

'BIOCLA: Biotechnological Approaches for the Development of Functional Foods Enriched in Bioactive Lipids'

by

Alan A. Hennessy, B.Sc.

¹Biotechnology Centre, Moorepark Food Research Centre, Teagasc, Fermoy, Co.

Cork, Ireland

²Department of Biotechnology, Dublin City University, Dublin 9, Ireland.

June 2009

Research supervisors: Dr. Catherine Stanton¹, Prof. R. Paul Ross¹, & Dr. Rosaleen Devery².

DECLARATION

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of PhD is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others and to the extent that such work save and to the extent that such work has been cited and acknowledged within the text of my work.

Signed: _____

Student Number: 54179343

Date: _____

ABSTRACT

The aims of this study were to investigate the potential of microbial cultures of dairy significance to produce conjugated fatty acids exhibiting beneficial antimicrobial and anti-carcinogenic activities. Supplementation of reconstituted skimmed milk with food grade yeast extract, sodium acetate and inulin enhanced production of the health promoting conjugated linoleic acid (CLA) by bifidobacteria. Three novel microbially-produced conjugated fatty acids were isolated and identified using RP-HPLC and GLC-MS. These conjugated fatty acids exhibited potent anti-carcinogenic activity associated with increased cellular lipid oxidation and altered expression of Bcl-2 in the SW480 human colon cancer cell line. These novel conjugated fatty acids also displayed potent inhibitory activity against methicillin resistant Staphylococcus aureus (MRSA). It was observed that the pattern of inhibition displayed by the conjugated fatty acids differed substantially from that of their parent unsaturated fatty acids. Furthermore, it was observed that the conjugated fatty acids remained active in the presence of known inactivators of the inhibitory activity of unsaturated fatty acid such as blood serum and α -tocopherol. Bovine nutrition intervention trials showed that dietary supplementation with ω -3 PUFA elevated concentrations of ω -3 PUFA and the concentration of CLA and its precursor vaccenic acid. Furthermore, such a diet could be used to enhance the ω -3/ ω -6 PUFA and PUFA/saturated fatty acid profiles of plasma, meat and liver from beef heifers. In conclusion, the results demonstrate that 1) members of the enteric microbiota possess the ability to biosynthesise novel conjugated fatty acids with positive benefits for human health and 2) dietary ω -3 PUFA supplementation in cows leads to changes in fatty acid profiles of tissues which positively impact on the nutritive quality of bovine meat.

PUBLICATIONS

Hennessy, A. A., Ross, R. P., Devery, R. & Stanton, C. (2009). Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. *J Appl Microbiol* 106, 1315-1327

Hennessy, A. A., Ross, R. P., Stanton, C. & Devery, R. (2007). Development of dairy based functional foods enriched in conjugated linoleic acid with special reference to rumenic acid. In Functional Dairy Products, pp. 443-495. Edited by M. Saarela. Cambridge, England: Woodhead Publishing Limited.

Waters, S. M., Kenny, D. A., Killeen, A. P., Spellman, S. A., Fitzgerald, A., **Hennessy, A. A.** & Hynes, A. C. (**2009**). Effect of level of eicosapentaenoic acid on the transcriptional regulation of Δ -9 desaturase using a novel *in vitro* bovine intramuscular adipocyte cell culture model. *Animal* **3** 718-727.

Childs, S., **Hennessy, A. A.**, Sreenan, J. M., Wathes, D. C., Cheng, Z., Stanton, C., Diskin, M. G. & Kenny, D. A. (**2008**). Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. Theriogenology 70, 595-611.

Childs, S., Carter, F., Lynch, C. O., Sreenan, J. M., Lonergan, P., **Hennessy, A. A.** & Kenny, D. A. (**2008**). Embryo yield and quality following dietary supplementation of beef heifers with n-3 polyunsaturated fatty acids (PUFA). Theriogenology 70, 992-1003.

Childs, S., Lynch, C. O., **Hennessy, A. A.**, Stanton, C., Wathes, D. C., Sreenan, J. M., Diskin, M. G. & Kenny, D. A. (**2008**). Effect of dietary enrichment with either n-3 or n-6 fatty acids on systemic metabolite and hormone concentration and ovarian function in non lactating heifers. *Animal* 2, 883-893.

Clarke, G., O'Mahony, S.M., **Hennessy, A.A.**, Ross, P., Stanton, C., John F. Cryan, J.F., Dinan, T.G. (**2009**). Chain reactions: Early-life stress alters the metabolic profile of plasma polyunsaturated fatty acids in adulthood. *Behavioural Brain Research*. In press.

ABSTRACTS

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton, M. G. Diskin and D. A. Kenny. (2007). Effect of dietary ϖ -3 polyunsaturated fatty acid supplementation on hormonal and metabolite concentrations and corpus luteum size in beef heifers. Proceedings of Irish Agricultural Research Forum, Tullamore, March, p16.

Waters, S. M., S. Childs, J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Effect of dietary polyunsaturated fatty acids on uterine endometrial gene expression of enzymes involved in prostaglandin biosynthesis in cattle. Proceedings of Irish Agricultural Research Forum, Tullamore, March, p27.

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Relationships between feed, rumen fluid, blood plasma, follicular fluid and endometrial tissue concentrations of the omega-3 (ω -3) fatty acids eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA) in cattle. Proceedings of Irish Agricultural Research Forum, Tullamore, March, p113.

Waters, S. M., S. Childs, J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Effect of dietary polyunsaturated fatty acids on uterine endometrial gene expression of enzymes involved in prostaglandin biosynthesis in cattle. Proceedings of the British Society of Animal Science, Southport, April, p59

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton, M. G. Diskin and D. A. Kenny. (2007). Effect of dietary ω -3 polyunsaturated fatty acid supplementation on hormone and metabolite concentrations and corpus luteum size in beef heifers. Proceedings of Joint ADAS/PSA/PMPA/ASAS Meeting, San Antonio, Texas, July, p526.

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Effect of level of dietary supplementation on concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in selected tissues in cattle. Proceedings of Joint ADAS/PSA/PMPA/ASAS Meeting, San Antonio, Texas, July, p527.

Waters, S. M., S. Childs, J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Effect of dietary polyunsaturated fatty acids on the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Proceedings of Joint ADAS/PSA/PMPA/ASAS Meeting, San Antonio, Texas, July, p119.

Hennessy, A. A., C. Stanton, R. P. Ross and R. Devery. (2007). Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. Second International Congress on Conjugated Linoleic acid, Villasimius (CA), Sardinia, Italy, Sept, p38

Cordeddu, L., G. Carta, M. P. Melis, E. ,Murru, V. Sogos, E. Giordano, A. Sirigu, C. Stanton, A. A. Hennessy, and S. Banni. (2007). Metabolism of conjugated alpha-linolenic acid (CALA) in astrocytes. Second International Congress on Conjugated Linoleic acid, Villasimius (CA), Sardinia, Italy, Sept, p87

Hennessy, A. A., C. Stanton, R. P. Ross and R. Devery. (2007). Enhancing the production of biogenic fatty acids by bifidobacteria in milk. Teagasc Walsh Fellowship Seminar, Dublin, Nov, p12

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton, M. G. Diskin and D.A. Kenny. (2007). Effect of dietary ω -3 polyunsaturated fatty acid supplementation on hormone and metabolite concentrations and corpus luteum size in beef heifers. *Journal of Animal Science* 85 (1): 526.

Childs, S., J. M. Sreenan, A. A. Hennessy, C. Stanton and D. A. Kenny. (2007). Effect of level of dietary supplementation on concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in selected tissues in cattle. *Journal of Animal Science* 85 (1): 527.

Waters, S. M., S. Childs, J. M. Sreenan, A. A. Hennessy, C. Stanton, and D. A. Kenny. (2007). Effect of dietary polyunsaturated fatty acids on the expression of

genes involved in prostaglandin biosynthesis in the bovine uterus. *Reproduction in Domestic Animals.* 42 (S2): 69

ORAL COMMUNICATIONS

Production of CLA enriched dairy products by natural means. Department of Biotechnology, Moorepark Food Research Centre, Teagasc, October 2004.

Production of CLA enriched Dairy Products by Natural means. School of Biotechnology, DCU, Dubin, April 2006.

Production of conjugated polyunsaturated fatty acids by strains of bifidobacteria and propionibacteria. Department of Biotechnology, Moorepark Food Research Centre, Teagasc, December 2006.

Assessing the biogenic activity of conjugated fatty acids. Department of Biotechnology, Moorepark Food Research Centre, Teagasc, December 2007.

Effect of dietary ϖ -3 polyunsaturated fatty acid supplementation on hormonal and metabolite concentrations and corpus luteum size in beef heifers. Proceedings of Irish Agricultural Research Forum, Tullamore, March 2007.

Effect of dietary polyunsaturated fatty acids on uterine endometrial gene expression of enzymes involved in prostaglandin biosynthesis in cattle. Proceedings of Irish Agricultural Research Forum, Tullamore, March 2007.

Effect of dietary polyunsaturated fatty acids on uterine endometrial gene expression of enzymes involved in prostaglandin biosynthesis in cattle. Proceedings of the British Society of Animal Science, Southport, April 2007.

Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. Second International Congress on Conjugated Linoleic acid, Villasimius (CA), Sardinia, Italy, Sept 2007.

Enhancing the production of biogenic fatty acids by bifidobacteria in milk. Teagasc Walsh Fellowship Seminar, Dublin, Nov 2007.

Assessing the bactericidal properties of conjugate fatty acids against MRSA. Department of Biotechnology, Moorepark Food Research Centre, Teagasc, May 2008.

Assessing the Anti-carcinogenic Properties of Conjugated Fatty Acids against the SW480 Colon Cancer Cell Line. Department of Biotechnology, Moorepark Food Research Centre, Teagasc, March 2009.

ABBREVIATIONS

ADG	Average daily gain
AIC	Akaike criterion
A.m.u.	Atomic mass units
BCS	Body condition score
BEND	Bovine endometrial cells
BHA	Butylated hydroxyanisole
BHBA	β-hydroxybutyrate
BHT	Butylated hydroxytoluene
CWG	Choice white grease
С	cis
CALA	Conjugated α-linolenic acid
CALA1	9, 11, 15-C18:3 or <i>c</i> 9, <i>t</i> 11, <i>c</i> 15-C18:3
CALA2	<i>t</i> 9, <i>t</i> 11, <i>c</i> 15-C18:3
cfu	Colony forming units
CGLA	Conjugated γ-linolenic acid
CGLA1	6, 9, 11-C18:3 or <i>c</i> 6, <i>c</i> 9, <i>t</i> 11-C18:3
CGLA2	<i>c</i> 6, <i>t</i> 9, <i>t</i> 11-C18:3
CLA	Conjugated linoleic acid
COX	Cycloxygenase
COX-2	Cycloxygenase-2
CSA	Conjugated stearidonic acid
CSA1	6, 9, 11, 15-C18:4 or <i>c</i> 6, <i>c</i> 9, <i>t</i> 11, <i>c</i> 15-C18:4
CSA2	<i>c</i> 6, <i>t</i> 9, <i>t</i> 11, <i>c</i> 15-C18:4
DAD	Diode array detector
dDM	Dietary dry matter
DHA	Docosahexaenoic acid
DM	Dry matter
DMEM	Dulbecco's minimum essential medium
DMI	Dry matter intake
DMOX	4, 4-dimethyloxazoline
DPA	Docosapentaenoic acid
ELISA	Enzyme-linked immunosorbent assay

EPA	Eicosapentaenoic acid
FAD2	Δ^{12} -oleate desaturase
FAME	Fatty acid methyl ester
FBS	Fetal bovine serum
FHC	Normal human fetal epithelial cell line
FID	Flame ionization detector
GLC	Gas liquid chromatography
GLC-MS	Gas liquid chromatography mass spectrometry
HDL	High density lipoprotein
IDL	Intermediate density lipoprotein
IVF	in vitro fertilisation
IVM	in vitro maturation
LA	Linoleic acid
LAB	Lactic acid bacteria
LDL	Low density lipoprotein
LPS	Lipopolysaccharide
mBHI	Modified brain heart infusion broth
MRD	Maximum recovery diluent
MRSA	Methicillin resistant S. aureus
MRS	De Man, Rogosa and Sharpe
mRSM	Modified reconstituted skimmed milk
MTAD	4-methyl-1, 2, 4- triazoline-3, 5-dione
MTS	(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
	sulfophenyl)-2H-tetrazolium)
NEFA	Non-esterified fatty acid
OLETF	Otsuka Long Evans Tokushima Fatty
PBS	Phosphate buffer saline
$PGF_{2\alpha}$	Prostaglandin $F_{2\alpha}$
PHVO	Partially hydrogenated vegetable oil
PPARα	Peroxisome proliferator-activated receptor α
PUFA	Polyunsaturated fatty acids
RP-HPLC	Reversed phase high performance liquid chromatography
RSM	Reconstituted skimmed milk
SEM	Standard error of mean

SCFA	Short chain fatty acid
SREBPs	Sterol regulatory element binding proteins
SFA	Saturated fatty acids
SGJ	Simulated gastric juice
SPE	Solid phase extraction
t	trans
TSA	Tryptic soy agar
TSB	Tryptic soy broth
UHT	Ultra-high temperature
VLDL	Very-low density lipoprotein
WSB	Whole soybeans

LIST OF FIGURES

Figure		Page
Chapter 1.1		
1.1.1	The structure and nomenclature of fatty acids.	3
1.1.2	Biosynthesis of unsaturated fatty acids.	7
1.1.3	Ruminal biohydrogenation of dietary fatty acids.	9
1.1.4	Ruminal biohydrogenation of linoleic acid and α -linolenic acid.	11
1.1.5	Formation of cis 9, trans 11 CLA and trans 9, trans 11 CLA by	
	Lactobacillus acidophilus AKU 1137.	12
1.1.6	Biosynthesis of conjugated fatty acids by a) Calendula officinalis	
	and b) Aleurites fordii Hemsl (Tung tree).	15

Chapter 1.2

1.2.1	Formation of rumenic acid by ruminants.	28
1.2.2	Formation of rumenic acid and t9, t11 CLA by Lactobacillus	
	acidophilus AKU 1137.	30

Chapter 1.3

1.3.1 Structure of conjugated double bonds.	92
---	----

2.1	Comparison of the production of the $c9$, $t11$ CLA isomer by strains	
	of <i>B. breve</i> and <i>B. longum</i> in cys-MRS and 20% (w/v) RSM.	137
2.2	Comparison of the growth, CLA production, and pH of B. breve	
	NCIMB 702258 in unsupplemented 20% (w/v) RSM, 20% (w/v)	

	RSM supplemented with 10 mg/ml yeast extract, or 20% (w/v)	
	RSM supplemented with 200mM sodium acetate.	144
2.3	Supplementation with varying combinations of ingredients found to	
	stimulate CLA production by <i>B. breve</i> NCIMB 702258.	146
2.4	Growth and CLA production by <i>B. breve</i> NCIMB 702258 inoculated	
	at 5.5 log cfu/ml, 6.5 log cfu/ml or 7.1 log cfu/ml.	148
2.5	Growth and CLA production by <i>B. breve</i> NCIMB 702258 containing	
	0.35 mg/ml, 0.45 mg/ml or 0.55 mg/ml linoleic acid.	149

3.1	a) Mass spectrum of the FAME b) Mass spectrum of the DMOX	
	derivative, of 9, 11, 15-C18:3 (CALA1).	178

- 3.2 a) Mass spectrum of the FAME, b) Mass spectrum of the MTAD adduct, c) Mass spectrum of the DMOX derivative, d) Mass spectrum of the pyrrolidide derivative, of 6, 9, 11-C18:3 (CGLA1).
 180
- 3.3 a) Mass spectrum of the FAME, b) Mass spectrum of the MTAD adduct, c) Mass spectrum of the DMOX derivative, d) Mass spectrum of the pyrrolidide derivative, of 6, 9, 11, 15-C18:4 (CSA1).

3.4 Structural representations of the conjugated isomers of a) α-linolenic acid, b) γ-linolenic acid, and c) stearidonic acid. 186

- 3.5 GLC profiles of *B. breve* DPC6330 grown in cys-MRS containing
 0.3 mg/ml of the PUFA a) α-linolenic acid, b) γ-linolenic acid and
 c) stearidonic acid.
- 3.6 Growth and CALA production by *B. breve* DPC6330 over 80 h in
 the presence of 0.3 mg/ml α-linolenic acid.

xi

3.7	Growth and CGLA production by <i>B. breve</i> DPC6330 over 80 h in	
	the presence of 0.3 mg/ml γ -linolenic acid.	195
3.8	Growth and CSA production by <i>B. breve</i> DPC6330 over 80 h in the	
	presence of 0.3 mg/ml stearidonic acid.	197
3.9	Production of the c9, t11 CLA isomer, and the t9, t11 CLA isomer	
	by the wild type and stearidonic acid resistant strains of <i>B. breve</i>	
	DPC6330.	199
3.10	Assessing the survival of the wild type and stearidonic acid resistant	
	strains of <i>B. breve</i> DPC6330 in simulated gastric juice pH 2.5.	200
3.11	Substrate specificity of <i>B. breve</i> DPC6330, expressed relative to the	
	strains activity when grown in the presence of linoleic acid.	202

4.1	Effect of fatty acid concentration on the viability of SW480 colon	
	cancer cells following 24 h, 48 h and 72 h exposure to CALA.	225
4.2	Effect of duration of exposure to a) CALA, b) CGLA and c)	
	CSA on the viability of SW480 cell line.	227
4.3	Comparing the inhibitory effect of exposure to CALA on the	
	viability of the SW480 colon cancer cells relative to that of	
	α-linolenic acid.	228
4.4	Effect of fatty acid concentration on the viability of SW480 colon	
	cancer cells following 24 h, 48 h and 72 h exposure to CGLA.	230
4.5	Comparing the inhibitory effect of exposure to CGLA on the	
	viability of the SW480 colon cancer cells relative to that of	
	γ-linolenic acid.	231

4.6	Effect of fatty acid concentration on the viability of SW480 colon	
	cancer cells following 24 h, 48 h and 72 h exposure to CSA.	233
4.7	Comparing the inhibitory effect of exposure to CSA on the viability	
	of the SW480 colon cancer cells relative to that of stearidonic acid.	234
4.8	Comparing the inhibitory activity of CALA, CGLA or CSA against	
	the SW480 colon cancer relative to that of the normal colonic FHC	
	cell line.	236
4.9	Assessing the impact of α -tocopherol on the inhibitory activity of	
	CALA, CGLA and CSA.	237
4.10	Effect of CLA, CALA, CGLA or CSA, on the cellular concentration	
	of the p53 protein relative to that observed in the presence of 25 μM	
	linoleic acid, γ -linolenic acid, α -linolenic acid, stearidonic acid, or	
	an ethanol control.	246
4.11	Effect of CLA, CALA, CGLA or CSA, on the cellular concentration	
	of the enzyme COX-2, relative to that observed in the presence of 25	
	μM linoleic acid, γ -linolenic acid, α -linolenic acid and stearidonic	
	acid, or an ethanol control.	248
4.12	Effect of 25 μM CLA or CGLA, on the cellular concentration of the	
	anti-apoptotic oncoprotein Bcl-2 relative to that observed in the	
	presence of 25 μ M linoleic acid, γ -linolenic acid, or an ethanol	
	control.	251
4.13	Effect of 25 μM CALA or CSA, on the cellular concentration of the	
	anti-apoptotic oncoprotein Bcl-2 relative to that observed in the	
	presence of 25 μ M α -linolenic acid, stearidonic acid, or an ethanol	
	control.	252

xiii

5.1	Kill curve of the methicillin resistant strain, S. aureus ATCC 43300,	
	incubated at 37° C in the presence of α -linolenic acid or CALA.	282
5.2	Kill curve of the methicillin resistant strain, S. aureus ATCC 43300,	
	incubated at 37° C in the presence of γ -linolenic acid or CGLA.	284
5.3	Kill curve of the methicillin resistant strain, S. aureus ATCC 43300,	
	incubated at 37°C in the presence of stearidonic acid or CSA.	285
5.4	Test for acquired resistance in the methicillin resistant strain	
	S. aureus ATCC 83300 to the inhibitory effect of the conjugated fatty	
	acid α -linolenic acid or CALA.	287
5.5	Assessing the impact of α -tocopherol on the inhibitory properties of	
	C18 fatty acids and their conjugated isomers against MRSA.	292
5.6	Assessment of the inhibitory activity of γ -linolenic acid and CGLA	
	(1:1) in combination against MRSA to that of γ -linolenic acid and	
	CGLA alone.	296

- 7.1 Temporal changes in the concentration of EPA, DPA, DHA, and total ω-3 PUFA in plasma of Holstein Friesian heifers receiving the control or ω-3 PUFA enriched diet.
 371
- 7.2 Temporal changes in the concentration of linoleic acid, eicosatrienoic acid, arachidonic acid, and total ω-6 PUFA in the plasma of Holstein Friesian heifers receiving the control or ω-3
 PUFA enriched diet.
 372

7.3 Temporal changes in the concentration of EPA, DPA, DHA, and total ω-3 PUFA in the adipose tissue of Holstein Friesian heifers receiving the control or ω-3 PUFA enriched diet.
374

LIST OF TABLES

Table		Page
Chap	ter 1.1	
1.1.1	Fatty acid nomenclature.	3
1.1.2	Symptoms of essential fatty acid deficiency in rats.	5
1.1.3	Commonly identified conjugated linoleic acid isomers.	11
1.1.4	Conjugated fatty acid production by strains of Propionibacterium	
	acnes.	14
1.1.5	The principle conjugated plant fatty acids and their sources.	14

Chapter 1.2

1.2.1	The principal fatty acids found in some of the most common plant	
	oils.	32
1.2.2	Effect of animal feeding strategies on milkfat CLA concentrations.	33
1.2.3	CLA production by strains of Lactococcus, Streptococcus and	
	Enterococcus.	49
1.2.4	CLA production by strains of Propionibacterium.	52
1.2.5	CLA production by strains of Lactobacillus.	54
1.2.6	CLA production by strains of Bifidobacterium.	59
1.2.7	CLA content of a range of fermented and non-fermented dairy	
	products.	63

Chapter 1.3

1.3.1	The principle conjugated α -linolenic acid isomers (CALA) and	
	their sources.	94
1.3.2	Assessing the role of the conjugated isomers of α -linolenic acid	
	(CALA) on immune function and growth.	97
1.3.3	Assessing the role of the conjugated isomers of α -linolenic acid	
	(CALA) in the treatment of obesity.	100
1.3.4	Assessing the role of the conjugated isomers of α -linolenic acid	
	(CALA) in the treatment of cardio-vascular disease.	103
1.3.5	Assessing the role of the conjugated isomers of α -linolenic acid	
	(CALA) in the treatment of cancers.	105

Chapter 2

2.1	Effect of supplementation on the percentage bioconversion of	
	linoleic acid to the c9, t11 CLA isomer by B. breve NCIMB	
	702258 in 20% (w/v) RSM.	139
2.2	The effect of supplement concentration on the growth of <i>B. breve</i>	
	NCIMB 702258 and the bioconversion of linoleic acid to both the	
	c9, t11 and the t9, t11 CLA isomers.	142
2.3	Cell counts and percentage bioconversion of linoleic acid to $c9$, $t11$	
	and t9, t11 CLA isomers, following 24 h anaerobic incubation.	152

3.1	Strains of Bifidobacterium and Propionibacterium.	165
3.2	Fatty acid substrates.	167

3.3	Production of conjugated fatty acids by growing cultures of	
	Bifidobacterium and Propionibacterium.	173
3.4	Bioconversion of selected PUFA to CLA, CALA, CGLA and CSA	
	by strains of Bifidobacterium and Propionibacterium.	175
3.5	Effect of substrate concentration on the production of conjugated	
	fatty acids CALA, CGLA and CSA and the concentration of residual	
	substrate.	190
3.6	Concentration of the other major fatty acids detected in the	
	supernatant following the growth of B. breve DPC6330 in the	
	presence of 0.3 mg/ml α -linolenic acid, γ -linolenic acid or	
	stearidonic acid.	193

4.1	Total cellular fatty acid composition of SW480 cells treated with	
	CALA, CGLA or CSA for 24 h.	240
4.2	Fatty acid compositions of cellular phospholipids extracted from	

SW480 cells treated with CALA, CGLA or CSA for 24 h. 241

Chapter 5

5.1 Fatty acid composition of conjugated fatty acid rich oils produced from α-linolenic acid, γ-linolenic acid and stearidonic acid.
5.2 Total fatty acid composition of microbial pellet following exposure to the unsaturated fatty acids α-linolenic acid, γ-linolenic acid, stearidonic acid or their conjugated isomers, CALA, CGLA, and CSA.
289

6.1	Ingredient composition and chemical analysis of concentrates	
	and forage, Trial 1.	314
6.2	Fatty acid composition of whole soybean and fish oil, Trial 1.	316
6.3	Ingredient composition and chemical analysis of the ω -3 PUFA	
	supplemented rations, balancer rations and straw, Trial 2.	318
6.4	Fatty acid concentration of concentrates fed, Trial 2.	319
6.5	Effect of diet on fatty acid concentrations of plasma collected on	
	day 10 and 27 of the 32-day experimental period, Trial 1.	325
6.6	The effect of diet on plasma metabolite concentration, Trial 1.	327
6.7	Effect of increasing intake of dietary ω -3 PUFA supplementation	
	on the fatty acid concentration of rumen fluid collected at slaughter,	
	Trial 2.	329
6.8	Effect of level of dietary ω -3 PUFA supplementation on fatty acid	
	concentration of plasma, Trial 2.	331
6.9	Effect of level of dietary ω -3 PUFA supplementation on the fatty	
	acid concentration of uterine endometrial tissue collected at	
	slaughter, Trial 2.	332
6.10	Effect of level of dietary ω -3 PUFA on the fatty acid concentration	
	of follicular fluid collected at slaughter, Trial 2.	333
6.11	Regression co-efficients for the relationship between plasma and	
	endometrial concentrations and plasma and follicular fluid	
	concentrations of selected saturated fatty acids, along with ω -3 and	
	ω-6 PUFA, Trial 2.	335

6.12 Effect of level of dietary ω-3 PUFA supplementation on plasmametabolite concentrations, Trial 2.336

7.1	Ingredient composition and chemical analysis of the experimental	
	rations and the balancer rations and straw which were common to	
	both experimental groups.	362
7.2	Relative fatty acid concentration of diets fed.	364
7.3	Fatty acid composition of blood plasma from Holstein Friesian	
	heifers fed an ω -3 PUFA enriched or control diet.	368
7.4	Fatty acid composition of adipose tissue from Holstein Friesian	
	heifers fed an ω -3 PUFA enriched or control diet.	369
7.5	Fatty acid composition of the liver tissue of Holstein Friesian	
	heifers fed an ω -3 PUFA enriched or control diet.	376
7.6	Fatty acid composition of the muscle tissue of Holstein Friesian	
	heifers fed an ω -3 PUFA enriched or control diet.	377
7.7	Fatty acid composition of the mammary tissue of Holstein Friesian	
	heifers fed an ω -3 PUFA enriched or control diet.	379
7.8	Regression co-efficients for the fatty acid composition of blood	
	plasma relative to that of muscle tissue, adipose tissue, mammary	
	tissue and liver tissue.	382

TABLE OF CONTENTS

DECLARATION	ii
ABSTRACT	iii
PUBLICATIONS	iv
ABSTRACTS	iv
ORAL COMMUNICATIONS	vi
ABBREVIATIONS	vii
LIST OF FIGURES	х
LIST OF TABLES	xv

Chapter 1: Literature Review

Chapter 1.1 Fatty Acid Synthesis

1.1.1 Introduction	2
1.1.2 Polyunsaturated fatty acid (PUFA) synthesis	4
1.1.3 Production of conjugated fatty acids	8
1.1.4 Conclusions	16
1.1.5 References	17

Chapter 1.2 Development of Dairy Based Functional Foods Enriched in Rumenic Acid

1.2.1 Introduction	21
1.2.2 Health benefits of CLA	22
1.2.3 Mechanisms of CLA production in lactating ruminants and starter bacteria	24
1.2.3.1 Ruminant CLA production	25
1.2.3.2 Intestinal and dairy microbiota	26
1.2.4 Enrichment of milk with CLA through animal feeding and management strategies	27
1.2.4.1 Plant oils and seeds	29
1.2.4.2 Marine oils	35
1.2.4.3 Animal fats	36
1.2.4.4 Forage	37
1.2.4.5 Miscellaneous feeding strategies	40
1.2.4.6 Combination diets	42
1.2.4.7 Management strategies, lactation number, breed, and stage of lactation	44
1.2.5 CLA producing cultures of dairy significance	47
1.2.5.1 Lactococci, streptococci, and enterococci	47
1.2.5.2 Propionibacteria	48

1.2.5.3 Lactobacilli	51
1.2.5.4 Bifidobacteria	58
1.2.6 Production of rumenic acid enriched dairy products	61
1.2.6.1 UHT milk	61
1.2.6.2 Butter	61
1.2.6.3 Fermented milk, and yoghurt	62
1.2.6.4 Cheese	65
1.2.7 Assessing the safety of CLA enriched foods on human health	67
1.2.8 Conclusion	71
1.2.9 References	72

Chapter 1.3 The Health Promoting Properties of α-linolenic Acid and its Conjugated Derivatives

1.3.1 Introduction	91
1.3.2 The role CALA in inflammatory response and immune function	95
1.3.3 The role of CALA in obesity	96
1.3.4 The role of CALA in cardio-vascular health	99
1.3.5 The role of CALA in cancer	104
1.3.6 Conclusions	115
1.3.7 References	116

Chapter 2: Optimization of a Reconstituted Skim Milk Based Medium for Enhanced CLA Production by Bifidobacteria

130
133
133
133
134
135
136
140
140
141
145
147
150
153
157

Chapter 3: The Production of Conjugated Fatty Acids from C18 Unsaturated Fatty Acids by Strains of Bifidobacteria and Propionibacteria

3.1 Introduction	163
3.2 Materials and methods	
3.2.1 Maintenance of bacterial strains	166
3.2.2 Preparation of substrates for fermentation studies	166
3.2.3 Screening for microbial conjugated fatty acid production	168
3.2.4 Purification of microbially produced conjugated fatty acids	168
3.2.5 Identification of conjugated fatty acid products	169
3.2.6 Characterization conjugate production by the strain B. breve DPC6330	170
3.2.7 Assessing the resistance of the B. breve DPC6330 to simulated gastric juice	171
3.3 Results	
3.3.1 Screening for the production of novel conjugated fatty acids by selected	
strains of bifidobacteria and propionibacteria	173
3.3.2 Identification of novel conjugated fatty acids produced by strains of	
bifidobacteria and propionibacteria	173
3.3.3 Production of conjugated fatty acids by B. breve DPC6330	186
3.3.4 Assessment of the preference of B. breve DPC6330 for C18 fatty acids as	
substrates for isomerisation	200
3.4 Discussion	202
3.5 Conclusions	209
3.6 References	210

Chapter 4: Assessing the Anticarcinogenic Properties of Conjugated Fatty Acids against the SW480 Colon Cancer Cell Line

4.1 Intro	oduction	218
4.2 Mat	terials and methods	220
	4.2.1 Production of conjugated fatty acids	220
	4.2.2 Cells and Cell cultures	220
	4.2.3 Gas Liquid Chromatography	222
	4.2.4 Determination of cellular fatty acid composition	222
	4.2.5 Quantitative determination of cellular p53, COX-2 and Bcl-2 concentrations	223
	4.2.6 Statistical analysis	224
4.3 Res	ults	226
4.4 Disc	cussion	253
4.5 Con	clusions	262
4.6 Refe	erences	263

Chapter 5: Anti-microbial activity of C18 Unsaturated Fatty Acids and their Conjugated Isomers against Methicillin Resistant *Staphylococcus aureus*

5.1 Introduction	272
5.2 Materials and methods	
5.2.1 Bacterial strains and growth conditions	275
5.2.2 Microbial production of the conjugated fatty acids	275
5.2.3 Purification of the conjugated fatty acids	276
5.2.4 Analysis of purified conjugated fatty acids	276
5.2.5 Assessment of anti-microbial activity against MRSA	277
5.2.6 Assessing the impact of exposure to C18 conjugated or non-conjugated fatty	
acids on the cellular fatty acid composition of the methicillin resistant strain	
S. aureus ATCC 43300	278
5.2.7 Assessing the impact of blood serum on the inhibitory activity of C18	
unsaturated fatty acids and their conjugates against MRSA	278
5.3 Results	280
5.3.1 Fatty acid composition of microbially conjugated fatty acids	280
5.3.2 Effect of C18 unsaturated fatty acid and their conjugates on the survival of	
MRSA in vitro	280
5.3.3 The impact of exposure to C18 conjugated and non-conjugated fatty	
acids on the cellular fatty acid composition of the methicillin resistant strain	
S. aureus ATCC 43300	288
5.3.4 Effect of α -tocopherol on the inhibitory properties of C18 fatty acids and	
their conjugated derivatives against the methicillin resistant strain S. aureus	
ATCC 43300	290
5.3.5 Effect of serum on the inhibitory properties of C18 fatty acids and their	
conjugates against MRSA	291
5.3.6 Additive inhibitory effects of α -linolenic acid and CGLA on MRSA survival	
in vitro	293
5.4 Discussion	297
5.5 Conclusions	303
5.6 References	304

Chapter 6: Assessing the Impact of a Diet Enriched in PUFA on Systemic and Endometrial Tissue Fatty Acid Concentrations in Cattle

6.1 Introduction	311
6.2 Materials and methods	313
6.2.1 Animals and diets (Trial 1)	313
6.2.2 Liveweight and body condition scoring (Trial 1)	315
6.2.3 Animals and diets (Trial 2)	315

6.2.4 Liveweight and body condition scoring (Trial 2)	317
6.2.5 Feed sampling and analysis	320
6.2.6 Blood sampling	320
6.2.7 Tissue sampling	321
6.2.8 Fatty acid analysis of feeds, plasma, rumen and follicular fluid, and	
endometrial tissue	321
6.2.9 Metabolites	322
6.2.10 Statistical analyses	323
6.3 Results	324
6.3.1 Dry matter intake and animal performance (Trial 1)	324
6.3.2 Plasma concentration of fatty acids (Trial 1)	324
6.3.3 Plasma metabolites (Trial 1)	326
6.3.4 Dry matter intake and animal performance (Trial 2)	326
6.3.5 Rumen fluid fatty acids (Trial 2)	328
6.3.6 Plasma concentration of fatty acids (Trial 2)	328
6.3.7 Uterine endometrial fatty acids (Trial 2)	330
6.3.8 Follicular fluid fatty acids (Trial 2)	330
6.3.9 Relationship between plasma concentrations of PUFA and concentrations	
in endometrial tissue and follicular fluid (Trial 2)	334
6.3.10 Plasma metabolites (Trial 2)	334
6.4 Discussion	
6.5 Conclusions	349
6.6 References	350

Chapter 7: Increasing the Concentration of ω-3 Fatty Acids in the Meat and Mammary Tissue of Beef Heifers

7.1 Introduction	358
7.2 Materials and methods	
7.2.1 Animals, diets and feeding regime	361
7.2.2 Dry matter intake and animal performance	363
7.2.3 Feed sampling and analysis	363
7.2.4 Blood sampling	365
7.2.5 Tissue sampling	365
7.2.6 Fatty acid analysis of feeds, plasma and tissue samples	365
7.2.7 Statistical analysis	366
7.3 Results	367
7.3.1 Dry matter intake and animal performance	367
7.3.2 Temporal fatty acid composition of blood plasma and adipose tissue	367
7.3.3 Fatty acid composition of other tissues	373
7.3.4 Regression analysis	380
7.4 Discussion	383

7.5 Conclusions	388
7.6 References	389
Chapter 8: Final Discussion and Conclusions	394
Acknowledgements	416