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Abstract

The aim of this study was to investigate the effect of conducting boundaries on the onset 
of convection in a binary fluid-saturated porous layer. The isotropic saturated porous 
layer is bounded by two impermeable but thermally conducting plates, subjected to a 
constant heat flux. These plates have identical conductivity. Moreover, the conductivity of 
the plates is generally different from the porous layer conductivity. The overall layer is 
of large extent in both horizontal directions. The problem is governed by seven 
dimensionless parameters, namely the normalized porosity of the medium ε, the ratio of 
plates over the porous layer thickness δ  and their relative thermal conductivities ratio d, the 
separation ratio δ , the Lewis number Le and thermal Rayleigh number Ra. In this 
work, an analytical and numerical stability analysis is performed. The equilibrium 
solution is found to lose its stability via a stationary bifurcation or a Hopf bifurcation 
depending on the values of the dimensionless parameters. For the long-wavelength mode, 
the critical Rayleigh number is obtained as Racs = 12(1 + 2dδ)/[1 +ψ(2dδLe + Le + 1)] 
and kcs = 0 forψ>ψuni > 0. This work extends an earlier paper by Mojtabi and Rees 
(2011 Int. J. Heat Mass Transfer 54 293–301) who considered a configuration where the 
porous layer is saturated by a pure fluid.
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1. Introduction

Double-diffusive convection in a saturated porous medium due to temperature and
concentration gradients has been widely studied because of its numerous fundamental and
industrial applications. Reviews of recent developments and publications in this field can be
found in the books of Nield and Bejan (1999), Ingham and Pop (2005) and Vafaï (2005).

The linear stability of a fluid mixture in a porous medium, in the presence of a temperature
gradient and taking into account the Soret effect, was investigated by Ouarzazi and Bois
(1994). The temperature gradient was assumed to vary periodically with respect to time. The
two-dimensional (2D) instability thresholds, for both oscillatory and stationary instabilities,
were predicted by these authors. The onset of Soret-driven convection in an infinite horizontal
porous layer heated isothermally from below or from above has been considered by Sovran
et al (2001) using a linear stability analysis and nonlinear perturbation theories. A linear
stability analysis was used to predict the onset of motion in terms of the buoyancy ratio, the
Lewis number and the normalized porosity. Depending on the value of the separation ratio,
it was found analytically and numerically that the motionless solution lost its stability via
stationary or Hopf bifurcations.

Knobloch and Moore (1988) and Platten et al (2003) studied the onset and development
of convection in a horizontal rectangular cavity. The two vertical walls of the cavity are
impermeable and adiabatic, while the impermeable horizontal walls are maintained at constant
and different temperatures. The authors obtained the stability diagram in which the critical
Rayleigh number is given as a function of the separation ratio ψ , for a given Lewis number
Le. Bahloul et al (2003) studied the stability of the onset of Soret-driven convection. They
considered the case when a uniform heat flux is applied to the horizontal impermeable or
permeable walls, while the vertical walls are impermeable and adiabatic. The thresholds
for finite-amplitude, oscillatory and monotonic convection instabilities were determined in
terms of the governing parameters of the problem. This work was extended by Bourich
et al (2004) considering not only a shallow horizontal porous cavity but also a shallow
enclosure with a binary fluid. The critical Rayleigh numbers for the onset of oscillatory and
stationary convections were determined explicitly as functions of the governing parameters
for infinite layers and bounded boxes. At the onset of instability, the authors found that the
wave number was equal to zero and also showed the dependence of critical parameters on the
normalized porosity. Three-dimensional numerical modeling of Soret-driven convection in a
cubic cell filled with a binary mixture of water (90%) and isopropanol (10%) was performed
by Shevtsova et al (2006). Batiste et al (2006) remark that the convections identified in
binary mixture convection are located below the onset of absolute instability and hence in
a parameter regime, where the instability of the conduction state is only convective. Alonso
et al (2007) have presented the results of direct numerical simulations of convection in binary
fluids in large-aspect containers. They focused on binary mixtures with negative values of
the separation ratio, for which the primary bifurcation is subcritical and oscillatory, and
with weak Soret coupling so that nonlinear dispersion is important. Localized stationary
convective structures were investigated by Jung and Lücke (2007) through direct numerical
simulations in binary fluid mixtures with weakly negative separation ratios. Sparrow et al
(1964) and Hurle et al (1967) carried out linear stability analysis of the convection problem
with conducting boundaries in pure fluids. Proctor (1981) and Jenkins and Proctor (1984)
considered 3D finite-amplitude thermal convection in a fluid layer with boundaries of finite
conductivity. They determined the conductivity of the boundaries for which the preferred
planform changes from roll to square-cell type. A very few papers exist that consider the
effect of the presence of horizontal bounding plates on the onset of thermal convection in
saturated porous media (Riahi 1983 and Rees and Mojtabi 2011).



Figure 1. Saturated porous medium of height H and length L bounded by two horizontal plates of
thickness h. The upper and lower surfaces of the system are subjected to a uniform heat flux. The
vertical side walls are assumed to be perfectly insulated.

The main aim of this work, then, is to determine the effect of conducting bounding plates
on the stability properties of a horizontal porous layer saturated with a binary fluid. As such,
this provides a better approximation of how experiments are set up in the laboratory than do
the usual fixed temperature or heat flux boundary conditions. In this paper, particular attention
is paid to the influence of the conductivity ratio and thickness ratio.

2. Mathematical formulation

The configuration considered in this study is that of a horizontal porous layer of uniform
thickness H , width L, permeability K and porosity ε∗, which is filled with a binary fluid
mixture (see figure 1). The origin of the coordinate system is located at the bottom of
the porous cavity with x ′ and y′ being the horizontal and vertical coordinates, respectively.
This cavity is placed between two metal plates of uniform thickness, h. Neumann boundary
conditions for temperature (i.e. fixed heat flux) are applied to the outer horizontal surfaces of
the layer at y′

= −h and at y′
= H + h. All the boundaries are rigid and impermeable and we

consider a rectangular cavity with a high aspect ratio A = L/H .
The impermeable horizontal walls are subjected to a uniform heat flux per unit area,

q ′. The vertical walls (x ′
= 0, x ′

= L) are impermeable and adiabatic. We also assume
that the porous medium is isotropic and homogeneous, that Darcy’s law is valid and that
the Oberbeck–Boussinesq approximation is applicable: the thermophysical properties of the
binary fluid are therefore considered to be constant except for the density in the buoyancy
term, which is taken to vary linearly with the local temperature T and mass fraction C of the
denser component,

ρ = ρ0
[
1 −βT(T

′
− T0)−βC(C

′
− C0)

]
, (1)

where βT and βC are, respectively, the thermal and mass expansion coefficients of the binary
fluid (T0 and C0 correspond to the reference state), ρ0 is the fluid mixture reference density
at T0 and C0, and T ′ is the dimensional temperature. We also use other standard assumptions
such as local thermal equilibrium between the phases and negligible viscous dissipation.

Thus the governing conservation equations for mass, momentum, energy and chemical
species for the bulk are

∇
2φ′

= −
gKβ

ν

∂

∂x ′
T ′

2

(ρc)p
∂T ′

2

∂t ′
+ (ρc)fV

′
· ∇T ′

2 = λp∇
2T ′

2

ε
∂C ′

∂t ′
+ EV ′

· ∇C ′
= ∇ ·

(
D∗

∇C ′ + C ′(1 − C ′)D∗

T ∇T ′

2

) (2)



where V ′ is the Darcy velocity, T ′

2 the temperature inside the porous bulk, g the gravitational
acceleration, ν the kinematic viscosity, (ρc)p and (ρc)f are the respective heat capacities
of the saturated porous medium and the fluid, λp is the effective thermal conductivity of
the saturated porous medium and φ′ is the stream function. As usual, the equation of
continuity is satisfied by introducing the stream function according to u′

= ∂φ′
/
∂y′ and

v′
= −∂φ′/∂x ′.

For the two plates bounding the porous medium, we have

(ρc)s
∂T ′

1

∂t ′
= λs∇

2T ′

1,

(ρc)s
∂T ′

3

∂t ′
= λs∇

2T ′

3,

(3)

where T ′

1 and T ′

3 are the temperatures inside the lower and upper plates, respectively, and
(ρc)s and λs are the heat capacity and the thermal conductivity of the solid material. We
have assumed that bounding plates are made from the same material and are of identical
thicknesses.

The boundary conditions applied to the horizontal boundaries of the system are uniform
fluxes of heat per unit area, q ′. It is assumed that the vertical walls of the cavity are thermally
well insulated and impermeable.

We assume that there is little variation in the term C(1 − C) of the equation of
conservation of species, so we can replace it by C0(1 − C0), where C0 is the initial mass
fraction.

The reference scales are H for the length, a/H for the velocity with a = λp
/
(ρc)f

(a is the effective thermal diffusivity), ϕH 2/a for the time (with ϕ = (ρc)p/(ρc)f, the heat
capacity ratio), 1T = q ′ H/λp for the temperature, 1C = −1T C0(1 − C0)(D∗

T/D∗) for the
mass fraction, where D∗

T and D∗ are, respectively, the thermodiffusion and mass-diffusion
coefficients of the denser component.

The dimensionless mathematical formulation of the problem is given by

∇
2φ = −Ra

∂

∂x
(T2 +ψC),

∂T2

∂t
+ EV · E∇T2 = ∇

2T2,

ε
∂C

∂t
+ EV · E∇C =

1

Le
(∇2C − ∇

2T2),

∂T1

∂t
= α∇

2T1,

∂T3

∂t
= α∇

2T3.

(4)

The problem under consideration depends on eight non-dimensional parameters: the
thermal Rayleigh number Ra = (gβT K1T H)/(aν) (K is the permeability of the porous
medium); the separation ratio ψ = −(βC

/
βT)(D∗

T

/
D∗)C0(1 − C0); the Lewis number Le =

a/D∗; the normalized porosity ε = ε∗/ϕ; the thermal diffusivity ratio α = as/ap, where
as = λs/(ρc)s and ap = λp/(ρc)p are, respectively, the thermal diffusivity of the metal plates
and porous medium; the thermal conductivity ratio d = λs

/
λp; the aspect ratio δ = h/H ; and

the aspect ratio of the porous cell A = L/H . In the present study, the intensity of the thermal
buoyancy forces is expressed solely in terms of the parameter Ra.



The corresponding dimensionless boundary conditions are:

for y = −δ,
∂T1

∂y
= −

λp

λs
=

−1

d
;

for y = 0,
∂T1

∂y
=

1

d

∂T2

∂y
, T1 = T2, φ = 0,

∂C

∂y
−
∂T2

∂y
= 0;

for y = 1,
∂T3

∂y
=

1

d

∂T2

∂y
, T2 = T3, φ = 0,

∂C

∂y
−
∂T2

∂y
= 0;

for y = 1 + δ,
∂T3

∂y
=

−1

d

(5)

3. Linear stability of the equilibrium solution

3.1. Linear stability of the equilibrium solution in an infinite horizontal cell

It is straightforward to show that there exists an equilibrium solution characterized by

EV = 0, T1,0 = −y/d + Ta, T2,0 = Ta − y,

T3,0 = (1 − y)/d + Ta − 1, C0 = 1/2 − y, (6)

where Ta is an arbitrary constant temperature. In order to analyze the stability of this
equilibrium solution, we first introduce the perturbations of stream function, of temperatures,
namely θ1, θ2 and θ3, and of the mass fraction c. We assume that the perturbations
(φ, θ1, θ2, θ3, c) are of small amplitude, and for simplicity, we introduce the new function
η = c − θ2, so that (4) leads to

∇
2φ + Ra

∂

∂x
[θ2(1 +ψ)+ψη] = 0,

∂θ2

∂t
− ∇

2θ2 = −
∂φ

∂x
,

εLe
∂(η + θ2)

∂t
− ∇

2(η)= −
∂φ

∂x
Le,

∂θ1

∂t
−α∇

2θ1 = 0,

∂θ3

∂t
−α∇

2θ3 = 0.

(7)

The perturbation quantities are chosen as follows:

(φ, θ1, θ2, θ3, η)= (φ̃, θ̃1, θ̃2, θ̃3, η̃)(y) exp(I kx + σ t)+ c.c., (8)

where k is the wave number in the horizontal (x) direction, I 2
= −1, and σ is the temporal

exponential growth rate of perturbation.

3.1.1. Stationary transition In the first part, we focus on steady bifurcation. When the
expansions (8) are introduced in (7) and σ = 0 (steady bifurcation), we obtain the following



linearized equations:

(D2
− k2)φ̃ + RaI k

[
(1 +ψ)θ̃2 +ψη̃

]
= 0,

(D2
− k2)θ̃2 − I kφ̃ = 0,

(D2
− k2)η̃− I kLeφ̃ = 0,

(D2
− k2)θ̃1 = 0,

(D2
− k2)θ̃3 = 0,

(9)

where D = d/dy.
Removing φ̃ from system (9), the following linear system is obtained:

(D2
− k2)2θ̃2 − Rak2 [1 +ψ +ψLe] θ̃2 = Rak2ψ [A sinh(ky)+ B cosh(ky)] ,

(D2
− k2)θ̃1 = 0,

(D2
− k2)θ̃3 = 0,

(10)

where A and B verify

Le(dθ̃2/dy)+ k A = 0, for y = 0;

Le(dθ̃2/dy)+ k A cosh(k)+ k B sinh(k)= 0, for y = 1,
(11)

with the associated boundary conditions:

for y = −δ,
∂θ̃1

∂y
= 0;

for y = 0,
∂θ̃1

∂y
=

1

d

∂θ̃2

∂y
, θ̃1 = θ̃2, (D2

− k2)θ̃2 = 0,
∂η̃

∂y
= 0;

for y = 1,
∂θ̃3

∂y
=

1

d

∂θ̃2

∂y
, θ̃2 = θ̃3, (D2

− k2)θ̃2 = 0,
∂η̃

∂y
= 0;

for y = 1 + δ,
∂θ̃3

∂y
= 0.

(12)

The general solution of the fourth-order ordinary differential equation (10) is given as a
combination of four particular independent functions whose expression depends on the sign
of Ra(1 +ψ +ψLe). These considerations permit us to consider four regions of the plane
(Ra, ψ). The solution of the first equation of system (10) is the sum of the general solution
of the homogeneous associated equation, θ̃2hs, and a particular solution, θ̃2ps,

θ̃2ps =
−ψ[A sinh(ky)+ B cosh(ky)]

1 +ψ +ψLe
. (13)

The solution θ̃2hs is sought under ery form, which leads to the following characteristic
equation:

(r2
− k2)2 − Rak2(1 +ψ +ψLe)= 0.

It is almost an algebraic equation of the fourth degree. The real or complex nature of the
four roots of this equation depends on the sign of Ra(1 +ψ +ψ Le).

(a) The case Ra(1 +ψ +ψLe) > 0.
In this last case, we find θ̃2hs = C cosh(R1 y)+ D sinh(R1 y)+ E cos(R2 y)+ F sin(R2 y).



The general solution of system (10) associated with this case is

θ̃2(y)= C cosh(R1 y)+ D sinh(R1 y)+ E cos(R2 y)+ F sin(R2 y)

−
ψ[A sinh(ky)+ B cosh(ky)]

(1 +ψ +ψLe)
;

θ̃1(y)= G cosh(ky)+ H sinh(ky); θ̃3(y)= M cosh(ky)+ N sinh(ky),

where

R1 =

√
(
√

Ra(1 +ψ +ψLe)+ k)k and R2 =

√
(
√

Ra(1 +ψ +ψLe)− k)k.

The solution obtained depends on the ten arbitrary constants A, B, C, D, E, F G, H, M
and N.

When we assume that this general solution satisfies the ten boundary conditions given
in equations (11) and (12), we obtain ten homogeneous linear algebraic equations and ten
unknowns corresponding to the ten constants. This system has a non-trivial solution if the
associated matrix determinant, det(Ra(k), k, δ, d, ψ, Le), is equal to zero. The expression
for this determinant was obtained using the Maple algebra code. Once we calculated the
determinant, we obtained the dispersion relation function of the Rayleigh number, the wave
number k, the aspect ratio δ, the thermal conductivity ratio d , the Lewis number Le and the
separation ratio ψ . The expression for the dispersion equation is lengthy and complicated, so
it will be discussed later for the case of long-wave disturbances in the case (d).

(b) The case Ra(1 +ψ +ψLe) < 0.
We proceed in the same manner as before. We calculate first the four roots of the

characteristic equation, which are complex (the complex part, its conjugate and their
opposites). The general solution of the differential equation of fourth order without a second
member is of the form

θ̃2(y)= eαy[A sin(βy)+ B cos(βy)] + e−αy[C sin(βy)+ D cos(βy)] (14)

with

α =

√
k2

2
+

k

2

√
Ra2

m − k2,

β =

√
−

k2

2
+

k

2

√
Ra2

m − k2,

Ram =
√

−Ra(1 +ψ + Leψ).

In this case, the determinant is written as

det(Ra(k), k, δ, d, ψ, Le)=
k4

8

√
2k2 + 2k

√
Ra2

m − k2

(1 +ψ +ψLe)2
G(Ra, δ, d, ψ, Le).

From this relation, we directly determine the critical values of Rayleigh number and wave
number, Rac and kc.



(c) The case 1 +ψ +ψLe = 0.
For the particular case 1 +ψ +ψLe = 0, the system of equation (10) is solved

analytically, using the Maple algebra code. We obtain two possible dispersion equations
corresponding to the first and second bifurcations,

Ra1 = g1(d, δ, k)
(Le + 1)

Le
and Ra2 = g2(d, δ, k)

(Le + 1)

Le
. (15)

where

g1(d, δ, k)=
8k2(1 − e2k)[(1 − d)(ek + e2kδ)+ (1 + d)(1 + ek(1+2δ))]

d(e2kδ − 1)[2k2e2k − 2k2ek − 2kek − 2ke2k + e3k + e2k − ek − 1]
,

g2(d, δ, k)=
8k2(1 − e2k)[(1 − d)(ek

− e2kδ)+ (1 + d)(ek(1+2δ)
− 1)]

d(e2kδ − 1)[2k2e2k − 2k2ek − 2kek − 2ke2k + e3k + e2k − ek − 1]
.

Using the experimental values taken by Platten et al (2003), the thermophysical properties
of glass spheres and copper: (d, δ, Le)= (28.4, 3, 232), we deduce the critical values of
Rayleigh number and wave number associated with the first and second bifurcations,

Rac1 = −12
(Le + 1)

Le
, kc1 = 0, Rac2 = −64.30

(Le + 1)

Le
, kc2 = 3.40.

All analytical results and physical interpretations found from the cases (a), (b) and (c) are
summarized in table 1 and figures 3 and 4. The results obtained are in very good agreement
with those obtained using the spectral Tau method. The disturbances are developed in terms
of polynomial functions verifying all the boundaries conditions except those along the inner
plates:

θ̃1(y)= a1 + a2

[
y +

y2

2δ

]
+

N−2∑
n=1

an+2 yn (y + δ)2 ; θ̃2(y)=

N∑
n=1

bn yn−1
;

θ̃3(y)= c1 + c2

[
y −

y2

2(1 + δ)

]
+

N−2∑
n=1

cn+2 yn(y − 1 − δ)2;

φ̃(y)=

N∑
n=1

fn(1 − y)yn
; η̃(y)= d1 + d2

(
y2

−
2

3
y3

)
+

N−2∑
n=1

dn+2 yn+1(1 − y)2. (16)

The Tau spectral method used is similar to the Galerkin method. The test functions are
equal to the trial functions but some of the trial functions employed do not satisfy all the
boundary conditions. The trial functions used for φ̃ and η̃ verify all the boundary conditions,
so the residue Rφ associated with the first equation of system (7) is multiplied by (1 − y)yi

with i varying from 1 to N, ∀i = 1 . . . N ,
∫ 1

0 Rφ(1 − y)yi dy = 0, leading to N algebraic
equations. A similar procedure is used for the residue Rη associated, respectively, with the
third equation of system (7). The coupling boundary conditions for θ̃2 with θ̃1 and θ̃3 lead
us to the choice of the trial function yi , members of a complete set of functions for θ̃2. The
residue Rθ2 associated with the second equation of system (7) is multiplied by yi with i varying
from 0 to N−1, ∀i = 0 . . . N − 2,

∫ 1
0 Rθ2 yi dy = 0. The trial functions used for θ̃1 and θ̃3

satisfy, respectively, only the boundary condition on y = −δ and on y = 1 + δ. For the fourth
and fifth equations of system (7), the associated residues Rθ1 and Rθ3 are multiplied by the
associated test function and integrated, respectively, on the segments [−δ, 0] and [1, 1 + δ],



Table 1. Comparison between the values of critical Rayleigh number Racs and the critical wave
number kcs obtained by the exact solution and spectral Tau methods at fifth order.

d = 5, δ = 1, Le = 5 d = 28.4, δ = 3, Le = 232

Racs kcs Racs kcs

9 = −0.1 Exact 147.300 4.610 ∞ –
Tau 147.290 4.610 ∞ –

9 = −0.05 Exact 61.753 3.495 ∞ –
Tau 61.752 3.495 ∞ –

9 = −0.02 Exact 43.028 3.038 ∞ –
Tau 43.027 3.038 ∞ –

9 = 0.00 Exact 35.175 2.786 38.169 3.073
Tau 35.174 2.786 38.169 3.073

9 = 0.02 Exact 29.439 2.564 2.583 0.00
Tau 29.440 2.564 2.583 0.00

9 = 0.10 Exact 16.946 1.875 0.517 0.00
Tau 16.945 1.875 0.517 0.00

9 = 0.15 Exact 13.064 1.538 0.345 0.00
Tau 13.064 1.538 0.345 0.00

9 = 0.20 Exact 10.504 1.233 0.258 0.00
Tau 10.504 1.233 0.258 0.00

leading to N−2 algebraic equations. A supplementary set of four equations is used to apply
the boundary conditions which are not verified by the trial functions:

θ̃1(0)= θ̃2(0), θ̃2(1)= θ̃3(1),
∂θ̃1(0)

∂y
=

1

d

∂θ̃2(0)

∂y
and

∂θ̃2(1)

∂y
=

1

d

∂θ̃3(1)

∂y
,

leading to four algebraic equations. This yields 5N algebraic equations for 5N unknown
constants.

Table 1 reports the critical values of Racs and kcs obtained with the exact solution and
spectral Tau methods, for the first bifurcation by fixing the values of Le, d, δ and for different
values of ψ . In figures 2(a) and (b), we present the stability diagrams Racs = f (ψ) and
the Ra0 values associated with k = 0, obtained for (Le, d, δ)= (5, 5, 1) and (Le, d, δ)=

(232, 28.4, 3). The two sets of parameters correspond, respectively, to the binary gas and the
binary solution. For large values of the Lewis number, the critical Rayleigh number decreases
significantly depending on.

In figures 3(a) and (b), the stability diagram kcs = f (ψ) for (Le, d, δ)= (5, 5, 1) and
(Le, d, δ)= (232, 28.4, 3) clearly shows the variation of the critical wave number versus the
separation ratio for stationary bifurcation.

An Racs = Ra0 and kcs = 0 for Ra < 0 ∀ψ and Ra > 0 only for ψ > ψuni.
For ψ ∈ [ψH , ψuni], we have kcs 6= 0. The expression for ψH , ψuni and Ra0 will be given

in the case (d).
For ψ > 0, the denser component moves toward the cooler wall. The pure double-

diffusive solution is then infinitely linearly stable when the horizontal layer is heated from
above, while it loses its stability for critical Rayleigh numbers smaller than 4π2 which
corresponds to the critical Rayleigh number for the pure thermal problem and for Ra > 0. For
ψ < 0, the denser component moves toward the warmer wall. For Ra < 0, the equilibrium



Figure 2. (a, b) Critical Rayleigh number at the onset of convection versus separation
ratio for (a) Le = 5, δ = 1, d = 5 and (b) Le = 232, δ = 3, d = 28.4. Dashed lines: ψH =

−1/(Le(1 + 2dδ)+ 1) and Ra0 = 12(1 + 2dδ)/[1 +ψ(2dδLe + Le + 1)].

Figure 3. Critical wave number at the onset of convection versus separation ratio for (a) Le = 5,
δ = 1, d = 5 and (b) Le = 232, δ = 3, d = 28.4. Dashed line: ψH = −1/(Le(1 + 2dδ)+ 1).

solution is not linearly stable, unlike the pure thermal problem, so we can expect that
Racs → −∞ whenψ → 0−. This result was confirmed by our direct simulations. For Ra > 0,
(1 +ψ +ψLe) > 0 and ψ < 0, the downward migration of the denser component leads to an
increase of the critical Rayleigh number (Racs > 4π2). For Ra > 0 and (1 +ψ +ψLe) < 0,
we do not obtain the transition to the stationary convective regime.

(d) The limiting case of long-wave disturbances k ≈ 0.
The case of long-wave disturbances (for which the wave number, k, is close to zero) may

be studied analytically using the dispersion relation, by developing a regular perturbation
expansion with k as a small parameter. In our case, we expand the function F in the vicinity
of k = 0 using Maple software; then we obtain

det(Ra(k), k, δ, d, ψ, Le)=
Rak6

1 +ψ +ψLe
F(Ra, δ, d, ψ, Le). (17)



The singular case 1 +ψ +ψLe = 0 was studied analytically in the case (c). From this
dispersion equation, we determine the critical wave number and the critical Rayleigh number.
For this purpose, we fix the values of d , δ and the Lewis number Le. For every value of ψ
fixed, we look for the value of k = kcs, which minimizes the Rayleigh number to obtain the
associated value, Racs.

We develop the function F in the vicinity of k = 0, which gives

F(Ra, δ, d, ψ, Le)= F1(Ra, δ, d, ψ, Le)+ k2 F2(Ra, δ, d, ψ, Le)+ 0(k4). (18)

The function F1(Ra, δ, d, ψ, Le) is equal to zero for

Ra0 =
12(1 + 2dδ)

1 +ψ(2Ledδ + Le + 1)
. (19)

This value of Ra0 corresponds to the onset of the unicellular flow associated with
k = 0. Ra0 does not necessarily correspond to a critical Rayleigh number of the problem
considered, as shown in figure 2(a). By replacing Ra by Ra0 in the expression of F2, the
equation F2(Ra, δ, d, ψ, Le)= 0, after simplification, leads to a relationship linking the
various physical parameters (Le, δ, d, ψ) which is written as

10(1 + 2dδ)2ψLe + [10 − dδ(1 +ψ)(70δ3 + 51dδ− 12)] = 0. (20)

The solution of this equation (20) with regard to ψ leads to

ψuni =
1

10(1 + 2dδ)2

51d2δ2 + 70dδ3 − 10 − 12dδ
− 1

. (21)

Let us look at the conditions under which k = 0 and

Ra0 =
12(1 + 2dδ)

1 +ψ(2Ledδ + Le + 1)

correspond to the critical parameters kcs = 0, Racs = Ra0. For this purpose, we distinguish
two cases, Ra > 0 and Ra < 0 :

For Ra > 0, we have to show that d Ra
d k2 > 0, and for Ra < 0, we have to show that d Ra

d k2 6 0
in the neighborhood of k = 0.

When k tends to zero, we verify that(
d Ra

dk2

)
k=0

= −F2(Ra0, δ, d, ψ, Le) (22)

and we deduce that(
d Ra

dk2

)
k=0

=
4[10(1 + 2dδ)2ψLe + (1 +ψ)(12dδ + 10 − 70dδ3

− 51d2δ2)]

35(ψ[Le(2dδ + 1)+ 1] + 1)2
. (23)

The sign of ( d Ra
d k2 ) is the same as the sign of the numerator Nnum of equation (23), and

thus (
d Ra

dk2

)
k=0

→ ∞ for ψ = ψH =
−1

1 + Le(1 + 2dδ)
.

We can make three remarks concerning the critical Rayleigh number found in our study:

Remark 1 δ → 0 means that the thickness of the walls delimiting the porous medium tends
to zero. This configuration corresponds to a constant heat flux directly imposed on the porous



layer, as studied previously by Bahloul et al. (2003). We obtain the same results as those
obtained by these authors when δ → 0, Rac = 12/(1 +ψ +ψLe).

Remark 2 d → ∞ means that the walls delimiting the porous medium are infinitely more
conductive than the porous layer saturated by with binary fluid. This configuration is similar
to a porous cell maintained at a constant temperature difference. This configuration has
been studied by Schöpf (1992) and Charrier-Mojtabi et al (2007). For d → ∞, the relation
giving Rac leads to Rac = 12/ψLe, a result obtained previously by those authors. Regarding
convection in a binary fluid, Knobloch and Moore (1988) obtained analytically a similar
result: Rac = 720/ψLe.

Remark 3 When we take into account the effect of the walls delimiting the porous medium,
and for ψ = 0 (natural convection), the relation giving Rac leads to Rac = 12(1 + 2dδ), a
result obtained recently by Mojtabi and Rees (2011).

3.1.2. Oscillatory instability In order to study the stability of the equilibrium solution, we
introduce and expand the perturbations using equation (8). When we replace the disturbances
by their developed form in system (7), and take σ = Iω (oscillatory bifurcation), we find the
second-order differential system:

(D2
− k2)φ + I k Ra[(1 +ψ)θ2 +ψη] = 0,

(D2
− k2

− Iω)θ2 − I kφ = 0,

(D2
− k2

− I Leεω)η− I Leεωθ2 − I kφ = 0,

α(D2
− k2)θ1 − Iωθ1 = 0,

α(D2
− k2)θ3 − Iωθ3 = 0.

(24)

The corresponding boundary conditions are given by (12).
To solve this linear differential system, we use the spectral Tau method and the same

disturbances given in equation (16) with no restriction on the range of parameters Ra, ψ and
Le. Replacing the disturbances by their developments in system (24) leads to a homogeneous
linear algebraic system. This system has a non-trivial solution if the associated matrix
determinant is equal to zero. In this study, the determinant is a complex:

det(A)= R(Ra, k, ω, ε, Le, ψ, d, δ)+ I Q(Ra, k, ω, ε, Le, ψ, d, δ)= 0,

where R and Q are real polynomials. To calculate the value of the critical Rayleigh number
corresponding to a Hopf bifurcation, we proceed as follows, using the computer software code
Maple:

We first fix the particular values of ψ, ε, d, δ and Le. We resolve the following algebraic
system, with two unknowns (Ra, ω) and a parameter k:{

R(Ra, k, ω)= 0,

Q(Ra , k, ω)= 0.
(25)

When we solve this system, we obtain the real roots of indices j : Ra j = f j (k) and
ω j = h j (k). We can then look for the minimum value of Ra according to k and obtain the
critical parameters Ra jc = f j (kc) and ω jc = h j (kc).

When we setω = 0 in the expression for the determinant det(A), we verify that the critical
Rayleigh numbers obtained correspond to the stationary transition. When ω is different from
0, we are led to determine the critical Rayleigh numbers corresponding to the oscillatory



Figure 4. (a) Stability diagram for different normalized porosity values (ε = 0.3, 0.4, 0.5, 0.7)
(the spectral Tau method at fifth order) and for Le = 5, δ = 1, d = 5. Solid line, stationary
bifurcation; dotted line, Hopf bifurcation; dashed line, ψH = −1/(Le(1 + 2dδ)+ 1). (b) Critical
Hopf frequency number versus separation ratio at fifth order for ε = 0.4, Le = 5, δ = 1 and d = 5.

bifurcation. We were able to determine these critical parameters using the Maple software
code.

In the case of a cell heated from below, for ψ < 0, the heaviest constituent migrates
toward the hot wall and a stabilizing effect occurs.

In figure 4(a), we show that, for values of ψ less than ψH = −1/(Le(1 + 2dδ)+ 1), the
primary bifurcation is a Hopf bifurcation. Using the spectral Tau method to fifth order with
d, δ, Le fixed and for different values of ε and ψ , we determined the critical Rayleigh number
Raco, the critical Hopf frequency ωco and the associated critical wave number kco (figure 4(b)).
The marginal stability curves associated with the Hopf bifurcations are slightly below the
curve of marginal stability associated with the stationary bifurcation regardless of the value
of the normalized porosity considered.

4. Conclusion

The critical Rayleigh number at the onset of the Soret-driven convection was determined
using a linear stability analysis in the case of an infinite horizontal cell. The influence of a
negative or positive separation ratio ψ and the importance of the role of normalized porosity
were investigated theoretically and numerically in this paper. For stationary bifurcation, an
analytical dispersion relation giving the critical Rayleigh number and wave number was
obtained. Very good agreement was found between the critical values obtained analytically
and the ones obtained by the spectral Tau numerical procedure. For Hopf bifurcations,
the critical parameters depend strongly on the normalized porosity. The role of porosity is
important. When it decreases, the stability of the equilibrium solution is reinforced.

For a cell heated from below, the equilibrium solution loses its stability via a stationary
bifurcation for ψ ∈ [ψH,+∞] and for ψ 6 ψH = −1

/
(Le(1 + 2dδ)+ 1) via Hopf bifurcation

for the entire range of porosity values considered. For ψ ∈ [9uni,+∞] the critical parameters
associated with the primary transition are Racs = 12(1 + 2dδ)/[1 +ψ(2dδLe + Le + 1)] and
kcs = 0.

For a cell heated from above, the equilibrium solution is linearly stable if ψ > 0, while
the first bifurcation is stationary if ψ < 0.
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