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Abstract Dielectric spectra of materials are often difficult to analyze since the common software
algorithms and line shape functions do not always provide unambiguous data for the fitted parameters. In
particular, this article deals with epoxy/ceramics nano-prepolymers studied by dielectric spectroscopy.
In this situation, both system (the prepolymer with nanofillers) and method (the dielectric spectroscopy)
are complex. Taking into account the experimental error of each data point in the measured dielectric
spectrum, the sofware based on a global optimization algorithm which uses interval analysis, provides
a confidence interval for every parameter of the dielectric function implemented in the software. Then,
this software is able to deliver and guarantee the number of relaxation processes even if they are in part
masked by other phenomena like conductivity or electrode polarization.
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Material
1. INTRODUCTION

Dielectric spectroscopy (DES) is widely applied to polymers,
monomers and other insulating materials because it is an ex-
tremely effective method for characterizing the molecular dy-
namics over many orders of magnitude of time or frequency,
respectively. It is based on the interaction of an external field
with the electric dipole moment of the sample, often expressed
by permittivity. In the measurement, the complex dielectric
function

(o) =¢(w)—ie"(0) (N
with the angular frequency @, is measured at constant tem-
perature. This function is called the dielectric spectrum. There
are a number of different dielectric mechanisms, connected to
the way a studied medium reacts to the applied field. Each
dielectric mechanism is centred on its characteristic frequency,
which is the reciprocal of the characteristic time of the process.
In general, dielectric mechanisms can be divided into relaxation
and resonance processes. Dielectric relaxations as a whole are
the result of the movement of dipoles (dipole relaxation) and
electric charges (ionic relaxation) due to an applied alternating
field. Commonly, dielectric spectra are modelled by a sum of
relaxation processes, but the choice of a reasonable physical
model for the relaxator is critical. Most of the usual models,
reviewed briefly in the introductory section, result from phe-
nomenological considerations providing limited physical foun-
dation. Moreover, the fitting algorithm turns out to be crucial
in terms of reliability and unambiguity of the dielectric model
function determined. Common softwares use least square ap-

proximation fitting algorithms which need initial values for the
fit parameters. This could imply some predestination of the
fit results. In previous work, a parameter estimation algorithm
which is free of these limitations was developed by Brochier
et al. [2010]. The new algorithm S.A.D.E. not only provides
the chosen dielectric model function by a confidence interval
for each model parameter like the frequency position and the
intensity of all relaxations: it also indicates the number of re-
laxations that are necessary to model the measured spectrum.

1.1 The Dielectric Spectroscopy and its Models

The Debye [1929] relaxators describe the dielectric relaxation
response of an ideal, non-interacting population of freely rotat-
ing dipoles to an alternating external electric field
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Where €5 is the static permittivity (€5 = limg_0 &' (®)), €. is
the optical dielectric constant (& = limgy &' (®)) and 1y is
the characteristic relaxation time of the medium. Let us note
that the Debye model refers to a well-defined physical situation.
All other relaxator models reported in the literature imply phe-
nomenological modifications of the Debye relaxator without
well-defined physical background. For example, the Havriliak-
Negami (HN or Havriliak and Negami [1967]) equation
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is a mixture of the Cole and Cole [1941, 1942] and the Davidson
and Cole [1950] equations, accounting for the asymmetry and
broadness of the measured dielectric dispersion curve by the
additional phenomenological parameters o and . Developed
to describe the dielectric relaxation of some polymers, the HN
function is now one of the most popular models for dielectric
relaxation although no exact physical meaning can still be given
to the coefficients o and 3.

Then, for dielectric spectra containing several relaxations, it is
possible to sum a number of relaxation processes according
to equation (2) or (3), i.e. irrespective of the model used :
in our case, the measured ensemble of dielectric relaxations
were depicted as a superposition of relaxation functions with
equal shape, e.g. the Debye function. Here is the example, for r
relaxations represented by the Debye model:
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At high temperatures and @ — 0, a contribution of a DC-
conductivity (6pc) can be observed in the dielectric spectra
of real polymer samples. It contributes only to the imaginary
part of the measured complex dielectric permittivity, as long as
the imaginary part of the generalized complex conductivity can
be neglected in the low frequency region (i.e. 6 < €’). With
this presumption, the following equation links the measured
quantities &, " to the true dielectric material quantities &', €”
and the DC electric conductivity (opc):

Opc
e'(0)+— 5
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At high frequencies, the contribution from the DC-conductivity

becomes negligible and hence

& (0)=¢'(w) and &' (0) =

lim " (w) = €"(w) (6)
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At low frequencies, the €” term is negligible compared to
Opc, leading to the following equation (Mangion et al. [1992],
Corezzi et al. [1997], Axelrod et al. [2004], Stickel et al.
[1996]).
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However, some relaxations can take place even at these low
frequencies. They are very difficult to fit using classical ap-
proaches (i.e. common algorithms) because they can be masked
by the DC-conductivity.

As a consequence, the fitting process has to lead to a set of
parameters which makes the model to fit both the real and the
imaginary part, and has to detect hidden relaxations.

Electrode polarization is a parasitic effect in dielectric exper-
iments which can mask the pure dielectric response of the
sample material shown by Fuoss and Kirkwood [1941]. More-
over, as described by Maxwell [1954], Wagner [1914], Sillars
[1937] (MWS polarization), phases in heterogeneous media are
to be treated as macroscopic volume elements with different £*
and conductivities o*. The experimental example presented in
previous work (Brochier et al. [2010]) reveals that the MWS
polarization causes a strong rise both in the real part (where
electrode polarization is more visible) and in the imaginary part

of the permittivity (where the electrode polarization superim-
poses to the DC-conductivity) with decreasing frequency. In
this work, the electrode polarization will be modeled by one
strong Debye relaxator (recall that the MWS equation is very
similar to the Debye equation). The only way to separate all
the phenomena (electrode polarization, DC-conductivity, and
maybe low-frequency dielectric material relaxations) is a si-
multaneous fit of the real and imaginary part of the permittivity
using a formula taking all these phenomena into account.

1.2 Modeling problems: simultaneous fit and choice of the
model

The main problem is that different physical processes can occur
at the same frequency and temperature: the example of some
small relaxations hidden by the DC-conductivity is very clear.
Therefore, the only way to separate the phenomena is a simul-
taneous fit of the real and imaginary part of the permittivity.
So the simple fit of the imaginary part of the permittivity (used
by most of researchers, except Axelrod et al. [2004]) does not
give a good solution as relaxations or other phenomena can
be missed. The fit of the complex function of the permittivity
will be done by our algorithm S.A.D.E. presented in the next
paragraphs. Interval analysis has already been shown to be very
efficient for solving hard modelization problems. In particular,
interval methods have been successfully applied in Raissi et al.
[2004, 2005] to the modelization of an artificial set of data
generated using the Havriliak-Negami model, as well as to the
modelization of real conductivity and diffusivity measurements
in Braems et al. [2005]. The relaxations and the electrode polar-
ization are fitted by the Debye model (the only one model with
a physical meaning), and the DC-conductivity by its specific
function. Of course, we cannot determine ex ante the number
of Debye relaxations needed to fit our curves, but the program
S.A.D.E. will try to fit the curve using from 1 to r relaxations
and one term due to DC-conductivity.
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The goal of the data ﬁttmg is to find the parameter values of the
applied physical model that match the data most closely. The
models to which the data are fitted depend on adjustable pa-
rameters. Therefore, the fitting process requires both the choice
of a physical model and the choice of a suitable computing
algorithm. Most of the scientific softwares fit experimental
data by using some variants of the least squares approximation
method but the success of the fit is not guaranteed. A different
algorithm will be presented which makes the fit by the Debye
model of experimental data with several relaxations possible in
an efficient way, even if some of them are hidden.

2. INTERVAL ANALYSIS AND DATA FITTING

S.I.VI.A. (Set Inversion Via Interval Analysis) is a set inver-
sion algorithm introduced by Jaulin and Walter [1993a,b]. The
algorithm is able to find a suitable approximation of the set of
solutions of a constraints satisfaction problem, that is a set of

the form
S={xeRF|Vi=1...n fi(x) € [y}

where each f; : R¥ — R is a given function and each [y;] =
[vi .y;] C Risa given interval. The approximation of S is given
as a list of boxes ([b;]);=1..n- A box is a Cartesian product of k



intervals (hence, in particular, it is a subset of Rk), and the list
returned by SIVIA satisfies

N
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It turns out that data fitting problems in a bounded error
context can be interpreted as constraints satisfaction problems:
let (x;,yi)i=1..n be a set of experimental data, and assume
that the measurement accuracy is known. Hence, to each y;
is associated an interval [y;] = [y; — e;,y; + e;] where ¢; is the
measurement error. Let f(x, p) be a physical model depending
on a vector of parameters p € R¥. In this situation, it is natural
to assume that a given vector of parameters p* leads to a “good”
fit if it is consistent with the measurement errors, that is if

vie{l,....n}, f(x;,p") € [v]
Such a vector of parameters is called feasible. Letting f;(p) =
f(xi, p), the set of feasible parameters is precisely

P={peR|Vie{l,...,n}, fi(p) € ]}

Interval analysis makes possible the computation with intervals
rather than with real numbers, and thus it leads to a very similar
criterion for checking whether a box contains feasible param-
eters. Thus, by cutting the space in which feasible parameters
are searched into finitely many small pieces in a suitable way,
it is possible to compute a precise approximation of P. This is
exactly what SIVIA is designed for.

First of all, elementary real operations are extended to intervals
according to the following formula:

o[yl ={xoy|x€[x], y€ ]} foroe {+,— %/} (9

Arithmetic operations with boxes are defined componentwise.
The size of an interval [x] = [x~,x"] is defined by:

Size([x]) = x* (10)
The size of a box is the size of its greatest component. A
bisection procedure will also be used, which cuts a box into
two parts and returns the two parts. For a given box [p] =
([p1l,1p2l,---+[pk]), the procedure finds the index i of the
greatest component, and returns 2 boxes:

([pi]i[pal- s lpivspi + (o =pi)/2] - [pe)

—X
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and

(Ip)s[p2ls-- ol + (2 =pi) /20 ) lpkd) - (12)

Let us keep in mind that we do not always get an interval when
we calculate the image of an interval by a real function. Hence,
let

fTR—R 13)
be a real function. Let IR be the set of intervals, a so-called
“inclusion function” for f is an interval function

[f]: IR — IR (14)

which verifies

Vi € IR, f([x]) < [f1([x]) (15)
In other word, the image of an interval (or a box) [x] by an
inclusion function for f is always still an interval (or a box)
which contains the true image of [x]. In order to guarantee
that [f] is a suitable approximation of f, the following two
conditions are also required:

Vix], bl € IR, [x] € ] = [fI(K) S A1) (16)
V([xn])nen € HRN» (Size([x,]) —0)
= (Size([f1([xa])) = 0) (A7)

Of course, there are infinitely many inclusion functions for
a given real function. One of them is minimal but could be
difficult to find. Then, the so-called natural inclusion function
will be used. The natural inclusion function is simply obtained
by replacing each operator in the associated real function by its
interval equivalent, and each usual function (sin,cos,exp, V)
by a suitable interval counterpart.

Now let [/](x, [p]) be an inclusion function associated with the
physical model f(x, p) and call a box [p*]:

o feasible if Vi=1...n, [f](x;,[p*]) C [y
e unfeasible if Ji € {1,....n}, [f](x;[p*]) N[y =0
e indeterminate otherwise

Let [Py] be a box big enough to contains P and ) > 0 be a small
number, the precise description of SIVIA is given by figure 1.

List L

Stack S

Push (S, [R)])

While Not( isEmpty(S) )
[pc]<_ Pop(S)

If [p;] is feasible
Push (L, [p])
End If

If [p.] is indeterminate
If Size([p]) <n
Push (L, [p.])
Else
{[p1],[p2]}=Bisection ([pc])
Push (S, [p1])
Push (S, [p2])
End If
End If
End While
Return L

Figure 1. S.I.V.LA. (Set Inversion Via Interval Analysis)

In the case of a data fitting problem, however, a precise ap-
proximation of P by a list of boxes is not needed. One would
rather like to have a confidence interval for each parameter,
which amounts to find an approximation of the bounding box
of P, that is of the smallest box containing P. To this end,
instead of pushing every feasible box into a list, the algorithm
should take the convex union of this box and the current result.
The convex union of two boxes is the bounding box of their
ordinary union. Hence, the returned value is not a list anymore
but a single box, which decrease the occupied memory space.
Another side effect is that, as the convex union is bigger (in the
sense of the inclusion) than the usual one, it may happen that
a box is already contained in the current result without having
been processed. Testing this before processing a box saves a lot
of computation time.

However, the Debye model (8) has some symmetries which
makes the bounding box of P not relevant. Indeed, this function
is invariant under any permutation of the couples (&, 7;), mean-
ing that P is made of several connected components, each of
which are identical up to some permutation of the coordinates.
Hence, it is necessary to select one of the connected component.
It can be done by assuming that

ViE{l,...,r—l}, T < Tit1




As the algorithm deals with intervals, this constraint cannot be
applied directly. However, it is obvious that this relation implies
that the upper bound of [7;] cannot be greater than the upper
bound of [7;11], and conversely the lower bound of [7;41] cannot
be smaller than the lower bound of [7;]. So the algorithm will
remove some (and potentially all) values from [7;] by using:

Fori=1Tor—1, [f]« [t :min(7", 7} )]  (18)
and

Fori=1Tor—1, [f] « [max(t; .7, ,):7,,] (19

Again, there is a positive consequence of that. The size of [1;]
could decrease by this process, or [7;] could become empty.
Obviously, there are much more parameters which do not
satisfy this constraint than parameters which do, so a lot of
boxes will be simply removed during this process (namely,
when 7!, < 77, or when 77 > 7, for some i) even if
they are mathematically feasible, decreasing considerably the
computing time.

Due to the "branch and bound" nature of SIVIA, the computing
time grows exponentially with the number of parameters. In
order to make it applicable in the most complicated situations,
a two-pass approach was used. First, the original SIVIA algo-
rithm, together with the procedure which select a single con-
nected component, is applied by freezing all the parameters but
the 7;’s. It means that size tests and bisections are performed
only with respect to the 7;’s. Even with a small value of 7, it
returns very quickly (usually in a few seconds) a list of boxes
leading to a coarse approximation of P. This first pass remove
large parts of the initial search space. Then, taking the above
list as an input, a second pass is performed using our modified
algorithm involving the convex union. Real cases experiments
shows that this simple trick decreases the computing time a lot.

By using these modifications (which, except the last one, were
described by Brochier et al. [2010]), it was possible to give
a new algorithm, S.A.D.E. (as S.I.V.I.A. Applied to DiElec-
tric spectroscopy) having many nice properties compared to
traditional methods. If there are no parameters satisfying the
constraints, then it will return an empty set, leading to a very
strong criterion to determine the number of relaxations, which
is generally not known in advance. All the returned parameters
belong to the initial search space. So there is no risk to find non-
sense parameters, such as negative values. It is possible to add
some arbitrary constraints that the parameters have to satisfy.
It is also possible to use in only one step, several systems of
constraints coming from different sources (for example to fit
simultaneously the real and imaginary part of a set of data) or
to use several sets of data coming from repeated measurements
(data accumulation) in order to increase the quality of the result.
It leads to an interval for each parameter, which is guaranteed
to contain the true parameter value, and which size is directly
linked to the measurement accuracy.

3. DES APPLIED ON NANOFILLED EPOXY-AMINE
SYSTEMS AND RESULTS USING S.A.D.E.

As the DES is widely applied in the characterization of
polymers (Kremer and Schonhals [2003], Gregoriou [2004],
Fawcett [1996], Runt and Fitzgerald [1997]), the nanocompos-
ites (very fashioned polymers since 10 years) can be studied
by DES (Valentini et al. [2004], Yudin et al. [2005], Zhang

et al. [2006]). In this situation, both system (polymer with
nanofillers) and method (the dielectric spectroscopy) are com-
plex: that is probably why such study are not so often related.
Calorimetry, mechanic testing, and rheology were more used
than the DES. The DES results are comparable with rheology
results: the influences of the surface state of the fillers, their per-
centage. . . were correlated with the transition of the networks.
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Figure 2. Dielectric Spectroscopy real and imaginary permittivity of the
DGEBA DER 332 prepolymer at 0°C and the corresponding two Debye
relaxations as calculated by S.A.D.E.
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Figure 3. Dielectric Spectroscopy real and imaginary permittivity of the SiO,
nano-fillers and the corresponding four Debye relaxations as calculated
by S.A.D.E.

Part of nanocomposites were made of epoxy-amine polymer
filled with nanofillers (Valentini et al. [2004], Zhang et al.
[2006]). Most used nanofillers are clays, carbon (nanotubes),
or carbon coated nanofillers, but only few articles deals with
epoxy-amine/ceramics nanocomposites. That is why such a
study would be very interesting, particularly if it was coupled
with a modeling of our results (as the modeling add a difficulty,
no study was investigated to model the nanocomposite materi-
als).

The pure diglycidylether of bisphenol A (DGEBA) DER 332
from DOW Chemical was studied by dielectric broadband
measurements in a frequency range of 0.1 Hz to 10° Hz using
a Novocontrol High Resolution Dielectric Alpha Analyser with
automatic temperature control by a Quatro cryosystem. For the



examples presented here, 200 data points were measured in the
frequency range at 0°C.

The viscous DGEBA was placed between stainless steel elec-
trodes, with a PTFE spacer in order to have a well-defined
geometry.

A Dual Opteron machine containing two 2.4 GHz/64 Bits CPUs
and at least 4 GB of RAM was used. The operating system was
Suse Linux 10.0. A parallelized version of the algorithm was
implemented (in the C++ programming language) in order to
take advantage of the two CPUs.

The experiment was run on a DER 332 well known system,
filled by SiO, (GLYMO, from Hartwig et al. [2005]).

The figures 2 and 3 show €& and €’ measured at 0°C, for
pure der 332 and pure SiO; nanofillers, whereas the figure 4
shows & and &” measured at 0°C for the epoxy der 332
DGEBA filled with nano-SiO,. By eyes, as a first approach,
only one relaxation can be detected on the pure and nano-
filled der 332 epoxy (Figures 2 and 4). Only conductivity and
electrode polarization are detectable for nanofillers, without
epoxy (Figure 3). On the figures 2, 3 and 4 the relaxations
found by SADE (green points) are represented too. Let us
note that these relaxations were not visible on the dielectric
spectrum and not possible to fit by classical ways (particularly
for the SiOy, figure 3). The ordinate were changed in order to
be able to represent epsilon’, epsilon” and the SADE results on
the same graph. In addition, £. and opc are not represented
here, as €., has no real meaning, and the 6pc¢ variation is more
interesting versus temperature. Let us note that S.A.D.E. tries
first to fit these data points by only one Debye relaxator. As the
fit failed, it tries with two (Fig. 2) to five (Fig. 4) relaxations:
using five Debye relaxators lead to the determination of eleven
parameter intervals! If we try to fit the data points with more
than 5 relaxations, the additional relaxations will be masked
by the measurement errors. Then, the numbers of relaxations
provided by S.A.D.E. is considered as optimum. It is worth
noting that these parameters were not found by classical least
square approximation fitting routines.

Of course, the results presented on the figures 2, 3 and 4 are
not perfect: for the sake of simplicity, the Debye relaxations
found by S.A.D.E. were represented by the green point whereas
they are vectors of intervals. Anyway, the comparison of the
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Figure 4. Dielectric Spectroscopy real and imaginary permittivity of the
DGEBA DER 332 prepolymer at 0°C filled with SiO, nano-fillers and
the corresponding five Debye relaxations as calculated by S.A.D.E.

relaxation for the three systems is very interesting. The relax-
ations appearing between the DGEBA without and with SiO;
are exactly the SiO, relaxations (whereas it was commonly
thought that a ceramic cannot have any relaxation. These likely
results lead us to develop again our algorithm S.A.D.E. in order
to perfectly identify relaxations and conductivity.

4. CONCLUSION

Dielectric spectroscopy is an extremely versatile method for
characterizing the molecular dynamics over a large range of
time scales. Unfortunately, the extraction of model parameters
by data fitting is still a crucial problem which is now solved by
our program S.A.D.E.

S.A.D.E. is based on the algorithm S.I.V.ILA. which was pro-
posed and implemented by Jaulin and Walter [1993a,b] in or-
der to solve constraint satisfaction problems. The problem of
dielectric data analysis is reduced to a problem of choosing the
appropriate physical model. In this article, Debye relaxations
were used and validated to fit the relaxations of a DGEBA
prepolymer and the polarization of the spectrometer electrodes.
The conductivity was evaluated too.

S.A.D.E. is now able to split a complex DES spectra into a
guaranteed number of Debye relaxations.

5. SOFTWARE AVAILABILITY

S.A.D.E. is freely available at:
http://www.unige.ch/"brochier/sade.php

S.A.D.E. is protected by copyright (c) 2006 Brochier, and is
distributed under the terms of the GNU general public license.
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