Apt etal., 1992). Liver fluke infection occurs when the 

animal ingests vegetation contaminated with metacercarial cysts. The 

metacercaria excysts in the duodenum of the animal, migrates through the wall 

of the hosts digestive tract, and then enters the liver where it causes extensive 

damage over a 7-8 week period. The parasite then enters the immunologically 

safe environment of the bile ducts.
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Howell, (1966) demonstrated that Immature F. hepatica release enzymes 

in vitro, and postulated that in vivo these enzymes were involved in the 

penetration of the liver tissue. Locatelli & Berretta, (1969) showed that flukes 

can disrupt gelatin sheets in vivo, but are prevented from doing this when their 

pharynx is ligated, and concluded that the proteinases responsible for this 

activity reached “the outside” of the parasite as a result of regurgitation. In 

1973, Howell localised the proteolytic activity involved in extracellular 

digestion to the gut cells, and confirmed the theory of Locatelli & Berretta, 

(1969).

Rupova & Keilova, (1979) and Simpkin eta!., (1980) described acidic 

proteinases in F. hepatica. However, no attempt was made to assign these 

enzymes to a particular class of proteinase. In 1982, Chapman & Mitchell 

described the presence of a thiol proteinase activity in immature and mature F. 

hepatica capable of cleaving immunoglobulin G into Fab and Fc fragments in a 

manner similar to the action of papain. They suggested that these enzymes 

may prevent antibody activating effector functions such as complement fixation 

in the vicinity of the migrating fluke affording them some protection from 

immune attack.

Rege eta i, (1989a) reported the purification of a cysteine class proteinase 

of 14.5 kDa from extracts of adult F. hepatica worms. Their preliminary data 

suggested that this enzyme was capable of digesting hemoglobin, collagen 

and immunoglobulin G. Also at this time, Dalton & Heffernan, (1989) observed 

that when immature and mature F. hepatica were maintained in culture for 16 

hours they released proteolytic enzymes, and they speculated that these 

enzymes were important in the feeding and migration of the parasite. All of 

these enzymes were classified as cysteine proteinases due to their inactivation
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by cysteine proteinase inhibitors and their enhanced activity in the presence of 

reducing agents. The proteinases were divided into two groups based on the 

pH range in which they were most active (Group 1, 60-90 kDa, pH 3.0-4.5; 

Group 2, 27.5-50 kDa, pH 4.5-8.0). In further studies it was shown that the 

Group 1 proteinases were capable of cleaving IgG molecules in a similar 

fashion to that reported in Chapman and Mitchell’s earlier study (Smith eta!., 

1993a). This immunoglobulin cleaving activity was classified as a cathepsin L- 

like proteinase based on inhibitor studies, which was in contrast to the 

cathepsin B-like activity described by Chapman & Mitchell, (1982). This was 

the first cathepsin L-like proteinase activity to be described for a parasitic 

trematode.

Smith eta i, (1993b) purified this 27 kDa proteinase to homogeneity, and 

demonstrated that it was one of the two major proteins released by adult F. 

hepatica in vitro. N-terminal sequencing analysis confirmed the identification of 

the proteinase as a cathepsin L-like enzyme and immunolocalisation studies at 

the light- and electron-microscope level revealed that these cathepsin L-like 

proteinases were concentrated in vesicles in the gut epithelial cells of adult F. 

hepatica. It was proposed that whilst the flukes migrated through the host liver, 

this proteinase was secreted to the exterior of the parasite, where it may play a 

role in immunoevasion by cleaving host immunoglobulin and thus preventing 

antibody-mediated immune effector cell attachment (Smith etal., 1993b).

McGinty etai., (1993) described the identification of E/S proteinases of adult 

and juvenile F. hepatica. They observed that a 25-26 kDa proteinase activity 

was a major released protein with a classical cysteine proteinase inhibitor 

profile. It was also capable of hydrolysing synthetic substrates, which indicated 

that it had a subsite specificity similar to that of the mammalian lysosomal
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proteinase, cathepsin B. They speculated that this cathepsin B-like proteinase 

was identical to a 27 kDa cysteine proteinase which Yamasaki e ta i, (1989) 

purified from the Japanese Fasciola spp. This 27 kDa proteinase was capable 

of degrading hemoglobin and was implicated in the feeding of the parasite 

(Yamasaki etal., 1989). The performance of the proteinase when used in 

ELISAs suggested that it could be used as an important immunodiagnostic and 

prognostic tool (Yamasaki etal., 1989). Immunocytochemical studies have 

since verified that the isolated enzyme is localised to the secretory granules of 

the intestinal epithelial cells, and suggest that it is secreted as a digestive 

enzyme into the intestinal lumen, where it may play an important role in the 

extracellular degradation of host proteins, including hemoglobin (Yamasaki et 

al, 1989).

Recently Heussler & Dobbelaere, (1994) described the cloning of a 

proteinase gene family of F. hepatica by the polymerase chain reaction. Using 

degenerate oligonucleotide primers derived from conserved cysteine 

proteinase sequences, they amplified and isolated seven clones from cDNA 

prepared from RNA of adult worms. Five of these clones showed homology to 

cathepsin L type proteinases, while the remaining two clones were similar to 

cathepsin B type proteinases. One of the gene fragments, which was similar to 

cathepsin L-like proteinases was subcloned and expressed as a GST-fusion 

protein in E. coli. This fusion protein was purified and used to raise antibodies. 

Immunoblotting, with these antibodies, revealed a 30 kDa form of the 

proteinase, believed to represent the mature enzyme, in whole worm extract as 

well as in the excreted/secreted products of adult F. hepatica, and a 38 kDa 

parent form of the proteinase in the whole worm extracts only. These 

immunoblotting studies also indicated that the cathepsin L-like proteinase is
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expressed or processed in a stage specific manner (Heussler & Dobbelaere,

1994).

Using information derived from the N-terminal sequence, which had been 

determined in an earlier study (Smith eta i, 1993b), a specific PCR 

oligonucleotide primer was designed and employed along with a generic 

cysteine proteinase primer (Eakin eta!., 1990), to amplify cathepsin L-like 

proteinase gene fragments, from cDNA isolated from adult F  hepatica worms 

(Smith eta i, 1994b). The sequences isolated by this technique were similar to 

the cysteine proteinase cDNA isolated from a cDNA library of Fasciola spp. by 

Yamasaki & Aoki, (1993), indicating that the proteinase purified in their earlier 

study was indeed a cathepsin L-like proteinase and not a cathepsin B-like 

proteinase as had been indicated by McGinty eta i, (1993).

A second cathepsin L-like (CL2) proteinase activity has been isolated from 

the E/S products of adult F. hepatica worms (Dowd etai., 1994a). This 

proteinase has a molecular size of 29.5 kDa and shows a different substrate 

specificity to the cathepsin L-like proteinase, now termed CL1, isolated 

previously (Smith eta i, 1993a and 1993b). Using immunoblot techniques the 

possibility that both these proteinases arose from a larger sized parent 

molecule was ruled out. These two cathepsin L-like proteinases are the 

predominant molecules secreted by F. hepatica into the culture medium and 

represent greater than 80% of the secreted protein (Dowd etai., 1994a). The 

ability of CL1 to cleave immunoglobulin in vitro, implicates that proteinase in 

immunoevasion mechanisms. It is likely that CL2, another dominant molecule, 

also has an important function, and plays an essential role in the survival of 

the parasite, possibly in feeding or in tissue penetration.
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In a study by Carmona eta!., (1993) the role of the immunoglobulin 

cleaving, CL1 proteinase released in vitro by F. hepatica (Smith etal., 1993a 

and 1993b) was investigated. They demonstrated that newly excysted 

juveniles, 3 week old, and 5 week old fluke E/S products also exhibited 

cathepsin L-like activity, and secreted an enzyme capable of cleaving 

immunoglobulin G. Using in vitro cell attachment assays they showed that the 

cathepsin L-like proteinase, purified from E/S products of adult F. hepatica 

worms can prevent the antibody-mediated attachment of eosinophils to newly 

excysted juveniles. They concluded that the cathepsin L-like proteinase was 

implicated in a key role In the immune evasion mechanism of F. hepatica, and 

regarded it as a potential target for vaccine and/or drug design (Carmona et 

a l, 1993).

Recently, this work has been followed by a study which looked at the ability 

of anti-cathepsin L antibodies to neutralise the activity of the cathepsin L1 

proteinase. The ability of the enzyme to digest gelatin, in gelatin-substrate 

polyacrylamide gels, and immunoglobulin was inhibited by preincubation of 

the proteinase with antibodies, raised against the purified enzyme. The ability 

of these antibodies to neutralise the activity of the proteinase was also tested in 

an in vitro assay in which they were shown to interfere with the ability of the 

cathepsin L1 proteinase to prevent eosinophil attachment to juvenile F. 

hepatica (Smith etal., 1994a). By indicating that antibodies, raised in response 

to immunisation with the CL1 molecule, were capable of neutralising the 

activity of the proteinase, and more importantly its immunoglobulin cleaving 

activity, this study confirmed the potential of the cathepsin L1 proteinase of both 

immature and mature F. hepatica worms as an ideal vaccine candidate.

In another study, Carmona etal., (1994) have isolated and characterised a

24



dipeptidylpeptidase activity secreted by all stages of F. hepatica worms. It is 

classified as a serine proteinase of molecular weight greater than 200 kDa, 

and although similar in some properties to previously characterised 

dipeptidylpeptidases is different in its substrate preference and its susceptibility 

to inactivation by inhibitors. It is believed that the proteinase may function in the 

latter stages of the proteolytic digestion of host macromolecules, and could be 

essential for providing the fluke with dipeptides that could be absorbed through 

the intestine of the parasite (Carmona etal., 1994). Dipeptidylpeptidase 

activities have been identified in the related trematodes S. mansoni and S. 

japonicum (Bogitsh & Dresden, 1983), but these enzymes have not been 

isolated and there Is little known about them.

The nematodes, or “round worms”, make up a large assemblage of worms 

of relatively simple structure with a widespread distribution, their cylindrical 

non-segmented bodies distinguishing them easily from other helminths. In 

vertebrates, they may parasitise the eye, mouth, tongue, alimentary canal, liver, 

lungs or body cavity, often causing destructive diseases and considerable 

hardship (Smyth, 1976). Hookworm infections are common in the rural 

population of the agrobased regions of the underdeveloped countries in the 

tropics, and are acquired by walking barefoot in damp soil contaminated with 

infective larvae (Singh & Sharma, 1991).

Ancylostoma caninum is a parasitic nematode which causes hookworm 

disease in dogs and humans. Its general symptoms are hyperchromic anaemia 

leading to general weakness, fatigue, and lack of physical and mental growth. 

The patient may also experience abdominal pain, constipation, anorexia and 

giddiness (Singh & Sharma, 1991). Adult parasites fastened to villi in the small
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intestine of the host ingest host blood cells. The anaemia is a direct result of 

this blood loss (Roche & Layrisse, 1966).

In 1983, Hotez & Cerami described the release of a proteinase from adult 

A. caninum. This proteinase catalysed the hydrolysis of a number of plasma 

proteins and a peptide substrate known to be degraded by elastase. The 

purification of this proteinase was described by Hotez etal., (1985), and 

consisted of three chromatographic steps in a defined order. It is believed that 

the adult worm probably uses this proteinase in three ways; (a) to degrade the 

bolus of intestinal mucosa lodged in the worms buccal capsule; (b) to destroy 

capillary walls and hence function as a hemorrhagic proteinase and (c) to 

function as an anticoagulant proteinase. The human (Ancylostoma duodenale) 

and zoonotic {A. caninum) hookworm larvae have been shown to exhibit 

histological similarities in the manner by which they migrate through 

connective tissue, and biochemical similarities in proteinase composition. Both 

A. caninum and A. duodenale larvae homogenates contain 38 and 68 kDa 

metalloproteinase activities (Hotez etal., 1990).

The exact function of the larvae proteinase is unclear. McKerrow etal., 

(1990) have shown that the metalloproteinase of Strongyloides stercoralis 

effects skin and connective tissue invasion. The Strongyloides proteinase is 

more enzymatically active than the hookworm metalloproteinase in vitro. It was 

thought that rather than representing a change in specificity, the difference in 

enzymatic activities of the two organisms reflected the kind of skin penetration 

that takes place in the two species. The Strongyloides entering the hosts body 

solely through skin penetration, whereas the Ancylostoma species are also 

orally infective (Hotez etal., 1990).

The mechanics of skin penetration by the larval stages of nematode
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infections are not very well understood, but it would seem that penetration 

does depend on parasite-derived proteinases (Matthews, 1982; McKerrow et 

al., 1990). There is a controversy surrounding exsheathment and the role it 

plays in skin penetration in hookworm infections. Results by Hotez et al.,

(1990) suggested that exsheathment, in Ancylostoma infections, occurs when 

the larvae encounter resistance to penetration i.e. unbroken skin, but when 

little resistance or broken skin was met the ensheathed larvae were able to 

achieve some degree of penetration. It was hypothesised that the timing of 

exsheathment may determine whether proteinases are released upon entry 

into the skin or at some later point in connective tissue migration (Hotez etal., 

1990).

Dowd etal., (1994b) have shown that excretory/secretory products and 

soluble adult and larval extracts of A. caninum possess cysteine proteinase 

activity. This proteinase is actively secreted by adult parasites In vitro.

Substrate specificity analysis revealed this enzyme to be cathepsin L-like in its 

proteinase activity. Cathepsin Ls play a role in lysosomal metabolism in 

mammalian cells (Barrett & Kirschke, 1980), this along with the mildly alkaline 

pH optimum of the enzyme reported in the study of Dowd etal., (1994b) led 

them to suggest a role in feeding for the cathepsin L-like proteinase. The 

enzymes ability to degrade synthetic substrates in a manner similar to plasmin, 

also implicated the cathepsin L-like proteinase in anti-coagulant activities 

(Dowd etal., 1994b).

Human eosinophilic enteritis has been shown to result from canine 

hookworm infection of the human gut (Prociv & Croese, 1990). The 

metalloproteinase isolated by Hotez etal., (1990) was implicated as one of the 

causes of the pathogenicity of Ancylostoma infection because of its suggested
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roles in capillary wall degradation and anti-coagulation. Dowd et ai., (1994b) 

have now described a cysteine proteinase activity, similar in properties to 

cathepsin L. Cathepsin L is one of the most powerful protelnases in the 

mammalian lysosome (Barrett & Kirschke, 1980). The identification of such a 

proteinase in the E/S products and in extracts of A. caninum, and the 

implication that this enzyme is also involved in anticoagulant activities, leads 

us to question the roles, combined or otherwise, of both these proteinases in 

the pathogenicity of hookworm infections.

Haemonchus contortus, another member of the nematode order 

Strongylata, is a highly pathogenic parasite that resides in the digestive tract of 

its host and feeds on host blood components. It is primarily a parasite of sheep 

although it also infects cattle, goats and other ruminants.

Gamble et ai, (1989) purified and characterised a proteinase which 

mediates the ecdysis of H. contortus. This enzyme, classified as a zinc 

metalloproteinase, was shown to hydrolyse a specific circular region of the 

second stage cuticle which results in the removal of the cuticular cap and 

allows the transition of the infective larvae from free living to parasitic 

environments.

In 1990, Cox etal. hypothesised that the blood feeding parasite, H. 

contortus, might possess an anticoagulant mechanism to prevent the hosts 

blood from clotting during feeding. They subsequently described a thiol 

proteinase activity that was able to degrade fibrinogen, and reported the 

primary structure of a 35 kDa cysteine proteinase that was believed to be 

responsible for the cleaving of fibrinogen in vitro. However, there is no 

evidence to prove that this is the case.
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Results indicated that the cysteine proteinase was expressed primarily by 

blood-feeding H. contortus adult worms (Pratt etal., 1990), but low levels of 

expression were also detected in all the blood-feeding stages with the 

exception of the L4 stage. This pattern of expression resembles that of the 

cathepsin B-like proteinase of S. mansoni, which is expressed by adult worms 

and late stage schistosomula but not by eggs or cercariae (Zerda etal., 1988). 

The H. contortus proteinase was shown to be most closely related to cathepsin 

B-like proteinases, when compared to sequences of other known cysteine 

proteinases (42 % similarity to human and S. mansoni cathepsin B proteinases 

[Cox etal., 1990; Pratt etal., 1990]).

Further studies indicated that H. contortus adult worms express mRNAs for 

multiple cysteine proteinases. These are all closely related, in that they are 

similar to cathepsin B, but they are clearly distinct from one another (Pratt et 

at., 1992a). This is different to the situation reported for both cathepsin B and 

cathepsin L-like proteinases of adult S. mansoni worms, which appear to be 

single copy genes (Klinkert etal., 1989; Smith etal., 1994b) as is the case for 

human cathepsins B and L (Chan etal., 1986; Chauhan etal., 1993). However, 

Heussler & Dobbelaere, (1994) have recently reported a gene family encoding 

cathepsins L and B in adult F. hepatica, and Eakin etal., (1993) have also 

reported a gene family encoding cathepsin L-like proteinases in the protozoan 

parasite Trypanosoma cruzi.

Concurrent with the work described above Knox & Jones, (1990) also 

provided evidence that the excretory /secretory products of H. contortus 

possessed elastinolytic activity. They also postulated that this activity could act 

as an anticoagulant and hence be responsible for the continued bleeding from
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damaged mucosal capillaries for extended lengths of time after the detachment 

of adult parasites. In a further study, they carried out extensive analysis to 

broaden the information available about these potentially important 

proteinases (Knox etai., 1993). They confirmed the presence of several active 

proteinases of differing molecular size, inhibitor sensitivity and substrate 

specificity in extracts of adult parasites. The majority of these enzymes had an 

acidic pH optimum. Hemoglobin degradation appeared to be primarily 

catalysed by cysteine proteinases, and hence provides further evidence for the 

role of the cathepsin B-like proteinase of H. contortus in feeding (Knox etai., 

1993).

Vaccination of lambs with extracts of adult parasite enriched on the basis of 

fibrinogen-degrading activity confers significant protection against challenge 

infections with H. contortus. It was not known whether this protection was due 

to the neutralisation of the proteinase by antibodies, or to immunological 

reactions directed against other proteins in the extracts used to immunise the 

lambs (Cox etai., 1990). Smith etai., (1992) immunised lambs with gut antigen 

extracts, which contained a proteinase component, and they noticed a 

resistance to challenge infection. Sera from these lambs completely inhibited 

proteolytic activity of some of the cysteine proteinase activities. There was also 

an indication that parasites retrieved from Immunised lambs had a modified 

proteinase expression, both in terms of total enzyme content and expression of 

differing molecular forms. It was thought that the modifications in proteinase 

expression may have a central role to play in parasite survival, in the face of 

host immune attack (Knox etai., 1993).
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In order to be considered as potential targets for either vaccine or drug 

design, proteinases must meet certain criteria. Proteinases are ubiquitous in all 

living organisms. There are many general proteinases, all of which perform 

similar functions, and hence, can be substituted for one another, making no 

one enzyme indispensable. Parasite proteinases being used as candidates for 

vaccines, or targets for drug inhibition must be indispensable to the parasite, 

performing a function which is solely that proteinase’s responsibility. Cercariae 

of the parasitic trematode S. mansoni release a serine proteinase which is 

responsible for tissue invasion, inhibition of this proteinase, by synthetic 

inhibitors prevented the cercaria from penetrating the skin (reviewed in 

McKerrow & Doenhoff, 1988, McKerrow, 1989 and McKerrow etal., 1991). The 

cathepsin L-like proteinase of F. hepaticais believed to play a role in protecting 

newly excysted juveniles from antibody-mediated eosinophil attachment and 

hence destruction (Carmona etal., 1993).

It is critical that the proteinase in question is released early in the life cycle of 

the infectious stage of the parasite. Much of the physiological damage is 

caused by the migratory or burrowing stages of helminths. In order to decrease 

the effect of the parasite and to be of maximum benefit to the patient, it is 

crucial that the parasite is arrested at the earliest possible stage, be it by either 

vaccine and/or drug control. S. mansoni (reviewed in McKerrow & Doenhoff, 

1988; McKerrow, 1989; McKerrow etal., 1991), F. hepatica (Dalton &

Heffernan, 1989; Carmona etal.,1993; McGinty etal., 1993) and A. caninum 

(Hotez etal., 1990) have all been shown to release proteinases in the early 

stages of their life cycles within their definitive hosts.

Specific drugs which may be administered and host antibodies which may 

be raised as a result of vaccination or drug use, must be able to reach the
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target molecule and neutralise its activity. Proteinases of the helminth parasites 

F. hepatica, Ascaris suum and Dictyocaulus viviparus, have been shown to be 

inactivated by specific antibodies (Smith eta i, 1994a, Knox & Kennedy, 1988 

and Britton eta i, 1992 respectively), the serine proteinase of S. mansoni 

cercariae is inactivated by specific synthetic inhibitors (Cohen eta i, 1991), and 

recently Klinkert eta i, (1994) and Wasilewski & McKerrow, (1994) have 

observed the ability of cysteine proteinase inhibitors to reduce the survival of 

S. mansoni in culture. Murine malaria caused by the protozoan parasite 

Plasmodium vinckei, has been cured using synthetic inhibitors of the cysteine 

proteinase found to be responsible for the digestion of host hemoglobin 

(Rosenthal eta i, 1993).

The proposed use of these antibodies and/or drugs in clinical situations 

raises the important point of specificity. Most parasite proteinases that have 

been characterised to date bear a significant degree of similarity to their 

mammalian homologues. This similarity is primarily around the active site 

residues of the proteinases. Antibodies/drugs which bind to and neutralise the 

active site of parasite proteinases may also exert the same effect on host 

proteinases. One answer, is the design of drugs or antibodies directed at 

dissimilar regions of the proteinases, binding of these molecules would have to 

alter the structure-function relationship of the proteinase, and in that way 

inactivate the proteinase. A second answer would be to control the dose level 

of the drug or vaccine, this would be effective providing that there was a critical 

low dosage, capable of inhibiting parasitic proteinases without exerting too 

many damaging side effects on both the host proteinases and the host itself.

Drugs and vaccines would ideally be easy to administer, and would not 

require careful monitoring in the case of every infected individual. The majority
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of these parasitic infections are prevalent in underdeveloped countries where 

facilities are limited, and resources are very low, making such monitoring and 

frequent clinic/hospital visits impractical. However, helminth parasites do not 

replicate in their vertebrate hosts, and hence only a partial, nonsterilising, 

immunity or resistance is required. Complete sterilising immunity is not 

necessary. Ideally booster vaccine/drug doses would not be required as 

subsequent trickle infections would provide continuous restimulation of 

immunity. A cross reactive vaccine would be multiprotective to a host of 

helminthic diseases, and would be a solution to the problem of multiple 

infections which tends to occur with these parasites. It is unlikely that one 

antigen alone will confer adequate protection, and incorporation of both 

surface and secreted antigens into composite vaccines may prove to be more 

effective. Vaccination with a combination of three synthetic peptides into a 

polymeric synthetic hybrid peptide, SPf66, conferred protection on Aotus 

monkeys against Plasmodium falciparum malaria (Patarroyo, 1987). Protection 

has also been reported for this synthetic molecule in human trials (Patarroyo, 

1988; Valero eta i, 1993).

One of the most fascinating aspects of parasites is their continued survival in 

the face of all of the defensive mechanisms at the disposal of the vertebrate 

host. Parasites do not passively submit to the onslaught of the hosts immune 

response, they suppress, subvert and evade that response in a wide variety of 

ways. The fact that parasites can themselves subvert host immune responses 

to their own advantage makes the task of vaccine development that much 

harder. Any induced immune response (be it vaccine or drug induced) in the 

host, must be capable of overcoming a sufficient number of the parasites 

immune evasion mechanisms in order that the parasite becomes susceptible
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to the immune responses of the host and is destroyed. In some cases however, 

the pathogenicity of the helminth infection is a direct result of the hosts immune 

response, e.g. the hosts inflammatory response to the eggs causes the tissue 

pathology associated with schistosomiasis (Mahmoud & Wahals, 1990). 

Vaccination or drug use should avoid the exacerbation of any immune 

responses which are associated with the pathology of the diseases caused by 

parasitic helminths.

There is a need for less toxic compounds whose chemical synthesis is 

cheap enough to allow mass treatment in underdeveloped and developing 

countries. These synthetic compounds must also have desirable 

pharmacological properties including solubility, lack of systemic toxicity and 

high oral absorption. Although there are examples of synthetic inhibitors which 

inactivate proteinase activity in vitro (Cohen etal., 1991; Klinkert etal., 1994; 

Wasilewski & McKerrow, 1994) - or even in laboratory models such as the 

murine malaria model (Rosenthal etal., 1993), there are few reports of 

inhibitors, natural or synthetic, being used to treat any illnesses. Once synthetic 

inhibitors have been developed for pharmacological use, these compounds 

will probably be more selective and less toxic than agents which are currently 

employed for treatment.

In order to fulfil all the criteria mentioned briefly above, it is clear that the full 

elucidation of the host-parasite relationship is required. The mechanisms 

controlling pathogenicity are for the large part unknown, as are those 

mechanisms responsible for immune evasion, and indeed even the basic 

functions of feeding and mobility are little understood. An overwhelming body 

of evidence shows that malnutrition, results in depressed immunological
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competence and defective ability to combat infection (Wakelin, 1989). This 

affects the ability of the infected host to control infection and to respond to 

vaccine or drug therapy. Few people are aware of the socioeconomic impact of 

parasitic helminths in underdeveloped and developing countries. 

Improvements in nutrition, hygiene, education and medical aid as well as the 

understanding of the parasites interaction with its host and how we can 

effectively interfere with it, will help us to control, as Ken Mott of the WHO put it, 

“humanity’s most widespread but hidden scourges” (Maurice, 1994).
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CHAPTER TWO 
MATERIALS and METHODS
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2.1 MATERIALS

Aldrich Chemical Company 

Ethidium bromide, Triton X-100.

Bachem

A/-benzyloxcarbonyl-L-phenylalanine-L-arginine-7-amino-4- 

methylcoumarin.HCI (Z-F-R-AMC), /V-benzyloxcarbonyl-L-phenylalanine-L- 

alanine-diazomethylketone (Z-F-A-CHN2).

Bethesda Research Laboratories (BRL)

Ultra pure caesium chloride, mRNA isolation system.

Bio-rad Laboratories 

Bradford reagent.

Biotrin Research 

Protein-A agarose.

British Drug House

Acetic acid, acrylamide, bisacrylamide, 2-mercaptoethanol, sodium dodecyl 

sulphate (SDS).

Flow Laboratories 

Foetal calf serum.
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Fiuka

Guanidinium thiocyanate.

Invitrogen

pCR II direct cloning vector.

Gibco

NaHC03, RPMI-1640.

Kodak

667 Polaroid film.

labscan

Ethanol, chloroform, glutaraldehyde, methanol, propan-2-ol.

Nunc

24-well tissue culture plates, 96-multiwell plates.

Oxoid

Agar (technical grade), bacto-tryptone, bacto-yeast extract. 

Pharmacia

QAE-Sephadex A-50, sephacryl S-200 HR.

Promega

Agarose (molecular biological grade), anti-rabbit IgG (Fc) alkaline
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phosphatase conjugate, 5-bromo-4-chloro-3-indolyl-B-galactoside (X-Gal), 

dNTPs, EcoRI, Hind\\\, isopropyl-B-thiogalactopyranoside (IPTG), Riboclone 

cDNA synthesis kit, RNase ONE, Taq DNA polymerase, T4 DNA ligase, 0X174 

digested with Hae III markers.

Reidel-de-Haen

Ammonium persulphate, ammonium acetate, bromophenol blue, citric acid, 

dimethyl formamide (DMF), di-sodium EDTA, di-sodium hydrogen phosphate, 

glucose, glycerol, glycine, hydrochloric acid, phenol, potassium dihydrogen 

phosphate, sodium acetate, sodium chloride, sodium dihydrogen phosphate, 

sucrose, tetramethylenediamine (TEMED), tris-(hydroxymethyl)-methylamine 

(2-amino-hydroxymethyl) propane-1,3-diol (Tris).

Schleicher & Schull 

Nitrocellulose paper.

Sigma

Bovine serum albumin (BSA), 5-bromo-5-chloro-3-indolyl phosphate (BCIP), 

coomassie brilliant blue R, diethylpyrocarbonate (DPC), dithiothreitol (DTT), 

Freund’s adjuvant (complete), Freund’s adjuvant (incomplete), gelatin (type B: 

from bovine skin), gentamicin (10 mg mM), 4-(2-hydroxyethyl)-1 -piperazine 

ethanesulphonic acid (Hepes), horseradish peroxidase, lgG2a, lead citrate, 

lysozyme, methylene blue, nitro blue tetrazolium (NBT), papain, 

phenylmethylsulphonyl fluoride (PMSF), pre stained molecular weight 

markers, sacrosyl, trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane 

(E-64), tri-sodium citrate, Tween-20, uranyl acetate, xylene cyanol, N-
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benzyloxcarbonyl-L-arginine-L-arginine-7-amino-4-methylcoumarin.HCI (Z-R- 

R-AMC), A/-benzyloxcarbonyl-L-arginine-7-amino-4-methylcoumarin.HCI (Z-R- 

AMC).

University College Cork 

New Zealand White rabbits.

Waters

TSK3000SW column 

Whatman

Whatman No. 1 filter paper.
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2.2 METHODS

2.2.1 Preparation of in-vitro -released products from adult F. 

hepatica.

Mature flukes were obtained from the infected livers of condemned animals 

at a local abattoir (Anglo-Irish Meat Processor’s abattoir, Ballymun, Dublin).

The flukes were washed 6 times in phosphate-buffered saline (PBS), pH 7.3, 

and then maintained (one mature fluke mM) in RPMI-1640, pH 7.3, containing 

2% glucose, 30 mM Hepes and 25 mg H gentamicin overnight. The culture 

medium (excretory/secretory (E/S) products) was removed, centrifuged at

12,000 x g for 30 min, aliquoted and stored at -20°C.

2.2.2 Sodium-dodecyl-sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE).

Samples were analysed by one dimensional SDS-PAGE according to the 

method of Laemmli, (1970), on gels containing 10% or 12% (w/v) acrylamide, 

0.27% (w/v) bisacrylamide, 0.373 M Tris-HCI, pH 8.8, 0.1% (w/v) SDS, 0.03% 

(w/v) ammonium persulphate and 0.008% TEMED. The stacking gel contained 

3% (w/v) acrylamide, 0.08% (w/v) bisacrylamide, 0.125 M Tris-HCI. pH 6.8, 

0.075% (w/v) ammonium persulphate, 0.1% (w/v) SDS and 0.023% (w/v) 

TEMED. Samples were prepared in non-reducing sample buffer (0.12 M Tris- 

HCI, pH 6.8, 5% (w/v) SDS, 10% (w/v) glycerol and 0.01% (w/v) Bromophenol 

Blue) or reducing sample buffer (same as non-reducing buffer except that 5% 

2-mercaptoethanol is included, and the samples are boiled in reducing sample 

buffer for 2 min). The sample and sample buffer were combined in a 1:1 ratio.

Gels were run in a vertical slab gel apparatus (Atto Corporation) in electrode
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buffer containing 0.024 M Tris-HCI, 0.186 M glycine and 0.1% (w/v) SDS pH

8.3 at 25 mA, at room temperature. They were removed when the dye front was 

within approximately 1 cm of the bottom of the gel (approximately 3-4 h). The 

proteins were visualised by soaking the gel in a solution containing 0.1% (w/v) 

Coomassie Brilliant Blue R, 20% (v/v) methanol and 10% (v/v) acetic acid for 1 

h at room temperature. Destaining was carried out in 20% (v/v) methanol, 10 % 

(V/V) acetic acid.

2.2.3 Gelatin-substrate gel analysis of fluke in vitro released 

products.

Gelatin-substrate PAGE (GS-PAGE) was carried out exactly as described by 

Dalton & Heffernan, (1989). Briefly, samples were mixed with non-reducing 

sample buffer (Section 2.2.2) applied to a 10% SDS-polyacrylamide gel 

containing 0.1% gelatin. After electrophoresis the gels were washed for 1 h in 

0.1 M sodium citrate, pH 4.5, containing 2.5 % Triton X-100 with one change. 

The gels were then incubated in 0.1 M sodium citrate, pH 4.5 for 24 h at 37°C, 

and stained in Coomassie Brilliant Blue R solution as described in section 

2.2.2.

2.2.4 Protein estimation.

A micro-Bradford assay was employed to determine the protein 

concentration of samples. Using a 96-well microtitre plate, standards (bovine 

serum albumin (BSA)) and samples were assayed by mixing 200 |il of 1 X 

Bradford (commercially obtained) reagent with 10 (il of test solution. The 

absorbance was read at 595 nm after 10 min incubation at room temperature, 

and the protein values of the samples extrapolated from the graph of the

42



protein values of the standards.

2.2.5 HPLC analysis of E/S products.

One hundred |ig of mature fluke E/S products (Section 2.2.1) were 

subjected to molecular sieve HPLC on a TSK3000SW column. The mobile 

phase was 0.1 M potassium-phosphate, pH 7.0, the flow rate was 0.3 ml min-1 

and the eluted proteins were monitored by absorbance at 280 nm using a 

sensitivity range of 0.05. The molecular sizes of proteins were determined by 

calibrating the column with the following proteins; lgG2a (150 kDa), bovine 

serum albumin (67 kDa), horseradish peroxidase (45 kDa) and lysozyme (14.3 

kDa).

2.2.6 Assay for lgG2a cleaving activity.

Five (xl of a purified lgG2a murine monoclonal antibody (a gift from Dr. E. 

Pearce. NIAID, National Institutes of Health, MD, U.S.A.) was mixed with 40 \i\ 

of adult F. hepatica E/S products (Section 2.2.1) or HPLC fractions (Section 

2.2.5), 40 |o,l PBS, 1 |il 6 M 2-mercaptoethanol and 1 (il 100 mM EDTA, and

incubated for 1 h at 37°C. Fragments derived from the proteolytically cleaved 

lgG2a were visualised by SDS-PAGE run under reducing conditions (Section 

2.2.2).

2.2.7 Proteinase assays with synthetic fluorogenic peptide 

substrates.

The synthetic fluorogenic peptide benzyloxycarbonyl-L-phenylalanine-L- 

arginine-7-amido-4-methylcoumarin.HCI (Z-F-R-AMC) was used as a substrate 

to detect cathepsin L-like activity (Barrett & Kirschke, 1980). The assay mixture
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(1 ml volume) contained 5 mM dithiothreitol (DTT) and 13 (iM substrate in 0.1 

M sodium citrate pH 4.5. Five to 20 |il samples were added to the mixture at 

37°C for 1 h. The release of the fluorescent leaving group, 7-amino-4- 

methylcoumarin (AMC), was monitored in a Perkin-Elmer Luminescence 

Spectrometer model LS 50, at exciter and analyser wavelengths of 370 nm 

and 440 nm, respectively. Enzyme activity was expressed as (imol AMC 

released min-1 mM, where one unit of activity releases 1 |a,mol of AMC min-1 at 

37°C.

2.2.8 Fluorogenic visualisation of proteinases in SDS-PAGE.

Proteinases capable of cleaving various fluorogenic substrates were 

visualised directly in SDS-PAGE using the method described by Robertson et 

al., (1990). Samples of E/S products (Section 2.2.1) and pooled HPLC 

fractions (Section 2.2.5) were applied to GS-PAGE gels (Section 2.2.3).

Following electrophoresis the gels were washed in 2.5% Triton X-100 in 0.1 

M sodium acetate, pH 5.5, for 30 min at room temperature and then transferred 

to 0.1 M sodium acetate, pH 5.5, containing 1 mM DTT and 10 jiM fluorogenic 

substrate. After an incubation time of between 10 and 30 min the proteinases 

could be visualised on a ChromatoVue model TL-23 UV Transilluminator and 

recorded immediately by photography. The fluorogenic substrates used were, 

Z-F-R-AMC, Z-R-R-AMC and Z-R-AMC.

2.2.9 Inhibition studies using diethylpyrocarbonate (DPC) and Z-F- 

A-CHN2.

DPC was used to determine if it affected the activity of the adult fluke 

proteinase on the fluorogenic substrate Z-F-R-AMC. 2 (il of pooled enzyme

44



fractions from the HPLC column (Section 2.2.5) were incubated in various 

concentrations of DPC (0.35-50 mM) in 0.1 M sodium citrate, pH 4.5, for 5 min 

before addition to the enzyme assay mixture (Section 2.2.7). To test the 

inhibitory activity of DPC (25 mM) at different pHs the following buffers were 

used: 0.1 M sodium citrate, pH 3.0, 3.5, 4.0, 4.5 and pH 5.0, 0.1 M sodium 

phosphate, pH 6.0, and 0.1 M glycine, pH 7.0 and 8.0. The substrate Z-F-R- 

AMC was also prepared in these buffers.

DPC inhibition of the lgG2a cleaving ability of the adult fluke proteinases 

was also investigated. Twenty jil of pooled HPLC fractions (Section 2.2.5) were 

incubated in a final concentration of 200 mM DPC in PBS for 30 min at room 

temperature before addition to the IgG cleaving assay (Section 2.2.6). Adult 

fluke E/S products (Section 2.2.1), incubated with or without 200 mM DPC, for 

10 min were analysed by GS-PAGE (Section 2.2.3) to determine which of the 

multiple proteolytic bands observed on these gels were inactivated by the 

inhibitor. Adult fluke E/S was incubated with 2, 10 and 20 p.mol of the 

diazomethylketone, Z-F-A-CHN2, a specific inhibitor of cathepsins B and L 

(Rosenthal etal., 1989) for 10 min prior to addition of the E/S products to the 

fluorogenic assay and before analysis by GS-PAGE.

2.2.10 Purification of F. hepatica IgG cleaving cysteine proteinase.

E/S products (Section 2.2.1) (500 ml) were concentrated in an Amicon 8400 

ultrafiltration unit (Danvers) with a YM3 membrane (3000 Da cut-off) to 10 ml 

and the sample applied to a 120 ml Sephacryl S-200 column (1.9 x 42 cm) 

equilibrated in 0.1 M Tris-HCI, pH 7.0. Fractions of 5 ml were collected after the 

void volume (110 ml) had been passed. The column eluate was monitored at 

280 nm using a LKB Uvicord monitor. Fractions were analysed for enzymatic
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activity using the synthetic substrate Z-F-R-AMC (Section 2.2.7) and by GS- 

PAGE (Section 2.2.3). Those fractions containing the Group 1 cysteine 

proteinases (Dalton & Heffernan, 1989) and having IgG cleaving activity were 

pooled and applied to a 50 ml QAE Sephadex column equilibrated in 0.1 M 

Tris-HCI, pH 7.0. The run through fraction (unbound proteins) (150 ml) was 

collected and concentrated in an Amicon ultrafiltration unit to a volume of 10 

ml, dialysed against ultra-pure water and freeze dried. Purified enzyme was 

analysed by SDS-PAGE (Section 2.2.2) and GS-PAGE (Section 2.2.3). Protein 

concentration was determined by the micro-Bradford method (Section 2.2.4).

2.2.11 N-terminal sequence determination.

F. hepatica proteinase, purified as described in section 2.2.10 above, was 

sent to the Protein Sequencing Facility, Department of Biochemistry, Tennis 

Court Rd., Cambridge CB2 IQW, where the N-terminal sequence was 

determined using an Applied Biosystems 477A Protein sequencer.

2.2.12 Production of a polyclonal antiserum.

Polyclonal antisera against purified enzyme was prepared by injecting a 

New Zealand white rabbit subcutaneously 5 times, with 50 |ig of purified 

enzyme (Section 2.2.10) per injection, in Freund’s complete (initial injection) or 

incomplete (subsequent injections) adjuvant. Equal volumes of the antigen 

and Freund’s complete or incomplete adjuvant were sonicated on ice to form 

an even emulsion. This was then injected at several points along the back of 

the rabbit. One week after the final injection the rabbit was sacrificed and the 

blood collected. The blood was left to clot overnight at 4°C and the serum was 

drawn off aliquoted and stored at -20°C. The IgG fraction of the serum was

46



purified using a protein-A column according to the procedure outlined in the

Pharmacia manual.

2.2.13 Immunoblotting

Adult F. hepatica E/S products (Section 2.2.1) and purified enzyme (Section 

2.2.10) were separated by SDS-PAGE (Section 2.2.2) and electrophoretically 

transferred to nitrocellulose paper using an Atto semi-dry blotting system. 1% 

foetal calf serum, and 0.5% Tween-20 in PBS was used to block non-specific 

binding sites. The nitrocellulose was incubated in anti-cathepsin L-like 

proteinase serum or normal rabbit serum (1 : 500 dilution), and the bound 

immunoglobulin was visualised using alkaline phosphatase-conjugated anti­

rabbit IgG. Nitro blue tetrazolium (NBT) and 5-bromo-5-chloro-3-indolyl 

phosphate (BCIP) prepared in dimethyl formamide (DMF) were used as 

substrate.

2.2.14 Immunolocalisation studies.

This was carried out in collaboration with Dr. A. Trudgett’s laboratory in the 

Medical Biology Centre, Queens University Belfast, Northern Ireland, 

according to the method described by Smith eta!., (1993b).

Immunolocalisation studies at light microscope level were carried out on 3- 

(j.m JB-4 plastic embedded adult fluke sections using FITC-conjugated goat 

anti-rabbit serum to detect bound antibody according to the procedure 

described previously (Hanna, 1980). Electron immunocytochemistry was 

performed using an indirect immunogold labelling method. Transverse slices 1 

mm thick were cut from the mid-region of flukes (freshly obtained from the 

abattoir) so as to include gut and reproductive tissues. These were lightly fixed
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in 2% double-distilled glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, 

containing 3% sucrose, for 40 min at 4°C. The tissue slices were then washed 

in several changes of cold buffer, dehydrated in graded ethanol at -20°C, 

infiltrated overnight in LRGold resin, and polymerised under a quartz halogen 

visible light source, for 28 h at -20°C. Thin sections (60 nm-70 nm in thickness) 

were cut and mounted on bare 200 mesh nickel grids. Following incubation 

with normal goat serum for 30 min at room temperature, the sections were 

transferred to primary antibody, diluted 5000-fold with 20 mM Tris-HCI, pH 8.2, 

containing 0.1% (w/v) BSA and Tween 20, for 18 h at room temperature. After 

thorough washing in Tris/BSA the grids were transferred to the gold labelled 

solution, a 25 jil droplet of 15 nm gold-conjugated goat anti-rabbit IgG, for 1 h. 

Following this incubation the sections were buffer-washed, lightly fixed with 2% 

double-distilled glutaraldehyde (3 min), and finally washed with buffer and 

rinsed with distilled waster. The sections were double-stained with alcoholic, 

uranyl acetate (15 min) and aqueous lead citrate (8 min) and viewed in a JEOL 

100CX transmission electron microscope.

2.2.15 Inhibition of proteinase activity using anti-cathepsin L-like 

proteinase antibody.

Purified anti-cathepsin L IgG (2-20 (ig) (Section 2.2.12) was incubated with

the purified proteinase (3 units) (Section 2.2.10) for 4 h at 4°C and then this 

was analysed by GS-PAGE (Section 2.2.3). Purified enzyme (6 units) was also 

incubated with anti-cathepsin L-like proteinase IgG (270 |ig) or control IgG in a 

total volume of 700 \i\. After 4 h at 4°C, seven fil of 6 M 2-mercaptoethanol and 

7 \i\ of 100 mM EDTA were added to the reaction mixtures to activate the
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enzyme. A 100 |il sample was removed from each reaction at this time (t0),

E-64 (0.5 |ig) was added immediately to stop the enzyme reaction and it was 

stored at -20°C. The activated proteinase-antibody mixtures were transferred 

to 37°C, and a second sample from each reaction was removed after 30 min 

and treated as described above. The samples were analysed using reducing 

SDS-PAGE (Section 2.2.2). After staining the gels with Coomassie Brilliant 

Blue R they were analysed using a GS 300 Transmittance/Reflectance 

scanning densitometer (Hoefer Scientific Instruments).

Purified cathepsin L-like proteinase (6 units) can prevent antibody-mediated 

attachment of eosinophils to newly excysted juveniles (NEJ) in an in vitro 

assay (Carmona eta i, 1993.).

In collaboration with Dr. C. Carmona, we incubated anti-cathepsin L IgG (55

|ig) and control IgG with cathepsin L-like proteinase for 30 min at 4°C prior to 

addition to the assay. The in vitro assay involves incubating the juvenile flukes 

with serum obtained from liver fluke infected rats (diluted 1:100) or control 

serum and 8 x 106 eosinophils mM in wells of a 24-well plate. After 2 h the 

juvenile flukes are transferred to a microscopic slide and examined at X 40 and 

X 100 magnifications. Individual flukes are examined and the number of bound 

eosinophils are assessed by counting. Due to their three dimensional structure 

and the difficulties associated with manipulating the NEJ to count the number 

of eosinophils bound to the entire surface of a single fluke, juvenile flukes with 

more than 20 eosinophils attached in the plain of the dissecting microscope 

are considered positive (Carmona etal., 1993).

2.2.16 RNA isolation from adult F  hepatica worms.

RNA was isolated from adult flukes according to the method of Chomczynski
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& Sacchi, (1987). All glassware, eppendorfs and pipette tips were treated as 

described (Maniatis etal., 1982). Sterile, disposable plastic ware was used 

whenever possible and all chemicals were of the highest grade available. All

solutions were treated with 0.1% DPC at 37°C overnight and autoclaved, 

unless otherwise stated.

The denaturing solution was 5 M guanidinium thiocyanate, 25 mM sodium 

citrate, pH 7.0, 0.5% sterile-filtered sacrosyl (w/v), 0.1 M 2-mercaptoethanol. 

Adult F. hepatica worms were isolated from the bile ducts of infected cattle and 

washed in PBS as described previously (Section 3.2.1). One g of tissue 

(approximately 10 flukes) was minced on ice and homogenised at room 

temperature with 10 ml of denaturing solution. 1 ml of 2 M sodium acetate pH 

4.0, 10 ml of phenol (water saturated) and 2 ml of chloroform-isoamyl alcohol 

mixture (49:1) were added and the solution mixed by inversion after each 

addition. The final suspension was shaken vigorously for 10 s, cooled on ice

for 15 min, and centrifuged at 10,000 x g for 20 min at 4°C. The aqueous 

phase was transferred to a fresh tube, mixed with 10 ml of isopropanol and 

stored at -20°C for 1 h (at least) to precipitate RNA. Following centrifugation at

10,000 x g for 20 min, the resulting RNA pellet was dissolved in 3 ml of 

denaturing solution, and precipitated with 1 volume of isopropanol at -20°C for 

1 h. The tubes were spun in a microcentrifuge at top speed for 10 min at 4°C, 

and the RNA pellet was washed in 75% ethanol, centrifuged, vacuum dried 

and stored under 100% ethanol at -70°C until required for use.

2.2.17 mRNA isolation.

mRNA was prepared from total RNA isolated as described above, by oligo-
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dT cellulose chromatography. 3 ml of binding buffer (10 mM Tris-HCI (pH 7.5),

1 mM EDTA, 0.3 M NaCI, 0.1 (w/v) SDS) was used to dissolve the RNA pellet 

(500 jig). This solution was heated in a 70°C water bath for 5 min and then 

chilled on ice for 5 min. The dissolved RNA was loaded onto an oligo-dT 

cellulose column (100 mg oligo-dT cellulose) under gravity flow and washed 

with 4 ml of binding buffer to elute non-messenger RNA. The mRNA was eluted 

with 1.5 ml of elution buffer (10 mM Tris-HCI (pH 7.5), 1 mM EDTA, 0.1% (w/v) 

SDS), this was collected as one fraction and the column was regenerated 

using 4 ml of binding buffer. The RNA was heated at 70°C for 5 min, chilled on 

ice for 5 min and left at room temperature for 20 min. 90 (il of 5 M NaCI was 

added and then the solution was immediately reloaded onto the column which 

was subsequently washed with 4 ml of binding buffer. The mRNA was eluted 

into one fraction with 1.5 ml of elution buffer as buffer. 90 |il of NaCI and 3 ml of

100% ice cold ethanol were added and the tube was placed at -20°C 

overnight or until needed.

2.2.18 cDNA preparation.

cDNA was prepared from mRNA using the Promega Riboclone cDNA

synthesis system. mRNA stored at -70°C was centrifuged at top speed 

(microcentrifuge), washed with 1 ml of 95% ethanol, respun and then vacuum 

dried for 15 min. The pellet was resuspended in 55 }il of DPC treated water 

and was used for cDNA synthesis.

In a sterile RNase-free microcentrifuge tube, the mRNA (5.5 |ig) was added 

to the first strand primer (0.5 |ig primer/(ig mRNA) and was heated to 70°C for 5 

min. This was cooled to room temperature and the tube was spun briefly to
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collect the solution. First strand buffer and rRNasin ribonuclease inhibitor were 

added, the mixture heated to 42°C for 5 min and sodium pyrophosphate and 

AMV reverse transcriptase (also pre heated to 42°C) were added to a final 

volume of 100 |il. The contents of the tube were mixed gently by flicking and 

incubated at 42°C for 60 min and then stored on ice. The final reaction 

conditions for first strand synthesis are : 50 mM Tris-HCI, pH 8.3, 50 mM KCI,

10 mM MgCI2, 0.5 mM spermidine, 10 mM DTT, 4 mM sodium pyrophosphate,

1 mM each dNTP, 1 U rRNasin ribonuclease inhibitor / |j,l reaction, 0.3 - 0.5 p.g 

primer / |ig mRNA and 15 U AMV reverse transcriptase / jig mRNA.

To the first strand reaction, second strand buffer, E. coli DNA polymerase I, 

E. coli RNase H, and DPC treated water were added to a final volume of 500

|il. The solution was mixed gently and incubated at 14°C for 2 h. The reaction 

was heated to 70°C for 10 min and the contents were collected at the bottom of 

the tube by brief centrifugation and then placed on ice. 2 U of T4 DNA 

polymerase/[ig input mRNA were added to the reaction which was incubated at 

37°C for 10 min. The reaction was stopped by adding 50 (il of 200 mM EDTA 

and then placed on ice. The final reaction conditions for second strand 

synthesis are as follows: 50 mM Tris-HCI, pH 7.6, 100 mM KCI, 5 mM MgCI2, 50 

(xg mM BSA, 5 mM DTT, 8 U ml -1 RNase H, 230 U mM E. coli DNA 

polymerase I; from the first strand reaction are : 0.2 mM each dNTP, 0.1 mM 

spermidine and 0.8 mM sodium pyrophosphate. The cDNA was extracted twice 

with an equal volume of TE-saturated phenol/chloroform, ethanol precipitated

and stored at -70°C under 100% ethanol until required for use.
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2.2.19 Construction of oligonucleotide primers.

Generic oligonucleotide primers for cysteine proteinases were prepared as 

described by Eakin etal., (1990). The design of the primers used to amplify the 

cysteine proteinase gene fragments from Fasciola hepaticals based upon the 

conserved amino acid sequence in the region flanking the active site 

asparagine-175 residue of cysteine proteinases (Eakin etal., 1990) (Figure 

2.1). Mixed oligonucleotides were synthesised, using inosines in positions 

where all four bases were possible in the codon, in order to minimise the 

degeneracy of the DNA primer, but to maximise its ability to form stable hybrids 

with the target DNA. An oligonucleotide sense primer was also designed using 

the N-terminal sequence of the purified cathepsin L-like cysteine proteinase 

(Section 2.2.11). A codon bias towards F. hepatica was used for the sequence 

of this primer (Figure 2.1). The codon bias was worked out using published 

DNA sequence data and the method described by Hyde etal., (1989).

The degeneracies of the oligonucleotides were 1024 for the cysteine 

(sense) primer, 384 for the asparagine (anti-sense) primer described by Eakin 

etal., (1990), and 4 for the second sense primer which used the N-terminal 

sequence for its design. Recognition sites for the restriction endonucleases 

EcoRI and Hind\\\ were added to the 5’ ends of the forward and reverse primers 

respectively to allow for rapid subcloning in a known orientation for double 

stranded DNA sequencing. Three additional bases (ACA in the sense primers 

and TTA in the anti-sense primer) were added to the 5’ ends to ensure 

polymerisation through the restriction sites. These three primers were used in 

combination with one another in polymerase chain reactions to amplify 

cysteine proteinase gene fragments from cDNA of F. hepatica. The 

oligonucleotides were synthesised by Oswell DNA Service, Edinburgh.
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Asn 3’ primer [Eakin et aL, 1990].

IGA
5' TTA AAG CTT CCA RTT YTT IAC RAT CCA RTA 3 '

RCT
Hind III W S N K V I W Y

N-terminal F. hepatica cathepsin L primer.

5 1 ACA GAA TTC GGY TAT GTG ACT GGY GTG AAG G 3'
EcoRl G Y V T G V K

Figure 2.1

The oligonucleotide primers constructed in order to amplify the cathepsin 

L-like proteinase from F. hepatica, where /= Inosine, R = A o r G  and Y= T or C. 

Details of their construction are given in Methods, section 2.2.19.
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2.2.20 Polymerase chain reaction (PCR).

A master mix containing 100 |xM dNTPs, 2.5 U of Taq DNA polymerase 

(where one unit is defined as the amount of enzyme required to catalyse the 

incorporation of 10 nmol of dNTP into an acid-insoluble form in 30 min at 

74°C), 5 mM MgCI2, 10 X reaction buffer (500 mM KCI, 100 mM Tris-HCI, pH

9.0 (at 25°C) and 1.0% Triton X-100) and autoclaved ddH20  to a final volume 

of 50 |il was prepared and added to 50 ng of cDNA from adult worms (section

2.2.18), and 100 nM of both primers in 0.5 ml eppendorf tubes. These were 

used in a polymerase chain reaction (PCR) which was carried out as follows :

40 cycles of denaturation at 94°C for 45 s, primer annealing at 40°C for 1 min

and extension at 72°C for 2 min, with an initial denaturing step at 94°C for 2

min and a final extension time of 10 min at 72°C. Reactions were immediately

chilled to 4°C. PCR gene fragments were visualised on 4% agarose-TAE gel 

electrophoresis.

2.2.21 Subcloning of PCR gene fragments.

The PCR amplified products were extracted twice with an equal volume of 

TE-saturated phenol/chloroform, precipitated with 100% ice cold ethanol, 

washed with 75% ethanol, and the pellet was resuspended in 9 |il of 

autoclaved ddH20. Amplified gene fragments were subcloned directly into the 

Invitrogen pCR II direct cloning vector. Extracted fragments were also double 

digested with 1 U jig*1 of each of the restriction enzymes Hind III and EcoRI for 

1 h at 37°C, and were then subcloned into Puc19 plasmid which had been 

similarly digested.

The ligation conditions were as follows 50 ng of vector was mixed with
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approximately 1 (ig of extracted PCR products, in the presence of 0.3 Weiss U 

of T4 DNA ligase (where 1 Weiss unit is equivalent to 1 ligation unit which 

catalyses greater than 95% ligation of 1|ig of lambda/H/nd III fragments at 

16°C in 20 min), 30 mM Tris-HCI, pH 7.8, 10 mM MgCI2, 10 mM DTT and 5 mM 

ATP. The contents of the tube were mixed by tapping the side of the tube gently 

and the ligation was allowed to proceed overnight at 16°C. The ligase was

heat inactivated by heating to 70°C for 10 min, extracted twice with TE- 

saturated phenol/chloroform, ethanol precipitated and resuspended in 10 (il of 

autoclaved ddH20.

Electro-competent cells (Dower et al., 1988) were incubated on ice for at 

least 30 min with 5 |il of the extracted ligation reaction. The cells were then 

transformed by electroporation; the pulse generator was set to the 25 (0.F 

capacitor, 2.5 kV, and 200 Q. in parallel with the sample chamber, one pulse at 

these settings should result in a pulse of 12.5 kV cm-1 with a time constant of

4.5 to 5 ms. 500 (il of LB medium was added immediately following

transformation and the cells were shaken gently at 37°C for 1 h to allow the 

cells to recover. The cells were concentrated by centrifuging the culture for 1 

min in a microcentrifuge before plating out on an LB plate containing 50

|ig ml'1 ampicillin, 0.5 mM IPTG, and 40 ng ml'1 X-Gal. The plates were

incubated at 37°C overnight.

2.2.22 Screening of recombinant colonies.

Positive or recombinant colonies were picked from the LB plates and 

inoculated into 5 ml of LB containing 50 |ig mM ampicillin and grown 

overnight. Plasmid DNA from 0.5 ml of this mini-prep culture was isolated
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according to the alkali-lysis method described by Maniatis e ta i, (1982). The 

DNA was double digested with the restriction enzymes EcoRI and Hind\\\, and 

the inserts, if any, were visualised by electrophoresis on 2% agarose-TAE gels. 

Positive clones were taken to be those recombinants with inserts of the 

expected size i.e. approximately 500 bp.

2.2.23 Sequencing of PCR gene fragments.

Plasmid DNA from positive recombinants with inserts of the expected size 

was purified by centrifugation to equilibrium in caesium chloride-ethidium 

bromide gradients as described in Maniatis etal., (1982). The DNA was sent to 

The Sequencing Facility in Durham University where it was sequenced 

commercially.
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CHAPTER THREE 
RESULTS
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3.0 RESULTS

3.1 Characterisation of IgG cleaving enzyme in adult fluke E/S 

products.

The presence of an immunoglobulin cleaving enzyme was first indicated by 

Chapman & Mitchell, (1982). Such an enzyme/enzymes may play a significant 

role in the flukes immune evasion mechanism. Using comparisons to papain, 

HPLC analysis and various substrate hydrolysis techniques we have 

characterised the proteinase responsible for the IgG cleaving activity in E/S 

products.

3.1.1 Demonstration of IgG cleavage.

A murine monoclonal antibody lgG2a was incubated with a sample of adult 

F. hepatica E/S products, or with the cysteine proteinase papain, at 37°C for 

1 h. SDS-PAGE analysis revealed that proteinases in the E/S products cleave 

the mouse lgG2a heavy chain into two fragments (Figure 3.1, lanes 2, 4 and 6). 

These fragments were similar in molecular size to the fragments produced by 

papain. Papain is a cysteine proteinase that cleaves the heavy chain of 

antibody molecules in the hinge region (Smyth & Utsumi, 1967). The hinge 

region of immunoglobulins is the site which is most susceptible to proteinase 

cleavage because it is not folded into domains like the rest of the molecule. 

Therefore, adult flukes secrete an enzyme that is capable of cleaving lgG2a 

close to the papain cleavage site, that is, within the hinge region of the 

antibody heavy chain. Papain appears to have an additional cleavage site to 

that of the F. hepatica E/S proteinase, note the additional bands at 

approximately 22 kDa when the IgG molecule is cleaved with papain (Figure 

3.1, lanes 3 and 5).
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Figure 3.1

Cleavage of mouse monoclonal antibody lgG2a by papain and a cysteine 

proteinase in adult F. hepatica E/S products. Fourteen fig  of lgG2a were 

incubated with PBS (control, lane 1), adult fluke E/S products, 1.0, 2.0 and 5.0 

li! (lanes 2, 4 and 6) and papain, 1.5 and 3 x 10-4 units (lanes 3 and 5 

respectively). Cleavage fragments were analysed by 12% SDS-PAGE. H, IgG 

heavy chain; L, IgG light chain.
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3.1.2 HPLC analysis of E/S products.

To characterise the enzyme responsible for the IgG cleaving activity we 

subjected the adult fluke E/S products to size exclusion chromatography on 

HPLC. Analysis of the proteins eluted from HPLC yielded 3 major peaks of > 

150 kDa (Peak I), 45 kDa (Peak II), and a broad peak ranging from 35 to <10 

kDa (Peak III) (Figure 3.2A). A sample of each fraction was incubated with the 

lgG2a monoclonal antibody and the products of the reaction analysed by SDS- 

PAGE. The lgG2a cleaving enzyme was associated with Peak III (Figure 3.2B). 

We also tested each fraction for cathepsin proteinase activity using the 

synthetic fluorogenic peptide substrate Z-F-R-AMC. Cathepsin-like activity was 

also associated with Peak III (Figure 3.2A).

GS-PAGE analysis revealed that Peak III consisted of several enzymes with 

apparent molecular sizes ranging between 60 and 90 kDa (Figure 3.3A, lane 

2). These enzymes correlated with the Group 1 cysteine proteinases described 

by Dalton & Heffernan, (1989).

3.1.3 Direct visualisation of proteinases in HPLC fractions.

In order to further characterise the proteinases in the apparent molecular 

size range 60-90 kDa we employed a method described by Robertson etal., 

(1990), to directly visualise, using fluorogenic substrates different types of 

proteinases within polyacrylamide gels. GS-PAGE was carried out as normal, 

except that the gels were not incubated overnight, thereby avoiding digestion 

of the gelatin within the gel matrix by the proteinases. Instead they were 

washed immediately after electrophoresis was complete and then incubated 

for 10 to 30 min in fluorogenic substrate. Figure 3.3A shows GS-PAGE analysis 

of adult fluke E/S products and Peak III. Similar samples run on polyacrylamide
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Figure 3.2

A. Size permeation HPLC analysis. Adult fluke E/S products (20 fig) were 

size separated on a TSK3000SW gel filtration column. Eluted proteins were 

monitored by absorbance at 280 nm. Each fraction (300 (i!) was then assayed 

for cathepsin activity using the fluorogenic substrate Z-F-R-AMC.

B. An aliquot (10 ¡il) of each fraction from HPLC size separation was 

mixed with monoclonal antibody lgG2a and the mixture was then analysed by 

10% SDS-PAGE. L, IgG light chain, H, IgG heavy chain.
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Figure 3.3

Analysis of cathepsin L-like proteinases of Peak III.

A. Total adult fluke E/S products (lanes 1) and samples of HPLC Peak III 

(lanes 2) were analysed by GS-PAGE and proteinases visualised by staining 

with Coomassie Blue.

B. Proteinases reactive with specific peptide substrates were 

characterised by incubating gels, following electrophoresis, in the substrate 

Z-F-R-AMC for 10-30 min. Gels were then placed on a transilluminator and 

photographed.
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gels and overlayed with fluorogenic substrates revealed that all the enzymes in 

the 60-90 kDa size range cleaved the substrate Z-F-R-AMC (Figure 3.3B, lane

2). The enzymes were incapable of cleaving the fluorogenic substrates, Z-R-R- 

AMC and Z-R-AMC.

Each of the proteinases in the 60-90 kDa range showed identical substrate 

specificity. Of particular importance is the demonstration that these enzymes do 

not cleave the substrate Z-R-R-AMC, thus classifying these proteinases as 

cathepsin L-like rather than cathepsin B-like proteinases. The preference of

this enzyme for the hydrophobic amino acid, phenylalanine, in the P2 position

of the substrate is typical of cathepsin proteinases.

3.2 Inhibition studies with DPC and Z-F-A-CHN2.

3.2.1 Inhibition of the active site histidine residue with DPC.

Previous studies on cathepsin proteinases have shown that these enzymes 

contain a histidine residue in their active site (Barrett & Kirschke, 1980). To 

attribute the lgG2a cleaving activity in adult fluke E/S products to the cathepsin 

L-like enzyme, we carried out inhibition studies with DPC, a specific 

irreversible inhibitor of enzymes having histidines involved in their catalytic 

activity (Dickenson & Dickinson, 1975).

When DPC was incubated with samples from Peak III which contained the 

cathepsin L-like activity, it inhibited the enzymes’ ability to cleave the substrate 

Z-F-R-AMC; greater than 30% inhibition of enzyme activity was observed at 

DPC concentrations of 1.5 mM and greater than 80% inhibition was observed 

at 12.5 mM DPC (Figure 3.4B). This study was carried out at pH 4.5, the 

optimal pH for Peak III activity (Figure 3.4A). Inhibition studies performed over a 

wide pH range, keeping the final DPC concentration at 25 mM, showed that
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Figure 3.4

A. Optimum pH for activity of the cathepsin L-iike proteinase from HPLC 

Peak II was determined over a pH range of 3.5-8.0 using the fluorogenic 

substrate Z-F-R-AMC.

B. Inhibition of cathepsin L-like activity by DPC. The ability of DPC to 

inhibit the activity of the HPLC Peak III proteinase on Z-F-R-AMC at pH 4.5 

was tested over a final concentration range of 0.35-50 mM of inhibitor.

C. DPC inhibition of cathepsin L-like activity from HPLC Peak III was 

investigated over a pH range of 3.5-8.0. The final concentration of inhibitor 

was 25 mM.
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this reagent was strongly inhibitory between pH 3.0 and 5.0 but had little effect 

on enzyme activity at pH 7.0 and none at pH 8.0 (Figure 3.4C).

DPC also inhibited the lgG2a cleaving ability of the enzymes in Peak III. This 

inactivation was not complete since the experiment was carried out at pH 7.3, a 

pH at which DPC is not very effective as an inhibitor (Figure 3.4C and Figure 

3.5A).

To determine whether all the proteinases from 60 to 90 kDa were inhibited 

by DPC we incubated total adult fluke E/S products with DPC before 

application of samples to GS-PAGE. DPC inactivated only the proteinases in 

the apparent molecular size range 60-90 kDa in adult fluke E/S products 

(Figure 3.5B). This result indicates that all the cysteine proteinases between 60 

and 90 kDa [Group 1 (Dalton & Heffernan, 1989)] have a histidine residue 

involved in their catalytic active site.

3.2.2 Inhibition with Z-F-A-CHN2.

When samples of Peak III were mixed with 20 |j.mol of the specific inhibitor of 

cathepsin Ls and Bs, Z-F-A-CHN2, prior to GS-PAGE analysis, all proteinases 

of 60-90 kDa were inhibited (Figure 3.5C, lane 2). This verifies that all the 

proteinases in the 60-90 kDa size range are cathepsin L-like cysteine 

proteinases.

3.3. Purification of the cathepsin L-like cysteine proteinase.

To characterise the cathepsin L-like proteinase further, larger quantities of 

purified enzyme were required. We used conventional purification techniques 

to obtain large amounts of purified proteinase from E/S products of F. hepatica.

The cathepsin L-like proteinase was purified to homogeneity from the in
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Figure 3.5

A. DPC inhibition of lgG2a cleaving activity of the cathepsin L-like 

proteinase. Ten ¡ig of lgG2a was incubated with PBS (lane 1), adult fluke E/S 

products (lane 2) and E/S products and 200 mM final concentration DPC 

(lane 3). H, Ig heavy chain; L, Ig light chain.

B. DPC inhibition of proteolytic bands in GS-PAGE. Adult fluke E/S 

products was incubated for 10 min with (lane 2) or without (lane 1) at a final 

concentration of 200 mM DPC.

C. Inhibition of the 60-90 kDa proteinases from HPLC Peak III with 

Z-F-A-CHN2. Samples of Peak III were incubated with (lane 2) or without 

(lane 1) 20 fimol inhibitor prior to GS-PAGE analysis.
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vitro released products of adult flukes by a procedure involving two 

chromatographic columns. A large protein peak elutes at the void volume of 

the gel filtration column. A second large protein peak containing cathepsin L- 

like activity, determined using the synthetic peptide substrate Z-F-R-AMC, 

elutes in later fractions (Figure 3.6). These fractions contain both Group 1 and 

Group 2 cysteine proteinases (Dalton & Heffernan, 1989) as revealed by GS- 

PAGE (Figure 3.7A, lanes 1 and 2). When these fractions are pooled and 

passed over a QAE-Sephadex ion exchange column the Group 1 cysteine 

proteinases are separated from all other proteinases (Figure 3.7A, lanes 2 and

3); these proteinases do not bind to the ion exchange column at the running 

pH of 7.0 and are therefore collected in the unbound fraction. Analysis of this 

fraction by GS-PAGE reveals multiple proteinase bands in the apparent 

molecular size range 60-90 kDa (Figure 3.7A, lane 3). Coomassie blue 

staining of non-reducing SDS-PAGE also reveals multiple bands in the purified 

fraction (Figure 3.7B, lane 2); staining of reducing SDS-PAGE shows that these 

multiple bands are derived from a single protein of 27 kDa (Figure 3.7C, lane

2). The proteinase activity that remains bound to the column has been purified 

in our laboratory and has been reported recently by Dowd eta i, (1994a). The 

cathepsin L-like proteinase appears to be very labile throughout the 

purification, resulting in a low yield (12.1%) and purification (7.95-fold; Table 

3.1). The final preparation has a specific activity of 69.2 U mg-1 and a Km for the 

substrate Z-F-R-AMC of 14.7 (iM.

3.4 N-terminal sequence determination.

In order to characterise the enzyme further, the purified proteinase was 

subjected to N-terminal sequencing (Figure 3.8). The amino acid sequence
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Figure 3.6

Purification of F. hepatica cathepsin L-like proteinase. 25 mg of 

concentrated adult worm E/S products were separated on a 120 ml Sephacryl 

S-200 column. Five ml fractions were collected and monitored by absorbance 

at 280 nm for protein content. Each fraction was also assayed for cathepsin 

activity using the fluorogenic substrate Z-F-R-AMC. Fractions 25-42 were 

pooled and passed over a QAE-Sephadex ion exchange column (profile not 

shown) in order to separate any remaining Group 2 proteinases from the 

cathepsin L-like proteinase.
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Figure3.7

Electrophoretic analysis of purified cysteine proteinase.

A. GS-PAGE analysis of proteinases, in total adult fluke E/S products 

(lane 1), in the pooled fraction following gel filtration chromatography (lane 2) 

and the purified cathepsin L in the unbound fraction of the QAE Sephadex A- 

50 column (lane 3).

B. Analysis of the adult fluke E/S products (lane 1) and QAE Sephadex 

unbound fraction (lane 2) by non-reducing SDS-PAGE demonstrating that 

under these conditions the cysteine proteinase migrates as several protein 

bands in the 60-90 kDa range.

C. Analysis of adult fluke E/S products (lane 1) and QAE Sephadex 

unbound fraction (lane 2) by reducing SDS-PAGE reveals that the cysteine 

proteinase migrates as a single band of 27 kDa.
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Table 3.1

Purification of Fasciola hepatica cathepsin L-like proteinase.

Protein

(mg)

Enzvme activity 

Total Specific 

(U) (U mg'1)

Purification

fold

Yield

(%)

E/S products 4 6 0 . 0 4 0 0 0 . 8 7 1 . 0 1 0 0 . 0

Pooled gel 
filtration fractions

4 9 . 5 2 0 2 4 . 0 9 4 . 7 5 0 . 6

QAE run through 7 . 0 49 6 9 . 2 8 . 0 1 2 . 1



obtained, which was 20 residues long, was found to be most homologous with 

sequences in the N-terminal region of other known cathepsin Ls. In this region 

the liver fluke proteinase shows 63% identity with chicken liver cathepsin L 

(Wada & Tanabe, 1986), 58% with bovine (Turk eta!., 1985) and human 

(Mason eta!., 1986) liver cathepsin Ls, 53% identity with a cathepsin L from rat 

liver (Towatari & Katunuma, 1988) and a protozoan parasite Trypanosoma 

cruzi (Cazzulo etal., 1989). A cathepsin B-like proteinase, Sm 31, has been 

identified in the related parasitic trematode, Schistosoma mansoni (Klinkert et 

al., 1989). The liver fluke proteinase shows only 32% similarity to the Sm 31 

molecule in this N-terminal region. One striking feature of the liver fluke 

cathepsin L-like proteinase sequence that is not found in the other sequences 

examined, is the additional alanine residue at the N-terminal end of the 

sequence.

3.5 Immunoblotting studies.

Immunoblot analysis was used to determine the specificity of rabbit 

antibodies raised against the purified cathepsin L-like proteinase from F. 

hepatica (Figure 3.9). Antibodies were raised in a white New Zealand rabbit. 

When this antisera was used to probe blots of adult fluke E/S products and 

purified enzyme separated under non-reducing conditions, the antibodies 

reacted with several polypeptides with a molecular size range between 60-90 

kDa (Figure 3.9A, lanes 1 and 2). When identical samples were separated 

under reducing conditions and probed with the antisera, specific binding was 

observed with only one band of 27 kDa in both adult fluke E/S products and 

purified proteinase (Figure 3.9B, lanes 1 and 2). No reaction was observed 

with pre-immune sera (Figure 3.9A and B, lanes 3 and 4). These results
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-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
F. hepatica (C-L) A V P D K I D P R E S G Y V T G V K D
Chicken liver (C-L) - A ★ R S V W * * K ★ * ★ P * ★ *
Bovine (C-L) - L "k * S V ★ w ★ ★ K •k G ★ P ★ ★ Y
Human liver (C-L) - A ★ R S “V * w ★ ★ K •k -k ★ ★ P ★ ★ N
Rat liver (C-L) - I ★ K T V * w ★ *■ K ■k c ■k ★ P ★ N
T. cruzi (c-p) - A ■* A A V ★ w ★ A R ~k A ★ ★ A •k ■k "k

S. mansoni (Sm 31) - I ★ S N F ★ s ★ K K W p * C K S I A T I D ■k

Figure 3.8

N-terminal amino-acid sequence of the purified cysteine proteinase of F. hepatica. The determined 

sequence of 20 residues is shown compared to the N-terminal sequence of cathepsin Ls from chicken liver 

(Wada & Tanabe, 1986), bovine liver (Turk et al., 1985), human liver (Gal & Gottesman, 1988), rat liver 

(Towatari & Katunuma, 1988), Trypanosoma cruzi cathepsin L like proteinase (Cazzulo et al., 1989), and a 

cathepsin B purified from Schistosoma mansoni (Klinkert et al., 1989). Identical residues are highlighted by 

the asterisks.
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Figure 3.9

A. Immunoblot analysis of adult fluke E/S products and purified cathepsin 

L-like proteinase under non-reducing SDS-PAGE conditions. Following 

transfer of electrophoretically separated adult fluke E/S products (lanes 1 and

3) and purified cathepsin L-like proteinase (lanes 2 and 4) to nitrocellulose, 

the filters were probed with anti-sera prepared against the purified enzyme 

(lanes 1 and 2) or control sera (lanes 3 and 4).

B. Immunoblot analysis of adult fluke E/S products (lanes 1 and 3) and 

purified cathepsin L-like proteinase (lanes 2 and 4) under reducing SDS- 

PAGE conditions. Nitrocellulose filters were probed with antiserum prepared 

against the purified cathepsin L-like proteinase (lanes 1 and 2) or with control 

sera (lanes 3 and 4).
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correlate with the data showing that the purified cathepsin L-like enzyme 

migrates as a single band on reducing SDS-PAGE (Figure 3.7C, lane 2) and 

as multiple bands between 60 and 90 kDa on non-reducing SDS-PAGE 

(Figure 3.7B, lane 2).

3.6 Light- and electron-microscope immunolocalisation studies.

Cathepsin L proteinases are located in the lysosomes of mammalian cells 

(Barrett & Kirschke, 1980). To determine the localisation of the F. hepatica 

cathepsin L-like proteinase prior to its excretion/secretion into the culture 

media immunolocalisation studies were carried out at the light- and electron- 

microscope levels.

Three |im sections of a resin-embedded liver from a F. hepatica-\niec\eti rat 

were prepared. Examination of methylene blue-stained sections reveals that 

migrating flukes within the liver cause extensive perforations in the tissue, with 

a consequential disruption of the liver architecture (Figure 3.10A). Anti- 

cathepsin L-like proteinase antibodies were used to probe sequential sections 

of these liver flukes. Antibody labelling was observed in the immune effector 

cells surrounding the migrating fluke, indicating that the cathepsin L is secreted 

and is taken up by these cells (Figure 3.10 B). Binding of these antibodies is 

confined to the epithelial cells of the fluke gut. Fluorescence is of a granular 

nature and appears to be restricted to vesicles (Figure 3.10C).

Immunolocalisation studies at the electron microscope level, using gold 

labelled antibodies, confirmed that the cathepsin L-like proteinase is packaged 

in vesicles within the gut epithelial cells (Figure 3.10D). No labelling of fluke 

tissues was observed, at the light and electron microscope level, when normal 

rabbit serum was used (data not shown).

78



Figure 3.10





Figure 3.10

Immunolocalisation studies. Antiserum prepared against the purified 

cathepsin L-like proteinase was used to probe resin-embedded sections of 

liver fluke within the tissues of an infected rat host.

A. Methylene blue staining of sections of migrating fluke in liver mass.

B. Immunostaining demonstrating that antibody labelling is located in 

immune effector cells surrounding the migrating fluke (indicated by B in panel 

A).

C. Higher magnification of gut epithelial cells, immunostained with anti- 

cathepsin L-like proteinase serum, to demonstrate granular appearance of 

labelling.

D. Immuno-gold labelling reveals that the cathepsin L-like enzyme is 

packaged in vesicles within the gut epithelial cells.
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3.7 Inhibition of proteinase activity with anti-cathepsin L-like 

proteinase antibodies.

The cathepsin L-like proteinase has been shown to be capable of cleaving 

antibody molecules within the hinge region (Figures 3.2B and 3.5A) and 

prevent antibody-mediated immune effector cell attachment to newly excysted 

juveniles in vitro (Carmona etai., 1993). If the in vivo function of this cathepsin 

L-like proteinase is in the immune protection of the parasite while it migrates 

through the tissues of the host, blocking its activity should allow the host to 

overcome the infection. It would be of interest therefore, to demonstrate the 

inactivation of this cathepsin L-like proteinase by anti-cathepsin L antibodies.

3.7.1 Inhibition of GS-PAGE proteolytic activity.

Anti-cathepsin L IgG (2-20 (ig) was mixed with 3 units of purified cathepsin

L-like cysteine proteinase for 4 h at 4°C. The proteolytic activity of this mixture 

was then analysed by GS-PAGE. A decrease in the intensity of all of the bands 

from 60-90 kDa was observed in the presence of anti-cathepsin L antibodies. A 

reciprocal correlation was observed between the intensity of the proteinase 

bands and the quantity of IgG incubated with the enzyme (Figure 3.11 A, lanes

1-8). No decrease in the intensity of any of the bands was observed when the 

cathepsin L proteinase was mixed with control IgG (Figure 3.11 A, lane 9).

The observed decrease in proteinase activity indicates that the cathepsin L 

antibodies bind to and inhibit the activity of the proteinase in GS-PAGE gels in 

some manner. It is possible that the antibodies retard the proteinase within the 

polyacrylamide gels, a large protein band can be observed at the top of the gel 

lanes which may correspond to an antibody-proteinase complex. There is no 

breakdown of gelatin associated with this band, indicating that the proteinase
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Figure 3.11

A. GS-PAGE analysis of cathepsin L proteinase following incubation with 

anti-cathepsin L IgG. Three units of cathepsin L were incubated with varying 

amounts of anti-cathepsin L IgG (20-2 ¡ig, lanes 1-8, respectively), or with 20

fig of non-immune rabbit IgG (lane 9) for 4h at 4°C. Samples were then 

analysed by GS-PAGE (Dalton and Heffernan, 1989).

B. Neutralisation of cathepsin L activity by anti-cathepsin L IgG. Control 

rabbit IgG (i) and anti-cathepsin L IgG (ii) were incubated with 6 units of

cathepsin L fo r4h  at 4°C. The enzyme was then activated by the addition of

2-mercaptoethanoi and EDTA and transferred to 37°C. Samples were 

removed at the beginning (t0) and after 30 min (t30) of the incubation and 

subjected to SDS-PAGE (Laemmli, 1970). The polyacrylamide gels were then 

analysed by densitometry.

C. Antibody-mediated eosinophil attachment to juvenile flukes. Juvenile 

flukes were incubated in serum obtained from rats infected for five weeks with 

liver fluke (immune serum, IS) or control serum (CS) and 8 x 106 eosinophils 

at 37°C in wells of 24-well plates (Carmona et al., 1993). To duplicate wells 6 

units of purified cathepsin L (CL), with or without 55jig of anti-cathepsin L IgG 

( C-L) or control IgG ( C) were added. Juvenile flukes were transferred to a 

slide after 2 h, examined at X40 and X100 magnifications, and the number of 

eosinophils attached to individual parasites counted. Those NEJ with more 

that 20 cells attached were scored as positive.
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is inactivated.

3.7.2 Inactivation of the IgG cleaving ability of the proteinase.

Six units of purified proteinase were incubated with 270 |ig of either anti- 

cathepsin L IgG or control IgG at 4°C. After 4 h the enzyme was activated by 

the addition of reducing agents and transferred to 37°C for 30 min. The 

reaction was stopped by adding a cysteine proteinase inhibitor and the mixture 

was analysed by reducing SDS-PAGE. Densitometric scans of the gel 

demonstrate that when the purified cathepsin L-like proteinase is incubated 

with control IgG the heavy chain of the antibody is cleaved over time. This 

cleavage is observed by the gradual decrease in the height of the heavy chain 

peak and the corresponding gradual appearance of a peak at approximately 

26 kDa representing the fragments produced by the cleavage of the heavy 

chain (Figure 3.11 Bi). This result is consistent with our previous data showing 

that the cathepsin L-like proteinase cleaves immunoglobulin heavy chains 

within the hinge region (Figure 3.1). When purified enzyme is incubated with 

anti-cathepsin L IgG, comparatively little of the heavy chain is cleaved and only 

a minor peak at 26 kDa is observed (Figure 3.11 Bii). These results were 

consistently repeated over a number of experiments.

3.7.3 Antibody-mediated eosinophil attachment to juvenile flukes.

Carmona et al., (1993) demonstrated that eosinophils attach to the surface 

of NEJ in the presence of immune sera from an infected rat; however, the 

cathepsin L-like proteinase released in vitro by both mature and immature liver 

fluke can prevent this antibody-mediated attachment by cleaving the 

immunoglobulin molecule. In this study we investigate if antibodies specific to
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the cathepsin L-like proteinase can inhibit the IgG cleaving action of the 

enzyme and thus allow the antibody-mediated attachment of effector cells to 

the surface of the NEJ.

Eosinophils are shown to bind to the surface of NEJ in vitro in the presence 

of serum from infected rats but not in the presence of normal rat sera (Figure

3.11 C). Addition of purified cathepsin L-like proteinase to the assay prevents 

this antibody-mediated eosinophil attachment to the juvenile flukes (Figure

3.11 C); however, purified cathepsin L-like proteinase which had been 

incubated with anti-cathepsin L IgG prior to addition to the assay, did not 

prevent eosinophil attachment to newly excysted juveniles. Purified cathepsin 

L-like proteinase incubated with control IgG remains active and hence 

eosinophil attachment does not occur (Figure 3.11 C). These results were 

consistently repeated over several experiments.

3.8 Cloning and sequencing of PCR amplified cysteine proteinase 

gene fragments.

It has been shown in two previous studies that conserved structural motifs, 

identified by alignment of several members of both the serine and cysteine 

proteinase families, can be used to design generic molecular probes for 

amplification of serine and cysteine proteinase gene fragments using the 

polymerase chain reaction (Sakanari etal., 1989; Eakin etal., 1990). For the 

present study, we have used the same strategy to amplify fragments of the 

gene/genes encoding the cathepsin L-like proteinase of F  hepatica. Eakin et 

a!., (1990) designed two active site oligonucleotide primers based on the 

conserved sequences surrounding the cysteine and asparagine active site 

residues of cysteine proteinases. The gene fragment which is amplified
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between these oligonucleotides is approximately 500 bp in length.

In this study we used the asparagine (antisense) primer as described by 

Eakin et al., (1990), with a primer which we designed using the N-terminal 

sequence of the cathepsin L-like proteinase, in order to amplify the gene 

fragment encoding the cathepsin L-like enzyme (see Figure 2.1 in Section

2.2.19).

3.8.1 PCR amplification of cysteine proteinase gene fragments.

When the generic oligonucleotide primer for the cysteinyl active site

sequence motif of cysteine proteinases (Eakin etal., 1990), and the direct N- 

terminal sequence primer, from the cathepsin L-like proteinase of F. hepatica, 

were employed in PCRs using adult F. hepatica worm cDNA as template, a 

doublet at approximately 500-600 bp was observed, as judged by agarose gel 

electrophoresis (Figure 3.12, lane 2). Based on published cysteine proteinase 

sequences, this was the expected size of the cysteine proteinase gene 

fragments.

3.8.2 Subcloning and sequence analysis.

The PCR reaction was subcloned into the direct cloning vector Invitrogen 

pCR II, or Puc19. White colonies were picked and screened by PCR 

amplification with the original primers, and those containing inserts of the 

expected size were isolated. Two clones contained 500-600 bp inserts (Figure 

3.12, lanes 3 and 4). Clone A was isolated from cells transformed with the 

ligation involving the Invitrogen direct cloning vector, and clone B was isolated 

from cells transformed with ligated Pud 9. Both of these clones were 

characterised by DNA sequencing.
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Figure 3.12

Analysis of gene fragments amplified by the polymerase chain reaction 

using generic cysteine proteinase primers with cDNA isolated from adult F. 

hepatica worms as template(lane 2). Twenty % (10 fil) of the total PCR 

reaction volume was analysed by 4% agarose-TAE gel electrophoresis using 

0X174, digested with the restriction enzyme Hae III, as a marker (lanes 1 and 

5). Subcloned cysteine proteinase gene fragments migrated as a band at 

approximately 500-600 bp (Clones A and B in lanes 3 and 4 respectively).
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Figure 3.13 shows the alignment of the predicted amino acid sequence of 

Clones A and B with each other and with a spectrum of cysteine proteinase 

amino acid sequences; Sm 31 a cathepsin B-like proteinase from the related 

parasitic trematode Schistosoma mansoni(Klinkert etal., 1989), papain from 

papaya (Drenth etal., 1971), chicken liver cathepsin L (Dufour etal., 1987), 

human liver cathepsin L (Gal & Gottesman, 1988), cruzain from Trypanosoma 

cruzi(Eakin etal., 1992) and a cathepsin L-like cysteine proteinase isolated 

from Fasciola spp. (Yamasaki & Aoki, 1993).

For both the gene fragments obtained, regions of identity with other cysteine 

proteinases could be observed around the amino acids representing the active 

site residues as well as other structural motifs common to cysteine proteinases. 

Most notably the histidine residue at position 159, which is required for ion pair 

formation (Lewis etal., 1981) with the active site cysteine, is present in both 

sequences. Also the glycine at position 66, which is involved in substrate 

binding in papain (Eakin etal., 1990), as well as the buried acidic residues 

Glu35 and Glu50 are all conserved in the gene fragments isolated in this study. 

These glutamic acid residues are notably absent from the Sm 31 molecule 

which is consistent with other cathepsin B-like proteinases (Dufour, 1988). All 

the cysteine residues are present in the gene fragments, one being the active 

site cysteinyl residue (Cys25) while the others are probably involved in 

disulphide bridges as in papain (Kamphuis etal., 1984). Notably absent are 

potential N-linked glycosylation sites (NXS/T).

Analysis of sequence identity (Table 3.2) showed that the two F. hepatica 

cathepsin L-like cysteine proteinase gene fragments are 78% identical to each 

other.Both clones showed greater similarity to chicken liver cathepsin L (52% 

identity) than to any other protein sequence, and were only 26% identical to
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Figure 3.13

Alignment of the predicted amino acid sequences of the cloned PCR- 

amplified gene fragments, encoding F. hepatica cysteine proteinases (F. hep 

LA and F. hep LB), with the amino acid sequences of a cathepsin B-like 

proteinase isolated (Sm 31) isolated from S. mansoni (KlinkerteX al., 1990), 

chicken liver cathepsin L (DufoureX al., 1987), human cathepsin L (Gal & 

Gottesman, 1988), a cysteine proteinase isolated from Fasciola spp. 

(Yamasaki & Aoki, 1993), Cruzain isolated from T. cruzi (Eakin et al., 1992), 

and papain from papaya (Drenth et al., 1971). Asterisks denote the amino 

acid residues which are identical to their corresponding residue in the 

deduced amino acid sequence of the gene fragment F. hep LA, X  denotes an 

undetermined residue, and gaps are introduced for best fit. The underlined 

sequence of F. hepatica clones A and B corresponds to the N-terminal 

sequence of secreted F. hepatica cathepsin L-llke proteinase, purified from 

adult worm E/S products. The active-site residues based on those in the 

enzyme papain, cys25, his159 and asn175, are shown by C, H and N 

respectively. The unconserved loop present in the Sm 31 molecule was 

omitted in order to conform to the papain numbering system (Drenth et al., 

1971), so that a=KENHTGCEPYPFPKCEH.
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Table 3.2

Percent identity of predicted amino acid sequences of F. hepatica 

cathepsin L-like cysteine proteinase gene fragments A and B with the 

corresponding sequences of other known cysteine proteinases (Sm 31, 

Klinkert et al., 1990; chicken cathepsin L, Dufouret al., 1987; human 

cathepsin L, Gal & Gottesman, 1988; Fasciola sp. proteinase, Yamasaki & 

Aoki, 1993; Cruzain, Eakin et al., 1992; Papain from papaya, Drenth et al., 

1971).

F. hepatica 
(Clone A)

F. hepatica 
(Clone B)

F. hepatica A . . . . . 78%
F  hepatica B 78%
Sm 31 26% 26%
Chicken L 52% 52%
Human L 49% 49%
Fasciola spp. 88% 85%
Cruzain 37% 37%
Papain 33% 33%
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the cathepsin B-like molecule Isolated from S. mansoni. The percent identity 

values were calculated as the number of identical amino acids per total 

number of amino acid residues, allowing gaps in the sequence to achieve the 

best alignments. This data clearly demonstrates that we have cloned cathepsin 

L-like gene fragments from F. hepatica.
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CHAPTER FOUR 
DISCUSSION
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4.0 DISCUSSION.

Howell (1966), demonstrated that immature Fasciola hepatica release 

enzymes in vitro that are capable of cleaving collagen and postulated that in 

vivo these enzymes are involved in the penetration of the liver tissue.

In a study by Dalton & Heffernan, (1989), it was shown that when immature and 

mature F. hepatica were maintained in culture for 16 hours they released 

proteolytic enzymes, and they speculated that these enzymes were important 

in the feeding and migration of the parasite. Eleven proteinases were observed 

as distinct bands in gelatin-substrate SDS-PAGE. All of the proteinases 

observed in the GS-PAGE gels were classified as thiol or cysteine proteinases 

due to their inactivation by thiol proteinase inhibitors and their enhanced 

activity in the presence of reducing agents. The proteinases were divided into 

two groups based on the pH range in which they were most active (Group 1, 

comprising the proteinases in the molecular size range of 60-90 kDa, and 

being most active at pH 3.0-4.5, and Group 2, with those proteinases in the 

27.5-50 kDa molecular size range and having a pH optimum in the range 4.5- 

8.0) (Dalton & Heffernan, 1989).

Chapman & Mitchell, (1982) showed that the in w'iro-released products of F. 

hepatica contain a proteinase(s) that cleave immunoglobulin G into Fab and Fc 

fragments in a cathepsin B or papain like manner. Their characterisation of this 

activity was based on examining the effects of various cysteine proteinase 

enhancers and inhibitors, on the ability of total immature fluke E/S products to 

digest immunoglobulin and other substrates such as hemoglobin and casein. 

They suggested that these enzymes may prevent antibody activating effector 

functions, such as complement fixation, in the vicinity of the migrating fluke,
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affording them some protection from immune attack. The IgG cleaving activity 

in the in vitro released products was characterised as a thiol or cysteine 

proteinase with a pH optima of 3.5-4.5. It is likely that this immunoglobulin 

cleaving proteinase corresponds to one or possibly all of the thiol proteinase 

activities identified in the Group 1 cysteine proteinases as described by Dalton 

& Heffernan, (1989).

In this study we first focused our attention on the proteinases involved in the 

cleaving of immunoglobulin because of their obvious implied role in protecting 

the parasite against host immune attack. This study is confined to adult F. 

hepatica E/S products although this enzyme is also present in immature fluke 

E/S products (Dalton & Heffernan, 1989; Carmona etal., 1993).

When a purified monoclonal antibody lgG2a was incubated with total adult 

fluke E/S products a very specific cleavage of the antibody molecule occurs 

close to the papain cleavage site within the antibody hinge region. Our 

analysis by SDS-PAGE (Figure 3.1) revealed that incubation of the proteinase 

papain with the immunoglobulin molecule resulted in the cleavage of the 50 

kDa heavy chain into 4 fragments in the region 22-28 kDa. This is the expected 

result since papain has two cleavage sites within the hinge region of the heavy 

chain of IgG molecules, that are very close to one another (Smyth & Utsumi, 

1967). SDS-PAGE analysis of the IgG molecule cleaved by E/S products 

showed only two distinct bands, at 22 kDa and 28 kDa (Figure 3.1, lanes 2, 4 

and 6), indicating that the proteinase in the E/S products responsible for the 

IgG cleavage has only one specific hydrolysing site within the hinge region of 

the heavy chain of the immunoglobulin molecule.
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We suspected that the actual number of proteinases released in vitro by F. 

hepatica might have been less complicated than that indicated by GS-PAGE 

(Dalton & Heffernan, 1989), because it was surprising that all of the 

proteinases observed in these gels were cysteine proteinases.

We decided to subject the E/S products, harvested from adult worms, that 

had been isolated from the bile ducts of infected cattle, to molecular size 

separation by HPLC. Three major protein peaks were eluted from this column. 

Peak I protein(s), showing a molecular mass >150 kDa, did not contain 

proteolytic activity when analysed on a (0.1 %)-gelatin substrate (10%)- 

polyacrylamide gel. When this peak was analysed for IgG cleaving activity, 

none was observed. This major protein peak may contain an as yet 

unidentified proteolytic activity. This may be because the protein was unstable 

in the presence of SDS or it could also prove to be a proteinase which can 

digest gelatin, but not to components small enough to diffuse from the gel. 

Gelatin substrate SDS-PAGE analysis of protein Peak II (at 45 kDa 

approximately) revealed several proteolytic bands in the molecular size range 

of 25-50 kDa that corresponded to the Group 2 enzymes as identified by 

Dalton & Heffernan, (1989) that had a pH optima in the range 4.5-8.0. Fractions 

of this peak were also analysed for IgG cleaving activity but none was detected 

(Figure 3.2B).

When Peak III was subjected to GS-PAGE several proteolytic bands 

between 60 and 90 kDa were observed (Figure 3.3A). These proteinases 

correlated with those described by Dalton & Heffernan, (1989) as Group 1 

proteinases which showed optimal activity in the pH range of 3.0-4.5. Since all 

of the bands that are observed on the GS-PAGE gels by Dalton & Heffernan, 

(1989) appear to be represented by only Peaks II and III after HPLC
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separation, this lead us to conclude that maybe there were only two 

proteinases (one of 45 kDa and the other of 30 kDa approximately) that were 

responsible for the breakdown of gelatin by E/S products in gelatin substrate 

polyacrylamide gels.

The reason why the proteinases migrate as multiple bands in GS-PAGE is 

unclear. A possible explanation may be that these enzymes undergo 

proteolytic breakdown (including autoproteolysis) in the presence of SDS 

giving rise to several smaller, but still active, fragments. Alternatively 

electrophoresis, in non-reducing conditions, of the proteinases may cause 

them to act uncharacteristically, particularly in the presence of SDS. This 

unusual phenomenon may be due to aggregation of the proteinases. It may 

also be possible that the proteinases bind to the gelatin while travelling down 

the gel resulting in retardation and the formation of a ladder-like pattern. 

However, this is unlikely since the same pattern of proteinase activity is 

observed repeatedly with a number of different E/S preparations.

Detection of thiol proteinases is not biased by GS-PAGE; in other studies 

using this method, serine proteinases of Plasmodium falciparum (Rosenthal et 

a!., 1987) and metalloproteinases of Strongyloides stercoralis (McKerrow et 

al., 1990) have been identified. However this method is selective since it 

allows the detection only of those proteinases that are stable in the presence of 

SDS. Hence, it is also possible that F. hepatica releases other proteinases that 

are not detected by this particular method.

When fractions of protein Peak III from the HPLC separation were incubated 

with a monoclonal lgG2a molecule in the presence of mercaptoethanol and 

EDTA, and analysed by SDS-PAGE we observed digestion of the IgG heavy 

chains into two fragments of 28 and 22 kDa (Figure 3.2B). Hence the IgG
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cleaving activity in the adult F. hepatica E/S products is associated with HPLC 

Peak III.

We performed several experiments to demonstrate that the immunoglobulin 

cleaving enzyme in E/S products is a cathepsin-like cysteine proteinase. We 

used Z-F-R-AMC to detect cathepsin-like activity. Fractions from the HPLC 

analysis were incubated with the synthetic fluorogenic substrate Z-F-R-AMC. 

Both cathepsin Ls and cathepsin Bs can cleave this substrate. The proteinases 

hydrolyse the peptide bond between the arginine residue and the amino 

methyl coumarin leaving group; the free AMC can than be detected using a 

fluorometric spectrophotometer (Barrett & Kirschke, 1980). Cathepsin-like 

activity was associated with the Peak III protein only (Figure 3.2A). To classify 

the proteolytic activity associated with Peak III, as either cathepsin L- or B-like 

in its properties, we employed the technique of overlaying GS-PAGE gels, 

following electrophoresis, with different fluorogenic substrates (Robertson et 

at., 1990). Three synthetic peptide substrates were used: Z-R-AMC, which is 

cleaved only by cathepsin H-like proteinases; Z-R-R-AMC, which is hydrolysed 

by cathepsin B-like proteinases only and Z-F-R-AMC which is cleaved by both 

cathepsin L-like and cathepsin B-like proteinases but is preferentially 

hydrolysed by cathepsin L-like proteinases (Barrett & Kirschke, 1980). Analysis 

of the Peak III group of proteinases by this direct visualisation technique 

confirmed that all the enzymes in the 60-90 kDa size range were capable of 

cleaving Z-F-R-AMC, but did not hydrolyse either the Z-R-AMC or Z-R-R-AMC 

substrates (Figure 3.3B). This preference for the hydrophobic amino acid 

phenylalanine in the P2 position is typical of cathepsin L-like proteinases 

(Barrett & Kirschke, 1980).

Inhibition studies were carried out to confirm the cathepsin-like nature of the
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Peak III proteinase. Cathepsin-like proteinases (like all cysteine proteinases of 

the papain superfamily) contain an essential histidine residue in their active 

sites (Barrett & Kirschke, 1980). DPC is a an active site modifying agent which 

acts as a specific irreversible inhibitor of enzymes having histidines involved in 

their catalytic site (Dickenson & Dickinson, 1975). The DPC molecule forms an 

acyl-enzyme intermediate in which the acyl group is covalently bound to the 

histidine residue in the catalytic site. Modified active sites are unable to form 

the normal stable enzyme-substrate complex and hence the enzyme is 

inactivated. When a pooled sample of the Peak III fractions from the HPLC 

column was incubated with DPC, inhibition of the proteinase activity in the test- 

tube assay with Z-F-R-AMC (Figure 3.4B), lgG2a cleaving ability as analysed 

by SDS-PAGE (Figure 3.5A) and GS-PAGE activity (Figure 3.5B) was 

observed.

In the next series of experiments the diazomethyl ketone Z-F-A-CHN2 was 

used. This reagent is a potent irreversible inhibitor of both cathepsin L-like and 

cathepsin B-like proteinases, but not other classes of proteinases or other 

subclasses of cysteine proteinases (Rosenthal eta i, 1989); however Z-F-A- 

CHN2 inhibits cathepsin Ls more potently than cathepsin Bs (Barrett etal., 

1982). Peptidyl diazomethyl ketones are specific inactivators of thiol or 

cysteine proteinases being unreactive toward other classes of proteinases. 

They are unreactive with free cysteine, but react irreversibly with cysteine 

proteinases. A high degree of specificity for individual cysteine proteinases has 

been obtained by the use of appropriate peptide sequences (Green & Shaw, 

1981; Barrett etal., 1982). Diazomethyl ketones form a stable covalent bond 

with the sulphur atom of the active site cysteine-25 residue (numbering 

according to papain see Drenth et ai, 1971), this orients the inhibitor such that
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alkylation of the cysteine residue may take place. Alkylation converts the free 

sulphydryl groups of the cysteine residues to stable S-carboxymethylcysteine 

residues and thus inactivates the enzyme (Drenth e ta i, 1976). Z-F-A-CHN2 

inhibited all the proteolytic bands from 60-90 kDa in Peak III as observed on 

GS-PAGE (Figures 3.5B and 3.5C).

In summary, all the enzymes in Group 1 (60-90 kDa, Dalton & Heffernan,

1989) elute as a single peak on HPLC chromatography. The enzyme activity in 

this peak is capable of cleaving immunoglobulin molecules, has a pH optima 

of 4.5 and hydrolyses the synthetic fluorogenic substrate Z-F-R-AMC. They are 

all inhibited by DPC and Z-F-A-CHN2 and therefore are cathepsin L-like in their 

cysteine proteinase activity.

The proteolytic enzymes identified by Dalton & Heffernan, (1989), and 

shown here to be responsible for IgG cleavage represent good target 

candidates for immuno- or chemotherapy of fascioliasis since inhibition of their 

activity may interfere with parasite feeding and migration. If as suggested by 

Chapman & Mitchell, (1982), these proteinases do play a role in immune 

evasion by inactivating host antibody in the vicinity of the migrating fluke, then 

a successful vaccine may be one that would induce high titres of anti­

proteinase antibodies. The high levels of protection against infection 

consistently observed in rats immunised with immature fluke in w'fro-released 

products (Rajasekariah etal., 1979) may be mediated by antibody inactivation 

of parasite proteinases. Knox & Kennedy, (1988) showed that antibodies 

prepared against proteinases released by Ascaris suum could bind to and 

inactivate these enzymes.

Purification of the proteinase(s) responsible for the IgG cleavage in an
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active form would allow characterisation of the enzyme(s), as well as the 

investigation of the potential of such a molecule(s) as a vaccine candidate. 

Purification by HPLC was inadequate due to the small quantity of proteinase 

that was obtained from a single run. The starting material i.e. adult fluke E/S 

products, was readily available; hence a purification protocol that required a 

larger volume of E/S products and would yield a greater amount of purified 

cathepsin L-like proteinase was required.

The cathepsin L-like cysteine proteinase was purified to homogeneity, from 

the E/S products of adult F. hepatica isolated from the bile ducts of infected 

cattle, by a scheme employing gel filtration and ion exchange columns (Figure

3.6 and Table 3.1). A rapid and simple purification of the enzyme was achieved 

by (a) using the same mobile phase for both gel filtration and ion exchange 

columns, thereby avoiding concentration steps and buffer changes between 

columns; and (b) performing the ion exchange chromatography at pH 7.0 at 

which the cathepsin L-like proteinase does not bind to the matrix. Other 

cysteine proteinases adhere to the column and are thus separated from the 

cathepsin L-like enzyme. These other proteinases have been purified and 

characterised in our laboratory by Dowd etal., (1994a).

The F. hepatica cathepsin L-like proteinase appears to be very labile 

throughout the purification process resulting in a low yield (12.1%), this is 

despite the fact that all of the chromatography and concentration procedures

were carried out at 4°C. Mature cathepsin L has been reported as not been 

stable for very long at neutral pH (Mason etal., 1985; Dufour etal., 1987). This 

low yield is comparable with that achieved for the cysteine proteinase of 

Trypanosoma cruzi(8%, Cazzulo etal., 1989), and is considerably better than 

that obtained for both the human liver (5.1%, Mason etal., 1985) and rat kidney
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(2.7%, Bando etal., 1986). The purification-fold of the cathepsin L-like 

proteinase of this study is low (7.95) in comparison with those of both human 

liver (3565, Mason etal., 1985) and rat kidney (655, Bando etal., 1986) but 

again is comparable with that of the cysteine proteinase isolated from T. cruzi 

(16.2, Cazzulo etal., 1989). As can be seen from reducing SDS-PAGE 

analysis of the E/S products of adult liver fluke worms (Figure 3.7C), the 

cathepsin L-like cysteine proteinase is one of only two major protein bands in 

the culture medium. The former proteinases (human liver and rat kidney 

cathepsin Ls) were isolated from whole tissue homogenates, a source in which 

you would expect to find a lot more contaminating molecules than are present 

in the E/S products of F  hepatica, and hence such enzymes would require a 

longer and more intensive purification procedure than that necessary for the 

cathepsin L-like proteinase of F. hepatica.

The apparent molecular size of the fluke cathepsin L-like enzyme is 27 kDa, 

as determined by SDS-PAGE under reducing conditions (Figure 3.7C), which 

is consistent with the size of other cathepsin Ls (Wada & Tanabe, 1986; Turk 

etal., 1985; Mason etal., 1986); however, the enzyme migrates as several 

bands ranging from 60-90 kDa when analysed by non-reducing SDS-PAGE, 

and each of these bands is capable of digesting gelatin (Figures 3.7A and 

3.7B). Antibodies prepared against the purified enzyme bind to the 27 kDa 

reduced form of the enzyme and to each of the molecules in the 60-90 kDa 

region that represent the non-reduced form (Figure 3.9).

These bands in the 60-90 kDa region have been previously described as a 

single group of cysteine proteinases (Group 1, Dalton & Heffernan, 1989), 

because all are inhibited by leupeptin, E-64 and iodoacetamide and have a 

similar pH optimum. Therefore, we have shown that these Group 1 enzymes
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(a) can be resolved as a single protein band on reducing SDS-PAGE (Figure 

3.7C); (b) can be purified to homogeneity using gel filtration and ion exchange 

columns; (c) hydrolyse the synthetic peptide substrate Z-F-R-AMC (Figure 

3.2A); (d) are capable of cleaving IgG molecules in a manner similar to papain 

(Figures 3.1 and 3.2B); (e) have a pH optimum for activity, at 4.5 (Figure 3.4A); 

and (f) are all inhibited by DPC and Z-F-A-CHN2 (Figures 3.5B and 3.5C).

It is now clear that these multiple bands are representative of a single 

proteinase activity that is a cathepsin L-like cysteine proteinase. It is not known 

whether some form of aggregation takes place in the presence of detergent 

(although the aggregates are not multimers of 27 kDa) or if the native protein 

behaves aberrantly during electrophoresis under non-reducing conditions 

therefore giving rise to the multiple banding pattern which is consistent with 

every preparation of E/S products and purified proteinase of F. hepatica.

In order to confirm the identification of this proteinase as a cathepsin L-like 

enzyme, the N-terminal sequence of the protein was determined, and then 

aligned with sequences of other known cysteine proteinases. When comparing 

the amino acid sequences of cysteine proteinases, the sequences can be 

arbitrarily divided into three regions (Baker, 1980): an amino terminal (or 

active-site cysteinyl) region, a central one and a carboxyl-terminal (or active- 

site histidyl region). All the sequences in the N-terminal region contain the 

cysteine-rich site, where Cys25 (numbering according to papain, Drenth etal., 

1971) is the active site cysteine residue. In this region (N-terminal) homologies 

between different cysteine proteinases are the highest (Dufour, 1988). Hence, 

by knowing the N-terminal sequence of the cathepsin L-like proteinase 

released in vitro by F. hepatica we would be able to confirm its classification by
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comparing the amino acid sequence with sequences of other known cathepsin

Comparison of the first 20 N-terminal amino acids obtained for our purified 

enzyme with that of other cysteine proteinases, identified the F  hepatica 

enzyme as having greater similarity to other cathepsin L proteinases than to 

any other protein sequences in the database (Genbank). Thus the cysteine 

proteinase released in vitro by F. hepatica is likely to be the fluke analogue or 

at the very least a related proteinase of cathepsin L.

This is the first cathepsin L-like enzyme to be identified in parasitic 

trematodes. A cathepsin B-like proteinase (Sm 31) has been identified in the 

related parasitic trematode, Schistosoma mansoni (Klinkert etai., 1989), 

however the proteinase described here shows only 32% homology to the Sm 

31 molecule in the N-terminal region. Presumably the homology between the 

two sequences would drop considerably when comparing the whole amino 

acid sequences as then the central region of the predicted amino-acid 

sequence would have to be considered. This is the region which is known to 

display the lowest homology when sequences of cysteine proteinases are 

compared (Dufour, 1988).

The N-terminal sequence which we obtained for the cathepsin L-like 

proteinase of F  hepatica falls short of the cysteine-rich motif (C-G-S-C-W), that 

surrounds the active site cysteine-25 residue and is seen in all cysteine 

proteinases (Dufour, 1988), by just two amino acids. However, the glutamine 

residue at position 19 (Figure 3.8) which is conserved in all the cysteine 

proteinase sequences that are known, plays a significant role in catalysis. It is 

believed to stabilise the intermediate complex by forming a hydrogen-bond 

between its NH2 group and the carbonyl oxygen of the P̂  residue of the
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substrate (Drenth etai, 1976). This residue (Gin19) is also conserved in the N- 

terminal sequence of the cathepsin L-like proteinase of F. hepatica.

Cathepsin Ls are synthesised as preproenzymes which are processed to 

the proenzyme (Smith & Gottesman, 1989). Further processing gives rise to a 

mature form which can consist of a single chain polypeptide or an active-site 

heavy chain and light chain linked by a disulphide bond (Barrett & Kirschke, 

1980). It is not clear whether the two chained form results from limited 

proteolysis of cathepsin L during the purification procedure or whether 

cathepsin L does exist as a double-chain form within lysosomes (Dufour etal., 

1987). The autocatalytic cleavage specificity of cathepsin L at low pH and 

possible differences in the cleavage site specificities of the cellular proteinases 

in vivo may cause differences in the processing products formed in vivo anti in 

vitro (Smith & Gottesman, 1989).

If the F. hepatica proteinase existed as a two chain form, separation of the 

two chains would have been necessary to make N-terminal sequence 

determination possible, as was the case when the N-terminal amino acid 

sequences of the heavy and light chains of human cathepsin L (Mason etal.,

1986) and rat liver cathepsin L (Towatari and Katunuma, 1988) were 

determined. Since a single N-terminal sequence was obtained for the F. 

hepatica proteinase we assume that this enzyme exists in the single chain form 

of the proteinase in vitro.

The sequence Ala-Xaa-Ala has been reported as the most frequent 

sequence preceding the signal peptidase cleavage site of cysteine 

proteinases (Perlman & Halvorson, 1983). According to the signal hypothesis, 

a signal sequence, once having initiated export of a growing protein chain 

across the rough endoplasmic reticulum, is cleaved from the completed protein
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(prepro-form) at a specific site to yield the pro-form of the protein which can 

then be compartmentalised and/or further processed depending on the protein 

in question.

The N-terminal sequence of the F. hepatica cathepsin L-like enzyme begins 

one amino acid earlier than that of other cathepsin L sequences presented in 

Figure 3.7 and may suggest (since the extra amino acid is alanine) that a 

peptidase cleavage site may also be responsible for the processing of the pro­

form of the cathepsin L-like enzyme into the mature proteinase. It may also 

indicate a different transportation procedure or localisation, or indeed it may be 

part of the secretion mechanism of the F. hepatica cathepsin L-like proteinase.

The precise function of the lysosomal cysteine proteinases which are 

predominantly cathepsins is unclear, but they are generally thought to play a 

role in the intracellular protein degradation (Barrett & Kirschke, 1980). 

Immunological studies demonstrated that the cathepsin L-like proteinase of F. 

hepatica ls packaged in vesicles within the epithelial cells that line the gut wall 

of the parasite (Figure 3.10). These cells are known to go through phases of 

secretion when these vesicles exude their contents into the gut (Robinson & 

Threadgold, 1975), and therefore the proteinase can reach the exterior of the 

parasite as a result of regurgitation.

A cysteine proteinase of T. cruzishowing 65% homology to chicken liver 

cathepsin L in the N-terminal region (Cazzulo etal., 1989) has also been 

demonstrated as having its activity localised to the lysosomal organelles in the 

epimastigote stage of T. cruzi(Bontempi etal., 1989). The proteinase was 

suggested to participate in host tissue damage directly, by secretion from the 

parasites, which may facilitate rupture of host cells, or incidentally, by leakage
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of the proteinase upon parasite death and lysis (Murta etai, 1990). Cathepsin 

L-like proteinase activity has also been observed in Plasmodium falciparum 

trophozoite food vacuoles (Rosenthal et ai, 1988). This enzyme is responsible 

for intraerythrocytic hemoglobin digestion (Rosenthal etai., 1993). Yamasaki 

eta!., (1989) have purified a 27 kDa cysteine proteinase from the Fasciolaspp. 

Immunocytochemical studies (Yamasaki etai., 1992) have since shown that 

this enzyme is localised in the secretory granules of the intestinal epithelial 

cells. In mammalian cells, the localisation of cathepsin L to the lysosomes 

provides it with an acidic environment, for activity and stability, while restricting 

its action to only those proteins that can enter this compartment (Bond & Butler, 

1987). There are no reports of cathepsin L being actively secreted from such 

cells, indeed it is only found extracellularly in pathological situations (Bond & 

Butler, 1987). Troen etai., (1987) have reported that the major excreted protein 

of malignantly transformed mouse fibroblasts is a secreted thiol proteinase, 

which is identical with mouse cathepsin L (Portnoy etai, 1986) but it contains 

a different polyadenylation site. Mason etai, (1987) have since described this 

major excreted protein of malignant mouse fibroblasts as a catalytically active 

form of cathepsin L with an N-terminal extension peptide. It was thought likely 

that these extension peptides were regions of the proteins which were 

sensitive to hydrolysis within the lysosome, and hence were not seen on the 

isolated stable forms of the mature enzymes. The proteinase does not require 

cleavage of this extension peptide to become active (Mason etai., 1987). The 

presence of the additional N-terminal peptide stabilised the secreted form of 

the enzyme at neutral pH and would seem to suggest a different processing or 

packaging mechanism for the excreted form of mouse cathepsin L that is 

associated with tumour cells (Mason etai., 1987).
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Cysteine proteinases such as the cathepsins are not only localised in 

lysosomes of various types of mammalian cells but also in secretory granules 

in endocrine cells (Docherty etai, 1984;Taugner etai, 1985; Im etal., 1989; 

Watanabe etal., 1989), where they or related enzymes are indicated in 

prohormone cleavage (Marx, 1987), and in gastro-duodenal mucosa 

(Furuhashi etai, 1991). Since the cathepsin L-like proteinase is located in 

vesicles in the intestinal epithelial cells of adult F. hepatica, which may well be 

the secretory granules (Figure 3.10), it is possible that whilst the flukes migrate 

through the host liver the cathepsin L-like enzyme may be secreted to the 

exterior of the parasite. Once secreted from the fluke it could play a role in 

immunoevasion by cleaving host immunoglobulin and thus preventing 

antibody-mediated immune-effector cell attachment to the parasite.

Immune evasion mechanisms exploited by helminth parasites in infected 

hosts, can be categorised into avoiding initial induction of immune responses, 

compromising selected arms of the immune system and disabling the short 

range offensive mounted by various effector mechanisms (Maizels etai,

1993). Of these comprising selected arms of the immune surveillance by 

cleaving immunoglobulins has been known to exert effects in some helminthic 

infections. Auriault etai, (1981) described how both bound and free IgG 

undergo proteolytic cleavage by proteinases released in vitro by 

schistosomula of Schistosoma mansoni, which produces peptidic fragments 

that are liberated into the culture medium. Thus, the Fab fragment and hence 

the antibody activity is lost. Fragments resulting from the proteolytic cleavage of 

IgG have been shown to reduce the phagocytic activity of macrophages 

(Auriault etai, 1980). Proteolytic cleavage of immunoglobulins into 8-10 kDa 

fragments by an extract of Dirofilaria immitis microfilarial proteinase has also
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been reported (Tamashiro etal., 1987).

The cathepsin L-like proteinase released by the protozoan parasite T. cruzi, 

“cruzipain”, is believed to play a role in the defence mechanism of the parasite 

against the immune response of the host (Bontempi & Cazzulo, 1990). It 

(cruzipain) is believed to be responsible for the intracellular proteolysis of 

endocytosed IgG molecules. It has also been shown to cleave IgG molecules 

within the hinge region. The Fab fragment was only slightly degraded, but the 

Fc fragment was extensively hydrolysed to small peptides. Hence it is believed, 

that that as well as hydrolysing endocytosed IgG, the proteinase also plays a 

role in immune evasion through a “tabulation mechanism”, by destroying the 

Fc moiety of the antibody molecule and leaving an intact Fab fragment able to 

bind to the antigen but not to activate the complement cascade (Bontempi & 

Cazzulo, 1990).

Cathepsin Ls have also been implicated in the reduced immunocompetence 

of tumor-bearing animals. MEP, a precursor of mouse cathepsin L, secreted by 

transformed mouse fibroblasts, interferes with antigen processing in the 

antigen presenting cells, by cleaving the antigenic determinant. It is thought 

that due to the high levels of secreted cathepsins by some tumors that they (the 

cathepsins) could contribute to the depressed immunocompetency exhibited 

by tumor-bearing animals (McCoy etal., 1988).

In view of the fact that the cathepsin L-like proteinase of this study cleaves 

immunoglobulin, and is secreted by all stages of liver fluke that exist in the 

mammalian host, including the early invasive NEJ, this enzyme may play a role 

in immune protection, even as the parasite is crossing the gut wall of the host 

(Carmona etal., 1993). To investigate further the implications of the 

immunoglobulin cleaving ability of this proteinase, an eosinophil attachment
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assay was developed, and it was found that addition of the purified cathepsin 

L-like proteinase, NEJ or adult fluke E/S products to the antibody-mediated 

eosinophil attachment assay resulted in > 70% reduction in the number of 

parasites with eosinophils attached (Carmona etai, 1993). Therefore, liver 

fluke cathepsin L can prevent in vitro the antibody mediated attachment of 

eosinophils to parasites. It is suggested that the enzyme may perform a similar 

role in vivo. Thus, the cathepsin L-like proteinase is a potential target for either 

vaccine design and/or drug development due to its implied role in immune 

evasion and its presence in all stages of the fluke life cycle.

The success of cathepsin L as a vaccine would depend on, if antibodies 

induced in vaccinated animals were capable of neutralising the effect of the 

cathepsin L-like proteinase. In this study, we investigated the ability of 

antibodies raised in rabbits to purified enzyme to inactivate the proteinase. 

Purified anti-cathepsin L lgG2a molecules incubated with cathepsin L-like 

enzyme inhibited the proteolytic action of the proteinase on GS-PAGE and 

immunoglobulins (Figure 11Aand 11B). Furthermore, purified proteinase that 

had been preincubated with anti-cathepsin L antibodies did not prevent the 

antibody mediated attachment of eosinophils to NEJ (Figure 11C). The 

inhibition data presented in this work demonstrates that antibodies that bind to 

and neutralise the enzyme activity can indeed be produced. Knox & Kennedy, 

(1988) also reported the inhibition of proteinases released by the parasitic 

larval stages of Ascaris suum by serum antibody from infected hosts. 

Neutralising antibodies may act by conformationally modifying the active site of 

the enzyme or by physically hindering the ability of the enzyme to gain access 

to its cleavage site.
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Liver fluke may have a two-pronged mechanism of immunoevasion. 

Secretion of the cathepsin L-like proteinase may reduce the number of 

immune effector cells that attach to the parasite, and continual glycocalyx 

turnover may prevent any eosinophils that do manage to attach to the parasite 

to remain sufficiently long enough to allow degranulation and destruction of the 

parasite (Hanna, 1980). Vaccination of animals with cathepsin L could induce 

antibodies that can paralyse the fluke’s immune protection mechanism, and 

result in the elimination of the parasite. Cathepsin L is present in the very early 

stages of the parasite cycle in the mammalian host (Carmona eta!., 1993). 

Neutralisation of the enzyme at this stage would eliminate worms before they 

reached the developmental stage, which causes the liver pathology associated 

with fascioliasis.

To search for particular characteristics unique to the primary structure of the 

parasite proteinase which might be exploited for use in drug and/or vaccine 

design, and in order to further our characterisation of the cathepsin L-like 

proteinase released by F. hepatica, we employed the technique of PCR to 

amplify a gene fragment encoding the cysteine proteinase in question. This 

procedure was used successfully to determine the primary structure of cysteine 

proteinases of nematode (Sakanari etal., 1989) and protozoan (Eakin etal.,

1990) parasites, and could be extended to develop a system for producing 

easily purifiable recombinant proteinase for use in vaccine trials, as well as for 

analysing mutant forms of the enzyme.

Genomic DNA although more readily attainable is not ideal for use in this 

procedure, it has been found that when genomic DNA is used, many spurious 

amplification products are obtained. To avoid this problem and also to obtain
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uninterrupted sequence we used cDNA, prepared from mRNA isolated from 

adult F  hepatica worms. Using molecular oligonucleotide probes based upon 

the consensus amino acid sequence of eukaryotic cysteine proteinases 

around the asparagine active site residue (Eakin etal., 1990), and the N- 

terminal sequence determined for the cathepsin L-like proteinase purified in 

this study, we expected to amplify a gene fragment of approximately 550 bp.

In fact two gene fragments of approximately 550 bp were amplified from the 

cDNA (Figure 3.12). Subcloning of the entire PCR reaction using two different 

methods, yielded two clones with different nucleotide sequences. Both 

sequences show significant sequence identity with the sequences of other 

known cathepsin Ls (Table 3.2). The predicted amino acid sequence of the 

cysteine proteinases of these two gene fragments show that they are not 

identical; they are however quite similar to one another (78% identity). They 

are most closely related (88% identity) to a cysteine proteinase encoding gene 

isolated recently from Fasciola spp. (Yamasaki & Aoki, 1993). Aside from the 

similarity to the Fasciola spp. proteinase both gene fragments show 

considerable similarity to chicken cathepsin L (52% identity; Dufour etal.,

1987) and human cathepsin L (49% identitiy; Gal & Gottesman, 1988). This 

observation may indicate that F. hepatica is more closely related, on an 

evolutionary scale, to avian and mammalian species than it is to protozoans.

Three residues make up the catalytic triad of all cysteine proteinases: the 

cysteine at position 25 (Cys25), the histidine residue at position 159 (His159) 

and the asparagine at position 179 (Asn175) (Dufour, 1988) [numbering 

according to papain (Drenth etal., 1971)]. See Figure 4.1 for a linear 

representation of the important residues in the amino acid sequence of the 

proteinase. The Asn175 residue orients the His159 imidazole ring by forming a
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Figure 4.1

A schematic representation of the cathepsin L-iike gene fragments, 

indicating residues which are important for the catalytic activity of cysteine 

proteinases belonging to the papain superfamily, and more specifically for 

cathepsin L-like P2 subsite specificity.

The glutamine residue at position 19 and the tryptophan at position 179, 

responsible for hydrogen bonding in the P 7 subsite position, along with the 

catalytic triad (C25, H159 and N175) are represented in bold type (Q, C, H, N, 

and W). The glycine residues at position 65 and 66 and the other residues 

involved in the formation of the P2 subsite pocket are represented in italics 

The glutamic acid residues which are found in positions 35 and 50 in 

cathepsin L-like cysteine proteinases, but are absent from cathepsin B-like 

proteinases, are underlined (E).
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hydrogen bond with it; Trp177, (another important residue) shields this 

hydrogen bond from solvent attack (Kamphuis etal., 1985). The imidazole ring 

of the His159 residue is then situated next to the Cys25 residue with which it 

forms an imidazole-thiolate ion-pair. One possible sequence of events in the 

catalytic mechanism is: the substrate binds to the enzyme by bonding with 

residues such as Gin19 which hydrogen bonds to the residue in the P-, 

substrate position, and Gly65and Gly66 which bind to the P2 position; it (the 

substrate) then undergoes attack by the ion-pair i.e the sulphydryl group of 

Cys25 attacks the carbonyl carbon atom of the substrate, forming the acyl- 

enzyme intermediate, the imidazolium group donates its extra proton to the 

nitrogen of the peptide bond which facilitates the expulsion of the leaving 

group of the substrate (Drenth etal., 1976; Lewis etal., 1981).

The antisense primer was designed to the conserved sequence 

surrounding the active site Asn175 residue. No conclusions can be drawn about 

the presence or absence of this residue in the DNA fragment for the cathepsin 

L-like proteinase as it is present in the amplifying primer. However we may 

conclude that the sequence of the F. hepatica cathepsin L-like proteinase DNA 

gene fragment is sufficiently similar to the primer, over this sequence motif, to 

allow primer annealing to occur. The presence of the Cys25 and the third active 

site residue, His159, is important in confirming the classification of this enzyme. 

The amino acids surrounding the three catalytic residues are highly conserved 

in both the cathepsin L-like gene fragment sequences. This indicates that 

these proteinases probably have similar catalytic mechanisms to other 

cysteine proteinases eg. papain. Indeed the hydrophobic nature of the cysteine 

and asparagine domains (segments located after Cys25 and His159), and the 

hydrophillic character of the central region (residues 80-120) is maintained
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within the sequences of both the cathepsin L-like proteinase gene fragments 

emphasising that their mode of action is probably similar to related cysteine 

proteinases.

The glycine residues at positions 65 and 66 form part of the active site wall 

(Kamphuis eta!., 1985), and are responsible for binding to the substrate at the 

P2 position (Drenth eta!., 1976). Extensive similarity again exists in the amino 

acids surrounding these residues (Gly65 and Gly66). We have observed the 

specificity of the cathepsin L-like proteinase of this study for a hydrophobic 

residue in the P2 position in our earlier fluorogenic peptide substrate analysis. 

Table 4.1 details the other residues which are important in forming the P2 

subsite pocket of papain, human cathepsins B and L, and bovine cathepsin S 

(Bromme eta!., 1994). The corresponding residues for the two gene fragments 

of the cathepsin L-like proteinase isolated in this study are also included.

Differences in the substrate specificity of papain-like proteinases is 

determined by differences in the S2-P2 site interactions (Bromme etal., 1994). 

Changes in the P2 residues can therefore bring about changes in the 

specificity of the cysteine proteinase in question. Bromme etal., (1994), 

showed that using site directed mutagenesis the substrate specificity of the 

binding site of human cathepsin S could be altered to a cathepsin L- or a 

cathepsin B-like specificity.

Both the gene fragments isolated in this study have identical residues at all 

the crucial positions for P2 site specificity, except at position 160. A single 

substitution at this position has not been noted as being responsible for a 

dramatic change in specificity (i.e cathepsin L to B) (Bromme etal., 1994), 

however, the substitution of alanine for glycine at this position may be 

responsible for the subtle differences that have been detected between the
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cathepsin L1 and cathepsin L2 proteinases in our laboratory (Dowd et ai, 

1994a).

Whether or not Clones A and B represent two genes, one encoding for 

cathepsin L1 and the other encoding for cathepsin L2, or two variants 

encoding for either cathepsin is undeterminable at this stage. However, a third 

gene fragment has also been isolated and sequenced in our laboratory using 

this technique (Katherine Kilbane, personal communication) which is 98 % 

identical to clone A, and hence would seem to represent a variant of the Clone 

A gene fragment. Given the substantial differences between Clone A and B 

gene fragments (22 % dissimilarity in amino acid sequence), and their striking 

overall similarity to chicken and human cathepsins L, it is not unreasonable to 

suggest that Clones A and B represent two gene fragments, one encoding for 

cathepsin L1 and the other encoding for cathepsin L2 .

The buried residues Glu35 and Glu50 are also conserved in the sequences 

isolated in this study. These glutamic acid residues are notably absent from the 

Sm 31 molecule (Klinkert et ai, 1989), which is consistent with other cathepsin 

B-like proteinases (Dufour et ai, 1988).

All the cysteine residues found in other cathepsin L-like proteinases are 

present in the gene fragments, one being the active site cysteinyl residue while 

the others are probably involved in disulphide bridges as in papain (Kamphuis 

et ai, 1984).

The absence of potential N-linked glycosylation sites (NXS/T), would 

support the theory of a different mechanism by which the F. hepatica proteinase 

is processed (Smith et al., 1993a; Yamasaki & Aoki, 1993), and transported 

into the secretory vesicles (Smith et ai, 1993a) rather than the traditional 

lysosomal location of cathepsins (Barrett & Kirschke, 1980). Glycosylation has
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Table 4.1

Amino acid residues involved in the P2 subsite pocket of papain (pap), 

human cathepsins B, L (H [CBJand H [CL] respectively) and bovine cathepsin 

S (B [CS]) (Bromme et al., 1994), and the corresponding amino acid residues 

of F. hepatica gene fragments A and B (FhA [CL] and FhB [CL]) isolated in this 

study.

Residue Pap
(B)
CS

(H)
CL

(H)
CB

(FhA
CL

FhB)
CL

67 Tyr Phe Leu Tyr Leu Leu
68 Pro Met Met Pro Met Met

133 Val Gly Ala Ala Ala Ala
157 Val Val Leu Gly Leu Leu
160 Ala Gly Gly Ala Ala Gly
205 Ser Phe Ala Glu
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been shown not to be essential for enzymatic function (Smith & Gottesman, 

1989), but N-linked glycosylation sites do occur in the lysosomal cathepsin Ls 

(residue 29, chicken cathepsin L, Dufour et al., 1987; residue 106, human 

cathepsin L, Gal & Gottesman, 1988) and in the cathepsin L-like proteinase of 

the protozoan parasite T. cruzi (residues 47 and 167, cruzain, Eakin et al., 

1992). Yamasaki & Aoki (1993), did not report the presence of any N-linked 

glycosylation sites in the cysteine proteinase which they isolated from 

Fasciola spp.

Lysosomal enzymes are sequestered within the lumen of the endoplasmic 

reticulum and undergo a variety of post-translational modifications before 

being sorted to their appropriate cellular destination. Soon after the assembly 

of the polypeptide chain, the asparagine linked mannose oligosaccharides on 

lysosomal enzymes are covalently modified by the addition of N- 

acetylglucosamine 1-phosphate. In the Golgi body apparatus these residues 

are removed to generate monoesters, which bind to mannose-6-phosphate 

receptors. The receptor-ligand complexes are transported in Golgi-derived 

vesicles to prelysosomes where the vesicles discharge their contents. There 

the lysosomal enzymes are released from the mannose phosphate receptors 

which are recycled back to the Golgi apparatus (McIntyre & Erickson, 1991). 

Secretory proteins are not processed in this manner and hence the absence of 

any N-linked glycosylation sites would suggest a different procedure for the 

processing of the cathepsin L-like proteinase released by F. hepatica.

The highest degree of similarity between all the sequences is seen in the 

active site domains. Most deletion, insertions and substitutions occur in the 

middle region which is far removed from the active site and hence does not 

interfere with major catalytic characteristics. Cathepsin B has an insertion of 17
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amino acids in this region (Figure 3.13) which seems to have little effect on the 

organisation of the active site residues, but is probably somewhat responsible 

for the difference in the substrate preference of this enzyme (Dufour, 1988).

It has been reported that the gene encoding “cruzain”, a cysteine proteinase 

also related to cathepsin L enzymes isolated from T. cruzi, is organised in the 

genome as an array of at least six tandemly repeated copies (Eakin etal., 

1992). Yamasaki & Aoki, (1993) have reported the isolation of another cysteine 

proteinase clone which is 76% identical to the gene from Fasciola spp. which 

they published recently. We have described here two gene fragments from F. 

hepatica which are 78% homologous to each other. It is possible that these 

fragments are representative of a tandemly repeated gene as is present in T. 

cruzi (Eakin etal., 1992). The amino acid substitutions may be inconsequential 

or may result in functional differences among the expressed proteinases.

Recently Heussler & Dobbelaere, (1994) have reported the cloning of a 

proteinase gene family of F. hepaticaby reverse transcription PCR. Using 

degenerate oligonucleotide primers derived from conserved cysteine 

proteinase sequences, 7 different cysteine proteinase cDNA clones were 

amplified from RNA isolated from adult F. hepatica worms. Five of these clones 

were related to cathepsin L-type proteinases, while the remaining two were 

related to cathepsins B. Heussler & Dobbelaere’s data suggest that some 

members of this proteinase gene family are present in multiple copies on the 

genome, and they have revealed differences in the levels of steady state 

mRNA expression for some of these proteinases, as well as a stage-specific 

gene expression for one of the cathepsin L-like clones (Heussler & 

Dobbelaere, 1994).

The cathepsin L of this study is one of the two major proteins present in the
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E/S products of adult F. hepatica. The second protein which binds to the QAE 

column during the purification procedure has also been characterised.

Although it differs subtly from the proteinase of this study, this second major 

protein is also cathepsin L-like in its characteristics, and to this end has been 

termed cathepsin L2 (CL2) (Dowd etai, 1994a), where cathepsin L1 (CL1) is 

the proteinase of interest in this study. Thus the two gene fragments described 

here are perhaps representative of the two different cathepsin Ls present in the 

in vitro released products of adult F. hepatica worms.

In conclusion, we have purified and characterised a cathepsin L-like 

proteinase from the in vitro released products of F. hepatica. This is the first 

cathepsin L-like proteinase to be described for a parasitic trematode. It is 

responsible for the cleavage of immunoglobulin molecules in vitro and has 

other implied roles in feeding and motility. Inclusion of the purified proteinase 

in an eosinophil adherence assay prevents antibody-mediated immune- 

effector cell attachment to NEJ and hence protects the NEJ from destruction by 

the immune-effector cells. Antibodies raised in a rabbit to the purified 

proteinase, inhibit the proteolytic activity of the cathepsin L-like proteinase. 

When these antibodies are added to the eosinophil assay, they inhibit the 

action of the proteinase, hence the immune-effector cells are able to attach to 

and destroy the NEJ. Since this proteinase has an important biological role 

and has been shown to be present in all stages of F. hepatica, it is an ideal 

candidate molecule for vaccine and/or drug design. The partial gene fragment 

described in this study will enable future workers to obtain the full gene(s) for 

this proteinase. Expression of this enzyme in a eukaryotic system would allow 

analysis of the structure/function relationship, give information as to the

120



processing mechanisms of the proteinase, and allow analysis of mutant forms 

of the proteinase, therefore acquiring valuable information for the design of 

antiparasitic drugs which specifically block parasitic proteolytic action.
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ABSTRACT This report presents the deduced amino acid sequence of a novel 

cathepsin L proteinase from Schistosoma mansoni, and describes cathepsin L-like 

activity in extracts of adult schistosomes. Using consensus primers specific for 

cysteine proteinases, gene fragments were amplified from adult S. mansoni cDNA 

by PCR and cloned. One of these fragments showed marked identity to Sm31, the 

cathepsin B cysteine proteinase of adult S. mansoni, whereas another differed from 

Sm31 and was employed as a probe to isolate two cDNAs from an adult S. 

mansoni gene library. Together these cDNAs encoded a novel preprocathepsin L 

of 319 amino acids; this zymogen is predicted to be processed in vivo into a 

mature, active cathepsin L proteinase of 215 amino acids. Closest homologies 

were with cathepsins L from rat, mouse, and chicken (46-47% identity). Southern 

hybridization analysis suggested that only one or a few copies of the gene was 

present per genome, demonstrated that its locus was distinct from that of Sm31, 

and that a homologous sequence was present in S. japonicum. Because these 

results indicated that schistosomes expressed a cathepsin L proteinase, extracts of 

adult S. mansoni were examined for acidic, cysteine proteinase activity. Based on 

rates of cleavage of peptidyl substrates employed to discriminate between classes 

of cysteine proteinases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg- 

arg-AMC) and cathepsin H (Bz-arg-AMC), the extracts were found to contain 

vigorous cathepsin L-like activity. In contrast, complete inhibition of this activity 

was observed when the cathepsin L inhibitor Z-phe-ala-CHN2 was included, which 

together demonstrated that the conspicuous, acidic cysteine proteinase activity in 

extracts of adult S. mansoni was cathepsin L-like. The cathepsin L may be crucial 

for schistosome metabolism of host hemoglobin.
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INTRODUCTION

Blood flukes of the genus Schistosoma are the cause of the chronic and 

debilitating disease schistosomiasis which afflicts more than 250 million people in 

tropical regions. Infection follows penetration of the skin by cercariae, the aquatic 

larvae. During human infection, cercariae transform into schistosomula which 

migrate to the lungs, and subsequently to the liver before taking up residence in 

the vasculature of the intestines or bladder. Adult females release numerous eggs 

each day for many years. In S. mansoni infections, the eggs move through the 

intestinal wall and are liberated into the lumen of the bowel. Eggs are carried also 

with the circulation and are deposited in various body organs, particularly the liver. 

The host inflammatory response to the eggs is responsible for the tissue pathology 

associated with schistosomiasis [1],

Proteinases are known to be secreted from S. mansoni parasites at several 

stages during migration in the mammalian host. These proteinases are thought to 

be involved in a variety of functions including skin penetration by cercariae, 

nutrition, and movement of eggs through tissue [see 2 for review]. Cysteine-type 

proteinase activity has been identified in adult S. mansoni [3-5] and was classified 

as a cathepsin B based on its hydrolysis of the synthetic peptide substrate Cbz- 

arg-arg-AMC [5] and because the sequence of a transcript encoding the enzyme 

shows homology with mammalian cathepsin B genes [6]. This cysteine proteinase, 

termed Sm31, is immunogenic in infected humans, is considered an important 

diagnostic protein, and may function as a hemoglobinase [5-9]. Since the enzyme 

must play some important biological role in the metabolism of the schistosome, it is 

considered a potential vaccine and/or chemotherapeutic target [2],



Here we report that, using generic oligonucleotide primers for amplifying 

cysteine proteinases gene fragments from cDNA by the polymerase chain reaction 

(PCR), we have isolated DNA fragments that encode S. mansoni cysteine 

proteinases. One of these encoded Sm31 [6] whereas another encoded a different 

cysteine proteinase. Using the latter fragment as a probe, we have isolated 

several cDNAs from an adult S. mansoni cDNA library that encode a novel 

preprocathepsin L  In addition, we show that the conspicuous, acidic cysteine 

proteinase activity in extracts of adult S. mansoni tissues is cathepsin L-like.

MATERIALS and METHODS

Schistosomes, genomic DNA, soluble extracts of adult worms Mixed sex, 

adult S. mansoni (Puerto Rican strain) and S. japonicum (Philippine strain) were 

perfused from BALB/c mice 10 weeks after infection with 20 to 100 cercariae, and 

stored at -70°C for up to 6 months. Genomic DNAs from pools of adult worms 

were isolated as described [10]. Lysates of schistosomes werg prepared in 

phosphate buffered saline (PBS) by two freeze-thaw cycles followed by sonication 

(25 x 10 s bursts at duty cycle 10% and output control 2, Branson Sonifier 250) 

(Branson Ultrasonics, Danbury, CT) at 4°C. The lysate was centrifuged for 30 min 

at 14,000 x g at 4°C and the supernatant (adult worm extract) retained. Protein 

concentration of the extracts was measured by a modified Lowry method (DC 

Protein Assay, Bio-Rad, Richmond, CA).

PCR amplification, cloning, sequencing mRNA was isolated directly from



tissues of -50 aduit S. mansoni by chromatography on oligo dT-cellulose (Micro 

Fast Track™, Invitrogen, San Diego, CA). Double stranded cDNA was synthesized 

from the mRNA using AMV reverse transcriptase, and RNaseH and DNA 

polymerase 1 (Riboclone™ Synthesis Kit, Promega, Madison, Wl). Generic 

oligonucleotide primers for eukaryotic cysteine proteinases, described by Eakin et 

al. [11] (5’ Cys-specific primer and 3’ Asn-specific primer, of 4096- and 1024-fold 

degeneracy, respectively), a modified 5' Cys-specific primer (8-fold degenerate), 

based on the sequences of cysteine proteinases of nematodes [12-15] (Harrop, 

unpublished), and a sense strand primer (4-fold degenerate) based on the N- 

terminus of a cathepsin L of Fasciola hepatica [16] were employed to amplify gene 

fragments from adult S. mansoni cDNA. The sequences of the four oligomers are 

shown in Fig. 1. PCRs were carried out for 40 cycles using 50 ng cDNA as 

template, with denaturation at 94°C for 45 sec, primer annealing at 40°C for 1 min, 

and extension at 72°C for 2 min, with an initial step at 94°C for 2 min and a final 

extension for 10 min at 72°C.

PCR products were purified by phenol/chloroform extraction and ethanol 

precipitation, ligated into the plasmid vector pGEM-T™ (Promega), and the ligation 

products used to transform Escherichia coii strain DH5a by electroporation. 

Maxipreps of recombinant pGEM-T and pBluescript (below) plasmids were 

prepared from bacterial cultures using Qiagen-500 columns (Qiagen Inc, 

Chatsworth, CA). The nucleotide sequence of plasmid inserts was determined 

using universal forward and reverse primers, and gene-specific primers, the Taq 

DyeDeoxy™ Terminator Cycle Sequencing System (Applied Biosystems Inc. [ABI], 

Foster City, CA) and an automated DNA sequencer (ABI, model 373A). Oligomers
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were synthesized using the P-cyanoethyl phosphoramidite procedure on a ABI 

model 308B DNA Synthesizer, and purified using Nensorb Prep cartridges (NEN- 

Dupont, Wilmington, DE). Both strands of plasmid inserts were sequenced. 

Analyses of nucleotide and deduced amino acid sequences were assisted by the 

GCG Package software, version 7 (Genetics Computer Group, Madison, Wl), using 

the GenBank, PIR-Protein, and SwissProt databases.

Southern hybridization analysis Genomic DNAs (3 fig) from pools of adult S. 

mansoni or S. japonicum were digested with Eco Rl, Hind III, or Bam HI (Biolabs, 

Beverley, MA), separated by electrophoresis through 0.8% agarose/Tris acetate 

EDTA, and Southern transferred to nylon membranes (Zeta-Probe, Bio-Rad).

Inserts were excised from recombinant plasmids p466 and pB2 (see below) by 

digestion with Bam HI, separated from vector sequences by agarose gel 

electrophoresis, and purified by "glass milk" chromatography (GENECLEAN™, BIO 

101, San Diego, CA). The inserts (50 ng) were radiolabeled with a“ P.dCTP (NEN- 

DuPont) by random oligomer priming and Klenow polymerase (Oligolabelling Kit, 

AMRAD-Pharmacia, North Ryde, NSW, Australia). Labeled insert DNA of p466 

was hybridized to Southern blots at 65° C overnight in 1 mM EDTA, 0.5 M 

NaHP04, 7% sodium dodecyl sulfate (SDS), and washed at 65° C for 2 h in 1 mM 

EDTA, 40 mM NaHP04, 5% SDS, then 2 h in 1 mM EDTA, 40 mM NaHP04, 1% 

SDS, as described [17]. Autoradiography was performed at -70° C using Kodak X- 

AR film and intensifying screens. The p466 probe was stripped from membranes 

by incubation in 500 ml 15 mM NaCI, 1.5 mM sodium citrate for 30 min at 95° C, 

after which the membranes were reprobed with the 32P.pB2 insert.



Screening of a S. mansonl cDNA phage library A XZapI cDNA library 

constructed from adult S. mansoni mRNA [18] (library kindly provided by Dr. 

Graham F. Mitchell) was screened by nucleic acid hybridization using the “ P- 

labeled insert of p466 as the probe, using Hybond-N (Amersham, Castle Hill, NSW, 

Australia) nylon membranes with hybridization and washing conditions as above. 

The pBluescript phagemid in positive X clones was excised using P408 helper 

phage (Promega) and E. coli strain BB4 according to the AZapI manufacturer’s 

instructions (Stratagene, San Diego, CA).

Analysis of proteinase activity Samples of extract (200 ng protein) were 

subjected to non-denaturing, non-SDS, gelatin-substrate-(0.1%)-polyacrylamide 

(10%) gel electrophoresis (GS-PAGE), as described [19]. (This procedure was 

employed, rather than regular SDS-PAGE, because SDS and other denaturing 

reagents inhibited hydrolysis of enzyme substrates [Dalton, unpublished].) Further, 

replicate gel lanes of the eiectrophoresed extract were incubated in 10 jiM 

fluorogenic peptidyl substrate (below) in 100 mM sodium citrate, 10 mM cysteine, 

pH 4.5, for 15 min, after which they were transilluminated at 302 nm and 

photographed (Polaroid 667 film). In addition, samples of extract (2 jig to 25 jig 

protein) were assayed for cysteine proteinase activity in 100 mM sodium citrate, pH 

4.5, containing 10 mM cysteine and the fluorogenic peptide substrates 

benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methyl-coumarin (Z-phe- 

arg-AMC), benzyloxycarbonyl-L-arginyl-L-arginine-7-amido-4-methylcoumarin (Z- 

arg-arg-AMC), benzoyl-L-arginine-7-amido-4-methylcoumarin (Bz-arg-AMC) 

(Bachem, Bubendorf, Switzerland) at 10 M̂. These three substrates were
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employed in order to discriminate between classes of cathepsin-like 

endopeptidases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg-arg- 

AMC) and cathepsin H (Bz-arg-AMC) [20]. The release of the fluorogenic moiety 

7-amino-4-methyl coumarin (AMC) from hydrolyzed substrates was measured in a 

fluorescence spectrometer (Kontron, model SFM 25, Milan, Italy) with excitation at 

370 nm and emission at 440 nm. Amount of enzymatically-generated AMC was 

calculated from the standard fluorescence intensity of authentic AMC (Sigma 

Chemical Co., St. Louis, MO). Inhibition assays were carried out using the peptidyl 

diazomethylketones, benzyloxycarbonyl-L-phenylalanyl-L-alanine-diazomethylketone 

(Z-phe-ala-CHNj), and N-benzyloxcarbonyl-L-phenylalanine-L-phenylalanine- 

diazomethylketone (Z-phe-phe-CHN2) (Bachem). These specific inhibitors of 

cathepsin L-like, cysteine proteinase activity [21, 22] were added to the assay at 

concentrations of 10 nM - 0.05 nM prior to the addition of the substrate.

RESULTS

PCR amplification of S. mansoni cysteine proteinase gene fragments When 

generic oligonucleotide primers were employed in the PCR with S. mansoni cDNA 

as the template, DNA fragments ranging in size from approximately 400 to 600 

nucleotides were amplified using all three combinations of the three sense and one 

antisense primers (see Fig. 1) (data not shown). After the amplified cDNA 

sequences were cloned into pGEM-T and the nucleotide sequence of the inserts 

determined, it was apparent that several PCR products obtained using a pairing of 

the modified 5’ Cys-specific primer and the 3’ Asn-specific primer contained

8



sequences characteristic of cysteine proteinases, i.e. they exhibited the catalytic 

triad of Cys, His, and Asn residues [23, 24]. Although some of these clones (e.g. 

pB2, insert size 480 bp) contained inserts homologous to Sm31, another (p466, 

insert size 483 bp) contained a novel cysteine proteinase-like gene sequence 

distinct from Sm31 [6] (data not shown). By contrast, fragments amplified using 

other combinations of primers (i.e. other than the modified 5’ Cys-specific primer 

with the 3’ Asn-specific primer) did not ostensibly encode proteinases (not shown).

A transcript from adult S. mansoni encodes a cathepsin L-like proteinase

Using the radiolabeled insert of p466 as a probe, two positive clones (pSmCLI and 

pSmCL6) were isolated from the S. mansoni AZapI cDNA library after screening 

about 1 x 10s phage plaques. Clones pSmCL.1 and pSMCL6 contained 

recombinant inserts of -1.1 kb and -1.8 kb, respectively, overlapped over -480 bp 

at the 3’-end of pSmCL6 and the 5’-end of pSmCLI, and together included an 

open reading frame of 319 amino acids including the catalytic triad residues Cys, 

His, and Asn. pSmCL6 contained a start codon and pSmCLI 'contained a 

termination codon TAG, a potential polyadenylation signal (AAUA) and a poly(A) 

stretch, the latter probably representing part of the poly(A) tail and therefore the 3’- 

terminus of the mRNA (not shown) (GenBank accession # U07345). The 319 

amino acids apparently comprise the sequence of a novel zymogen, of predicted 

MW of 35,444. Based on homology with other cysteine proteinases [25-28], the 

cleavage site of the pro-region peptide from the mature, processed enzyme (215 

amino acids, -23,888 MW) probably lies between residues 104 (asparagine) and 

105 (isoleucine).
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Homology comparisons showed closest identity to mouse cathepsin L 

(GenBank accession # P06797) at 46.6% over a 223 amino acid (aa) overlap, to 

chicken cathepsin L (P09648) at 46.4% over a 220 aa overlap, and to rat cathepsin 

L (P07154) at 46.2% over 223 residues. By contrast, the schistosome cathepsin L 

was only 26% homologous to the S. mansoni cathepsin B proteinase Sm31 

(M21309; J03984). Figure 2 presents an alignment of sequences of this novel 

schistosome cathepsin L, cathepsins L from mouse and chicken, and sequences 

deduced from two recently isolated cDNAs (L1 -Fh and 12-Fh) from another 

trematode parasite, Fasciola hepatica. (The F. hepatica sequences were from 

cloned PCR products of 460 bp and 480 bp obtained using adult F. hepatica cDNA 

as template and the 5’ N-terminal F. hepatica cathepsin L primer in combination 

with the 3’ Asn-specific primer [11] shown in Fig. 1 [Dalton, unpublished]. L1-F/J 

and 12-Fh may encode cathepsins L reported recently to be secreted by adult F. 

hepatica [16].) Conservation in sequence, particularly around the active site Cys, 

His, and Asn catalytic triad residues, and in length, with the cathepsins L of the 

other species was obvious which, together with an expected MW of 23,888, 

strongly supports our proposal that the polypeptide encoded by amino acid 

residues 105 to 319 represents the entire, mature form of the novel S. mansoni 

cathepsin L proteinase [20, 29].

Gene copy number for schistosome cathepsins L and B “ P-inserts of p466 

and pB2 hybridized to Southern blots of S. mansoni genomic DNA, but with 

dissimilar patterns. p466 hybridized to Eco Rl fragments of 4.5 kb and 2.8 kb, to a 

2.8 kb Hind III fragment, and to a 4.5 kb Bam HI fragment. In addition, p466



hybridized to a 4.5 kb Eco Rl fragment of S. japonicum genomic DNA. By contrast, 

pB2 hybridized to a single Eco Rl fragment of ~2 kb, Hind III fragments of 6 kb, 

and 4.5 kb, and to Bam H1 fragments of about 7 kb and 5.5 kb. pB2 did not 

hybridize to the Eco Rl-digested genome of S. japonicum (Fig. 3). The simple 

patterns obtained with both probes are characteristic of single (or several only) 

copy genes, a finding consistent with a previous report for Sm31 [6].

Cysteine proteinase activity in schistosome extracts Aqueous, acidic S. 

mansoni extracts were analyzed for cysteine proteinase activity, in particular for 

activity ascribable to cathepsin L-like proteinases. A single proteinase activity 

capable of digesting gelatin was apparent after GS-PAGE (Fig. 4a). Replicate gel 

lanes showed marked differences in substrate preference after incubation with 

three fluorogenic peptidyl substrates. Potent Z-phe-arg-AMC hydrolyzing activity 

was observed migrating with a similar mobility to the gelatinolytic activity as a 

smear at the top of the gels (Fig. 4b, lane 2). By contrast, minimal activity was 

observed in gels incubated with Z-arg-arg-AMC, and little or nd activity was 

detected against Bz-arg-AMC (Fig. 4b, lanes 1 and 3, respectively). When the 

release of enzymatically cleaved AMC (as visualized in the GS-PAGE gels) was 

subsequently quantified in test tube assays, the specific activities (nmol AMC 

released mg protein-1 min'1) in the extracts for the fluorogenic substrates were Z- 

phe-arg-AMC, 58.3, Z-arg-arg-AMC, 0.97, and Bz-arg-AMC, 0.24. Complete 

inhibition of schistosome Z-phe-arg-AMC hydrolyzing activity was observed if Z- 

phe-ala-CHN2 was included in the assay at 1.0 p.M final concentration, and 72% 

inhibition observed at 0.1 p.M inhibitor concentration. In contrast, at 1.0 jxM and 0.1

11
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jiM concentrations of Z-phe-ala-CHN2, Z-arg-arg-AMC hydrolyzing activity was 

inhibited only 70% and 45%, respectively. Similar inhibition was observed with Z- 

phe-phe-CHN2 (not shown).

DISCUSSION

Using oligonucleotide probes based upon consensus sequences of 

eukaryotic cysteine proteinases, we amplified and cloned gene fragments from 

adult S. mansoni cDNA. Some were homologous to the previously characterized 

cathepsin B (Sm31) [6], but another (p466) showed significant sequence identity to 

cathepsin L-like proteinases. Subsequently, using p466 as a probe, we isolated, 

cloned, and sequenced two cDNAs from an adult S. mansoni AZapI library, that 

encode a novel cathepsin L cysteine proteinase. Sequence identity comparison 

and Southern hybridization analysis clearly showed that the gene encoding the 

cathepsin L was distinct from that encoding Sm31.

We employed three pairs of consensus primers in order to maximize the 

likelihood of amplification of proteinase gene sequences from cDNA. Only the 

pairing of the modified 5’ Cys-specific and the 3’ Asn-specific primers amplified 

authentic S. mansoni cysteine proteinase gene fragments. Since the same 

antisense oligomer was employed in the PCRs, it appears that inclusion of the 

modified 5’ Cys-specific primer was crucial for amplification of the target sequences 

and may be related to the its reduced degeneracy (8-fold) in comparison to the 5’ 

Cys-specific primer of Eakin et al. [11] which is 4096-fold degenerate. Indeed, 

when the sequences of the modified 5’ Cys-specific and the 3’ Asn-specific primers 

were compared with the cDNA sequence, the former matched at 16 of 17 residues,



and the latter at 22 consecutive residues (not shown) - sufficiently homologous, 

evidently, to hybridize to the cDNA template under the modest stringency of the 

PCR (40° C annealing temperature) and to result in the amplification of a novel 

cysteine proteinase gene.

The sequence of the cathepsin L transcript included an open reading frame 

of 319 amino acids, which apparently encodes the entire preprocathepsin L from S. 

mansoni. It can be expected that cleavage of the pro-region from the zymogen 

would release the mature, active cysteine proteinase [28]. Based on comparisons 

of amino acid sequences of other cysteine proteinases, which often include a 

prepro- sequence upstream of the mature enzyme sequence [25-29], the 

processed cathepsin L is expected to be comprised of 215 amino acids with an 

estimated MW of 23,888. This is of comparable size to other cathepsins L [22, 27].

Since the presence of the novel transcript demonstrated that adult S. 

masnoni express a cathepsin L proteinase, we examined soluble extracts from S. 

mansoni for novel cysteine proteinase activity, particularly for activity distinct from 

that ascribable to Sm31. Based on the rate of cleavage of three synthetic peptidyl 

substrates, the results indicated that the conspicuous cysteine proteinase activity in 

soluble, acidic S. mansoni extracts was cathepsin L-like. The rate of cleavage of 

Z-phe-arg-AMC by cathepsin L is up to 100-fold greater than that of Z-arg-arg- 

AMC; by contrast, cathepsin B can cleave both Z-phe-arg-AMC and Z-arg-arg-AMC 

substrates, but the rate of cleavage of the former substrate is only two to three 

times that of the latter [22]. Since sixty-fold more of the substrate Z-phe-arg-AMC 

(which has the hydrophobic amino acid phenylalanine in the P2 position) was 

hydrolyzed by the schistosome extracts compared to Z-arg-arg-AMC, the soluble

13



extracts of S. mansoni clearly contained cathepsin L-like proteinase activity. GS- 

PAGE, fluorogenic substrate-PAGE analysis, and inhibition studies using the 

cathepsin L-specific inhibitors Z-phe-ala-CHN2 and Z-phe-phe-CHN2 [21-22] 

provided further evidence of cathepsin L-like activity in the extracts.

A novel cysteine proteinase activity (specifically hydrolysis of carbobenzoxy- 

phe-arg-7-amino-4-trifluoromethyl coumarin) has been reported from miracidia and 

sporocysts of S. mansoni [30]. Although the activity was not ascribed to a 

cathepsin L, and although the sizes of the partially purified enzymes (19 kDa and 

36 kDa) do not conform with that predicted for the processed cathepsin L of adult

S. mansoni (-24 kDa), it is not unlikely that larval schistosomes may also employ 

cathepsins L. Voshino et al. [30] suggested a role for miracidial cysteine 

proteinase(s) in penetration of the intermediate snail host of the schistosome. Two 

recently reported cathepsins L from the related parasite Fasciola hepatica appear 

to be associated with tissue digestion by immature liver flukes and with 

immunologic evasion mechanisms including cleavage of immunoglobulins and 

inhibition of eosinophil attachment [16, 31, 32].

In addition to sequence differences and to substrate preferences between 

the cathepsin L and Sm31 proteinases, the differential patterns of hybridization of 

p466 and pB2 to the Southern blots of S. mansoni genomic DNA clearly 

demonstrated the dissimilarity in genomic organization and sequence of the 

cathepsins L and B genes. The patterns suggested that only one or a few copies 

of each of the cathepsin L and Sm31 genes were present in the S. mansoni 

genome, and the hybridization of p466 to S. japonicum DNA indicated the presence 

of a homologous cathepsin L in this species. Since we have also observed

1
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cathepsin L-like activity (hydrolysis of Z-phe-arg-AMC) in extracts of adult S. 

japonicum with activity and inhibition profiles similar those of S. mansoni (Smith, 

unpublished), cathepsin L activity, hitherto not reported in adult S. mansoni, may be 

common in schistosomes. Indeed, in view of the recent reports of cathepsins L in 

Fasciola species as well [16, 31-33] (Fig. 2), this category of cysteine proteinase 

may be ubiquitous in parasitic flatworms.

Cysteine proteinases are reputed to be involved in the degradation of host 

hemoglobin by schistosomes [2-4], To date, only the cathepsin B Sm31 has been 

characterized in detail and has by default been designated the schistosome 

hemoglobinase [2, 5, 6]. Since the specific activity of the cathepsin L proteinase in 

our schistosome extracts was sixty-fold greater than that of cathepsin B, it is 

feasible that the cathepsin L rather than the cathepsin B may play the leading role 

in the catabolism of hemoglobin to readily absorbable peptides [2, 34].
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FIGURE LEGENDS

Fig. 1 Nucleotide sequences of oligonucleotide primers employed to amplify 

cysteine proteinase gene fragments from adult Schistosoma mansoni cDNA. I = 

inosine, K = G/T, R = G/A, W = A/T, and Y = C/T.

Fig. 2 Alignment of amino acid sequences of cathepsins L from other species with 

the schistosome sequence deduced from pSmCLI and pSmCL6. L-Sm, S. 

mansoni, L-mo, mouse (GenBank accession # P06797), L-ch, chicken (P09648), 

L1-F/J and 12-Fh, Fasciola hepatica [16] (Dalton, unpublished). Asterisks denote 

homology with L-Sm; gaps (-) have been introduced to maximize alignment; X 

denotes an undetermined residue; and . indicates that it is not known whether or 

not a residue exists at the position. The cysteine proteinase catalytic triad of 

residues (C, H, and N) are shown in boldface type, and numbering of amino acids 

is based on the papain system of Drenth et al. [24].



Fig. 3 Southern hybridization of “ P-insert from p466 (cathepsin L-like gene probe) 

(panel A) and “ P-labeled insert of pB2 (Sm31-like cathepsin B gene probe [6]) 

(panel B) to genomic DNAs from Schistosoma mansoni after Eco Rl (lane 1), Hind 

III (lane 2) and Bam HI (lane 3) digestion, and from S. japonicum after Eco Rl

digestion (lane 4).

Fig. 4 Identification of cathepsin L-like activity in soluble extracts of adult 

Schistosoma mansoni. Panel a: Samples of schistosome extract (200̂ ig) were 

separated by gelatin-substrate (0.1%) polyacrylamide (10%) gel electrophoresis, 

subsequently incubated in 100 mM sodium citrate, pH 4.5, 10 mM cysteine, and 

finally stained with Coomassie Blue. Panel b: Replicate gel lanes were excised 

and incubated in the fluorogenic substrates Z-arg-arg-AMC (RR, lane 1), 

Z-phe-arg-AMC (FR, Iane2), and Bz-arg-AMC (R, lane 3) at 10 p.M in 100 mM 

sodium citrate, pH 4.5, 10 mM cysteine, and photographed while transilluminated 

with ultraviolet light at 302 nm.
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5 ' Cy* -« p a c if ic  prim er

S' ACA OAA TTC CAR GGI CAR *p«v
SCO HI Q o o TS r  °?X TOY tog
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5' modified Cys-specific primer
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Q 8 C W A P/V

5' N-terminal p. Aepatica cathepsin L primer
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 ̂ K

3' A«n-specific primer
IGA

5' TTA AAG CTT CCA RTT YTT Tar»
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