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Modelling rollers for shallow water

flows
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Hydraulic jumps, roll waves or bores in open channel flows are often treated as

singularities by hydraulicians while slowly varying shallow water flows are described

by continuous solutions of the Saint-Venant equations. Richard & Gavrilyuk (J. Fluid

Mech., vol. 725, 2013, pp. 492–521) have enriched this model by introducing an

equation for roller vorticity in a very elegant manner. This new model matches several

experimental results that have resisted theoretical approaches for decades. This is the

case of the roller of a stationary hydraulic jump as well as the oscillatory instability

that the jump encounters when the Froude number is increased. The universality of

their approach as well as its convincing comparisons with experimental results open

the way for significant progress in the modelling of open channel flows.
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1. Introduction

Hydraulicians like to deal with slowly varying open flows in shallow waters since

the Saint-Venant equations (Saint-Venant 1871), often referred to as the ‘shallow

water equations’ yield realistic solutions in most situations. But, as written in their

most famous reference book by Chow (1959), they ‘have long ago come to regard

the various phenomena of rapidly varied flows as a number of isolated cases each

requiring its own specific empirical treatment’. This is the case for stationary hydraulic

jumps or travelling ones such as roll waves or bores, such as the one shown in

the figure by the title (copyright Arnold Price; licensed for reuse under the Creative

Commons Attribution-ShareAlike 2.0 license).

The shallow water equations deal with vertically averaged quantities, which

removes one spatial dimension in the flow representation. Owing to their hyperbolic

mathematical nature, these equations develop shocks whose discontinuities can be
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modelled through the Rankine–Hugoniot relations arising from the conservation laws
for mass and momentum. The energy loss through the jump is a consequence of these
two conservation laws since there is no internal energy in this model. But experimental
results show that this shock model fails to represent the real phenomena in a transition
zone whose extent can be one or two orders of magnitude larger than the layer depth.

The lack of a generic model to describe correctly hydraulic jumps has motivated the
development of experimentally derived empirical laws. For instance, Hager, Bremen &
Kawagoshi (1990) state that the roller length L is related to the depth h− at the toe of
a stationary hydraulic jump by the relation L/h− = 8F − 12 when the upstream Froude
number F is in the range [2.5, 8]. In the same range, Chanson (2011) describes the
depth profile h(x) of the roller by (h(x) − h−)/(h+ − h−) = (x/L)0.441 where h+ is the
downstream depth.

Recently, Richard & Gavrilyuk (2012, 2013) opened the way for a robust theoretical
framework that matches a lot of experimental results for stationary hydraulic jumps,
as well as for roll waves such as the results of Brock (1969, 1970). In a clever
way, they enrich the Saint-Venant equations by taking into account the roller vorticity
dynamics. One bright and convincing result of their model lies in its capacity to
describe numerically the oscillatory instability encountered by the stationary hydraulic
jump when the Froude number F is increased beyond the threshold Fc = 1.5, in
agreement with the experimental results of Mok (2004).

2. Overview

There is an analogy between the dynamics of an isentropic compressible gas in a
tube and an incompressible open shallow water flow, where the mass density ρ of the
former corresponds to the layer depth h of the latter. In the one-dimensional horizontal
case, the fluxes of the section-averaged momentum ρU and hU are respectively the
pressure P = Bργ and P = gh2/2, where B and γ are constants describing the perfect
gas and g is gravity applied to the incompressible fluid. Conservation equations of
these models form a hyperbolic system with characteristic velocities U ± c such that
c2 = γ P/ρ and c2 = gh respectively.

These models neglect the variance R = 〈u′2〉 of the velocity perturbation u′ to
the section-averaged U, which can be justified by an asymptotic expansion when
the flow is slowly varying. Although they violate this hypothesis, singularities such
as shock waves and hydraulic jumps are nevertheless classically modelled with the
Rankine–Hugoniot relations derived from mass conservation and the conservation law
for momentum.

Richard & Gavrilyuk (2012, 2013) overcome this drawback in the open channel
case by restoring the non-vanishing variance in the momentum flux P = gh2/2 + hR.
Neglecting 〈u′3〉 with an hypothesis of ‘weakly sheared flow’, they establish that PU

is the flux of the energy hE with E = (gh + U2 + R)/2. The continuous part of this
model is still hyperbolic with c2 = gh + 3R. A new Riemann invariant Ω = R/h2,
propagating with the velocity U, can be seen as the ‘enstrophy’ of the flow. The
model also provides a new Rankine–Hugoniot relation stating that the hydraulic head
H = h + (1/2g)(U2 + 3R) is conserved through the jump.

The quantity R can be seen as the internal energy and the hydraulic head
corresponds to the total enthalpy for the compressible gas analogy. But the analogy
stops here since the energy R of the incompressible fluid can be transformed into
heat. The parameterization of this transformation is made in Richard & Gavrilyuk
(2013) by dimensional analysis leading to a dissipation term for the enstrophy
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FIGURE 1. (a) Roller length L as function of the upstream Froude number F. Model values (•)
compared with experimental measures (�) of Hager et al. (1990). (b) Free surface profile h(x)
for F = 5.56, linking depth h− at the toe of the hydraulic jump up to h+ at its end. Model values
(thick curve) compared with experimental law (dashed curve) of Chanson (2011).

Ω of the form −Λ(Ω)|U|3/h3, with Λ > 0. This monotonic decrease of the
vorticity is consistent with the observation by Svendsen et al. (2000). Assuming the
existence of a constant-enstrophy background ϕ attributed to the vorticity generated
by friction on the channel bottom, the enstrophy dissipation coefficient is set to
Λ(Ω) = 2Cr(1 − ϕ/Ω) where Cr is adjusted to fit the experimental law of Hager et al.
(1990). The momentum dissipation obeys the classical parameterization −Cf (Re)|U|U
where the friction coefficient Cf depends here on the Reynolds number Re through the
Colebrook–White formula for smooth bottoms.

The predictions of this model are compared with experimental results in figure 1.
The roller length increases with the upstream Froude number F = U/

√
gh in

figure 1(a) and the theoretical curve fits the experimental values remarkably well. In
figure 1(b), the model exhibits a discontinuity for the depth at the toe of the hydraulic
jump, followed by a smooth backwater curve h(x) converging to its asymptotic value.
Again, these values match surprisingly well the experimental results, in view of the
fact that Cr and ϕ are the only adjustable parameters of the model.

But the highlight of Richard & Gavrilyuk (2013) lies in the oscillating regime that
the model exhibits through a numerical simulation of its equations. It is well known
that the usual Saint-Venant equations fail to model such a regime. In agreement with
the experimental results of Mok (2004), this enriched model exhibits the critical
Froude number Fc = 1.5 for the Hopf bifurcation encountered by the stationary
hydraulic jump and predicts accurate oscillation frequencies. Richard & Gavrilyuk
(2013) associate this critical value with the fact that, for a given flow discharge,
the depth discontinuity at the toe of the stationary hydraulic jump is maximum for
Fc = 1.5. Thanks to a physical reasoning involving the shape of the backwater curves
and the downward propagation of information, the authors are able to provide a
convincing explanation of the unstable feedback loop that leads to the oscillating
regime.

3. Future

The ‘Richard–Gavrilyuk (RG) equations’ (Richard & Gavrilyuk 2012, 2013) are
destined to become famous due to their ability to describe rapidly varying open
channel flows with few adjustable parameters. So far, only stationary hydraulic jumps



and roll waves have been studied for a comparison between theory and experimental
results. Other hydraulic singularities such as abrupt shrinking, both in open channels
and pipes, could be considered. Further validation of the RG equations can be looked
for by measuring backwater curves or wave velocities in the vicinity of hydraulic
singularities. A greater challenge would lie in the explanation of some wavy backwater
curves that are missed by the Saint-Venant equations and do not come from wave
dispersion.

The RG approach will certainly be relevant to the field of developed turbulence.
For instance, it would be interesting to relate the streamwise dissipation of the energy
or enstrophy generated in a shock with theories of decaying turbulence through a
Taylor hypothesis. The equation for the enstrophy Ω in the RG equation can be
compared to turbulent closures such as TKE (turbulent kinetic energy k), k–ǫ or
k–ω. Finding an oscillatory regime coming out of a feedback loop with the turbulent
variables would resonate with the concept of elastic turbulence. Since the Saint-Venant
equations have been rigorously derived from the Navier–Stokes equations for viscous
flows in the framework of slowly varying flows (see for instance Boutounet et al.

2008), mathematicians are likely to extend their asymptotic expansions to rapidly
varying flow to recover the RG equations. Finally, the RG theory might also apply to
non-Newtonian flows and gives an interesting framework to parameterize, for different
rheologies, the dissipation of the enstrophy generated through various singularities.
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