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Abstract 
 
In this paper we present a novel method for estimating the object pose for 3D objects 

with well-defined planar surfaces. Specifically, we investigate the feasibility of 

estimating the object pose using an approach that combines the standard eigenspace 

analysis technique with range data analysis. In this sense, eigenspace analysis was 

employed to constrain one object rotation and reject surfaces that are not compatible with 

a model object. The remaining two object rotations are estimated by computing the 

normal to the surface from the range data. The proposed pose estimation scheme has been 

successfully applied to scenes defined by polyhedral objects and experimental results are 

reported. 
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1. Introduction 

 

During the past few years a large number of strategies to determine the spatial orientation 

for 3D objects have been developed. Earlier approaches attempted to determine the 

spatial orientation (or attitude) of the object by computing the spatial transformation 

between the coordinates of a limited number of points on the objects in the scene and 

their corresponding location in the model object (Aguado et al, 2002, Faugeras and 

Hebert 1986; Fischler and Bolles 1981; Horaud et al. 1989; Phong et al. 1995).  These 

approaches are in general robust but several limitations are worth mentioning. The first is 

the difficulty in selecting relevant points on the objects’ visible surfaces. In practice these 

points may not be easily detected due to occlusions and self-occlusions and in this 

situation the object pose cannot be estimated. In order to alleviate the problems 

introduced by occlusion, one possible solution is to infer the object pose by analysing the 

spatial transformation of less ambiguous image primitives such as lines (Ansar and 

Daniilidis 2003), conics (Forsyth et al. 1991; Tarel and Cooper 2000), curves (Brox et al. 

2005, Rosenhahn et al. 2005) and surfaces (Blane et al. 2000; Campbell and Flynn 2001) 

that can be determined even if they are partially occluded (Bolles and Horaud 1986). 

The main problem with the aforementioned techniques is the difficulty to robustly match 

the set of features extracted from scene data with the set of features associated with a 

model object in cases where the scene is defined by multiple objects with random 

orientations.  

 

Visual learning methods based on eigenimage analysis (Black and Jepson 1998; Edwards 

1996; Krumm 1996, Liu et al. 2002; Murase and Nayar 1995) have been also proposed to 



estimate the object pose. As opposed to pose estimation methods based on a structural 

description of the objects (Arun et al. 1987; Bahnu 1987; Fischler and Bolles 1981; 

Forsyth et al. 1991; Phong et al. 1995), eigenimage analysis estimates the object’s pose 

by matching its appearance (Black and Jepson 1998; Edwards 1996; Krumm 1996, 

Mittrapiyanuruk et al. 2004; Turk and Pentland 1991). In this regard, Murase and Nayar 

(1995) proposed an appearance-based approach to learn and recognise a set of complex 

objects. Although their method addresses pose estimation along with object recognition, 

the pose space is constrained by only one degree of freedom (DOF) since the image set is 

generated by rotating the object about a single axis. This problem was specifically 

addressed in the paper by Edwards (1996) where an active pre-normalisation scheme was 

applied to reduce the object space from 6 DOF to 3 DOF. His approach can handle the 

pose estimation for one-object scene with the object’s tilt angle limited to 30 degrees with 

respect to the camera position. Black and Jepson (1998) proposed an alternative solution 

to match/track gestures of a moving hand. To accommodate the affine transformations 

between the eigenspace and the input image they employed an optical flow-based 

technique to estimate the warp transformation. Although interesting, this approach can be 

applied only when a long sequence of images is available under the assumption that the 

pixels brightness remain constant and only their location may change from image to 

image within the sequence. This translates to a requirement to have constant illumination 

conditions during the image acquisition (and database generation) process and this 

implementation is more suitable for tracking rather than pose estimation.  

 

In practice, real scenes are defined by multiple objects and the task to infer the pose is 

significantly more difficult as the scene objects may be partially occluded. Johnson and 



Hebert (1999) developed an object recognition scheme that is able to identify multiple 3D 

objects in scenes affected by clutter and occlusion. In this regard, they applied 

eigenimage analysis to match surface points using the spin image representation. The 

main attraction of this approach resides in the use of spin images which are local surface 

descriptors, hence, they can be easily identified in real scenes that contain clutter. The 

reported results are impressive but several problems are worth mentioning. The first is the 

fact that this approach is better suited to objects that have a complex 3D appearance with 

accurate range data and most importantly, the pose cannot be easily determined as the 

spin images are local descriptors and are not unique for polyhedral objects unless the 

pose estimation process is augmented with a geometrically driven model-to-scene 

verification procedure. Moreover their paper is focused on the object recognition and no 

results regarding pose estimation are reported.   

 

In this paper we address the problem of full pose estimation for rigid objects with planar 

faces using a combination of geometrical and visual learning strategies. This task 

comprises two main components. The first component of the developed system performs 

region segmentation in order to extract the meaningful surfaces associated with the scene 

objects while the second component deals with inferring the object pose. The pose 

estimation scheme removes the main limitation of the standard eigenimage analysis, 

namely the requirement to sample the object pose in full 6 DOF pose space. Thus, our 

pose estimation scheme constrains 2 DOF by computing the normal vector for each 

detected region. As this information is sufficient to determine two rotation angles, the last 

rotational DOF, namely the angle about the camera axis, is sampled by matching the 

appearance of the segmented regions with those contained in the model database.  This 



paper is organised as follows. Section 2 presents an overview of the developed algorithm. 

Section 3 describes the image segmentation algorithm. Section 4 details the pose 

estimation problem while a number of experimental results are presented and discussed in 

Section 5. Section 6 includes some concluding remarks.    

 
 
 
2. Overview of the proposed approach 

 

The complete approach comprises two distinct components. The first component deals 

with the database generation and consists of the following off-line operations.   

 

• Principal component analysis (PCA) training with the object surfaces obtained 

from the segmentation process. The eigenvector representation is generated using 

a coarsely-sampled set of object poses by varying only one rotational DOF, i.e 

rotation about z axis relative to the camera and the range sensor. For this 

implementation each object surface has its own eigenvector representation. 

• Refinement of the approximate estimation of the rotation about z axis by 

interpolation in the eigenspace. 

 

The second component is on-line and deals with the identification and estimation of the 

pose of the scene objects. The operations required by the second component are 

summarised below. 

 

• Edge-based segmentation of the input image describing a cluttered scene into 

distinct planar regions. 



• Normal calculation for each segmented region using 3D data and estimation of 2 

rotational DOFs (i.e. rotation about x and y axes).  

• Projection of the segmented region on a plane perpendicular on the z axis.  

• Estimate of the rotation about z axis using eigenimage analysis. 

 
  
 
3. Image Segmentation 

 

The image segmentation framework employed in this implementation uses edge 

information to decompose the input image into disjoint regions. When explicit depth 

information is available, the segmentation process is typically applied to range images 

since edges are associated with abrupt changes in the depth structure. However this 

approach is appropriate only when the scene under analysis exhibits significant depth 

discontinuities and the range sensor has high accuracy.  The range sensor employed in 

this application is based on active depth from defocus (Ghita and Whelan 2001) and 

offers a 7-bit resolution for a depth range between 0 and 9 cm. Since our implementation 

deals with a set of small textureless objects, more accurate results were obtained when 

the segmentation process was applied to intensity images (this approach is also motivated 

by the fact that for DFD sensors the depth is typically calculated from two defocused 

intensity images and as a result the range data and intensity data are registered). We also 

tried to augment the segmentation process with range data but the poor correlation of the 

edges from the intensity data with the depth discontinuities in the range data motivated us 

to develop an edge linking strategy in order to improve the edge structure returned from 

the intensity image.  



   
                        (a)                                        (b)                                          (c) 
 

Figure 1. Edge linking and noise removal algorithm. (a) The input image. (b) Edge 

information. (c) Edge linking results (note the removal of the unconnected edge 

segments). 

  

 
The quality of the segmentation process is highly dependent on the precision of the edge 

operator involved. Edge extraction is generally based on analysing the information 

associated with the first and second derivatives (Marr and Hildreth 1980). However, the 

recovered edge map either contains false edge points that are generated by image noise or 

exhibits gaps in edge structure due to a low variation in the pixel intensity distribution. 

For this application we employed the Gradient Exponential Filter (GEF) edge operator 

that has been originally developed by Shen and Castan (1992). The performance of this 

edge operator closely match that offered by the more ubiquitous Canny edge detector 

(Canny 1986) but it is worth noting that the computational overhead for GEF operator is 

significantly lower than that associated with the Canny edge operator. In order to refine 

the initial edge information we applied a method based on thresholding with hysteresis 

(Ghita and Whelan 2002). 



As mentioned earlier the edge map is affected by errors such as false responses that are 

generated by image noise. But more importantly due to a small change in the image 

intensity distribution, gaps in the edge structure that may be associated with physically 

meaningful object features are present. These false edge points and the gaps in the edge 

structure generate segmentation errors and in order to alleviate these problems we have 

employed a morphological-based strategy for edge linking (Ghita and Whelan 2002). For 

this implementation the edge gaps are bridged by analysing the optimal linking path 

based on minimising a cost function  (for more details the reader can refer to Ghita and 

Whelan (2002)). As we are interested in closed edge structures the unconnected edge 

structures are removed from the final edge map. Results of the edge linking algorithm are 

depicted in Figure 1. 

 
 
 
4. Pose estimation 

 

Our approach to pose estimation describes the objects in terms of their visible surfaces. In 

this regard, for each object of interest its appearance is sampled over a range of viewing 

directions. The resulting images define an image set which encodes the attitude of the 

object in question. The attitude of an object contained in the scene can be determined by 

matching an image contained in the image set. To be accurate, this approach requires 

very large image sets and as a consequence the matching process will be computationally 

intensive. Fortunately, as the images that form the image set are highly correlated, the 

computational burden associated with the matching process can be significantly 

alleviated if an image compression technique is applied.  



 

Principal component analysis (PCA) or eigenimage analysis (Sirovich and Kirby 1987; 

Moghaddam and Pentland 1997) is a well-known technique for computing a low-

dimensional representation (eigenspace) that describes the entire image set. In this 

formulation, the eigenspace is generated by computing the eigenvectors of the covariance 

matrix of the image set. Then, by projecting the image set on the eigenspace, the result is 

a collection of low dimensional vectors which are the compressed representation of the 

image set (Turk and Pentland 1991). 

 

4.1 PCA Technique. Mathematical background 

 

Let P be the number of images contained in the image set of a given object. To organise 

the image set as a matrix it is necessary to convert each image into a row vector Ii of size 

D (image dimension 256×256). To increase the variance between the images contained in 

the image set, it is necessary to subtract the average image of the image set from each 

image.  

 

Il
’=Il-Iav,  l=1…P,  S =[I1

’,I2
’, …,IP

’]T                                      (1) 

 

where Iav is the average image of the image set, S is the image set matrix and T denotes a 

transpose operation. For each image in the training set the background is discarded and 

the object surfaces are centered within the image.  

 



The next operation consists of computing the covariance matrix of the image set C = STS. 

The eigenvector decomposition of the covariance matrix C results in D orthonormal 

components that can be determined by solving the eigenvector equation (Press et al. 

1992): 

 

Cui=viui                                                              (2) 

 

where ui is the ith eigenvector and vi is the corresponding eigenvalue. It is worth noting 

that the dimension of the covariance matrix C is D×D, a fact that makes the calculation 

of its eigenvectors impractical. If the number of images P is smaller than D, the reduced 

covariance matrix R = SST can be used instead of the covariance matrix C, but the 

dimension of the space is limited to P. This dimension can be further decreased since the 

eigenvectors derived from small eigenvalues have a negligible discriminative power. The 

eigenvalues are sorted in descending order and the eigenspace dimension can be selected 

in conjunction with a small threshold value ε as follows: 
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where M << D (for this implementation we set M = 24). The eigenspace is obtained by 

multiplying the matrix of eigenvectors U = [u1, …, uM] with the image set matrix S.  

 



The next operation involves the projection of the image set on the eigenspace and the 

result is a collection of vectors αi which defines the compressed version of the images 

contained in the image set. Since these vectors are M dimensional, the amount of 

compression is M/D. 

 
 
 
4.2 The sampling problem  

 

The eigenspace representation described in Section 4.1 has several limitations such as 

sensitivity to image conditions (background noise, image shift and illumination changes) 

(Fortuna et al. 2002). Since the scene is segmented into disjoint regions, the problems 

derived from different levels of illumination do not have a significant impact on this 

implementation. To compensate for the remaining problems, for each image the 

background is discarded (Murase and Nayar 1995), and the objects are centred within the 

image.  

 

In line with the image set normalisation procedure described above, the problem of 

sampling the object’s appearance is a critical issue. To sample the full 6 DOF object pose 

it is necessary to generate an image set that captures all possible orientations of the object 

under analysis. There is no doubt that such an approach is quite impractical since even at 

a coarse rate of object pose sampling it would require an extensive number of images. For 

example to sample the object pose at a rate of 10 samples/DOF requires 106 images 

(Edwards 1996). Consequently, the 6 DOF object pose has to be reformulated in order to 

reduce the size of the image set. In this sense the translation components constrain 3 DOF 



and can be easily determined by analysing the coordinates of the centroid of the object’s 

surface. Thus, in this paper we focus on the estimation of the rotation parameters.  

 

In this paper we reformulated the problem of pose estimation as follows: 2 rotational 

DOF (i.e. rotation about x and y axes) are determined by statistical calculation of the 

normal vector to the detected scene regions. Then, the scene regions are projected on a 

plane perpendicular to the z axis, and the last rotational DOF (rotation about z axis) is 

determined using an eigenimage representation. This procedure will be detailed in the 

following sections. 

 
 
 
 
4.3 Normal vector calculation 

 

The normal vector to a planar surface can be easily computed if we know the coordinates 

of at least 3 non-collinear 3D points. Unfortunately, computing the normal vector using 

only a small number of 3D points is not robust as this procedure is extremely sensitive to 

errors in depth estimation. As we know that the 3D points associated with the segmented 

region lie on a planar surface, the normal vector can be locally computed using the 

assumption that the elevation (or the z coordinate) is functionally dependent on the x and 

y coordinates. Thus, given the set of n points [ ] T
nnn

T zzyyxxzyxQ ]...,...,...[,, 111==  

from the range data that belong to the surface in question, the normal vector can be 

statistically computed by a planar fitting of the 3D points (Lancaster and Salkauskas 

1986). As the equation for a planar surface is z = a1x+a2y+a3, the best fit can be 



determined in the least square sense (Nash 1990) by minimizing the errors between the zi 

and the plane’s values a1xi+a2yi+a3 as follows: 

 

2

1 321 )ˆˆˆ()ˆ( ∑=
−++=

n

i iii zayaxaaErr                                 (4) 

 

where Taaaa ]ˆ,ˆ,ˆ[ˆ 321=  are the estimated values (since the least square planar fitting 

minimises the errors in the functional z = a1x+a2y+a3 in our analysis we have adopted 

the homogenous form for the normal vector: [ ]Taa 1,ˆ,ˆ 21 − ). Equation 4 generates a 

simultaneous system where the unknown values are â  (see Equation 5). 
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The normal vector associated with the surface [ ]TzyxQ ,,= , is represented in 

homogenous form as [ ] [ ]TT
zyx aannnN 1,1,ˆ,ˆ1,,, 21 −== . Referring to Figure 2, the aim is to 

transform a plane so that the normal vector lies along the z direction of the reference 

frame. Within the orthographic projection assumption, the image of the transformed 

plane can be simply formed by ignoring the z component of the transformed points (see 

Figure 3). For this image of the transformed plane, the rotation about the z axis is 

estimated using PCA as will be detailed in the next section. 

 
 
 
 



 
 
 
 
 
 
 

 
 

Figure 2. The rotations constrained by the normal vector N to the object surface. The 

angle Az which describes the rotation about z axis is computed from the PCA analysis. 

 

 

The desired transformation is formulated as 0
1

0 TRRTH xy
−= , where T0 is a 

transformation that centres the points Q about the origin, and Rx and Ry are rotations 

about the x and y axis respectively, as shown in Figure 2.   

 

 

 

 

 



    
 
                     (a)                                            (b)                                             (c) 

 
(d) 

 
Figure 3. Orthographic projection. (a) Surface segmentation image of a cubic object (note 

the orientation of the normal vector for each of the visible surfaces of the cubic object 

relative to the camera/sensor view). (b) Depth estimation. (c) Output image illustrating 

the transformed planar of the surface marked with label 3. (d ) 3D view illustrating the 

orthographic projection (red-3D surface data-points, blue-least square planar fitting of the 

3D points, green-transformed plane perpendicular to the z axis ).  

 



 
 

T0 has the form 
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and I3 the 3×3 identity matrix. Rotations Rx, Ry have the following forms: 
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where ),(2tan 1

zyx nnA −= . The rotation angle about y is computed using the transform 

[ ]TrzryrxxRx nnnNRN 1,,,== , as ),(2tan 1
rzrxy nnA −−= , where tan2-1 is the four quadrant 

inverse tangent.  

 
 
 
4.4 3 DOF object pose estimation 
 
 
The method described in the previous section constrains two rotational DOF, namely, the 

rotation about x and y axes and all segmented surfaces are projected on a planar surface 

perpendicular on the z axis. This allows us to employ eigenimage analysis to constrain 

the rotation about z axis as the dimensionality of the pose space is reduced to 1 DOF. 

Therefore, every region is projected on the eigenspace and its projection is compared 

with those contained in the database.  

 
 
 
 



 

 
 

Figure 4. The surface matching process. 

 

 

The input image approximates an image contained in the database if the minimum 

distance between its projection on the eigenspace β and the projections derived from the 

image set αi is smaller than a threshold value ζ. 

 
ςαβ ≤−= iid                                                       (7) 

 
 
The value of this threshold was set experimentally and defines the maximum allowable 

distance for a positive estimation stage. The scene surfaces are ranked and the pose is 

estimated for best positioned surface that is approximated with the smallest error. The 

surface matching process is illustrated in Figure 4.  

 

 

 

5. Experiments and results 

 

The initial tests were conducted on synthetic data defined by a planar surface parallel to 

the xy plane in order to evaluate the correctness of our pose estimation algorithm. Our 



aim is to identify the errors returned by our algorithm in estimating the rotation angles 

about x and y axes of the synthetic data that has been rotated about x and y axes using the 

transformation RxRy (angles Ax and Ay defined by the user).  The experimental data (see 

Table 1) indicates that our algorithm is able to identify the angles specified in the 

transformation RxRy within the computer error generated by the calculation of the 

trigonometric functions.  

 

Simulated planar 
orientation 

Rotation x: 0.00 

Rotation y: 0.00 
Estimated planar 

orientation 
Rotation x: 0.00 

Rotation y: 0.00 

Simulated planar 
orientation 

Rotation x: 28.50 

Rotation y: -35.00 
Estimated planar 

orientation 
Rotation x: 28.5000020 

Rotation y: -35.000040 

Simulated planar 
orientation 

Rotation x: 77.7510 

Rotation y: 19.3120 
Estimated planar 

orientation 
Rotation x: 77.7509990 

Rotation y: 19.3119890 
Simulated planar 

orientation 
Rotation x: 1.7090 

Rotation y: -5.3150 
Estimated planar 

orientation 
Rotation x: 1.7089690 

Rotation y: -5.3150210 
Simulated planar 

orientation 
Rotation x: -33.490 

Rotation y: -16.270 
Estimated planar 

orientation 
Rotation x: -33.4900020 

Rotation y: -16.2699970 
Simulated planar 

orientation 
Rotation x: -17.270 

Rotation y: -66.450 
Estimated planar 

orientation 
Rotation x: -17.2699910 

Rotation y: -66.4499970 
Simulated planar 

orientation 
Rotation x: 12.5720 

Rotation y: 45.0010 
Estimated planar 

orientation 
Rotation x: 12.5720090 

Rotation y: 45.0009990 
 

Table 1. Estimation of rotation angles about x and y axes from synthetic data. 

 

 

To evaluate the performance of the proposed pose estimation scheme when applied to 

real 3D data obtained from the range sensor, we selected 5 different polyhedral objects 

that are used to create various scenes. 

 



  
                                            (a)                                                (b) 
 

 
(c) 

 

  
(d) (e) 
 

 

Figure 5. One object scene. (a) Input image. (b) Surface segmentation (normal vectors 

relative to the camera/sensor position). (c) Depth estimation. (d) Orthographic projection 

for best estimated surface (Ax = -24.800, Ay= -25.080). (e) PCA estimation.  



   
                                          (a)                                                    (b) 
 

 
(c) 

 

  
                                             (d)                                               (e) 

 

Figure 6. Multiple object scene. (a) Input image. (b) Surface segmentation (normal 

vectors relative to the camera/sensor position). (c) Depth estimation. (d) Orthographic 

projection for best estimated surface (Ax = -20.940, Ay= 4.210). (e) PCA estimation. 



While the pose estimation process entails two distinct stages, we analysed the pose 

estimation error for each stage separately. Initially, errors in two DOF namely the 

rotation about x and y axes are evaluated and as expected the pose error is in direct 

relation to the quality of the depth estimation. In Table 2 we compared the estimation 

achieved by our algorithm detailed in Section 4.3 with the results obtained when the 

rotation about x axis is estimated by choosing manually relevant non-colinear points from 

range data (the error in estimation the rotation angle about y axis is similar). It can be 

observed the good correlation between the results returned by our algorithm and the 

estimation of the rotation angle calculated using the 3D data points selected manually 

from range data. Our set-up includes a range sensor based on active depth from defocus 

and its accuracy is 3.4% of the overall ranging distance from the sensor (Ghita and 

Whelan 2001). The depth error tends to be higher around depth discontinuities and to 

alleviate this problem the planar surfaces resulting after the application of the 

segmentation process were approximated by employing a least square planar fitting. This 

solution also alleviates other depth errors such as those caused by specular characteristics 

of the object surfaces. In our experiments we have investigated the pose error on scenes 

defined by a single object (see Figure 5) to estimate the feasibility of the proposed 

implementation and on scene containing clutter to asses the validity of the proposed pose 

estimation scheme (see Figure 6).   

 

As discussed in Section 4, the rotation about z axis has been analysed by applying 

eigenimage analysis. In this way, for each object, we acquired 24 images where the 

rotation angle is sampled uniformly with the object lying flat on a worktable. In our 



experiments the object’s eigenspace is 24 dimensional and the manifold has been re-

sampled to 720 points by using linear interpolation. (The PCA space is generated by 24 

images that are able to sample uniformly the rotation about z axis with a resolution of 

150. The resolution of the PCA manifold has been increased by calculating new PCA 

projections using linear interpolation that will generate 30 interpolated projections 

between any two adjacent projections produced by the 24 images  (training set). This 

would result in a PCA manifold that has 720 projections and is able to sample linearly the 

rotation about z axis with a resolution of 0.50.  For more details about this procedure refer 

to Murase and Nayar 1995).   

 

Actual orientation. 
Rotation only about x axis 

00 50 100 200 300 400 450 

Estimated orientation. 
Our algorithm 

-0.540 6.670 11.830 22.050 27.680 35.070 41.810 

Estimated 
orientation. 

Manual selection 
of 3D points 

Set 1 -0.490 7.150 11.570 21.810 27.390 34.380 41.350 

Set 2 -0.380 7.050 11.420 22.850 27.170 34.730 43.800 

 
Table 2. Estimation of rotation angles about x axis using the range data generated by our 

depth from defocus sensor. 
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Figure 7. Repeatability test for 20 successive measurements. Object rotated about x axis 

with an angle of 16 degree. Resulting mean value 16.640, standard deviation 0.44. 



Since the region of interest that is projected on the eigenspace has been aligned to be 

perpendicular on the z axis using the range information, the absolute error is influenced 

by the errors in the estimation of the plane associated with the region in question. The 

experiments indicate that the error in estimating the rotation about z axis is in direct 

relation with the object’s tilt angles (rotation angles about x and y axes). 

 

Actual object 
orientation 

 

Rotation x: 00 

Rotation y: 00 

Rotation z: 00 

Estimated object 
orientation 

Rotation x: 1.630 

Rotation y: -1.820 

Rotation z: 0.50 

Actual object 
orientation 

Rotation x: 00 

Rotation y: 00 

Rotation z: 250 

Estimated object 
orientation 

Rotation x: 1.420 

Rotation y: -0.980 

Rotation z: 22.50 

Actual object 
orientation 

Rotation x: 00 

Rotation y: 00 

Rotation z: 450 

Estimated object 
orientation 

Rotation x: 0.950 

Rotation y: -0.840 

Rotation z: 43.50 

Actual object 
orientation 

Rotation x: 150 

Rotation y: 00 

Rotation z: 00 

Estimated object 
orientation 

Rotation x: 17.580 

Rotation y: 3.720 

Rotation z: 2.50 
Actual object 

orientation 
Rotation x: 150 

Rotation y: 00 

Rotation z: 250 

Estimated object 
orientation 

Rotation x: 17.650 

Rotation y: 3.320 

Rotation z: 24.00 
Actual object 

orientation 
Rotation x: 300 

Rotation y: 00 

Rotation z: 00 

Estimated object 
orientation 

Rotation x: 26.400 

Rotation y: 2.880 

Rotation z: 3.50 
Actual object 

orientation 
Rotation x: 300 

Rotation y: 00 

Rotation z: 250 

Estimated object 
orientation 

Rotation x: 26.750 

Rotation y: 3.350 

Rotation z: 21.00 
Actual object 

orientation 
Rotation x: 450 

Rotation y: 00 

Rotation z: 00 

Estimated object 
orientation 

Rotation x: 42.240 

Rotation y: 4.280 

Rotation z: 3.50 
Actual object 

orientation 
Rotation x: 450 

Rotation y: 00 

Rotation z: 250 

Estimated object 
orientation 

Rotation x: 42.130 

Rotation y: 4.450 

Rotation z: 21.50 
Actual object 

orientation 
Rotation x: 450 

Rotation y: 00 

Rotation z: 450 

Estimated object 
orientation 

Rotation x: 41.350 

Rotation y: 4.930 

Rotation z: 39.50 
 

Table 3. Pose estimation accuracy.  Estimation of the rotation about z axis for various 
object rotations about x and y axes. 

 



 
 
The performance of the developed pose estimation algorithm is illustrated in Table 3 and 

it can be observed that the errors in the estimation of the rotation angle about z axis 

increase for large rotations about x and y axes that are generated by the low resolution 

depth estimation. Figure 7 illustrates the repeatability test for 20 successive 

measurements when the cubic object illustrated in Figure 5(a) was rotated 16 degrees 

about x axis. 

 

 

6. Conclusions 

 

This paper described the development of a two-stage pose estimation algorithm. In the 

standard form the eigenspace analysis technique has several limitations such as 

sensitivity to illumination changes, background conditions and partial occlusion. To 

address these issues we have applied an edge-based segmentation in order to decompose 

the input image into disjoint regions that describe the scene objects. However, to 

determine the 6 DOF object pose using the standard eigenspace technique is not a 

practical approach since a prohibitive number of images are required to sample the 

object’s appearance in all possible orientations. To overcome this issue we employed 

range data to constrain 2 object rotations while the estimation of the remaining object 

rotation is determined by applying eigenimage analysis. It is worth noting that this pose 

estimation scheme has the advantage that no spatial relationships between adjacent scene 

surfaces are necessary to determine the pose of the scene object. The experimental results 



indicate that reasonable accurate pose estimation is obtainable from this approach and we 

believe that this pose estimation technique is particularly useful when dealing with 

polyhedral objects or objects with well-defined surfaces.  
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