
Synthesis of 2 Dimensional Image Filters by Cellular Automata

David Sinclair,
Dublin City University,

Glasnevin,
Dublin 9.

9th. August 1991

Table of Contents

Abstract..3
1.0 Introduction..4
1.1 What are Cellular Automata?..5
1.2 Image Filtering.. 9
1.3 Previous Work on Image filtering using Cellular Automata........ 10
2.0 Filter Synthesis using a 3x3 Cellular Filter..................... 14
2.1 Assumptions............ 14
2.2 The Filtering Operation...15
2.3 Analytical Estimation of the Coefficients K q , K^ and K 2 » * * * * « . 2 1

2.3 Heuristic Estimation of the Coefficients K0, K^ and K 2 27

2.4.1 The Search Procedure.. 27
2.4.2 Weighting Functions for Heuristic Search 30
3.0 Example of the Synthesis of a Filter By a 3x3 Kernel........... 31
3 . 1 Test Pattern... 31
3.2 Synthesis of a 750Hz. 5th. Order Low Pass Bessel Filter.......32
3.2.1 Filter Coefficients Using Derived Equations................ 40
3.2.2 Filter Coefficients Using Heuristic Search with W^(n). .42
3.2.3 Filter Coefficients Using Heuristic Search with W 2 (n).45

3.2.4 Summary of Results.................. 49
3.3 Synthesis of a 2kHz. 5th. Order Low Pass Bessel Filter......... 49
4.0 Synthesis of Other Filter Types..................................... 55
5.0 Parallel Implementation of Cellular Filters...................... 60
6.0 Conclusions...65
7 . 0 References 67

2

Abstract

The filtering action of some type of cellular automata has been known
about since the mid I960’s. These cellular filters, based on a
combination of reducing and augmenting kernels operating on a series
of thresholded images, are derived empirically and have fixed
characteristics. This thesis presents a method for synthesising 2
dimensional grey level image filters using cellular automata. This
method takes as its starting point the characteristic equation of a
filter expressed in the Laplace domain, and derives from this equation
the kernel of the cellular filter which has the same characteristics
as the filter defined by the Laplacian equation. The advantage of
using' cellular automata for image filtering is that they are highly
parallel in nature, and as such, are a natural algorithm for image
filtering on a parallel computational engine.

3

1.0 Introduction

The application of cellular automata to the task of image

filtering has been known about since the mid 1960’s. To date, this has
been limited to empirical low pass filters with fixed amplitude
response for use mainly on binary images. This thesis proposes a
method based in the formal methods of linear system analysis, for the
synthesis of any 2 dimensional grey level image filter which can be
expressed by a transfer function in the Laplace domain.

The remainder of section 1 of this thesis introduces the concept
of a cellular automaton, the process of image filtering and the
previous work on the applications of cellular automata to the spatial
filtering of images. In section 2 the method for synthesising 2
dimensional filters using cellular automata is developed using both an
analytical approach and a heuristic approach. Several examples of
filters are worked through in section 3 showing the validity of the
method, and its limitations. In section 4 a method which extends this
technique to the synthesis of other types of filters, such as high
pass and band pass filters, is illustrated. The parallel nature, and
the suitability of cellular filters for the parallel processing of
images, is shown by the description, in section 5, of one possible
implementation of a cellular filter using a network of transputers.
Finally, section 6 summarises the results of this technique, its
limitations and possible areas for further research in the synthesis
of filters using cellular automata.

4

1.1 What are Cellular Automata?

A Cellular Automaton is an array of processing elements (PEs).

The functions computed by a PE is a function of its state and the
states of its neighbouring elements. At its simplest, the role of a
cellular operation is to transform an array of data s(i,j) as it
exists at a time t, given by s(i,j,t), into an array of data

d(i,j,t+l). At time (t+1), an element of the array of data d(i,j) has
a value determined by its original value s(i,j), along with the values
of its nearest neighbours.

It is also assumed that the array of PEs is tightly coupled in
that each PE is connected to its immediate adjacent neighbouring PEs.
A loosely coupled array of PEs would allow connections, through some
form of switching network, to an arbitrary set of remote PEs.

A further restriction placed on the behaviour of the array of PEs
is that all operations on a block of data in the array of PEs are
independent of the position of the data in the array. If the data in
the array is shifted to a new location in the array and operated upon,
then the results are identical to the same operation conducted on the
data in its original position in the array.

Operations on the array are assumed to be discrete and

synchronous in time. By discrete in time, we mean that the operations
are assumed to occur in discrete time with each step in time being a
generation, iteration, or cycle. By synchronous in time, we mean that
the state changes of the PEs (i.e. the change in the values of the
PEs) occur simultaneously.

The neighbourhood of the PE p(i,j) is defined as all the PEs
coupled to p(i,j). The state of p(i,j) at a time (t + 1) is determined

by its present state and the states of the PEs in its neighbourhood.
The kernel of the PE p(i,j) includes both itself and the PEs in its
neighbourhood. Consider the PE p(i,j) and its neighbouring PEs
arranged in a square tessellation, as follows.

p (i - 2 , j - 2) , p(i-1,j-2) , P(i, j-2) , p(i + 1 ,j-2) , p(i + 2 , j-2)
p(i-2,j-1) , p(i-1,j-1) , P(i » J-1) , p(i + 1 ,j-1) , p(i + 2 , j-1)
p(i-2,j) , P(i-1> j)) P(i, j) , P(i + 11 j) , p(i + 2 , j)
p(i-2 , j + 1) , p(i-1,j + 1) , P(i » j + 1) , p(i + 1 , j + 1) , p(i + 2 , j + 1)
p(i-2,j + 2) , p(i-1,j + 2) , P(i, j + 2) , p(i+1,j + 2) , p(i+2, j + 2)

If we give p(i,j) a 3x3 kernel, then the neighbourhood of p(i,j)
includes p (i- 1 ,j- 1) , p(i,j-l), p(i + l,j-l), p(i-l,j), p(i+l,j), p(i-

l>j+l) p (i ,j + 1) and p(i+1, j + 1). In general the neighbourhood of p(i,j)
is

{ p(i+n,j+m) 1 -l<=n<=+l, -l<=m<=+l, (n,m) <> (0 ,0) }

and the kernel of p(i,j) is

{ p(i+n,j+m) 1 - 1 < =n< = + 1 , -l<=m<=+l }.

And for an NxM kernel the neighbourhood of p(i,j) is

{ p(i + n, j+m) 1 -^<=n<=^-, -y-<=m<=^, (n,m) <> (0 ,0) }

and the kernel of p(i,j) is

6

H

The kernels, neighbourhoods and tessellations (the physical

arrangement of the PEs) do not have to be rectangular. The
tessellation can be any arrangement as long as operations on the array
are isotropic. This tends to limit the tessellations to homogeneous
regular geometric arrangements such as square, hexagonal and
triangular which are capable of completely covering a plane surface.
The kernels can be any combination the PE and its nearest neighbouring
PEs. For example, figure 1 illustrates some of the possible

neighbourhoods for a square tessellation.

The configuration of the array (i.e. the size and tessellation of
the array and the state of each PE in the array) is called the signal,
denoted by s(r). Usually r is a 2-dimensional space in which case the
signal is s(i,j). The symbol used for the kernel is k(r).

The operation of the kernel k(r) on an element of s(r) (i.e.

s(i,j) a given PE in the array defined by s(r)) is the weighted sum
of the values held by the PEs in the neighbourhood of s(i,j) and

s(i,j). The weights are defined by the kernel k(r).

For example, if we define k(r) to be a 3x3 kernel as follows

k(i — 1 ,j — 1) = 1 , k{i,j- 1) = - 1 , k(i + 1 ,j - 1) = 0

k (i — 1 , j) - 1 , k (i , j) 1 , k(i+ 1 ,j) -1

k(i-1, j + 1) = 0 , M i . j + 1) = 0 , k(i + 1 , j + 1) = 1

7

F i g u r e i Vaj:±QusngighbQurJiQQ,<ls_Q,n_a-sqiiar.et_e,s,salatio n

then the action of k(r) on a specific element of s(r), namely s(i,j)

at time t is

s(i,j,t+l) = s(i-l,j-l,t) - s(i,j-l,t) - s(i-l,j,t) + s(i,j,t)
- s(i+ljjjt) + s(i+l,j+l,t)

In general for 2-dimensional signal,

s(i,j,t+l) = Z(k(i+n,j+m).s(i+n,j+m)) (1)
n , m

In the above example the kernel k(r) was a binary kernel, that is
a kernel which only contains the values 0 and (+/-)1. Kernels are not
limited to binary kernels and can contain any value. However binary
kernels do have a particular interest since they are easily

implemented in hardware.

This operation of the kernel k(r) is applied to all the PEs in
s(r) simultaneously and after a single iteration the output of the 2 -
dimensional array s(r,t+l) is the discrete 2 -dimensional convolution
of the kernel k(r) with the signal s(r) at a time t.

1.2 Image Filtering

Image filtering is the process by which certain spatial
frequencies are removed from an image. If the low spatial frequencies
are removed from an image, then those regions of the image in which
the signal (intensity) is constant and/or changing slowly, are reduced

9

to a zero value. Only abrupt changes the image intensity remain. Such
high pass filters, filters which attenuate low frequencies, are used

for edge detection and enhancement because quick changes in image
intensity is usually associated with the boundary, or edge, of a
object and its background. High pass filters can also be used to
remove shadows caused by diffuse or normal sunlight.

Low pass filters attenuate high spatial frequencies in an image
and pass low spatial frequencies unaffected. These filters are very
useful in removing speckling and snow effects from images. This type
of high frequency noise in the image is generally caused by
irregularities in the image capture system and changes in the
environment. Such noise is expensive to completely eliminate since it
would require high quality optics and a controlled environment.

A low pass filter can be combined with a high pass filter to
produce a band pass filter which combines the operations of noise
removal and edge enhancement. Band reject filters, that is filters
which attenuate a specific band of frequencies, have applications in
object recognition since certain textures can be characterised by a
close band of frequencies localised in a region of the image.

1.3 Previous Work on Image filtering using Cellular Automata

To date image filters based on cellular automata have used the
augmenting and reducing properties of binary multi-point kernels

(kernels of 2 or more PEs).

10

For example consider the triple point kernel n(x,y) shown in

figure 2. When this kernel is applied to the signal data s(x,y,t) the
result is s(x,y,t+l) which is no longer a binary signal. In order to
transform the signal s(x,y,t+l) back into a binary signal we need to
threshold s(x,y,t+l). Figures 2(c), 2(d) and 2(e) are the results when
s(x,y,t+l) is thresholded using the values 0, 1 and 2. In figure 2(c)
the signal data has been augmented, i.e. is larger than the original
signal data, when the threshold value was 0. When the threshold value
was 1, as in figure 2(d), the signal data has been reduced. When the
threshold value was 2 , as in figure 2 (e), the result was a "residue"
of the original signal, i.e. a single element in a background of
elements of opposite value,

In general, these results hold true for dual-point, triple-point
and multi-point kernels, since mutli-point kernels can be generated by
a sequence of dual-point or triple-point kernels. Augmentation and
reduction by means of an 8 step sequence using dual-point kernels, or
by means of a 4 step sequence using triple-point kernels, can cause
the removal of certain high spatial frequencies and change the duty
cycle of lower spatial frequencies.

When used to filter grey level images these sequences of kernels
must be applied to the set of binary signal images formed by
thresholding the original image at each grey level. For example if the
signal image has 8 grey levels, then the sequence of kernels would
have to be applied to the 8 signal images formed by thresholding the
original image at values 0, 1, ..., 7 . Then the 8 resulting signals
are recombined to produce the filtered grey level image.

Figure 2(b): Signal data

Figure 2(e): Residue with threshold = 2

The work of Preston et a l . has shown, by analysising the boundary
propagation of the signal, that if n^ is the number of iterations of
reduction are followed by n-[iterations of augmentation, with a

sampling interval of ¿ x , then for a signal function of period P, then
that sinusoid and all sinusoids of higher frequencies will be
annihilated when

P
n - i = I------

1 2 (A x)

and therefore the cutoff frequency of the cellular filter is

f = ±----
c o 2 n i (A x)

Lower frequencies will not be annihilated but will be clipped at
their crests. The peak to peak amplitude Ap _p is given by

A ^ U) = 1p p 2[1 + Cos (((H)f/fc o))]

The advantage of this method of filtering a grey level image with
N grey levels using cellular automata is that it uses binary kernels,
and is therefore it is easier to implement in hardware than multi­
value kernel. However this method does have 4 major disadvantages:

(1) It requires the processing a N thresholded images with 2n^

iterations for each thresholded image.

13

(2) The characteristics of the filter produced by the cellular

automata are fixed, i.e. it is not possible to alter the attenuation

suffered by frequencies less than the cutoff frequency.

(3) It only produces low pass filters. This technique does not
provide any means of synthesising high pass, band pass or any other
type of filter.

(4) Non linear group delay causing a change in the duty cycle of
certain low frequency components and image distortion.

This thesis proposes a new technique for the synthesis of 2
dimensional image filters using kernels with floating point values
which overcomes the disadvantages of previous methods. Since the
kernel does contain floating point values, each iteration does require
more processing, but this technique is applied to the original image
only and does not require N thresholded images. Therefore it is more
efficient when applied to high resolution grey level images.

2.0 Filter Synthesis using a 3x3 Cellular Filter

2.1 Assumptions

Throughout this thesis on filter synthesis using cellular
automata, the following assumption are used.

14

(1) The image to be filtered is arranged in a square
tessellation, and is represented by the 2 -dimensional signal

a (x , y) .

(2) The image is a 8 bit gray level image which gives a range of
-127 (black) to +127 (white).

(3) The filtered image is represented by the 2-dimensional
signal b (x ,y).

(4) The behaviour of the filter is limited to isotropic
behaviour. Therefore the results of the filtering process

are independent of direction.

(5) The square root of -1) is represented by j .

2.2 The Filtering Operation

The action of a filter h(x,y) on a signal a(x,y) is defined by
the equation

b (x , y) = JjT(a(x,y) .h(x-X,y-Y)) dY dX (2)

and hence is the convolution of the input signal a(x,y) with a
filter characterised by h(x,y).

15

In the 2-dimensional s ’-domain, the Laplace transform of equation

(2) is written as

B (s ’) = H (s ’).A(s’) (3)

where H (s ’) is called the transfer function of the filter. H (s ’)
is the Laplace transform of h(x,y), and so we can write,

H (s ’) = L{h(x,y)} ... Laplace transform

h(x,y) = L~l{H(s’)} ... Inverse Laplace transform

An important property of the Laplace transform is the Laplace

transform of the delta function 8 (x,y).

L{ 6 (x , y) } = 1

and hence, if we let the a(x,y) be the delta function,

B(s ’) = H (s ’).1 (4)

and

b (x ,y) = h(x,y) (5)

This is why h(x,y) is called the impulse response of the filter,
since it is the output of a filter characterised by the transfer
function H (s ’) when a delta function, or impulse, is the input to the

f ilter.

1.6

Since we have limited the behaviour of the filter H (s ’) to

isotropic behaviour, this also places limitations on the form of the
filter’s impulse response. Since the filter’s response to any input

signal should be independent of direction, we have

L- 1 {H(s’)} = h (x ,y) = h (r ,0) = h(r) (6)

where (r,0) are the polar coordinates of (x,y).

We can therefore represent H (s ’), the 2-dimensional filter
transfer function, by a 1-dimensional filter transfer function H(s).

Now consider a 3x3 kernel K, which is to act as a filter. From
equation (1) we know that the action of one iteration of the kernel K
on the input signal a(x,y) is the discrete convolution of K with
a(x,y). This is already very similar to the filtering action of a
filter h(x,y) as defined by equation (2). However, h(x,y) is not
limited to a 3x3 domain, and therefore multiple iterations of the
kernel K are necessary to approximate the action of h(x,y).

Since the filter has to be isotropic, the action of the kernel K
must be isotropic, and K must be symmetrical about its 4 major axes.

k(0,0) k(1,0) k(2,0)

k(0,1) k(l,l) k (2,1)

k (0 , 2) k(1 ,2) k(2 ,2)

Therefore the 9-element kernel K can be simplified to a kernel
with 3 distinct elements.

K2 Kl k 2
Ki K0 Kl
k 2 Kl k 2

or formally as,

K = (k(i,j) | 0< = i < = 2 , 0< = j < = 2, k (1 , 1) = K0 ,
k(l,0) = k(0,1) = k (2,1) = k(1,2) = Kj,
k(0,0) = k(2,0) = k(1 ,0) = k(2,2) = K 2)

(7)

We will denote the action of one iteration of K to a

a(x,y) as

K*a (x ,y)

If we let the signal array a(x,y) be the impulse

6 (x,y) where

< 5 (x , y) = 1 ; x = 0 , y = 0

0 ; x < > 0 , y < > 0

Then,

K* 6 (x,y) -> (K2) (KX) (K2)
(Ki) (K 0) (Ki)

(K2) (Ki) (K2)

where Kg is located at (0,0).

signal

signal

18

The application of K to K*Ö(x,y), denoted K 2 *5(x,y), is then

K 2 *6 (x,y) ->

(K22) (2K!K2) (K 1 2 + 2 K 2 2) (2KXK2) (K22)
(2KXK2) (K12+2K22) (2K0K1+4K1K2) (Ki2+2K22) (2K1K2)
(K!2 + 2K22) (2K0K1 + 4K1K2) (K02+4K4 2 + 4K22) (2K0K! +4KiK2) (K12 + 2K22)
(2K1K2) (K12+2K22) (2K0K1+4K1K2) (KX2+2K22) (2 K 1 K 2)

(K22) (2 K i K 2) (K X2+2K22) (2 K i K 2) (K22)

Since K is isotropic, then K 2 *S(x,y) is symmetrical about its
major axes (horizontal, vertical and diagonal). Repeated applications
of K to S(x,y) will also be isotropic, therefore Kn*S(x,y) is
isotropic. Kn* 6 (x,y) is also non-zero for all (x,y) where -^<=x<=^ and

The impulse response of the filter h(x,y) is an infinite
continuous function, with 1 representing white and 0 representing
black. However, since we have restricted the image intensity to 8

bits, we can consider h(x,y) to be zero valued for all (x,y) where

h(x,y) is less than the minimum discrete resolution, i.e.

h(x,y) = h(lR,mR) = 0 if h(lR,mR) < " V
2 °

where R = resolution of the signal array.

Therefore h(x,y) is also limited in the same manner as Kn* 6 (x,y).
In order to synthesise the filter we need to choose n, K q , and K 2

such that Kn*5(x,y) approximates h(x,y). Then n iterations of the
kernel K to the delta function $(x,y) will have the same effect as

applying the filter to the delta function.

The value of n, the order of the cellular filter K, is easily
determined. First, we derive the impulse response of the filter from
the Laplacian transfer function of the filter. We then determine at
which \[2 multiple of the resolution (\[2mR) of the signal array does
the impulse response remain less than the minimum resolution of the
image intensity. The impulse response will always decay to a value
less than the minimum image intensity resolution. This is because in
order for h(x,y) = h(r) to have any Laplace transform , h(r) must meet
the following condition.

inf inity
J*j h (r) I exp (-ar) dr < infinity
0

for some real, positive a. Therefore ¡h(r)| < M(exp(ar)) for all
positive r, for some real positive M.

For this multiple (m) of the signal array resolution to exist at
the furthest point of Kn , an nxn response to an impulse function, from
the origin, then the value of n is given by

n = f 1 o o r (7=) (8)V 2

where floor(x) = largest integer < x.

2,0

analytically or (b) by a heuristic search.

The values of K g) and K 2 can be derived by two means, (a)

2.3 Analytical Estimation of the Coefficients Kg, and K 2 .

By induction, equations for the value of K n * S (x , y) at the
different points, in terms of , K 2 and n, will be derived. The
actual value of h(x,y) at these points can be set equal to the derived
equations, and the values of and K 2 can be solved for.

Consider the following 3 elements of Kn*S(x,y),

for x = n , y = n (case 1)
x = n-1, y = n (case 2)

t-HiciiX y = n-1 (case 3)

Case 1: x = n . y = p

When i = 2, for x = i, y = i,

KÌ*5(x , y) = K 2 *S(x,y) = K 2 2 = K ^

If K is applied to K 2 *fi(x,y) then

K* (K 2 *5(x,y)) = K 2 2 .K2 at x = i + 1, y = i + 1

=> K i+ 1 *S(x,y) = K 2 3 = K 2 i + 1

21

Let j = i+1 and then

KJ* 6 (x,y) = K 2J at x = j , y = j

This equation has the same form as Ki*S(x,y) and therefore , in
general, Kn*S(x,y) at x = n , y = n can be expressed as

Kn*S(x,y) = K 2n for x = n, y = n

Case 2: x = n—1. v = n

When i = 2, for x = i-1, y = i,

K^-*5(x,y) = K 2 *5(x,y) = 2K^K 2 = iK^K 2

If K is applied to K 2 *S(x,y) then

K*(K 2 *S(x,y)) = 2K 1 K 2 .K2 + K 2 2 .K1 at x = i , y = i+1

=> K i+ 1 *S(x ,y) = 2K^K 2 2 + K^K 2 2 = 3K 1 K 2 2

= (i+l)K 1 K 2i

Let j = i+1 and then

KJ*S(x,y) = at x = j-1, y = j

2.2

This not the same form as the expression for Ki*S(x,y) so we apply

another iteration of K to KJ*0(x,y).

K* (K J *S(x , y)) = jK 1 K 2 ‘-’ - 1 • K 2 + K 2 J.K 1

= > kJ + 1 *5(x , y) = (j +1) Kj K 2 J

let 1 = j+ 1 and then

K 1 *S(x,y) = 1K^K21_;1- at x = 1-1, y = 1

This equation has the same form as KJ* 6 (x,y) and therefore , in
general, Kn*<$(x,y) at x - n-1 , y = n can be expressed as

Kn*^(x,y) = nK^K^11-* for x = n-1, y = n

Case 3: x = n - 1 , y = n - 1

When i = 2, for x = i-1, y = i — 1,

Ki*i3(x,y) = K 2 *S(x,y) = 2K 0 K 2 + 2K;l2 = iK 0 K! + iK } 1

If K is applied to K 2 *S(x,y) then

K*(K 2 *6 (x,y)) = (2K0 K 2 + 2K 1 2)(K2) + 2K 1 K 2 .K1 + 2K 1 K 2 .K1

+ K 2 2 .K 0

at x = i , y = i

23

=> K i+ 1 *5(x,y) = iKQKg 1 + iK 1 iK 2 + iKliK 2 + iK 1 iK 2 + K 0 K 2 1

= (i+l)K 0 K2i + 3iK 1 iK 2 at x = i, y = i

Let j = i+1 and then

K J *S(x,y) = jK 0 K 2 j - 1 + X(j)K 1 2 K 2 J" 2 at x = j-1, y = j-1

since the applications of K to K 2 *<5(x,y) did not affect the power
of Kq in the first term and did not affect the power of Kj in the
second term. X(j) denotes that the coefficient of the K^ 2 K 2 J - 2 term is

some, as yet unknown, function of the variable j.

Applying K to KJ*5(x,y) gives, at x = j , y = j

KJ + 1 *S(x ,y) = (j K 0 K 2 J ~1 + X(j)K! 2 K 2 j- 2)(K2)

+ j K1K2J - 1. K1
+ K 2 J .K 0

=> KJ+ 1 *5(x,y) = jK 0 K 2J + X(j)K 1 2 K 2 j _ 1 + 2jK 1 2 K 2 j _ 1 + KqK2J

= (j + 1) K 0 K 2 J + (2 j + X (j)) K 1 2K 2 J - 1

Let 1 = j +1 and then

KUfiix.y) = lKoKg 1 ’ 1 + (2(1-1) + X(1))K12K 21~2

at x = 1 - 1 , y = 1 - 1

24

But (2(1-1) + X(l)) is a function equal to its last value plus

twice the last iteration number, which can be written

1-1
(2(1-1) + X (1)) - 2(I m)

m=0

And therefore,

1-1
K^Sfx.y) = 1K 0 K 2 1 - 1 + 2 (S m) K 1 2 K 2 1 - 2

m = 0

Since K-*-*S(x,y) has the same form as KJ*S(x,y), in general,
Kn*>S(x,y) at x = n-1, y = n-1 can be expressed as

1-1
Kn*S(x,y) = nK 0 K 2 n _ 1 + 2(Sm)K 1 2 K 2 n “ 2

m=0

for x = n- 1 , y = n - 1

In summary, the n repeated applications of the kernel K to the
impulse function, yields:

1-1
Kn*S(x,y) = nK 0 K 2 n _ 1 + 2(I m) K 1 2 K 2 n _ 2 at x = n-1, y = n-1

m = 0

Kn*S(x,y) = nK^K 2 n - 1 at x = n-1, y = n

Kn*i5(x,y) - K 2n at x = n, y = n

If Kn is to have the same filtering effects as the filter defined
by the Laplacian transfer function H(s), then the response of H(s) to

an impulse function should be the same at (x,y) = {(n-l,n-l), (n-l,n),

(n,n)} as Kn*S(x,y) at the same points.

The spatial response of H(s) to an impulse function has already

been shown to be (equation (6))

h(r) = { H (s)}

Hence, from the transfer function H(s) of the filter,

Kn*8((n-1)R, (n-l)R) = h((n-l)R, (n-l)R)) (9)

Kn*5((n-1)R , nR) = h((n-l)R, n R) (10)

Kn*8 (nR, nR) = h(nR, nR) (11)

And therefore,

1-1
nK0K2n _ 1 + 2 (Sm)K 1 2 K 2 n _ 2 = h((n-l)R, (n-l)R) (12)

m=0

nK 1 K 2 n _ 1 = h((n-l)R, n R) (13)

K2n = h(nR, nR) (14)

Since n has already been calculated, the values of Kg, and K 2

can be determined.

26

2.4.1 The Search Procedure

The coefficients of the cellular filter can be estimated by a
heuristic search, as described in the flow chart in figure 3. For a
given value of n (the order of the cellular filter) a range of values
for Kq , Kj and K 2 is specified. Initially the filter coefficients are
set to the beginning of the search ranges. In turn, starting with K 2

and then progressing onto and Kq, each coefficient, ? is advanced
in pre-def ined steps, dĵ , and at each triplet (Kq, Kj , K2 } , the

response to the delta function is calculated. The value of the response
at several points in the calculated impulse response for {Kq , K]_, K2 }

is compared with the values at the corresponding points in the actual
impulse response. This error between the calculated impulse response
and the actual impulse response at the different sample points is
multiplied by a weighting function. The triplet { Kq , K4 , K 2 } with the

minimum root mean square of the weighted error in the search range is
recorded. The search range is then changed to [K^-d^, K^+d^] and the
step value is changed to d^+i . The new interval [K-j-d^, K^ + dĵ] is

searched for a minimum root mean square weighted error. This process is
repeated until reaches a desired accuracy. When reaches the
desired accuracy this value of is recorded and is used for the

searches involving the other coefficients.

When this procedure has been completed for Kq , , and K 2 , the
current pass is finished. Then the triplet {Kq , , K 2 }, with the

minimum root mean square weighted error, and the error are recorded.
Another pass is started, but this time only K 2 is set to the beginning

2.4 Heuristic Estimation of the Coefficients Kg, and K 2 •

27

Figure 3: Heuristic search algorithim for Cellular Filter coefficients

Start

set iKO> K l,
K2> to s ta rt

o f range

la s t minimum
e rro r -

MRX_VALUE

i - 2

K i * K i +
st ep(pass)

step
+

step
1

of the specified search range. Kq and remain at the values

associated with the minimum root mean square weighted error during the
last pass. When K 2 reaches a minimum, , and then K q , are searched.

The search for the final coefficient values is completed if the
minimum root mean square error for a pass is within 1 % of the minimum
root mean square error for the previous pass.

The program which implements this algorithm, find_ks.c (appendix
A), initially performs a search for the filter coefficients with a 1
decimal point accuracy. This is done in order to quickly locate the
region in which the minimum of the error function exists before

performing the search to the desired degree of accuracy.

2.4.2 Weighting Functions for Heuristic Search

The weighting function is a function of the distance of the point
from the origin and is used because the delta function, being a
mathematical entity, can only be approximated in reality. The
approximation used for the delta function in the heuristic search
algorithm is the value of actual impulse response at the origin. The
weighting function reduces the error introduced by this approximation
of the delta function.

Two different weighting functions were used in the heuristic
search algorithm, W^(i) and W 2 (i), defined as follows.

3 0

0 . 5 , o < = i < 1

0 . 9 , 1 < = i < 2

1 . 0 » i > = 2

oo , o < = i < 1

0 . 0 1 , 1 < = i < 2

0 . 1 , 2 < = i < 3
0 . 5 , 3 < = i < 4
0 . 9 , 4 < = i < 5

1 . 0 » i > = 5

Both weighting functions reduce the error between the calculated
and actual impulse responses, but Wgii) allows less contribution to the
total error number than W^(i.) at points close to the origin.

3.0 Example of the Synthesis of a Filter By a 3x3 Kernel

3.1 Test Pattern

In order to evaluate the cellular filter we will apply it to test
image, This test image is defined by the following equation.

T (x , y) = Cos (15)

where R is the grid resolution.

31

This generates a test image which consists of a sinusoid whose

frequency varies linearly with distance.

0) = 2(7l)f = 10(^ — = 10 (ff)mK

=> f = 5m

since r = m R .

When this test image is passed through a threshold function, a

function which maps the input to 1 if it is greater or equal to a given
value or maps the input to 0 otherwise, then the test image appears as
a series of concentric circles of different thicknesses. Figure 4 shows
the test pattern with a threshold value of 0. Note that the resolution
of the images in figures 4-10 is 72 dots per inch (dpi). Therefore when
used to display 300 dpi images, a correction factor of 4.1667 should be
used to calculate the actual frequencies from the images.

3.2 Synthesis of a 750Hz. 5th. Order Low Pass Bessel Filter

The aim of this example is to illustrate how a 3x3 kernel for a

cellular filter can be derived from a transfer function for a common
filter. In this example a 5th order low pass Bessel filter with 3dB
cutoff frequency of 750Hz for use on a square tessellation of
resolution 8.4667x10“^ m . (300 dpi) will be synthesised. The Bessel
filter was selected because it has a constant group delay, and
therefore will not introduce distortion into the filtered image.

3 2

Figure 4: lest Pattern thresholdea at 3

The normalised 5th order low pass Bessel transfer function is

H (sn) = _ 945
sn ̂ + 15sn^ + 105sn ̂ + 420sn2 + 945sn + 945

=> H (sn) =

94 5 { _____________ 1 _______________________________ }
(sn + 3 .6467)[(sn + 3 .3 52)2+ l .74 2 72][(sn +2.3 24 7)2+3.5712]

=> H(sn) =

945 {______________________________ 1______________________________ }
(sn+ 3.6467)(sn2 + 6.704sn+14.2 72)(sn2 + 4 .649sn+18.156)

=> H(sn) =

945{ ___________________________ 1________________ }
(sn+ 3.6467)(sn-pi)(sn~P!*)(sn-p2)(sn-p2*)

where p-j_* is the complex conjugate of pi

and Pi = -3.352 + jl.742

P 2 = -2,325 + j3.571

Therefore,

=> H(sn) =

945{ ____ ki + k2 + k2— + ____k3 + ___k^—__ }
(sn+3.6467) (sn-pi) (sn-pi*) (sn-pi) (sn-pi*)

34

k j = -- 1--
(sn 2+6.704sn+14.272)(sn2+4.649sn+18.156)

at sn = -3.646 7

=> ki = 1 = 0.0221
45 . 286

Calculating :

Calculating k 2 •

k 2 = I---
(sn + 3 .6467)(sn-pi*)(Sn- P 2)(sn~P2*)

at sn = -3.352 + jl.742

= > k 2 = ____________________________ 1___________________________________
(0.2947+jl.742)(j3.484)(-1.027-jl.829)(-1.027+j5.313)

= 1____________________________
(-6.0691+jl.0267)(-1.027-jl.82 9)(-1.02 7+j5.313)

= 1 = 1__________
(8.1108+jl0.046)(-1.027+j5.313) -61.7042+j32.7 754

= 1______________
(69.8687)exp(-j0.4883)

= (0 . 0143)exp(jO.4883)

35

k3 = 1---------------------
(sn+ 3 , 6467) (sn-p]_*) (sn-p2) (sn-P2*)

at sn = -2,325 + j3.571

= > k3 = 1--
(1.3217+j3.571)(1.02 7+jl.829)(1.027+j5.313)(j7.142)

= 1______________
(-5.174 + , j 6.085)(1,02 7 + j5.313)(J7.142)

= 1 = 1____________________

(-37.6433-j21.2402) (j7.142) 151.6975-j2 68.8484

= 1_____________
(308.6934)exp(-jl.0571)

= (3 . 2394x10“^)exp(j1.0571)

Therefore the normalised transfer function of a 5th order low pass

Bessel filter is

H(sn) = 94 5 { 0.0221 + (0 . 0143)exp(,i0 . 4883)
(sn+3.6467) (sn+(3.352-jl.742))

+ (0.0143)exp(- ,i0 . 4883) + (3.2394x10—3)exp(.il .0571)
(sn+(3.352+j1.742)) (sn+(2.325-j3.571))

Calculating k g :

+ (3. 2 394x10^3)exp(~.il .0571) } (16)
(sn+(2.325-J3.571))

This transfer function is for a filter with a 3dB cutoff frequency
of 1Hz. To scale the 3dB cutoff frequency to Wc we transform sn to
(s/Wc) .

Since the 3dB cutoff frequency of the filter is 750Hz. then

Wc = 2(ff)(fc) = 4.7124x103 rads/m.

Hence the transfer function for a 5th order low pass Bessel filter
with a 750Hz. 3dB cutoff frequency is

H (s) = 94 5 { (1 . 0414x10-^)
(s + 1 .7185x104)

+ (6.7387x1 pl) exp (.i 0 . 4 8 8 3)
(s+(1.57 96xl04-j 8 .209x103))

+ (6 . 7387x1 pi) exp (-.iO .488 3)
(s+(1.5796xl04+j 8 .20 9xl03))

+ (1 . 5 265x1 0i) exp (,i 1 . 0571)
(s+(1.0956xl04-j1.6828xl04)

+ (1. 5 2 65xlQl)exp(-.il .0571) }
(s+(1.0956xl04+j l .6828x104)

=> H (s) = (9.8412x10^)
(s+1.7185xl04)

+ (6.3681x10^) exp (.10.4883) __
(s +(1.5 796xl04-j 8 .209xl03))

3 7

+ (6.3681x10^)exp(-i0.4883)
(s+(1.5 796x104+ j 8 .209x103))

+ (1 . 442 5x10-^)exp(.il . 0571)
(s+(1 ,095 6xl04-jl.6828xl04)

+ (1■4425x10—)exp(-i 1.0571)
(s+(1.09 5 6xl04+ j l .6828x104)

Since {(s+a)"1} = exp(-ar), then the impulse response is

h(r) = (9.8412xl04)exp-(1.718 5x10 4)r
+ (6.368lxl04)exp(jO.488 3)exp(-(1.5796xl04- j 8 .209x103)r)
+ (6.3681xl04)exp(-j 0.4 883)exp(-(1.5796x104 +j8.209x103)r)
+ (1.442 5xl04)exp(jl.05 71)exp(-(1.0956xl04-j1 .6828xl04)r)
+ (1.4425xl04)exp(-j 1.0571)exp(-(1.0956xl04+j1.6828xl04)r)

But since exp(j a)+exp(-j a) = 2Cos(a), the impulse response becomes

h(r) = (9.8412xl04)exp-(1.7185xl04)r
+ (6.368lxl04)exp(-(1.5796x104)r)2Cos((8.209x104)r + 0 .4883)
+ (1 .442 5xl0 4)exp(-(1.09 5 6xl0 4)r)2Cos((1.6828xl04)r + 1 .0571)

Therefore, the impulse response of a 5th. order low pass Bessel

filter with a 3dB cutoff frequency of 750Hz. is

h(r) = (9.8412xl04)exp-(1.7185xl04)r
+ (1 . 2736x105)exp(-(1.5796xl04)r)Cos((8.209xl04)r+0.4883)
+ (2.885xl04)exp(-(1.0956xl04)r)Cos((1.6828xl04)r+l.0571)

3 8

and the envelope function is

he (r) = (9 . 8412xl04)exp-(1.7185xl04)r

+ (1 . 2736xl05)exp(-(l.5 796xl04)r)
+ (2.885xl04)exp(-(1.0956xl04)r)

In order to calculate the order of the cellular filter which
synthesises the 5th. order Bessel filter, the impulse response and the
impulse response envelope are calculated at multiples of y[2 times the
resolution of the grid being used. In this case the resolution R =

8.4667xl0_5m. .

nR V 2 nR h(\/2 nR) hc (\/2nR)

8 R 11 . 31370850R -0 . 09077836 0 .83978480

9R 12.72792206R 0 .19838985 0.22113703

1 OR 14.14213 56 2R -0.04136556 0 .05882040

H R 15.55634918R -0.00516089 0.01573345

12R 16.97056274R 0.00419819 0.00422143

13R 18.38477631R -0.00058706 0.00113457
14R 19.79898987R -0.00016676 0.00030522

15R 21.21320343R 0.00008129 0.00008215
16R 22.62741699R -0.00000674 0 . 0 0 0 0 2 2 1 2

A resolution of 8 bits in image intensity gives a minimum image
intensity value of 0.003906. The selection of the order of the cellular
filter (n), as described in section 2 .2 , is to choose n such that it is

3 9

the largest value for n where |h(V2nR[> 0.003906 and he (\[2(n+1) R) <

0.003906, In this case n is 12.

3.2.1 Filter Coefficients Using Derived Equations

We have already determined that n = 12. Therefore, from equation
(14), we have

K 2n = h (nR, nR)

=> K 2 1 2 = h (12R, 12R) = 0.00419708

=> K 2 = 0.63374

Using this value for K 2 in equation (13) gives

nKlK 2 n ~ 1 - h ((n-l)R, nR)

=> 12K1 (0.63374)11 = h (11R, 12R) = 0.00510807

=> Kj = 0.00510807 = 0.06428

12(0.63374)1!

Substituting the values for and K 2 into equation (12) gives

1-1
nK 0 K 2 n _ 1 + 2(Im)K 1 2 K 2 n _ 2 = h((n-l)R, (n-l)R)

m=0

40

=> 11KQK211 + 2(6 6)K12K 210 = h(llR, 11R) = -0.00516913

=> K0 (0.07947) + 0.0056995 = -0.00516913

=> K 0 = -0.0108686 = -0.13676

0 .07947

In summary,

K 0 = -0.13676
= 0.06428

K 2 = 0.63374

If we sum the elements of the kernel, we find that the sum is not

unity.

Sk = K0 + 4 K i + 4K2 = 2.65532

Because the sum of the filter kernel elements are not unity we
will get a combination of amplification and inversion. This is avoided
by normalising the kernel, such that the sum of the elements of the

kernel is unity.

Therefore,

Kqn = K 0 /Sk = -0.0515

K i n = K l/Sk = 0.02421

k 2N = K 2/Sk = 0.23867

41

and n = 12.

When this cellular filter was applied to test image the results
were a isotropic low pass filter with a 3dB cutoff frequency of
approximately 450Hz. (figure 5). The amplitude response at 900Hz. was
approximately -13dB which is consistent with the response of a 5th.
order low pass Bessel filter with a 3dB cutoff frequency of 450Hz.
(f igure 6) .

3.2.2 Filter Coefficients Using Heuristic Search with W^(n)

Using the heuristic search method, with weighting function W^(n),

to determine the filter coefficients results in the following filter
coefficients.

K 0 = -0.40315
Ki = -0.15082

K 2 = -0.00461

which when normalised yields

K q n = 0.39337
K 1n = 0.14716
K2N = 0.0045

and n = 12.

42

Figure 5: 750h'z Analytical Filter at —5dB

• iiilr
’ ilii-

lit

n

i; * tf*frfttT¿n£Wr >*1,

 -—-A)H HHIMl,!AZÆmvtg*g?

Figure bi 750Hz. Analytical Filter at -13dB

When this cellular filter was applied to test image the results
were an isotropic low pass filter with a 3dB cutoff frequency of

approximately 750Hz. (figure 7). The amplitude response at 1500Hz. was
approximately -13dB which is consistent with the response of a 5th.
order low pass Bessel filter (figure 8).

3.2.3 Filter Coefficients Using Heuristic Search with W 2 (n)

Using the heuristic search method, with weighting function W 2 (n),

to determine the filter coefficients results in the following filter

coe f f ic ients.

K 0 = -0.0487
Ki = 0.15081
K 2 = -0.03142

which when normalised yields

K0n = -0.11356
K 1n = 0.35165

K2N = -0.07326

and n = 1 2 .

When this cellular filter was applied to test image the results
were an anisotropic filter (figure 9). At low frequencies, up to 1kHz.
the behaviour was low pass in nature, but still anisotropic. At higher

45

Figure 7: 75BHz W1 Heuristic Filter at -5dB

jj ; i fc.

dUMP1

Fioure 8: 750Hz W1 Heuristic Filter at -13d3

u

Fiaure ?: 750Hz W2 Heuristic Filter at —5dB

frequencies there was no discernible behaviour other than anisotropic

behaviour.

3.2.4 Summary of Results

Deriving the cellular filter coefficients from the equations 12,
13 and 14 does not produce the expected results. This is due to the
fact that we are trying to find a kernel which will match impulse
response of the filter from only 3 points, far from the origin. If the
procedure for deriving equations 12, 13 and 14 was applied to other
points, producing equations for the response at further points then the
response of the cellular filter may be closer to the expected response.

Using the heuristic search algorithm with weighting function
W 2 (n) does not produce good results since W 2 (n) overcompensates for

errors near the origin during the search.

Using the heuristic search algorithm with weighting function W^(n)

produced excellent results. The filter has the correct cutoff frequency

and the correct amplitude response.

3.3 Synthesis of a 2kHz. 5th. Order Low Pass Bessel Filter

From equation (16), section 3.2, the normalised transfer function
for a 5th. order low pass Bessel filter is given by:

49

H(sn) = 94 5 { 0 . 0221 + (0 . 0143) exp(,i 0 . 4883)
(sn+ 3 .6467) (sn +(3.352-jl.742))

+ (0.0143)exp(- i0 .4883) + (3 . 2394x 1 0 ^) exp(,i 1. 05 71)
(sn+ (3.352+jl.742)) (sn+ (2.325-j3.571))

+ (3. 2394x10^1) exp (-.il .0571) }
(sn+(2.325-j3.571))

If the cutoff frequency is 2kHz., then 27WC = 1.2566xl04 rads/m.
Applying the transform sn to (s/&)c) to scale the 3dB. cutoff frequency
to fc gives the transfer function of a 5th. order 500Hz. low pass

Bessel filter as

H (s) = 945 ((2.772x10^)
(s+4.5826xl04)

+ t 1 . 79 7x10^)exp(,i0 . 4883)
(s+(4.2122xl04-j2.1891xl04))

+ (1.797xlO^)exp(- i0.4883)
(s+(4.2122xl04+j2.1891xl04))

+ (4.0708xlQl)exp(.11. 05 71)
(s+(2.9217xl04-j4.7136xl04))

+ <4.0708x101)exp(-,i 1 . 0 5 71_L }
(s+(2.9217xl04+j4.7136xl04))

=> H (s) = (2.6245xlp£)
(s+4.5826xl04)

+ { I . 6982x1 0 - ■) expi.jO . 4883)
(s+(4.2122xl04-j2.1891xl04))

50

+ (1 . 6 98 2xl0-5-)exp(--i0.4883)
(s+(4.2122xl04+j2.1891xl04))

+ (3.84 69x10 4) exp(.i 1 . 05 71)
(s+(2.9217xl04-j4.7136xl04))

+ (3 . 84 69x1 0 ^)exp(- .i 1.0571)
(s+(2.9217xl04+j4.7136x104))

Using the inverse Laplace transform L~ ̂ { (s + a) ~ -*• } = exp(-ar), gives
the impulse response as

h(r) = (2.6245x10^)e xp(-(4.582 6x104)r)
+ (1.6982x105)exp(j0.4883)exp(-(4.2122x104-j2.1891xl04)r)
+ (1.6982xl05)exp(-j0.4883)exp(-(4.2122xl04+j2.1891xl04)r)
+ (3.8469x104)exp(j l .0571)exp(-(2.9217x104-j4.7136x104)r)
+ (3 .8469x104)exp(-jl.0571)exp(-(2.9217x104 +j4.7136xl04)r)

Since exp(ja)+exp(-j a) = 2Cos(a), the impulse response function of
a 5th. order 2kHz. low pass Bessel filter is

h {r) = (2.6245xl05)exp(-(4.5826xl04)r)
+ (3.3964xl05)exp(-(4.2122xl04))Cos((2.1891xl04)r + 0 .4883)
+ (7 . 6938x104)exp(-(2.9217xl04))Cos((4.7136x104)r+1.05 71)

and the impulse response envelope function is

he (r) = (2.6245xl05)exp(-(4.5826xl04)r)

+ (3.3964xl05)exP (-(4.2122xl04))
+ (7.6938xl04)exp(-(2.9217xl04))

51

To calculate the order of the cellular filter which we will use to
synthesise the 5th. order 2kHz. low pass Bessel filter, we calculate
the impulse response and the impulse response envelope at multiples of

times the resolution of the grid we are using. Since the resolution

R = 8.4667xl0-^m., this gives:

nR \/2nR h(\/2 nR) h c (^ n R)

2R 2.82842712R 85 .19818548 89.01947656

3R 4.24264069R 1 . 36309284 2 .23882155

4R 5.65685425R 0 . 00462502 0 .06506179

5R 7.07106781R -0 . 00104613 0.00195191

6 R 8.48528137R -0.00005509 0 . 00005894

7R 9.89949493R -0.00000171 0.00000178

A resolution of 8 bits in image intensity gives a minimum image
intensity value of 0.003906. Therefore the selection of the order ,n ,

of the cellular filter is such that it is the largest value of n where
h(j h(V2nR) 1 > 0.003906 and he (\/2 (n+1) R) < 0.003906. From the data in

the table above the correct value for the order of the cellular filter

is 4 .

Using the heuristic search technique, with wieghting function
Wj(n), to calculate the cellular filter coefficients, the following

coefficients were obtained.

52

Kq = -0.18406

Ki = -0.03752

K 2 = -0.00631

Since the sum of the kernel, Sk , is not unity (-0.35938), the

kernel must be normalised to avoid unwanted inversion and attenuation.
This gives a normalised kernel for a cellular filter to implement a
5th. order 2kHz. low pass Bessel filter of:

k 0N = K0/Sk = 0-51216
K i n = K l/Sk = 0.1044
k 2N = K 2/Sk = 0.01756

and the order of the cellular filter n = 4.

When this cellular filter was applied to the test image it
produced a low pass filter with an incorrect cutoff frequency which did

not exhibit isotropic behaviour (figure 1 0).

This anisotropic behaviour and incorrect cutoff frequency
highlight an important limitation of this method for synthesising 2 -
dimensional image filters by cellular automata. The central idea of
this technique is find a cellular automaton, which after N iterations
on the impulse signal, produces a result which is a sampled version of
the desired filter’s impulse response. The number of samples is equal
to the number of iterations (order of the cellular filter) and the
sampling rate of the impulse response is the resolution of the
underlying grid. As in all sampling operations the Nyquist sampling
criterion must be met for a set of samples to uniquely determine a

Figure 10: 2kHz 101 Heuristic Filter at -15dB

given function. The Nyquist sampling theorem states that in order for a

set of samples to uniquely represent a given function, the sampling
frequency must be greater than twice the highest frequency component in
the function. In this technique the sampling rate is fixed by the
resolution of the underlying grid and cannot be changed. Therefore,
when the order of the cellular filter is low, not enough samples are
obtained to uniquely represent the impulse response, and the cellular
filter does not have the desired effects.

4.0 Synthesis of Other Filter Types

This technique for synthesising 2-dimensional image filters by
cellular automata can be extended to other types of filters, such as

high pass, band pass and band reject filters, as well as low pass
filters. Since the basic idea of the technique is to find a cellular
automaton which after N iterations on the impulse signal produces a
sampled version of the impulse response of the filter, in order to
synthesise other type of filters all that is needed is the transfer
function of the filter to be synthesised. These transfer functions can
be obtained by two methods:

(1) by consulting tables of transfer functions in references on
filter design.

(2) by applying a frequency transform to a low pass filter
transfer function

55

The use of frequency transformations on low pass filter transfer

functions is a common way to derive the transfer functions of high
pass, band pass, and other filters. Some of the common frequency

transforms are:

Low Pass to High Pass transform

For a given low pass transfer function, the high pass transfer
function can be obtained by substituting s-l for s in the transfer
function.

Low Pass to Band Pass transform

For a given low pass transfer function, the equivalent band pass
transfer function can be obtained by the transform

s -> 2 + <y0 2 Q(s n 2 + 1)0
(W3dB)ss sn

where = ^dB pass band width
M q = the centre frequency defined by

which approximates ---2 for -----
W3dB

3dB

56

For a given low pass transfer function, the equivalent band pass

transfer function can be obtained by the transform

(̂ 3dB }_s sn
s 2 +W 0 2 Q(sn 2 +1)

where W q , ^3 ^ 3 , Q and sn have the same definitions as for the low

pass to band pass frequency transform.

As an example of how such a frequency transform can be used in
this technique to synthesise a band pass filter consider the transfer

function of a 1st order low pass Bessel filter.

H(s) = _J_
s+ 1

In order to transform this into the transfer function of a 1st.
order band pass Bessel filter with lower and upper 3dB cutoff
frequencies of 400Hz and 800Hz. respectively, the following transform
is applied

s 2 + « 0 2s - > --------
(«3dB)s

where = ^271(2800)271(400) = 3.5543xl0 3

and ^ 3 , ^ 3 = 800 - 400 = 400

Hence the transfer function of such a band pass filter is

Leiw P to Band Re.iect transform

57

H (s) = l&3dD -i§____ (1 7)

s2+(W3dB)s+W02

s hh 0{The inverse Laplace transform of r—r — is given by(s+$)*+y*

IT? = i t V (^) 2+y2] expl-Otr) Sin(Yr+«fr) (18)(s+/3) + y

y
where <(> = Tan--*-̂ 01-/3

But s+0{ s+a
(s+ ^) 2 + y2 s 2 + 2 ^s+ (^ 2 + V2)

and comparing this to equation (17) gives the following equalities

Of = 0

y2 =

and therefore, by equation (18), the impulse response of the 1 st
order band pass Bessel filter is

L_ 1 {H(s)} = h (r) = — | V(<H3) 2 + Y2"] exp(-Ofr) Sin(7r+0)
7

, - , W3dB „ „ . 9 W3dB2 4= > h (r) = - - -.= ■-==■ Sm(Uit)o 7— " r + <P))

58

where <p = Tan ̂(- -- —-------)
^3dB

2

=> h(r) = (4.0063xl02)Sin((3.5487xl03)r-1.5145)

Since this is a 1st. order band pass transfer function, it has no
negative exponential term. Therefore the method for selecting the order
of the cellular filter is no longer valid sinee there is no value of
n=nQ such that ¡h(\/2nR)l < minimum image intensity for n>nQ . However

the frequency of h(r) is

3.5487xl03 rads/m = 2fff
=> f = 564.79 Hz.

On a grid of 300 dpi (8.4667xl0“^ m) the number of samples needed
to characterise a full cycle is

((8 . 4667xl0~5)(564.79))_1 = 20.91

Therefore the order of the cellular filter needed to synthesise
the 1st. order band pass Bessel filter with lower and upper 3dB cutoff
frequencies of 400Hz. and 800Hz. respectively is 21. The coefficients
of the cellular filter, i.e. the elements of the cellular automaton can
now be found by heuristic search.

59

5.0 Parallel Implementation of Cellular Filters

Cellular automata are an example of a highly symmetrical data-
parallel computational system, in which the data decomposition between
computational nodes is congruent. Within a given iteration, one
cellular automaton does not depend on any other cellular automaton in
order to produce its next state. All the cellular automata are
independent of each other, and all of them can operate in parallel.
This is the main advantage of using cellular filters for filtering 2-
dimensional images. Given a network of processors, a set of cellular
automata can be assigned to each processor. Since the cellular automata
have a congruent data decomposition, by adding more processors, the
number of cellular automata assigned to each processor can be reduced
linearly, and therefore the time taken to filter an image can be
reduced approximately linearly. Since these processors need only be
capable of floating-point addition and multiplication to a limited

accuracy (8 bits in a system with 256 shades of grey), this allows for
real time image filtering at relatively low costs.

The occam programs in Appendices C and D are just one possible
parallel implementation of cellular filters. Appendix C contains a
listing of netfilt.tsr, an occam program designed to run on a network
of four transputers connected in a pipeline. Appendix D contains a
listing of host.tsr, an occam program which runs on the host transputer
which can access the DOS file structure.

Each network transputer has two parallel processes running on it,
a data.manager process and an image.filter process. The image.filter
process receives a portion of the overall image, together with the

6 0

elements of the cellular automaton which will be used to synthesise the
desired filter, from the host transputer via the network of
data.manager processes on the different transputers. It then starts M
parallel processes, where M is the number of pixels in the image
portion. Each process is a cellular automaton. While there is a slight
performance disadvantage in implementing the M cellular automata on a
single transputer in parallel rather then sequentially, it does
emphasise the inherent parallel nature of cellular automata. After
image.filter has performed one iteration of the cellular automata, the
image portion is sent back the host transputer via the network of
data.manager processes.

The data.manager process acts as a multiplexer for its associated
image.filter process. The messages that the data.manager process
receives from the image.filter process are reframed to include a node
identification number. The messages are then sent to the host
transputer via the data.manager process on the next transputer upstream
on the pipeline of transputers. Messages which the data.manager process
receives from the data.manager process on the next transputer
downstream on the pipeline of transputers are passed on to the upstream
data.manager process unaltered. When the data.manager process receives
messages from the host transputer via the upstream data.manager
processes, it checks the node identification number to determine if the
message is destined for the image.filter process associated with it. If
the message is destines for the image.filter process running on the
same transputer as the data.manager process, the node identification
number is stripped off and the message is passed on to the image.filter
process. For all messages, except the quit message, if the data.manager
process finds that the node identification number does not match this

node’s identification number, the message is passed on to the next

downstream data.manager process. Quit messages are handled differently.
If the quit message is destined for this node, the data.manager

process passes the quit message on to the image.filter process, which
then terminates. The data.manager process then checks to see if all
downstream nodes have received quit messages. If they have, the
data.manager process then terminates itself. If all the downstream
nodes have not received a quit message, it records itself as
terminated, but does not actually terminate itself just then. The
data.manager process stays active. If the message is destined for
another node, prior to being passed on downstream, the node the quit

message is destined for is recorded as terminating by this node. After
the message has been passed on downstream the data.manager process then
checks to see if all downstream nodes, including itself, have received
quit messages. If all downstream nodes and this node have received quit

messages the data.manager process will terminate itself.

The process running on the host transputer acts as a file manager,
interfacing the network of image.filter processes to the user and to
the DOS file system. After it has determined, from the user, the file
containing the image to be processed, and the coefficients and order of
the cellular filter, the host process initialises the network of
data.manager processes and kick starts the network of image.filter
processes by sending each image.filter process a request,something

message. Each image.filter process will then request a portion of the
image to which it will apply one iteration of the cellular filter.
After an image.filter process has processed the image portion, the
image portion is sent back to the host process for filing. The host
process will send an acknowledgement to the appropriate image.filter

process to signal the image portion has been saved. The image.filter
process will then request another image portion to process. When an

image.filter process requests another image portion, and there is no
more image portions left to be processed in this iteration of the
cellular filter, the host process sends a hold message to the
image.filter process. When the whole image has received an iteration of
the cellular filter, another iteration is started by the host process
sending request.some thing messages to the network of image.filter
processes. This sequence of events continues until the required number
of iterations has been carried out. The host process then shuts the
transputer network down by sending quit messages to each data.manager
process.

The following is the message structure between the host process
and the data.manager process, and the data.manager process and the

image.filter process.

Host process messages transmitted

message name parameters final destination response

initialise node id data.manager none
quit node id image.filter none

hold node id image.f i1 ter none
request.something node id image.f ilter request.image
f ilter.param node id , image.filter none

subimage id,
filter coefficients

6 3

image.row

image.saved

node id,

subimage id,
row of image
node id

image.filter none

image.f ilter none

Host process

message name

request.image

image.filtered

filtered.row

received

parameters

node id

node id

subimage id
node id,
subimage
filtered

initial

image.filter

image.filter

image.f ilter

response

filter.param
image.row
none

image.saved

id,
row of image

mes sages

source

The main disadvantage to this implementation of a cellular filter
is the bottleneck introduced by the host process accessing the DOS file
system. In a commercial implementation using a stand alone network of
transputers, the host transputer would have enough memory to hold the
entire image in memory, and the memory on each transputer in the
network would only have enough memory to meet its requirements. Then,
provided that the number of transputers in the network is an factor of
the number of subimages in the total image, then the load balance is
equal amoung all the transputers, and the performance of the filter
increases linearly with the number of transputers.

64

6.0 Conclusions

The synthesis of a given 2-dimensional grey level image filter by
cellular automata can be successfully carried out using the technique
described in this thesis. The basic goal of the technique is to find a
cellular automaton which when replicated M times (where M is the size
of the image, and each cellular automaton is assigned to each pixel in
the image) will produce a sampled version of the impulse response of
the image filter to be synthesised, after N iterations on the impulse

s ignal.

Two techniques for finding the kernel of such a cellular automaton
were investigated, an analytical evaluation of the elements of the
kernel and a heuristic search for the elements of the kernel.

The analytical technique did not produce good results, but this
was due to the fact that only three points, at a distance from the

origin of the impulse signal, were used to calculate the kernel. For
this analytical technique to produce accurate results, further research
is necessary to produce a general equation which describes the
response, after N iteration, of a set of cellular automata using a
given kernel at any point in the resulting signal array.

The heuristic search for the elements of the kernel was
investigated using two different wieghting functions for the error
between the impulse response and the kernel after N iterations.
Wieghting function W 2 (n) was designed to mimic the analytical

technique, by concentrating on matching the response of the kernel
after N iteration on the impulse signal, to the impulse response at

65

points distant from the origin of the impulse signal. Like the
analytical technique, a heuristic search using wieghting function W 2 (n)

does not produce good results. Wieghting function W^(n) was designed to

give a closer fit to the impulse response at all points, while also
allowing for misleading effects due to approximating the impulse
signal. Heuristic searches using wieghting function Wj^(n) produced

excellent results with the correct cutoff frequencies and accurate
amplitude response characteristics.

Like all systems which seek to represent reality by a digitally
sampled representation, this thesis has shown that cellular filters are
also subject to the Nyquist sampling criterion. This limitation means
that low order cellular filters are subject to aliasing effects and do

not produce isotropic results.

In summary, the filtering behaviour of cellular automata on binary
images has been known since the mid 1960’s. In the late 1970’s
researchers, such as Preston and Duff, extended the use of cellular
automata to the filtering of grey level images, by converting the grey
level image into a series of binary images, applying cellular automata
to these binary images and then reconstituting them back into a grey
level image. These cellular filters were found empirically, and while
the cutoff frequencies of these low pass filters could be altered, the
response characteristics were fixed. In recent years, other
researchers, such as Huang, Jenkins and Sawchuk, while working on
digital cellular image processors and their associated algebra, have
commented on the filtering characteristics on certain cellular
automaton which have been found empirically. To date , no method has
existed for deriving the kernel of a cellular filter which will have

66

characteristics defined by the user. The technique described in this
thesis, based in the formal methods of linear systems analysis, enables

the user to successfully derive the kernel of a cellular filter to
match the behaviour of a known filter described by its Laplacian

transfer function.

7.0 References

[1] "Modern Cellular Automata - Theory and Applications"; K. Preston

and M.J. 6 . Duff; Plenum; 1984.

[2] "Binary Image Algebra and Optical Cellular Logic Processor
Design"; K.S. Huang, B.K. Jenkins and A.A. Sawchuk; Computer

Vision, Graphics and Image Processing vol. 45 no. 3 p295-345;

1989 .

[3] "Introduction to Linear System Analysis"; Matrix Publishers; 1976.

[4] "Modern Control Systems"; R.C. Dorf; Addison-Wesley Publishing
C o .; 1980.

[5] "Manual of Active Filter Design"; J.L. Hilburn and D.E. Johnson;
McGraw-Hill; 1973.

[6] "Filter Design Tables and Graphs"; E. Christian and F. Eisenman;

2nd. Ed.; Wiley; 1966.

67

I 7] "Introduction to the Theory and Design of Active Filters"; L.P.

Huelsman and P.E. Allen; McGraw-Hill; 1980.

■

6 8

Appendix A
This appendix contains a listing of the C program, find_ks.c,
which implements the heuristic search algorithm for the
coefficients of the cellular filter which synthesises the filter
whose impulse response is contained in the procedure
impulse response,

/ ill ^ J/ iL> «Jy vL vif iL vL* kf/ ill J/ «ir vL. vii ^ ^ «L «1# iL# vL vL* vl. î «L xl̂ >L< vL* ^ ^ «L il« \I/ d# ^ ^ <L* L̂- 1̂* *L* vJL* ii# ̂ L- vL ^ «ir ^ ^ ^ \L >X» %L ^ *A* *X- ^ ^ \b %i* ^ vL* viz \L* X ^ \i/ d* /
^ ^ ^ ^ ^ ^ ^ ^ ^ ̂ ^ ^ *p« ^ ^ ^ ^ ^ rp ^ p̂i /f* /p fp rf> ip /f» ff» ip ^ 'f' ip ip *r ^ ^ ^ ^ ip m* t* *p * *f« 4* ^ *T' T' T' rr* *P iT' 'T' 'I' M’ 'T*' 'T* 'T* /

/* */
/* Filename: find_ks.c Revision: 1.0 */
/* Author: David Sinclair Last Edit: 05Apr91 */
/* */
/* This program locates the coefficients of the kernal which has */
/* the minimum mean square error from the impulse response for the */
/* filter whose impulse response is defined by impulse_response (). */
/* */
/* Command line (Microsoft compiler): cl /W3 response.c */
/* */
J iji ^ ^ ^ ^ ^ ^ jjj/ k|/ lj/ V̂y ^ «̂y x|/ lj> vjj ijy v|* ^ ^ l|/ ^ ^ v|̂ »|/ ||> ^ ^ ^ l|/ \|/ l|y ^ ^ \|/ *|/ ^ *y* ̂ ^ ^ ^ ^ ^ v|>* ^ ^ ^ ^

/* */
/* Version History */
/* * /
/* Revision Notes */
/* */
/* */
/* 1,00 Initial Development Version */
/* */

i vi- «1* «1* vi> X vL ^ iL vL. ili VL> ii« \Lr ^ vL* iL. iX< *V *X* *ls iL •X> L̂. tl/ il< •!> vL* <X< ^ jy J* ^ «1̂ ^ X sli X ^ ^ J/ vL- ^ >1» vL J/ kb U> ^ ^ vL* *!■ \L> vb •1' ^ vl# il. ijj kL* d/ xO J
/ ^ /p if. ^ ^ îp ^ ^ î ^ ^ »f* ip ip ip ip ip ip <p ip ip ip *P ip 'T* ip T* 'P ip ip ip *p ip <p ip ip ip ip *p ip ip ip ip *p ip ip ip ip ip ip ip ip 'p ip ip ip ip ip ip ip *p ip ip ■p /

/****************************** header files ******************************/

£include "stdio.h"
fiinclude "stdlib.h"
£include "conio.h"
£include "math.h"
Sinclude "dos.h"
/**************************** declaration files ****************************/

definitions /
/* ASCII characters */

/* ASCII graphics characters */
£de f ine LEFT_TOP_COURNER 201
£def ine RIGHT_TOP_COURNER 187
£def i ne LEFT_BOTTOM_COURNER 200
£de f ine RIGHT_BOTTOM_COURNER 188
£de f ine HORIZONTAL_LINE 205

/* screen dimensions, counting from 0 */
£def ine SCREEN_WIDTH 79
£de f ine SCREEN_DEPTH 23

/* miscellaneous */
£define EPSILON (double) 1.0e-08

£define TRUE
£define FALSE

0
- 1

£define SWEEP_TABLE_SIZE 11
£define MAX_ERROR 1.0e + 300

/* response size definitions */
£define R00T2 (double) 1.414213562e + 00
£define RESOLUTION (double) 8.4667e-05
£define R.ESPONSE_WIDTH 31
£define RESPONSE_DEPTH 31

/* BIOS video services */

£define VIDEO 0x10
£def ine SET. CURSOR_POS 0x02
£define READ_CURSOR_POS 0x03
£define DOS_SCROLL_WINDOW_UP 0x06
£define CURRENT_VIDEO._STATE OxOf

/* DOS colours */
Edefine BLACK 0x00
/**************************** global variables ****************************/

module variables I****************************/

int wieght_fn;
float filter_k 0 ;
float filter_kl;
float filter_k 2 ;
float delta_fn;
float response [RESPONSE_DEPTH+2][RESPONSE_WIDTH+2];
float resultant [RESPONSE_DEPTH+2][RESP0NSE_WIDTH+2];
float step_table [SWEEP_TABLE_SIZE] = {l.Of, 5.0e-01f, 0.25f, O.lf, O.Olf,

O.OOlf, O.OOOlf, 0.00001f, 0.000001f,
0 .0 0 0 0 0 0 1 f, 0 .0 0 0 0 0 0 0 1 f };

J)|s ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂ l|# ̂ ̂ «I# ̂ ̂ ̂̂ ^

int main ()
I

/* declare local variables */
int iterations, sweep, end_sweep, precision, pass;
int quit_flag = FALSE;

int low resolution = TRUE;
float kO_at_min, kl_at_min, k 2 _at_min, step;
float best_kO, best_kl, best_k 2 ;
float max_extent_kO, max_extent_kl, max_extent_k 2 ;
float low_extent_kO , low_extent__kl , low_extent_k 2 ;
float low_range, high_range;
double error, minimum_error, last_minimum_error;

/* function prototypes */
double root__mean._square_error (float, float, float, int);
double impulse_response (double);
float calculate_step (unsigned int);
void clear_screen (void);
void set_cursor_position (unsigned int, unsigned int);
void draw_border (void);
void filter_calc_data (char *, float, float);
void print_results (float, float, float, int, double);
void show_mean_square_error (double, double, float);
void get_filter_data (int *, int *, float *, float *, float *, float *,

float *, float *, int *);

/* get cellular filter data boundaries */
get_filter_data (^iterations, &precision, &low_extent_kO, &max_extent_kO,

&,low_extent_kl , &max_extent_kl , &low_extent_k 2 ,
&max_extent_k 2 , &wieght_fn);

/* initialise variables */

delta_fn = (float) impulse_response ((double) 0 .0);
best_k 0 = low_ext.ent_kO ;
best_kl = low_extent_kl;
best k 2 = low_extent_k 2 ;
pass = 0 ;
end_s\ieep = 4 ;
filter_k 0 = 1 ow_extent_k 0 ;
filter_kl = low_extent_kl;
last_minimum_error = MAX_ERROR;
step = 1 .O f ;
error = MAX_ER,R0R;

do
{
pass++;
minimum_error = MAX_ERROR;
filter_k 2 = low_extent_k 2 ;
k 2 _at_min = filter_k 2 ;

/* find minimum root mean square error K2 with KO and K1 constant */

high_.range = max_extent_k 2 ;
low_range = 1 ow_extent_k 2 ;

for (sweep = 1 ; sweep <= end_sweep; sweep++)
{
for (; filter_k 2 <= high_range; filter k 2 += step)

{
/* calculate root mean square error between kernal */
/* and impulse response */
filter_calc data ("K2", low_range, high_range);
if (filter_k 2 != low^range)

show_mean_square_error (error, minimum_error, k 2 _at_min);
set_cursor_position (20,15);
printf ("Pass %s%d", (end_sweep == 4 ? "pre-": ""), pass);
error = root_mean_square error (filter_k 0 , filter_kl, filter_k 2 ,

iterations);
if (error < minimum_error)

{
minimum^error = error;
k 2 _at_inin = filter_k 2 ;
}

step = calculate_step (sweep);
}

low_range = k 2 _at_min - step;
filter_k 2 = low_range;
high_range = k 2 _at_min + step;
}

filter_k 2 =k 2 _at_min;

minimum_error = MAX_ERROR;
filter_kl = low_extent__kl ;
kl_at_jnin = filter_kl;
/* find minimum root mean square error Kl with KO and K2 constant */
hig'h_range = max_extent_kl ;
low_range = low_extent_kl;
for (sweep = 1 ; sweep <= end_sweep; sweep++)

{
for (; filter_kl <= hig’h_range; filter_kl += step)

{
/* calculate root mean square error between kernal */
/* and impulse response */
filter_calc data ("Kl", low_range, high_range);
if (fi.lter_kl != low_range)

show_mean_square_error (error, minimum_error, kl_at_mi.n);

set_cursor_position (20,15);
printf ("Pass %s%d", (end_sweep == 4 ? "pre-": ""), pass);
error = root_mean_square_error (fil.ter__k0 , filter_kl, filter_k 2 ,

iterations);
if (error < minimum_error)

{
minimum_error = error;
kl_at__min = filter_kl;
}

step = calculate_step (sweep);
}

low_range = kl__at_min - step;
filter_kl = low_range;
high_range = kl_at_min + step;
}

filter_kl =kl_at_min;

minimum_error = MAX_ERROR;
filter_k 0 = low_extent_kO;
k 0 _at_min = filter_k 0 ;
/* find minimum root mean square error K0 with K1 and K2 constant */
high_range = max_extent_kO;
low_range = low_extent_kO;

for (sweep = 1 ; sweep <= end_sweep; sweep++)
{
for (; filter_k0 <= high_range; filter kO += step)

{
/* calculate root mean square error between kernal */
/* and impulse response */
filter_calc_data ("KO", low_range, high_range);
if (filter_k 0 != low_range)

show_mean_square_error (error, minimum_error, k 0 _at_min);
set_cursor_position (20,15);
printf ("Pass %s%d", (end_sweep == 4 ? "pre-": ""), pass);
error = root_mean_square_error (filter_k 0 , filter_.kl, filter_k 2 ,

iterations);
if (error < minimum_error)

{
minimum_error = error;
k 0 _at_min = filter_k 0 ;
}

step = calculate_step (sweep);
}

low_range = kO_at_min - step;
filter_kO = low_range;
high_range = kO_at_min + step;
}

filter_kO =kO_at__min;
/* are we within 1% of last minimum error

if (minimum_error < (last_minimum_error * (double) 0.99))
{
last_minimum_error = minimum_error;
best_k 0 = filter_k 0
best_kl = filter_kl
best_k 2 = filter_k 2
}

else
{
if (low_resolution == TRUE)

{
low_resolution = FALSE;
end_sweep = precision + 3;
pass = 0 ;
}

else
quit_f.lag = TRUE;

}

}
while (quit_flag == FALSE);
/* print out the results */
print_results (best_k 0 , best_kl, best_k 2 , pass, minimum_error) ;

return (0);

/* This routine returns a measure of the root mean square error between
/* the impulse response defined by impu.lse_response () and the cellular
/* filter defined by K0, K 1 , K2 and N.
double root_mean_square_error (float k O , float k l , float k 2 , int n)
{

int i, 1 , pass, x, y;
float *p, *r;
double actual, calculated, error;
double error_squared_sum;
double impulse_response (double);
double weight (int);

/* initialise response with delta function */
for (1 = (RESPONSE_WIDTH+2)*(RESPONSE_DEPTH+2), p = (float *) response;

1 ! - 0 ; 1 — , p + +)
* P = O.Of; / * clear out response buffer * /

response [(RESPONSE_WIDTH+2)/2] [(RESP0NSE_DEPTH+2)/ 2] = delta_fn;
for (1 = (RESPONSE_WIDTH+2)*(RESPONSE_DEPTH+2), p = (float *) resultant;

1 != 0 ; 1 --, p++)
p = O.Of; / clear out resultant buffer */

/* apply filter to delta function */
pass = 1
whi le

{
(pass + + < = n)

for (y = 1; y <= ((RESPONSE_WIDTH+2)/ 2); y++)
{
for (x = y; x <= ((RESPONSE_WIDTH+2)/ 2); x++)

{
p = &(response [x][y]);
r = &(resultant [x]ty])j
* r = (*P

+
+
+
+
+
+
+
+

* kO)
*(p-(1)) * kl)
* (p+(1)) * k l)
*(p-(((RESPONSE_WIDTH + 2) + l))) * k2)
*(p-((RESPONSE_WIDTH+2))) * k l)
*(p-(((RESPONSE_WIDTH+2)-l))) * k 2)
*(p+(((RESPONSE_WIDTH+2)-l))) * k 2)
*(p+((RESPONSE_WIDTH+2))) * k l)
*(p+(((RESPONSE_WIDTH+2)+l))) * k 2)

[y][x] = resultant [x][y];
[((RESPONSE_WIDTH+2)-l) - x][y]
t y][((RESPONSE_WIDTH+2)-1) - x]
[x][((RESPONSE_WIDTH+2)-l) - y]
[((RESPONSE_WIDTH+2)-l) - yl[x]

y]
x]

resultant
resultant
re sultant
resultant
resultant
resultant [((RESPONSE_WIDTH +2) -1) - x] [((RESP0NSE__WIDTH + 2) - 1)

resultant [x][y];
resultant

resultant [x][y];

resultant [x]Iy]
resultant [x]fy]
resultant [x]|y]
resultant [x][y]

[((RESPONSE_WIDTH+2)-l) - y][((RESPONSE_WIDTH+2)-1) -

}
}
/* copy resultant to response */

for (p = (float *) response, r = (float *) resultant, i
i < (R E S P O N S E _ W I D T H + 2)*(R E S P O N S E _ D E P T H + 2); i++)

* (p + +) = * (r + +) ;
}

= 0 ;

error_squared_sum = (double) 0 .0 ;
for (i = 1 ; i < = n; i + +)

{
actual = impulse_response ((double) i * RESOLUTION);

calculated = (double) response
:[(RESP0NSE_DEPTH+2)/2] [((RESP0NSE_WIDTH + 2)/2) + i] ;

error = (actual - calculated) * weight (i);
error_squared_sum += error * error;
actual = impulse_response ((double) i * R00T2 * RESOLUTION);
calculated = (double) response

[((RESP0NSE_DEPTH+2)/2)+i][((RESP0NSE_WIDTH+2)/ 2)+ i];
error = (actual - calculated) * weight ((int) ((double) i * R00T2));
error_squared_sum += error * error;
}

error_squared_sum = error_squared_sum / (double) (2 * n);

return (sqrt (error_squared_sum));
}

/* This routine returns the interval to the next filter coefficient to be
/* checked.
float calculate_step (unsigned int sweep_.number)
{

return (step_table [sweep_number - 1]);
}

/* This routine calculates the weighting factor for the error depending on
/* its distance from the centre.
double weight (int distance)
{

switch (distance)
{
case 0 :

if (wieght_fn == 1)
return ((double) 0.5);

else
return ((double) 0 .0);

break;
case 1 :

if (wieg'ht_fn == 1)
return ((double) 0.9);

else
return ((double) 0 .0 1);

break;
case 2 :

if (wieght_fn = = 1)
return ((double) 1 .0);

else
return ((double) 0 .1);

break;
case 3:

if (wieght_fn = = 1)
return ((double) 1 .0);

}

el se
return ((double) 0.5);

break;

case 4:
if (w.ieght_fn == 1)

return ((double) 1 .0);
else

return ((double) 0.9);
break;

default:
return ((double) 1 .0);
break;

}

/* This routine returns the value of the impulse response for a specified */
/* argument. */
double impulse_response (double ar g)
{

double answer;
/* 500Hz 5th order low pass Bessel filter */
answer = (double) 6.561e+04 * exp((double) -1.1456e+04 * arg)

+ (double) 8.4908e+04 * exp((double) -l,0531e+04 * arg) *
cos(((double) 5.4727e+03 * arg) + (double) 0.4883)

+ (double) 1.9235e+04 * exp((double) -7.3042e+03 * arg) *
cos(((double) 1.1219e+04 * arg) + (double) 1.0571);

return (answer);
}

/* void draw_border (void) */
/* */
/* This routine draws a border around the screen. */
void draw_border (void)
{

int i ;
void set_cursor_position (unsigned int, unsigned int);

set_cursor_position (0 ,0);
putchar (LEFT_TOP_COURNER.) ;
set_cursor_pos.ition (SCREEN_WIDTH , 0) ;
putchar (RIGHT_TOP_COURNER);
set_cursor_position (0,SCREEN_DEPTH);
putchar (LEFT_B0TT0M_C0URNER,) ;
set_cursor_position (SCREEN_W IDTH , SCREEN_DEPTH) ;
putchar (R IGHT_BOTTOM_COURNER) ;

set_cursor_position (1 ,0);

for (i = 1; i < SCREEN_WIDTH; i++)
putchar (HORIZONTAL_LINE);

set_cursor_position (1,SCREEN_DEPTH);
for (i = 1; i < SCREEN_WIDTII ; i + +)

putchar (HORIZONTAL_LINE);
set_cursor_position (0 ,1);
for (i = 1; i < SCREEN_DEPTH; i++)

{
set_cursor_position (0 ,i);
putchar (VERTICAL_LINE);
}

set_cursor_position (SCREEN_WIDTH,1);
for (i = 1 ; i < SCREEN_DEPTH; i + +)

{
set_cursor_position (SCREEN_WIDTH,i);
putchar (VERTICAL_LINE);
}

return;

/* void clear_entry (unsigned int, unsigned int, unsigned int) */
/* */
/* This routine clears the screen with 31 spaces at the specified position */
/* and set the cursor position to the specified location. */
void clear_entry (unsigned int x, unsigned int y, unsigned int repeat)
{

unsigned int i;
void set_cursor_position (unsigned int, unsigned int);
set_cursor_position (x,y);
for (i = 0 ; i < repeat; i++)

putchar (SPACE);
set_cursor_position (x,y);

return;

/* void clear_screen (void) */
/* * /
/* This routine clears the entire screen. */

void clear_screen (void)
{

void up_scroll_region (unsigned char, unsigned char, unsigned char,
unsigned char, unsigned char, unsigned char);

up_scroll_region (0,0,79,23,0,BLACK);
return ;

}

/* void u p s c r o l l r e g i o n (unsigned char, unsigned char, unsigned char, */
/* unsigned char, unsigned char, unsigned char) */
/* */
/* This routine uses DOS to clear a region of the screen. */
void up_scroll_region (unsigned char x l , unsigned char y l , unsigned char x 2 ,

unsigned char y 2 , unsigned char up_scroll,
unsigned char attribute)

{
union REGS reg’8 6 ;
reg 8 6 .h.al = up_scroll;
reg 8 6 .h ,cl = xl ;
reg 8 6 .h .ch = y 1 ;
reg 8 6 .h .dl = x 2 ;
reg 8 6 .h.dh = y 2 ;
reg 8 6 .h.bh = attribute;
reg 8 6 .h .ah = DOS_SCROLL_WINDOW_UP;
int 8 6 (VIDEO, ® 8 6 , ® 8 6) ;

return ;

/* void set_cursor_position (unsigned int, unsigned int) */
/* */
/* This routine sets the cursor position to the specified co-ordinates. */
void set_cursor_position (unsigned int x,unsigned int y)
(

union REGS in_reg, out_regJ
/* get page number */
in_reg.h .ah = CURRENT_VIDEO_STATE;
int 8 6 (VIDEO, &in_reg, &out_reg);
/* set cursor position */
in_reg.h .ah = SET_CURSOR_POS;
in_reg.h.bh = out_reg.h .b h ;
in_reg.h.dh = (unsigned char) y;
in_reg.h.dl = (unsigned char) x;
int 8 6 (0 x 1 0 , &in_reg, &out_reg);
return;

■/* This function displays the parameters of the cellular filter to be */
/* examined. */
void filter_calc_data (char *p, float low, float high)
{

void set_cursor_position (unsigned int, unsigned int);

void draw_ border (void);
void clear screen (void);

clear_screen () ;
draw_border () ;

set_cursor_position (20,3);
printf ("Calculating cellular filter coefficients");
set_cursor_position (20,5);
printf ("Range for %s is [%9.8f, %9,8f]\n", p, low, high);
set_cursor_position (20,7);
printf ("K0 = % 9 . 8 f", filter_kO);
set_cursor_position (2 0 ,8);
printf ("Kl = % 9 , 8 f", filter_kl);
set_cursor_position (20,9);
printf ("K2 = %9.8f\n", filter_k2);

return;

/* This function display the results for the programs search. */
void print_results (float k O , float k l , float k 2 , int n, double error)
{

int key;
void set_cursor_position (unsigned int, unsigned int);
void draw_border (void);
void clear_screen (void);

clear_screen () ;
draw _border () ;
set_cursor_position (30,3);
printf ("Results:");
set_cursor_position (25,7);
printf ("K0 = % 9 .8 f", k O) ;
set_cursor_posit ion (25,9);
printf ("Kl = % 9 .8 f", k l);
set_cursor_position (25,11);
printf ("K 2 = X 9 .8 f ", k 2) ;
set_cursor_position (25,15);
printf ("Number of passes = % d " , n);
set_cursor_position (1 0 , 17);
printf ("Minimum root mean square error = %20.8f\n", error);
set_cursor_position (25,22);
printf ("Hit any key to return to DOS");
key =getch ();
clear_screen () ;

return;

/* This routine displays the mean square error and the minimum mean square */

/* error.
void show_mean_square_error (double error, double minimum_error, float k
{ void set_cursor_position (unsigned int, unsigned int);

set_cursor_position (15,11);
printf ("root mean square error = % 2 0 .8 f\n", error);
set_cursor_position (15,12);
printf ("Minimum error %20.8f at %9.8f", minimum_error, k_min);
return;

)

/* This routine asks the user for the parameters for the search for the */
/* cellular filter coefficients and checks to see if they are reasonable. */
void get_filter_data (int *n, int ^accuracy, float *low_kO, float *high_kO,

float *low_kl, float *high_kl, float *low_k 2 ,
float *high_k 2 , int * w f)

{
void clear_screen (void);
void draw_border (void);
void set_cursor_position (unsigned int, unsigned int);
void clear_entry (unsigned int, unsigned int, unsigned int);

clear_screen () ;
draw_border () ;
set_cursor_position (35,3);
printf ("Enter Filter Data:");

set_cursor_position (25,7);
printf ("Enter order of cellular filter : ");
scanf ("%d", n);
while (*n > (RESP0NSE_WIDTH/2))

{
set_cursor_position (2 2 ,2 0);
printf ("Error - maximum cellular filter order is % d \n",

(RESPONSE_WIDTH/2));
clear_entry (58,7,5);
scanf ("%d", n) ;
}

clear_entry (22,20,45);

set_cursor_position (25,9);
printf ("Enter decimal point precision : ");
scanf ("%d", accuracy);
while (*accuracy > (SWEEP_TABLE_SIZE-3))

{
set_cursor_position (2 2 ,2 0);
printf ("Error - maximum precision is %d\n decimal places",

3WEEP_TABLE_SIZE-3);
clear_entry (57,9,5);
scanf ("%d", accuracy);

*/
_min)

}
clear._entry (22,20,55);

{
set_cursor_position (25,11);
printf ("Initial range of K0");
clear_entry (20,12,50);
set cursor position (2 0 ,1 2);
printf ("Low : ") ;
scanf ("%f", low_k 0);
set_cursor_position (40,12);
printf ("High : ");
scanf ("%f", high_k 0);
}

while (*low_k0 >= *high_k 0);
do

{
set_cursor_position (25,14);
printf ("Initial range of Kl");
clear_entry (20,15,50);
set cursor position (20,15);
printf ("Low : ") ;
scanf ("%f", low_kl);
set cursor position (40,15);
printf ("High : ");
scanf ("%f", high_kl);
}

while (*low_kl >= *high_kl);

do
{
set cursor position (25,17);
printf ("Initial range of K2");
clear_entry (20,18,50);
set cursor position (20,18);
printf ("Low : ") ;
scanf ("%f", low_k 2);
set_cursor_position (40,18);
printf ("High : ");
scanf ("%f", high_k 2);
}

while (*low_k 2 >= *high_k 2);

{
clear_entry (25,20,50);
set_cursor_position (25,20);
printf ("Select wieghting function [1,2]: ");
scanf ("% d ", w f);
}

while ((*wf != 1) &.& (*wf != 2));

return;
}

Appendix B
This appendix contains the listing of the C program, cfilter.c,
which implements a specified cellular filter on an image file.
This program supports Hercules monochreome graphics and 9 pin
Epson printers.

i/* $Header : C :/msc/cf il ter. c_v 1.1 25 Feb 1991 20:31:10 davids $ */J ̂ ^ v|* i|/ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ i|/ ^ ^ ^ %|/ ^ i|/ v|> *|y ^ ^ «|/ ^ »1» ^ 'j/ ^ ^ ^ ^ ^ ^ v̂* ^ v̂ \|* ^ ^ ^ v̂x «|/ ^ ^

/* */
/* Filename: cfilter.c Revision: 1.2 */
/* Author: David Sinclair Last Edit: 16May91 */
/* */
/* This module is the main module for the program which implements */
/* a specified 3x3 square tesselation cellular filter. */
/* */
/* This program requires a Hercules display to shows images on */
/* screen and produces printer output for an Epson 9 pin printer. */
/* */
/* Command line (Microsoft compiler): cl /W3 /Ox /AL cfilter.c */
/* */
I ‘ I* iJLr - 1 - ^ vL, ■ I ■ vl/ vL* * I' s i. vl/ ^ sL vli *A? «1/ *1- J / (1* ■ f j \i* «1/ sly vL/ vli * J * ̂ *Jy ^ «L< l i / vL/ vL. ^ ^ vX* viz «L. ^ «X> kL* iX> >4* 4̂* ^ d / *X* *1* ^ si* *4̂ ^ vb \J/ «1# »X» /
/ ^ ^ ip K|> ^ ^ if . ^ ^ ^ ^ ^ ̂ ^ ^ ^ ^ ^ ^ »T' -T* T * *T* ip* ^ ^ »p ^ x *T* *T* *T* *T* if» »p <7» rT% 'T ' *T' 'T* T ^T' 'T ' 'T ' M ' ' P *T* * 'T ' 'T ' /

/* */
/* Version History */
/* */
/* Revision Notes */
/* */
/* */
/* 1.00 Initial Development Version */
/* */J ̂ ^ ^ ^ ^ ^ ^ ^ ^ v|. ^ ^ ^ \|/ «1« ^ \|f v|̂ ^ ^ ^ V̂> V̂> ^ ^ ^ ̂ vĵ ^ ^ ^ ^ ^ *1» ^ ^ ^ ^ ^ ^ ^ vĵ >|/ ^ ^ ^ ^ ^

File History sk*****************************/

/* $Log: C :/msc/cfilter.c_v $
*
* Rev 1.1 25 Feb 1991 20:31:10 davids
* Made show_image() data entry more compatible with the rest of the program.

*/

/if;*******************:*:********* header files ******************************/

£include "stdio.h"
£include "stdlib.h"
£include "dos.h"
£include "conio.h"
/**************************** declaration files ****************************/

definitions /
/* ASCII characters */
£define BS 0x08
£define LF 0x0a
£define CR OxOd
£define ESC 0x1b
£de f ine SPACE 0x20

/* ASCII graphics characters */
£define LEFT TOP COURNER 201

'£ d e f ine RIGHT_ TOP_COURNER 187
£de fine LEFT_BOTTOM_COURNER 2 0 0
£de f ine RI GHT_.BOTTOM. .COURNE R 188
£def ine HORIZONTAL_LINE 205
£def ine VERTICAL_LINE 186

/* screen dimensions, counting from

£def ine SCREEN_WIDTH 7 9
£de f ine SCREEN DEPTH 23
£def ine SHOW_IMAGE_X_OFFSET 0
£def ine SHOW _IMAGE_Y_OFFSET 0

/* miscellaneous */

£de f ine TRUE 0
£def ine FALSE - 1
£de fine ERROR - 1

£def ine BEGINNING 0

£de f ine STARTING 0
£def ine RUNNING 1
£de f ine FINISHED 2

£def ine MAX TITLE 45
/* BIOS video services */
Edefine VIDEO 0x10

Edefine SET_CURSOR_POS 0x02
£define READ_.CURSOR_.POS 0x03
£define DOS_SCROLL_WINDOW_UP 0x06
£define CURRENT VIDEO STATE OxOf

/* DOS colours */
£define BLACK 0x00

/* image size definitions
£define RESOLUTION
Edefine PRINTER^RESOLUTION
£define AN_INCH

£define IMAGE_WIDTH
£define IMAGE^DEPTH
£define SLICE..DEPTH
Edefine PRINT_IMAGE_WIDTH
Edefine PRINT_SLICE DEPTH

*/
300
72
PRINTER RESOLUTION
711
341
10

(IMAGE_WIDTH - AN_INCH)
8

£define WHITE_ON_BLACK 0x00
¿define BLACK_ON_WHITE Oxff

I/* graphics definitions */

/**************************** global variables ****************************/
/**************************** module variables ****************************/

unsigned int iterations = 1 ;
char show_threshold = 0 ;
char print__threshold = 0 ;
char input_file [16] = "input.img";
char output_file [16] = "output.img";
char show_file [16] = "input.img";
char image_file [16] = "input.img";
char print_file [16] = "print.img";
char *temporary_file = "temp.img";
FILE *in_fp, *out_fp, *temp_fp; /* file discriptors */

float filter_k 0 = (float) 1 .0 ;
float filter_kl = (float) 1 .0 ;
float filter_k 2 = (float) 1 .0 ;
char image [SLICE_DEPTH+2][IMAGE_WIDTH+2];
char resultant [SLICE_DEPTH+2][IMAGE_WIDTH+2];
char print_buffer [PRINT_IMAGE_WIDTH] ;
char raw_buffer [PRINT_SLICE_DEPTH][IMAGE_WIDTH];
char init__file [1 0] = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0);

/* graphics variables */
char ttable[] =
{0x61,0x50,0x52,0x0f,0xl9,0x06,0x19,0x19,0x02,0x0d,0x0b,0x0c);
char gtable[] =
{0x35,0x2d,Ox2e,0x07,Ox5b,0x02,0x57,0x57,0x02,0x03,Ox00,0x00);
unsigned char colorglb;
int xmax = 719,xmin = 0,ymax = 348,ymin = 0;

mo du les /

int. main ()
{

char quit_fla.g = FALSE;
char ready_to_filter = FALSE;
int key;
void clear_screen (void), draw_screen (void), filter (void);
void set_cursor_position (unsigned int, unsigned int);
void show_image (void);
void print_image (void);
char define_options (void);
int getche (void);

int getch (void);
while (quit_flag == FALSE)

{
clear_screen ();
draw_screen ();
switch (getche())

{
case ’ 1 ’ :

ready_to_fi 1 ter = define_options ();
break;

case ’ 2 ’ :
if (ready_to_filter == TRUE)

filter ();
else

{
clear_screen ();
set_cursor_position (15, 12);
printf ("Filter Options must be defined before filtering");
key = getch ();
}

break;
case * 3 ’ :

show_image ();
break;

case 1 4 ’:
print_image ();
break;

case ’O ’:
quit_flag = TRUE;
break;

}
}

clear_screen ();
return (0);

/* void draw_screen (void) */
/* */
/* This routine draw the main program screen. */
void draw_screen (void)
(

void set_cursor_position (unsigned int, unsigned int), draw_border (void);

}

set_cursor_position (25,2);
printf ("Cellular Automaton Filtering");
set_cursor_position (2 0 ,8);
printf ("1 ... Define Cellular Filter Parameters");
set_cursor_pos.it ion (2 0 ,1 0);
printf ("2 ... Filter Image");
set_cursor_position (2 0 ,1 2);
printf ("3 ... Show Image");
set_cursor_position (20,14);
printf ("4 ... Print Image");
set_cursor_position (20,16);
printf ("0 ... Quit to D O S ");
set_cursor_position (9,20);
printf ("Option .. []");
set_cursor_position (2 0 ,2 0);

return;

draw_border () ;

/* void draw_border (void) */
/* */
/* This routine draws a border around the screen. */
void draw_border (void)
{

int i ;
void set cursor position (unsigned int, unsigned int);

set_cursor_position (0 ,0);
putchar (LEFT_TOP_COURNER,) ;

set_cursor_position (SCREEN_WIDTH,0);
putchar (RIGHT_TOP_COURNER);
set_cursor_position (0,SCREEN_DEPTH);
putchar (LEFT_BOTTOM_COURNER);
set_cursor_position (SCREEN__WIDTH , SCREEN_DEPTH) ;
putchar (RIGHT_BOTTOM_COURNER);
set_cursor_position (1 ,0);
for (i = 1; i < SCREEN_WIDTH; i++)

putchar (HORIZONTAL_LINE);
set_cursor_position (1,SCREEN_DEPTH);
for (i = 1; i < SCREEN_WIDTH; i++)

putchar (HORIZONTAL_LINE);
set_cursor_position (0 ,1);
for (i = 1; i < SCREEN_DEPTH; i++)

{
set_cursor_position (0 ,i);
putchar (VERTICAL_LINE);

set_cursor_position (SCREEN_WIDTH,1);
for (i = 1; i < SCREEN_DEPTH; i + +)

{
set_cursor_position (SCREEN_WIDTH,i);
putchar (VERTICAL_LINE);
}

return ;

***/
*/
*/
*/
*/

char define_options (void)
{

char quit_flag = FALSE;
void clear_entry (unsigned int, unsigned int, unsigned int);
void clear_screen (void);
void set_cursor_position (unsigned int, unsigned int);
void draw_border (void);
int getche (void);

/ li* -I- »I - J , . I » fcL ■ vir ^ vi* iL 4 , ■ 1« »I« * I* lyL/i ^ vL/ vl ̂ \L< ^ s i. ^ ^ ^ iJ/ <4* \i> «L «L ^ yl/ ^ «L vl» t L «A» ^ il* ^ kli vL* ^ ^ ^ ^ «L> *4* »4* *1* \L*
^ ^ ^ 'p ^ ^ ^ ^ ^ ^ ^ ip ^ •T* ^ T 1 'T* T * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ *T* ^ ' t ' ^ ^ «f* *p ‘T ' ^ •T' *1 ̂ *T* 'T ' *T* ^ 'T* rT* *T* *T* ^ 'p

/* char define_options (void)
/*
/* This routine allows the user to define the filter coefficents, number
/* of iterations, input file and output file.

while (quit_flag == FALSE)
{
clear_screen ();
draw_border () ;
set_cursor_
printf ("De
set_cursor_
printf (" 1
set_cursor_
printf (" 2
set_cursor_
printf ("3
set_cursor_
printf ("4
set_cursor_
printf ("5
set_cursor_
printf (" 6
set_cursor_
printf (" 0

posit ion (25,2);
fine Cellular Filter Parameters");
position (20,5);
... Number of Iterations = % d " , iterations);
position (20,7);
... Input File = % s " , input_file);
position (20,9) ;
... Output B’ile = %s", output_f ile) ;
position (2 0 ,1 1);
... Filter Coefficient K0 = %8.7f", filter_k0);
position (20,13);
... Filter Coefficient K1 = %8.7f", filter_kl);
position (20,15);
... Filter Coefficient K2 = %8.7f", filter_k2);
position (20,17);
... Return to Main Screen");

set_cursor_position (9,20);
printf ("Option .. []");
set_cursor_position (2 0 ,2 0);

switch (getche())
{

case * 1 ’ :
clear_entry (49,5,5);
scanf ("%d", ¿iterations);
break;

case ’ 2 ’ :
clear_entry (40,7,16);
scanf ("%s", input_file);
break;

case ’ 3 ’ :
clear_entry (40,9,16);
scanf ("%s", output_file);
break;

case ’4 ’:
clear_entry (50,11,12);
scanf ("%f", &filter_k 0);
break;

case ’5 ’:
clear.entry (50,13,12);
scanf &filter_kl);
break;

case ’ 6 ’ :
clear_entry (50,15,12);
scanf ("%f", &filter_k 2);
break;

case ’O ’:
quit_flag = TRUE;
break;

}
}

return (TRUE);
}

/* void clear_entry (unsigned int, unsigned int, unsigned int) */
/* * /
/* This routine clears the screen with (repeat) spaces at the specified */
/* position and set the cursor position to the specified location. */
void clear_entry (x, y, repeat)
unsigned int x, y, repeat;
{

unsigned int i;
void set_cursor_position (unsigned int, unsigned int);
set_cursor_position (x,y);
for (i = 0 ; i < repeat; i++)

putchar (SPACE);
set_cursor_position (x,y);

return;

}

/vU a, ■I' nL* «Li »¿- «1* *jx »!<■ «!«■ 'i' ‘A’ 4" 4* 'I' *1” >!• ■1' •1' *ii 4' ‘41 ‘I’ 4» «i* 'i' <1* *i" >1' ^ «x- vi« 4* 'i' ̂ •1' *4* 'A' “t *1' 't "A1 'I* 'A' •I’ ,1‘ ■i' ̂ /
^ *f . » f. >f> ^ ^ »p **p f]> ' p »x* ' P * r T 'T ' *p t * 'T* 'T* ’T ' t T <t* ' I ' <T' »p f r T <T* *T* * r * r 'T* m ' *T* t 1 ' t * M ' »p *t* 'T* *T* t 'T* t ^r* T *T“ *T' 'T* *T* *T* *T* f r *T* *T* T 1 * T * *T* T T T ■T* *T> T * T ' /

/* void filter (void) */
/* */
/* This routine filters the input image with the cellular filter defined */
/* by the define_options () routine. */

void filter (void)
{

unsigned char pass_state;
char *p ,*r;
unsigned int i, s.lice._number;
unsigned long count, 1 , line_count;
float centre_element;
void cant_open (char *);
unsigned long load_slice (unsigned int, unsigned int, unsigned char *);
void write_slice (unsigned long, unsigned int);
void set cursor position (unsigned int, unsigned int);
void clear_screen (void);
void draw_border (void);
void fatal_error (char *, char *, char *);
int getch (void);

if ((out_fp = fopen (output_file, "w+b")) == (FILE *) ERROR)
{
cant_open (output_file);
return ;
}

else
{
fwrite (init_file, sizeof (char), sizeof (init_file), out_fp);
foiose (out_fp);
}

if ((temp_fp = fopen (temporary_file, "w+b")) == (FILE *) ERROR)
{
cant_open (temporary_file);
return ;
}

else
{
fwrite (init_file, sizeof (char), sizeof (init_file), out_fp);
fclose (temp_fp);
}

clear_screen () ;
draw_border () ;
set cursor position (30, 2);
printf ("Filtering %s", input_file);
for (i = 0 ; i < iterations; i++)

{
if ((in_fp = fopen (input_file, "r+b")) == (FILE *) ERROR)

{
c a n t _ o p e n (i n p u t _ f i l e);
r e t u r n ;
}

i f ((o u t _ f p = f o p e n (o u t p u t _ f i l e , " r + b ")) == (F I L E *) ERROR)
{
c a n t _ o p e n (o u t p u t _ f i l e);
r e t u r n ;

}
e l s e /* r e s e t t o s t a r t

*/
i f (f s e e k (o u t _ f p , (l o n g) 0, BEGINNING) == ERROR)

f a t a l _ e r r o r (" F A T A L ERROR- f s e e k o n " , o u t p u t _ f i l e , " i n f i l t e r ()
f a i l e d - H a rd L u c k ! ") ;

i f ((t e m p _ f p = f o p e n (t e m p o r a r y _ f i l e , " r + b ")) == (F I L E *) ERROR)
{
c a n t _ o p e n (t e m p o r a r y _ f i l e);
r e t u r n ;
}

e l s e / * r e s e t t o s t a r t

*/
i f (f s e e k (t e m p _ fp , (l o n g) 0, BEGINNING) == ERROR)

f a t a l _ e r r o r (" F A T A L ERROR- f s e e k o n " , t e m p o r a r y _ f i l e , " i n f i l t e r
() f a i l e d - H a rd L u c k ! ") ;

s l i c e _ n u m b e r = 0;
p a s s _ s t a t e = STARTING;
do

{
s e t _ c u r s o r _ p o s i t i o n (25 , 20) ;
p r i n t f (" I t e r a t i o n %2d o f %2d : S l i c e % 4d" , (i + 1) , i t e r a t i o n s ,

s i i c e _ n u m b e r);

c o u n t = l o a d _ s l i c e (i+ 1 , s i i c e _ n u m b e r , & p a s s _ s t a t e);

/* p o i n t p t o image [1] [1] * /
p = (c h a r *) image + (IMAGE_WIDTH+3);
r = (c h a r *) r e s u l t a n t + (IMAGE_WIDTH+3);

1 != 0; 1 - - , 1 i n e _ c o u n t + +)f o r (1 = c o u n t , l i n e _ c o u n t = 1
{
c e n t r e _ e l e m e n t = ((f l o a t) *p * f i l t e r _ k 0)

+ ((float
+ ((float
+ ((float

f i l t e r _ k 2)

f i l t e r _ k 2)
I
f i l t e r _ k 2)

f i l t e r _ k 2);

+ ((float
+ ((float
+ ((f l o a t

+ ((f l o a t
+ ((f l o a t

*(p - (1)) * filter_kl)
*(p+(l)) * filter_kl)
*(p - (((lMAGE_WIDTH+2)+l))) *
*(P- ((IMAGE_WIDTH+2))) * filter_kl)
*(p-(((IMAGE_WIDTH+2)-l))) *
* (p + (((IM A G E _ W ID T H + 2) - l))) *

* (p + ((IMAGE_WIDTH+2))) * f i l t e r _ k l)
* (p + (((IMAGE_W IDTH+2)+ l))) *

if (centre_element > (float) 127.0)
*r = (char) 1 2 7;

el se
if (centre_element < (float) -127.0)

*r = (char) - 1 2 7;
else

*r = (char) centre_element;

if (1ine_count < IMAGE_WIDTH)
{
p + + ;
r++ ;
}

else
{
P++; p + + ; p + + ;
r + + ; r++; r++;
line_count = 0 ;
}

}
write_slice (count, i+ 1);
slice_number ++;
}

while (pass_state != FINISHED);

fclose (in_fp);
fclose (out_fp);
fclose (temp_fp);
}

return;
}

/* unsigned long load_slice (unsigned int, unsigned int, unsigned char *) */
/* */
/* This routine loads a slice of the image into the image buffer and */
/* returns the number of bytes in the buffer to be processed and whether */
/* it has finished this iteration or not. */
/* If the number of iterations is odd, then the slice comes from the */
/* output file on even passes, and from the temporary file on odd passes */
/* except for the first pass. If the number of iterations is even, then */
/* the slice comes from the output file on odd passes except for the first */
/* pass, and from the temporary file on even passes. */
unsigned long load_slice (pass, siice_number, state)
unsigned int pass;
unsigned int siice_number;
unsigned char *state;
{

char *p;
long 1 ;
FILE *file_fp;
long i, block_size, number_of_blocks, file_position;
void set_cursor__positi on (unsigned int, unsigned int);
void clear_screen (void);

void fatal_error (char *, char *, char *) >
for (1 = (IMAGE_WIDTH+2)*(SLICE_DEPTH+2), P = (char *) image ;

1 ! = 0 ; 1 --, p + +)
* ti ii o /* clear out image buffer */

for (1 = (IMAGE_WIDTH+2)*(SLICE_DEPTH+2), P = (char *) resultant;
1 ! = 0 ; 1 --, p + +)oiift* /* clear out resultant buffer

/* first get the right source */
if ((iterations & 0 x 0 1) == 0 x 0 0) /* even number of iterations */

if ((pass &. 0 x 0 1) == 0 x 0 0) /* even pass */
file_fp = temp_fp;

else /* odd pass */
if (pass != 1) /* not first pass */

file_fp = out_fp;
else /* first pass */

file_fp = in_fp;
else /* odd number of iterations */

if ((pass & 0 x 0 1) == 0 x 0 0) /* even pass */
file_fp = out_fp;

else /* odd pass */
i f (pas s != 1) /* not first pass */

f i l e f p = tempfp;
else /* first pass */

file_fp = in_fp;

/* and setup start position */
/* in source file */

file_posit.ion = (long) (((long) IMAGE_WIDTH * (long) SLICE_DEPTH *
siice_number) - (long) (IMAGE_WIDTH));

f ileposit ion = (fi 1 e_position < 0) ? (long) 0 : f i le__posit ion ;
if (fseek (file_fp, f i .1 e_pos i t ion , BEGINNING) == ERROR)

fatal error ("FATAL ERROR- fseek in load_slice () failed - Hard
Luck!" , , " ") ;

/* then setup destination and */
/* size of slice */

if (Estate == STARTING)
{

/* point p to image [1][1] */
p = (char *) image + (IMAGE_WIDTH+3);
number_of_blocks = SLICE_DEPTII+1 ;
♦state = RUNNING;
}

else
{

/* point p to image [0][1] */
p = (char *) i mage + (1);
number of_blocks = SLICE_DEPTH+2;
}

/* read the slice from source */
/* to destination. */

for (i ~ 0 , block_size = (long) 0 ; i < number_of_blocks;

i++, p += ((IMAGE_WIDTH+2)))
{
block size += fread (p, sizeof (char), IMAGE_WIDTH, file_fp);
}

if (block_size != (IMAGE_WIDTH * number_of_blocks))
{
♦state = FINISHED;
block_size = (block_s.i.ze - IMAGE_WIDTH) >0?

(long) (block_size - I M A G E W I D T H): (long) 0;
}

else
block size = SLICE DEPTH * IMAGE_WIDTH;

return (block_size);

/* void wr.ite_slice (unsigned long, unsigned int) */
/* */
/* This routine write the processed slice of the processed image */
/* (resultant) to the appropriate file. */
/* If the number of iterations is odd, then the slice is writen to */
/* the output file on odd passes, and to the temporary file on even */
/* passes. If the number of iterations is even, then the slice is writen */
/* to the output file on even passes and to the temporary file on odd */
/* passes. */
void write_slice (length, pass)
unsigned long length;
unsigned int pass;
{

char *p;
int i ;
FILE *file_fp;

/* unreferenced at the moment */

if ((iterations & 0 x 0 1) == 0 x 0 0)
if ((pass & 0 x 0 1) == 0 x 0 0)

file_fp = out_fp;
else

file_fp = temp_fp;
else

if ((pass &. 0 x 0 1) == 0 x 0 0)
file_fp = temp_fp;

else
file_fp = out_fp;

/* first get the right source */
/* even number of iterations */
/* even pass */
/* odd pass */
/* odd number of iterations */
/* even pass */

/* odd pass */

P = (char *) resultant + ((IMAGE_WIDTH+ 3)) ;
for (i = 0; i < SLICE_DEPTH;

i++, p += ((IMAGE_WIDTH+2)))
fwrite (p, sizeof (char), IMAGE_WIDTH, file_fp);

return ;

/* void cant_open (char *) */

/*
/* This routine displays the error message that the file could not be
/* opened.

*/
*/
*/

void cant_open (file)
char *file;
{

int debug_key;
void clear_screen (void);
void set_cursor_position (unsigned int, unsigned int);
int getche (void);
clear_screen ();
set_cursor_position (15,12);
printf ("ERROR - unable to open %s", file);
set cursor position (15,13);
printf ("Hit any key to continue");
debug_key = getche ();
return;

}
/* void fatal_error (char *, char *, char *) */
/* This routine prints the message passed to it and exits to DOS. */
void fatal_error (start_string, file, end_string)
char *start_string, *file, *end_string;
{

void clear_screen (void);
void set_cursor_position (unsigned int, unsigned int);
clear_screen ();
set_cursor_position (15,12);
printf ("%s %s %s\n" , start_string, file, end_string);
fclose (in_fp);
fclose (temp_fp);
fclose (out_fp);
exit (1) ;
return;

}

/* */
/* void show_image (void) */
/* This routine displays the image specified by the user. */
void show_image (void)
{

unsigned char pass„state;
char *p;
char quit_flag = FALSE;
char show_image_flag = FALSE;
unsigned int key, siice_number, x_coord, y_coord;
unsigned long count, 1 ;

void clear_screen (void);
void draw_border (void);
void clear^entry (unsigned int, unsigned int, unsigned int);
void set_cursor_position (unsigned int, unsigned int);
unsigned long load_slice (unsigned int, unsigned int, unsigned char *);
void cant__open (char *);
int getch (void);
int g'etche (void);
void init__graphics (void), leave_graphi.es (void);
void set__pixel (unsigned int, unsigned int);
void clear_graphics_screen (void);

while (quit_flag == FALSE)
{
clear_screen () ;
draw_border () ;
set_cursor_position (35, 3);
printf ("Display Image\n");
set cursor position (20, 9);
printf ("1 ... File to display = %s", show_fi.le);
set_cursor_position (2 0 , 1 1);
printf ("2 ... Set threshold = %hd", show_threshold) ;
set_cursor_position (20, 13);
printf ("3 ... Display %s", show_file);
set_cursor_position (20,17);
printf ("0 ... Return to Main Screen");

set_cursor_position (9,20);
printf ("Option .. []");
set_cursor_position (2 0 ,2 0);
switch (getche())

{
case ’ 1 ’ :

clear_entry (44,9,16);
scanf ("%s", show_file);
break;

case ’2 ’:
clear_entry (42,11,5);
scanf ("%hd", &show_threshold);
break;

case ’3 ’:
show_image_flag = TRUE;
quit_flag = TRUE;
break;

case ’O ’:
quit_flag = TRUE;
break;

}
}

if (show_image_flag == FALSE && quit_flag == TRUE)
return;

if ((in_fp = fopen (show_file, "r+b")) == (FILE *) ERROR)
{
cant_open (show_file);
return;
}

init_graphics ();
clear__graphics_screen () ;
x_coord = SHOW_IMAGE_X_OFFSET;
y_coord = SHOW_IMAGE_Y_OFFSET;
slice_number = 0;
pass_state = STARTING;
do

{
/* pass 1 always reads from input file */

count = load_ slice (1, slice_number, &pass_state);
/* point p to image [1][1] */

p = (char *) image + (IMAGEJWIDTH+3);

for (1 = count; 1 != 0; 1--)
{

/* display image */
if (*p >= show_threshold)

set_pixel (x_coord, y__coord);
if ((x_coord - SHOW_IMAGE_X_OFFSET) < (IMAGE_WIDTH-1))

{
p++ ;
x_coord + + ;
}

else
{
p++; p+ + ; p++;
x_coord = SHOW_IMAGE_X._OFFSET;
y_coord++;
}

}
slice_number ++;
}

while (pass_state != FINISHED);
key = getch ();
leave_graphics ();
return;

/ * * /

;/* void display_printing_options (char *, char, char *) */
/* This rouitne displays the printing’ options. This was seperated from the */
/* pri.nt_image routine to allow global optimisation. */
void display_printing_options (image_file, print_file, threshold, title)
char *image_file, *print_file, *title;
char threshold;
{

void clear_screen (void);
void draw_border (void);
void clear_entry (unsigned int, unsigned int, unsigned int);
void set_cursor_position (unsigned int, unsigned int);
clear..screen () ;
draw_border () ;
set_cursor_position (35, 3); /* display user print options */
printf ("Print Image\n");
set_cursor_position (20, 7);
printf ("1 ... File to print = %s", image_file);
set_cursor_position (20, 9);
printf ("2 ... Set threshold = %hd", threshold);
set_cursor_position (2 0 , 1 1);
printf ("3 ... Print File = %s", print_file);
set_cursor_position (20,13);
printf ("4 ... Title = %s", title);
set_cursor_position (20,15);
printf ("5 ... Print % s " , image_file);
set_cursor_position (20,17);
printf ("0 ... Return to Main Screen");
set cursor position (9,20);
printf ("Option .. []");
set_cursor_position (2 0 ,2 0);
return;

}

/* void print_image (void) */
/* This routine prints the image specified by the user to a 9 pin EPSON */
/* printer attached to LPT1:. */
void print_image (void)
{

char *p, *rp;
char c, quit_flag = FALSE, print_image_flag = FALSE;
char title [MAX_TITLE];
unsigned char mask;
unsigned int i, j, siice_number, number_of_blocks, title_length;
unsigned long 1 , file_position;
FILE *file_fp, *print_fp;
char 1ine_f eeds [8] = {LF, LF, LF, LF, LF, LF, LF, LF};
char printer_init_seq [2] = {ESC,
char 1 ine_s tep_and_uni.direc t ional [6] = {ESC, ’A ’, 0x08, ESC, *U’, 0x01);
char graphics_seq [5] = {ESC, ’5 ’, 0x00, 0x00};
char bold_and_underline [5] = {ESC, ’E ’, ESC, * — ’ , 0x01};

char cancel_bold_and_underline [5] = {ESC, ’F*, ESC, 0x00};
char *spaces = " " ;
char cr_lf [2] = {CR, LF } ;

void clear_screen (void);
void draw_border (void);
void clear_entry (unsigned int, unsigned int, unsigned int);
void set_cursor_position (unsigned int, unsigned int);
void cant_open (char *) ;
void display_printing_options (char *, char *, char, char *);
void fatal_error (char *, char *, char *);
int getch (void);
int getche (void);

title [0] = ’\0 ’ ;
title_length = 0 ;

while (quit_flag == FALSE)
{
display_pr.i.nting_options (image_file, print_file, print_threshold,

title) ;
switch (getche()) /* get user selection */

{
case ’1 ’:

clear_entry (42,7,16);
scanf ("%s", image_file);
break;

case ’ 2 ’ :
clear_entry (42,9,5);
scanf ("%hd", &print_threshold);
break;

case ’3 ’:
clear_entry (39,11,16);
scanf ("%s", print_file);
break;

case ’4 ’:
clear_entry (34,13,(MAX_TITLE-1));
title_length = 0 ;
p = title;
while (((c = (char) getche ()) != 5 \ r ’) &&

title_length < MAX_TITLE)
{
if (c != BS)

{
*P = c;
P++ ;
title_leng‘th++ ;
}

else
{
p— ;
t.itle_length-- ;

}
}

*P = *\ 0 ’;
break ;

c a s e ’ 5 ’ :
p r i n t _ i m a g e _ f l a g = TRUE;
q u i t _ f l a g = TRUE;
b r e a k ;

c a s e ’ 0
q u i t _ _ f l a g = TRUE;
break

}

if (print_image_flag == FALSE &&. quit_flag == TRUE)
return ;

clear_screen () ;
draw_border () ;
set_cursor_position (15, 10); /* display user options */
printf ("Printing %s thresolded at %hd to %s", image_file,

print_threshold, print_file);
/* open file to print */

if ((file_fp = fopen (image_file, "r+b")) == (FILE *) ERROR)
{
cant_open (image_file);
return ;
}

/* open output file */
if ((print_fp = fopen (print_file, "wb")) == (FILE *) ERROR)

{
cant_open (print_file);
return ;
}

/* do a few line feeds */
fwrite (line_feeds, sizeof (char), 8 , print_fp);
/* print escape sequence for 8 pin step line advance, unidirectional */
fwrite (printer_init_seq, sizeof (char), 2 , print_fp);
fwrite (1 ine_step_and unidirectional, sizeof (char), 6 , print_fp);
graphics_seq [3] = (char) (PRINT_IMAGE_WIDTH % 256);
graphics_seq [4] = (char) (PRINT_IMAGE_WIDTH / 256);
slice_number = 0 ;
do

{
/* clear out unformatted print buffer */
for (1 = (IMAGE_WIDTH)*(PRINT_SLICE_DEPTH), p = (char *) raw_buffer;

1 != 0 ; 1 — , p++)
*P = 0;

/* clear out print buffer */
for (1 = PRINT_IMAGE_WIDTH, p = (char *) print_buffer;

1 != 0 ; 1 — , p++)
*p = 0 ;

/* position file pointer */
file_position = (long) ((long) IMAGE_WIDTH * (long) PRINT_SLICE_DEPTH *

siice_number);
if (fseek (file_fp, file_position, BEGINNING) == ERROR)

{
fclose (file_fp);
fatal_error ("FATAL ERROR- fseek in load_slice () failed - Hard

Luck!", "");
}

rp = (char *) raw_buffer;
number_of_blocks = PRINT_SLICE_DEPTH;
/* read section of image from file to unformatted print buffer */
for (i = 0; i < number_of_blocks; i++> rp += IMAGE_WIDTH)

fread (r p , sizeof (char), IMAGE_WIDTH, file_fp);
rp = (char *) raw_buffer;
P = (char *) print_buffer ;

mask = 0x80;
for (j = 0; j<PRINT_IMAGE_WIDTH; j + +, rp + + , p + +)

{
for (i = 0 ; i< 8 ; i + +)

if (*(rp+(i*IMAGE_WIDTH)+AN_INCH) >= print_threshold)
*p J = (mask >> i);

}

/* print graphics escape sequence */
fwrite (graphics_seq, sizeof (char), 5, print_fp);

/* print print_buffer */
fwrite (print_buffer, sizeof (char), IMAGE_WIDTH, print_fp);

/* print <cr><lf> */
fwrite (cr_lf, sizeof (char), 2 , print_fp);

}
while (++slice_number < (IMAGE_DEPTH/PRINT_SLICE_DEPTH));
/* do a few line feeds */
fwrite (line_feeds, sizeof (char), 8 , print_fp);

fwrite (spaces, sizeof (char), 2 0 , print_fp);
fwrite (bold_and_underline, sizeof (char), 5, print_fp);
fwrite (title, sizeof (char), t itle_length, print__fp);
fwrite (cr_lf, sizeof (char), 2 , print_fp);
fwrite (cancel_bold_and_underline, sizeof (char), 5, print_fp);

/* and reset printer */
fwrite (printer_init_seq, sizeof (char), 2 , print_fp);
/* clean up on exit */
fclose (file_fp);
fclose (print_fp);

return;
}

/* add title */

J /|\ îj* î|c îji îfc îjc îjc îjî ï|c îjc îjs îjc îjs îjc îjc îjî îjc îji îji îji îjc îji î(C îji îfc î|c î̂C î|i î|! ¡je % îji îjî îf» îjv îjc 5̂* îfc ^ J
/* void clear_screen (void) */
/* */
/* This routine clears the entire screen. */
void clear_screen (void)
{

void up_scroll_region (unsigned char, unsigned char, unsigned char,
unsigned char, unsigned char, unsigned char);

up_scroll_reg.ion (0 , 0 , 7 9 , 2 3 , 0 , BLACK) ;

return ;

/* void up_scroll_region (unsigned char, unsigned char, unsigned char, */
/* unsigned char, unsigned char, unsigned char) */
/* */
/* This routine uses DOS to clear a region of the screen. */
void up_scroll_region (xl, y l , x 2 , y 2 , up_scroll, attribute)
unsigned char x l , y l , x 2 , y 2 , up_scroll, attribute;
{

union REGS reg 8 6 ;
reg 8 6 .h.al = up_scroll;
reg 8 6 .h .cl = x l ;
reg 8 6 .h .ch = y l ;
reg 8 6 .h .dl = x 2 ;
reg 8 6 .h .dh = y 2 ;
reg 8 6 .h.bh = attribute;
reg 8 6 .h .ah = DOS_SCROLL_WINDOW_UP;
int 8 6 (VIDEO, ® 8 6 , ® 8 6);
return ;

]

/* void set_cursor_position (unsigned int, unsigned int) */
/* */
/* This routine sets the cursor position to the specified co-ordinates. */

void set_cursor_position (x,y)
unsigned int x,y;
{ union REGS in_reg, out_reg;

/* get page number */
in_reg.h .ah = CURRENT_VIDEO_STATE;
int 8 6 (VIDEO, &in_reg, &out_reg);
/* set cursor position */
in_reg.h .ah = SET_CURSOR_POS;
in_reg.h.bh = out_reg.h .b h ;
in_reg.h.dh = (unsigned char) y;
in_reg.h.dl = (unsigned char) x;
int 8 6 (0 x 1 0 , &in_reg, &out_reg);
return:

/* void not_yet_implemented (void) */
/* */
/* this routine informs the user that the requested function has not yet */
/* been implimented. */

void not_yet_.implemented (void)
{

int debug_key;

void set_cursor_position (unsigned int, unsigned int);
void clear_screen (void);
int getche (void);
clear_screen () ;
set_cursor_position (15,12);
printf ("Not Yet Implemented ... Hit any key to continue");
debug_key = getche ();

}
return;

/* void init_graphics (void) */
/* */
'/* This routine initialises the display into grpahics mode. */
void init_graph.ics (void)
{

v o i d c l e a r _ g r a p h i c s _ s c r e e n (v o i d) ;

int i ;
colorglb = (unsigned char) WHITE_ON_BLACK;
outp (0x03bf,0x01);
outp (0x03b5,0x02);
for (i = 0 ; i< 1 2 ; i + +)

{
outp (0x03b4,i);
outp (0x03b5,gtable[i]);
}

outp (0x03b8,0x02+0x08);
clear_graphics_screen () ;
return ;

/* void leave_graphics (void) */
/* */
/* This routine leaves graphics mode and resets the display for text mode. */

void leave_graphics (void)
{

int i ;
void clear_graphics_screen (void);
outp (0x03bf,0x00);
outp (0x03b8,0x20);
for (i=0 ; i<1 2 ; i++)

{
outp (0x03b4 s i);
outp (0x03b5,ttable[i]) ;
}

colorglb = 0 ;
outp (0x03b8,0x20+0x08);
clear_graphics_screen ();
return ;

/* void set_pixel (unsigned int, unsigned int) */
/* */
/* This routine sets the pixel at the specified location. */
void set p ixel (x, y)
unsigned int x, y;
{

unsigned char *p,bit;
FP_SEG(p) = OxbOOO;
FP_OFF(p) = ((y & 3)< <13) + 90*(y>>2) + (x>>3);
bit = (unsigned char) (0x80>>(x & 7));
if (colorglb == (unsigned char) WHITE_ON_BLACK)

*P = *P ! bit;
else

*P = *P & bi t ;

r e t u r n ;

/* void clear_graphics__screen (void)
/*
/* This routine clears a graphics screen.

*/
*/
*/

void clear graphics screen (void)
{

unsigned char *p;
for (FP_SEG(p) = OxbOOO , FP_OFF(p) = 0x0000; FP_OFF(p) < 0x8000;

*(p++) = colorglb);
return;

}

Appendix C
This appendix contains a listing of the occam program,
netfilt.tsr, which implements a cellular filter on a network of
transputers connected in a pipeline.

1{{{
{{{F

EXE netfilt
netf ilt
:F netfilt.tsr

— —
File: netfilt.ocm
Author: David Sinclair

Revision: 1.0
Last Edit: 21Jul91 --

--- This program performs a
of transputers.

cellular filter on an image on a network —

{C { define constants
— define constants —

VAL
VAL

image.width IS 714 :
image.hieght IS 340 :

VAL
VAL

block.width IS 42 :
block.hieght IS 20 :

VAL number.o f .processors IS 4 -

}}}

{{{ define channel protocols
define channel protocols

PROTOCOL data.m g r .msgs
CASE

quit
hold
request.something
filter.params; REAL32; REAL32; REAL32; INT
image.row; I NT::[]BYTE
image.saved

PROTOCOL image.filter,msgs
CASE

request.image
image.filtered; INT
filtered.row; INT::f]BYTE

PROTOCOL from.file.m g r .msgs
CASE

initialise; INT
quit; INT
hold; INT
request.something; INT
filter.param; INT; REAL32; REAL32; REAL3 2; INT

image.row; INT; INT : :[]BYTE
image.saved; INT

PROTOCOL t o .file.m g r .msgs
CASE

request.image; INT
image.filtered; INT; INT
filtered.row; INT; INT::[]BYTE

}}}

{{{ define channels
L- define channels —

CHAN OF data.m g r .msgs from.data.mgr :
CHAN OF image.filte r .msgs to.data.mgr :

CHAN OF t o .file.m g r .msgs up.data.out :
CHAN OF t o .file.m g r .msgs down.data.in :
CHAN OF from.file.m g r .msgs up.data.in :
CHAN OF from.data.m g r .msgs down.data.out :

}}}
{{{ define variables
— define variables —

}}}

— procedures —

[number.o f .processors] BOOL quit.table :

{{{ can .quit
— Procedure: can.quit --
______ This procedure updates the list of processors which have been told —

-- to quit (terminate) by the file manager. This procedure is called --
— by the data manager when it sees a quit message sent from the file
— manager to any node (processor running a data manager). When all

down stream nodes, include this node have been told to quit, then
_ _ this procedure will set the active flag to FALSE, signalling the --
— data manager to terminate. « —

PROC can.quit (INT id, INT node.number, BOOL active)

SEQ
quit.table [node.number] := TRUE

active := TRUE
SEQ i = id FOR (number.o f .processors - id)

IF
quit.table [i] = FALSE

active := FALSE
quit.table [i] = TRUE

SKIP

}>}
{{{ data.manager
— Task: data manager —

This task adds messages from the image filter task to the stream of —
messages being sent to the file manager. Messages which are sent —

-- down stream from the file manager are examined by the data manager —
-- to determine if the message should be sent to its assocated image —

filter task. Quit messages for down stream tasks are recorded to —
enable the data manager to terminate when it, and all down stream --

-- processors have been told to terminate.

PROC data.manager (VAL INT id,
CHAN OF from.file.m g r .msgs up.data.in, down.d a t a .out
CHAN OF t o .file.m g r .msgs up.data.out, down.d a t a .in)

[(block.width+2)]BYTE block :
BOOL active :
INT index, node.number, block.size :
REAL kO, kl, k2 :
SEQ

up.data,in ? CASE initialise; node.number

PAR i = 0 FOR number.o f .processors
quit.table [i] := FALSE

IF
node.number < id

down.d a t a .out ! initialise; node.number

node.number >= id
SKIP

WHILE active
ALT

to.data.mgr ? CASE
request.image

up.data.out ! request.image; id
image.filtered; index

up.data.out ! image.fi 1 tered; id; index
fi 1 tered.row; block.size::block

up.data.out ! filtered.row; id; block.size::block

down.data.in ? CASE
request.image; node_number

up.data.out ! request.image; node.number

image.filtered; node.number; index
SEQ

up.data.out ! image.filtered; node.number; index
SEQ i = 0 FOR (block.hieght+2)

down.data.in ? CASE filtered.row; node.number;
block.size::block

up.data.out ! filtered.row; node.number; block.size::block
up.data.in ? CASE

quit; node.number
PAR

can.quit (id, node.number, active)
IF

node.number <> id
down.data.out ! quit; node.number

node.number = id
from.data.mgr ! quit

hold; node.number
IF

node.number <> id
down.data.out ! hold; node.number

node.number = id
from.data.mgr ! hold

request.something; node.number
IF

node.number <> id
down.data.out ! request.something; node.number

node.number = id
from.data.mgr ! request.something

image.saved; node.number
IF

node.number <> id
down.data.out ! image.saved; node.number

node.number = id
from.data,mgr ! image.saved

filter.param; node.number; k O ; k l ; k 2 ; index
IF

node.number <> id
SEQ

down.data.out ! fiIter.param; node.number; k O ; k l ; k 2 ;
index

SEQ i = 0 FOR (block. h.ieght + 2)

up.data.in ? image.row; node.number; block.size::block
down.data.out ! image.row; node.number; block.size::block

node.number = id
SEQ

from.data.mgr ! filter.param; k O ; k l ; k 2 ; index
SEQ i = 0 FOR (block.hieght+2)

up.data.in ? image.row; node.number; block.size::block
from.data.mgr ! image.row; block.size::block

}}}
{{{ image.filter

Task: image filter
— This task applies the cellular automaton defined by k O , kl and k2

to the image supplied to it.

PROC image.filter () — perform one pass of cellular
— filter

VAL block.size IS (block.width * block.hieght) :
INT size, block.number :
REAL32 kO, k l , k2 :
BOOL active :
[(block.hieght + 2)][(block.width + 2)]BYTE raw.image :
[(block.hieght + 2)][(block.width + 2)]BYTE filtered.image :

SEQ
active := TRUE
WHILE active

SEQ
from.data.mgr ? CASE

quit
active := FALSE

hold
SKIP

request.something
to.data.mgr ! request.image

— shut down process neatly

-- d o n ’t do anything just yet

-- ask for an image
— request image to process
-- get cellular filter

-- parameters
filter.params; k O ; k l ; k 2 ; block.number

SEQ -- get data to process
SEQ j = 0 FOR (block.width + 2)

from.data.mgr ? CASE image.row; size::r a w .image [j]

PAR i = 0 FOR block.size -- process each cell
VAL x.offset IS ((i / block.width) + 1) :
VAL y . offset IS ((i REM block.width) + 1) :

INT sum, b l , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 , b9

SEQ
PAR — work out intermediate values

b5 := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x .offset][y .offset]))) -
128.0 (REAL32)) * k O))

IF
x . of fset > 0

PAR
b4 := (INT TRUNC (((REAL32 TRUNC

(INT (raw.image [x.offset - 1][y .offset]))) -
128.0 (REAL3 2)) * k l))

IF
y . of f set > 0

bl := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x.offset -1][y.offset -
1]))) - 128.0 (REAL32)) * k 2))

y .offset < = 0
bl : = 0

IF
(y.offset + 1) < block.hieght

b7 := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x.offset - l][y.offset +
1]))) - 128.0 (REAL3 2)) * k 2))

(y.offset + 1) >= block.hieght
b7 := 0

x.offset <= 0
b 4 , b l , b7 := 0 , 0 , 0

IF
y.offset > 0

PAR
b2 := (INT TRUNC (((REAL32 TRUNC

(INT (raw.image [x .offset][y .offset - 1]))) -
128.0 (REAL32)) * k l))

IF
(x.offset + 1) < block.width

b3 := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x.offset + l][y.offset -
1]))) - 128.0 (REAL32)) * k2))

(x.offset + 1) >= block.width
b3 := 0

y .offset < = 0
b 2 , b3 := 0, 0

IF
(x.offset + 1) < block.width

PAR
b 6 := (INT TRUNC (((REAL32 TRUNC

(INT (raw.image [x.offset + 1][y .offset])))
128.0 (REAL32)) * k l))

IF
(y.offset + 1) < block.hieght

b9 := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x.offset + l][y.offset
1]))) - 128.0 (REAL32)) * k 2))

(y.offset + 1) >= block.hieght
b9 : = 0

(x.offset + 1) >= block.width
b 6 , b9 := 0, 0

IF
(y.offset + 1) < block.hieght

b 8 := (INT TRUNC (((REAL32 TRUNC
(INT (raw.image [x .offset][y .offset + 1]))) -
128.0 (REAL32)) * k l))

(y.offset + 1) >= block.hieght
b 8 : = 0

sum := (bl + (b2 + (b3 + (b4 + (b5 + (b6 + (b7 + (b8 +
b9))))))))

IF
sum > 127

sum := 12 7
sum < (-127)

sum := -127
(sum >= (-127)) AND (sum <= 127)

SKIP
filtered.image [x .offset][y .offset] := BYTE (sum + 128)

to.data.mgr ! image.filtered ; block.number
SEQ j = 0 FOR (block.hieght + 2)

to.data.mgr ! fi 1 tered.row ;
(block.width + 2)::filtered.image [j]

from.data.mgr ? CASE image.saved
to.data.mgr ! request.image request image to process

}}}

Configuration

-- Links
VAL linkOout IS 0 (INT)
VAL linkOin IS 4 (INT)
VAL 1inklout IS 1 (INT)
VAL linklin IS 5 (INT)

VAL 1ink2out IS 2 (INT)
VAL 1ink2 in IS 6 (INT)
VAL link3out IS 3 (INT)
VAL link3 in IS 7 (INT)
VAL in.event IS 8 (INT)

— Logical Channels
CHAN OF froni. f ile . mgr . msgs app.in :
CHAN OF t o .file.m g r .msgs app.out :
tnumber.o f .transputers] CHAN OF from.file.m g r .msgs down.links :
[number.o f .transputers] CHAN OF t o .file.m g r .msgs up.links :

— Configuration
PLACED PAR

PROCESSOR 0 T4
PLACE app.in AT linklin .*
PLACE app.out AT linklout :
PLACE down.links[0] AT link2out :
PLACE up.linkstO] AT link2in :
data.manger (0 , app.in, down . 1 inks[0], app.out, up.links[0])
image.filter ()

PLACED PAR i = 1 FOR (number.o f .transputers - 1)
PROCESSOR i T4

PLACE down.links[i-1] AT linklin :
PLACE u p .1inks[i-1] AT linklout :
PLACE down.links[i] AT link2out :
PLACE up.links[i] AT link2in :
data.manager (i, down . 1 inks[i- 1] , down , 1 inks[i],

u p .links[i- 1], u p .links[i])
image.filter ()

}}}F
..F code HT 8

F netfilt.dcd
descriptor
F netfilt.dds
link
F netfilt .dlk
debug
F netfilt.ddb

Appendix D
This appendix contains a listing of the occam program, host.tsr,
which interfaces between the cellular filter program,
netfilt.tsr, running on a network of transputers, the user and
the DOS file system.

¡ m
!{{{f

EXE host-
host
:F host.tsr

File: host.ocm Revision: 1.0
Author: David Sinclair Last Edit: 19Jul91 _____

This program is the host for the network version of the cellular
filter. —

{{{ define constants
w_ define constants --

VAL
VAL

image.width IS 714 :
image.hieght IS 340 :

VAL
VAL

block.width IS 42 :
block.hieght IS 20 ;

VAL number.o f .blocks IS ((image.width / block.width) *
(image.hieght / block.hieght)) ;

}}}
{{{ define channel protocols
— define channel protocols —

PROTOCOL from.file.m g r .msgs
CASE

initialise; INT
quit; INT
hold; INT
request.something; INT
filter.param; INT; REAL3 2; REAL32; REAL32; INT
image.row; INT; INT::[]BYTE
image.saved; INT

PROTOCOL t o .file.m g r .msgs
CASE

request.image; INT
image.filtered; INT; INT
filtered.row; INT; INT::[]BYTE

}}}
{{{ define channels

define channels

CHAN OF from.file.m g r .msgs to.workers :
CHAN OF t o .file.m g r .msgs from.workers :

}}}

— host process

£USE userio
£USE afhdr
£USE afiler
tnumber.o f .blocks] BYTE image.map :
INT iterations:
INT in.file, out.file :
INT result, char, in.file.len, out.file.len :
[number.o f .transputers] BOOL active.table :
[number.o f .transputers] BOOL busy.processor :
[16] BYTE in.file.name :
[16] BYTE o u t .file.name :
[16] BYTE temp.file.name :
REAL kO, k l , k2 :
SEQ

temp.file.name - "temp.img"

{{{ get user data
goto.xy (screen, 0 , 0)
clear.eos (screen)
goto.xy (screen, 0 , 0)
write.full.string (screen, "Cellular Filter Parameters")
newline (screen)
newline (screen)
write.full.string (screen, "Number of iterations = ")
char := 0
read.echo.int (keyboard, screen, iterations, char)
newline (screen)
write.full.string (screen, "Filter Constant KO = ")
char : = 0
read.echo.real 32 (keyboard, screen, k O , char)
write.full.string (screen, "Filter Constant Kl = ")
char := 0
read.echo.real32 (keyboard, screen, k l , char)
write.full.string (screen, "Filter Constant K2 = ")
char := 0
read.echo.real32 (keyboard, screen, k 2 , char)
newline (screen)
write.full.string (screen, "File to be filtered = ")
char := 0
read.echo.text.1 ine (keyboard, screen, in.file.len, i n .file.name, char)
newline (screen)
write.full.string (screen, "Filtered filename = ")

char := 0
read.echo,text.1 ine (keyboard, screen, o u t .file.l e n , o u t .file.name, char)
newline (screen)

}}}
{{{ open image, temporary and filtered image files

open,file (from.filer, to.filer, i n .file.name, BinaryByteStream.Access,
Update.Mode, Old.File, 0, image.file, out.result)

open.file (frora.filer, to.filer, o u t .fi1e .name, BinaryByteStream.Access,
Update.Mode, New.File, 0, filtered.file, out.result)

seek (from.filer, to.filer, image.file, 0 , out.result)
in.result := OperationOk
WHILE (in.result = OperationOk) -- need filtered file to be same

SEQ -- size as image file
read.block (from.filer, to.filer, image.file, SIZE buffer, bytes.read

buffer, in.result)
write.block (from.filer, to.filer, filtered.file , buffer, bytes.read,

out.result)
open.file (from.filer, to.filer, temp.file.name, BinaryByteStream.Access,

Update.Mode, New.File, 0, temp.file, out.result)

seek (from.filer, to.filer, image.file, 0 , out,result)
in.result := OperationOk
WHILE (in.result = OperationOk) -- need temporary file to be same

SEQ -- size as image file as well
read.block (from.filer, to.filer, image.file, SIZE buffer, bytes.read

buffer, in.result)
write.block (from.filer, to.filer, temp.file, buffer, bytes.read,

o u t .result)

to.workers ! initialise; number.o f .transputers
SEQ i = 0 FOR iterations

PAR j = 0 FOR number.o f .blocks -- initialise the map of the
image.map [j] := FALSE -- filtered parts of the image

PAR j = 0 FOR number.o f .transputers -- initialise table of active
busy.processor [j] := FALSE -- processor table

{{{ assign input and output files for current pass

IF
((iterations /\ 1) = 1)

IF
((i /\ 1) = 1)

PAR
out.file := filtered.file
IF

(i <> 1)
in.file := temp.file

— odd number of iterations
— odd pass number

(i = 1)
in.file := image.file

((i /\ 1) = 0) -- even pass number
PAR

out.file := temp.file
in.file := image.file

((iterations /\ 1) = 0) -- even number of iterations
IF

((i /\ 1) = 1) -- odd pass number
PAR

out.file := temp.file
IF

(i <> 1)
in.file := filtered.file

(i = 1)
in.file := image.file

((i /\ 1) = 0) — even pass number
PAR

out.file := filtered.file
in.file := temp.file

}}}
— this is where the work is done

SEQ j = 0 FOR nomber.o f .processors
to.workers ! request.something; j

WHILE active
from.workers ? CASE

request.image; node.number
SEQ

index := 0
WHILE (image.map [index] = FALSE) AND (index < number.o f .blocks)

index := index + 1
IF

index < number.o f .blocks
SEQ

to.workers ! filter.params; node.number; k O ; k l ; k 2 ; index
offset.x := (block.width * (index REM (INT(image.width /

block.width)))) - 1
offset,y := ((index / (INT(image.width / block.width))) *

block.hieght) - 2

SEQ j = 0 FOR (block.hieght + 2)
SEQ

offset.y offset.y + 1
start := 0
length := block.width + 2

IF
off set.x < 0

PAR
length := block.width + 1
start := 1

adjust := 1

offset.x > (image.width - (block.width + 2))
PAR

block [block.width + 1] := BYTE (0)
length : = block.width + 1

(offset.x >= 0) AND (offset.x <= (image.width -
(block.width + 2)))

SKIP
IF

(offset.y < 0) OR (offset.y >= image.hieght)
PAR 1 = 0 FOR (block.width + 2)

block [1] := BYTE (0)
(offset,y >= 0) AND (offset.y < image.hieght)

SEQ
offset := ((offset.y * image.width) + offset.x) +

adjust
seek (from.filer, to.filer, in.file, offset,

result)
read.block (from.filer, to.filer, in.file,

length,byte.count, block, result)
IF

start = 1
SEQ

SEQ 1 = 0 FOR (block.width + 1)
block [(block.width + 2) - 1] :=

block [(block.width + 1) - 1]
block [0] := BYTE (0)

to.workers ! image.row; node.number; SIZE block::block

busy.processor [node.number] := TRUE

index >= number.o f .blocks
SEQ

to.workers ! hold; node.number
active := FLASE
SEQ j = 0 FOR number.o f .processors

IF
busy.processor [j] = TRUE

active := TRUE
busy.processor [j] = FALSE

SKIP

image,filtered; node.number; index
SEQ

-- ignore the first row
from.workers ? CASE filtered.row; node.number; byte.count::block
offset.x := block.width * (index REM (INT(image.width /

block.width)))
offset.y := ((index / (INT(image.width / block.width))) *

block.hieght) - 1

SEQ j = 0 FOR block.hieght
SEQ

offset.y := offset.y + 1
from.workers ? CASE filtered.row; node.number;

b y t e .count::block
offset := (offset.y * image.width) + offset.x
length := block.width
seek (from.filer, to.filer, out.file, offset, result)
short.block IS [block FROM 1 FOR block.width] :
write.block (from.filer, to.filer, out.file, short.block,

length, result)
-- ignore the last row as well

from.workers ? CASE filtered.ro w ; node.number; byte.count::block

to.workers ! image.saved; node.number
busy.processor [node.number] := FALSE

{{{ shut down the processors tasks
SEQ i = 0 FOR number.o f .processors

to. workers ! quit; i.

}}}
{{{ close image, temporary and filtered image files

close.file (from.filer, to.filer, in.file, Close.Option, result)
close.file (from.filer, to.filer, out.file, Close.Option, result)
close.file (from.filer, to.filer, temp.file, CloseDel.Opt ion, result)

}}}
1 } } F
. . . F code IIT8
- - : : F host.dcd
. . . F descriptor

: F host.dds
. . . F 1 ink
-- : : F host.dlk
. . . F debug
— : : F host.ddb

