
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 9327  

To link to this article: DOI: 10.1016/j.compositesb.2013.02.014 

URL: http://dx.doi.org/10.1016/j.compositesb.2013.02.014 

 

 

 

To cite this version: Hachemane, Belkacem and Zitoune, Redouane and 

Bezzazi, Boudjema and Bouvet, Christophe Sandwich composites impact 

and indentation behaviour study. (2013) Composites Part B: Engineering, 

vol. 51. pp. 1-10. ISSN 1359-8368 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.compositesb.2013.02.014
mailto:staff-oatao@inp-toulouse.fr


Sandwich composites impact and indentation behaviour study

B. Hachemane a,⇑, R. Zitoune b, B. Bezzazi a, C. Bouvet c

aBoumerdès University, FSI, Materials, Process & Environment Research Unit, 1 av. de l’indépendance, 35000 Boumerdès, Algeria
b Toulouse University, UPS, Clement Ader Institute, 133 av. de Rangueil, F-31077 Toulouse, France
c Toulouse University, ISAE, Clement Ader Institute, 10 av. Edouard Belin, F-31077 Toulouse, France

a r t i c l e i n f o

Keywords:

B. Impact behaviour

C. Damage mechanics

D. Mechanical testing

E. Lay-up

Sandwich materials

a b s t r a c t

In order to better exploit the natural cork available in Algeria, an experimental characterisation of a jute/

epoxy–cork sandwich material to impact and indentation was undertaken. The aim of this work is to

evaluate the impact energy and cork density influence over the sandwich plate damage behaviours by

instrumented static and dynamic tests. The results show that the onset damage force, the maximum force

and the damage size are influenced by the cork density and the impact energy. The sandwich material,

with the heavy agglomerated cork having a density of 310 kg/m3 is characterised by a weaker energy dis-

sipation capacity, by about 3.72% for impact test and 3.29% for indentation one, than the sandwich with

lighter cork (160 kg/m3). This difference is an infusion process consequence. The infiltrated resin into the

agglomerated cork pores changes the material local rigidity. Also, under impact loading the sandwich

laminates dissipate 11% more energy than with the quasi-static indentation test.

1. Introduction

In the composites reinforcement, the natural fibres use is grow-

ing, primarily because of environmental and economics concerns.

Natural fibres mostly used are straw, flax, hemp and jute. Com-

pared to hemp fibre, jute has the advantage of being easy to weave

[1]. Although the mechanical performance of natural fibre compos-

ites offer new perspectives for the design of structures (low den-

sity, acceptable mechanical properties), the variability of their

behaviour of these materials make them difficult to use [1,2]. In

addition, the reproducibility of their properties is not easy to en-

sure because of their dependence on various parameters such as

the grain plant origins, the soil type on which they were planted,

weather condition and the maturation of the plants, etc. Several

studies have shown that these materials are sensitive to moisture

and heat [3]. When these materials are heated at different temper-

ature levels, there was a notable decrease in their tensile, flexural

and shock strengths. For example, the tensile tests carried out on

a fabric jute at different temperatures showed a drop in the tensile

strength of 43% when it is heated to 180 °C [1]. Moreover, jute is a

hydrophobic material and moisture absorption alters the

dimensional and mechanical characteristics of jute fibres laminate

[4–7]. The results reported by Karmaker [4] showed that after one

day of water immersion, the thickness of a jute/polypropylene

laminate, with 35% fibre of volume ratio, increases by 0.75%. Also,

the Rahman et al. work [6] showed that the jute/PP composite

mass increases by 1.2% after 2 h immersion in hot distilled water.

Therefore, Akil et al. [5] experimental tests indicate that the jute/

polyester bending strength decreases by 30% after one day in dis-

tilled water immersion, whereas Khan et al. [7] reported that jute

fibres absorb up to 19% water after one minute of immersion in

25 °C deionised water.

The jute/PP composite gave better tensile and flexural strength

compared to flax/PP and abaca/PP laminates (between 10% and 20%

higher) [8], whereas mat hemp/epoxy showed 8.5% more tensile

strength and 14% better elasticity modulus than the woven jute/

epoxy laminates [9], unlike the bending strength which was 5.8%

less. Jute/epoxy composites were broken by fibres tearing followed

by matrix cracking [9]. This same observation was made by Ray

et al. [10] for jute/vinylester laminate and O’Dell [11] for jute/

unsaturated polyester composite. As for the most common jute/

polyester damage modes are matrix cracking and fibres breaking

[4]. A tensile fracture surface electron microscopy analysis of

jute/PP material [12] and jute/L-polylactide composite [13] shows

that these materials behaviour is brittle.

The mechanical properties of the jute/epoxy skin are very low

compared to the carbon/epoxy skin or the glass/epoxy skin.

However this material has good properties compared to the natu-

ral fibres like flax, abaca and hemp [8,9].

Few works have focused on the analysis of jute fibre reinforced

laminates behaviour subjected to impact loading by falling weight.

In one of these researches, an experimental study was conducted in

order to show the influence of hybridization of glass fibres (jute–

glass hybrid composites) on low velocity impact response, damage

resistance and damage tolerance capability of composites made by
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isothalic polyester reinforced by a woven jute fabric [14]. The re-

sults show that the jute composites have better energy absorption

capacity compared to jute–glass hybrid laminates. However, the

hybrid laminate with 16% glass fibre weight is the most optimum

combination of jute and glass fibre with minimum deflection, max-

imum peak load, and better damage tolerance, than the hybrid

laminates with 25.2% and 8.2% glass fibre weight fraction.

Using the acoustic emission technique and thermo-elastic stress

analysis, cyclic post-impact three-point bending tests were carried

out on plain woven jute fabric/polyester plates [15]. This research

showed that damage in natural fibre reinforced laminates

progresses as far as the defects present in the laminate until they

reach a critical energy that allows them to grow. On impact by

foreign object, the composite jute/vinylester absorbs more impact

energy by deformation (permanent indentation) than by delamina-

tion [16]. As for the impact energy increases, it has a limited affect

on the residual strength bending of jute/polyester. A decrease of

38.5% was observed after an impact of 20 J [15]. However, at higher

impact energies, the damaged surface area may be very largely

increased (an increase of 845% was noted when the woven jute/

polyester composite impact energy is increased from 5 to 15 J)

[17]. The damage along the specimen thickness is conical shaped

called ‘‘inverted pine tree’’.

The agglomerated cork is an ideal core material for composite

sandwich constituting light structures, such as those used in aero-

space applications. Static bending and shear tests have been car-

ried out on carbon/epoxy-cork sandwich samples [18]. The test

results show that the cork performance depends mainly on density

and grain size. Increasing the cork density from 137 to 270 kg/m3,

its shear strength was found also increase by 242%. Different

agglomerated cork used had a similar failure mode: mode ‘‘I’’ crack

initiation at the maximum load, crack propagation and intergranu-

lar final fracture. During the cork core sandwich bending, the max-

imum force, shear strength and modulus increase with grain size

decreasing synonym of cork density growing.

An epoxy resin incursion between the cork grains, in jute/epoxy

skins and cork core sandwich laminates prepared by infusion pro-

cess, increases the shear stiffness by 1.8 times for cork density of

270 kg/m3 and 2.8 times for 190 kg/m3 [19]. At high temperatures,

both corks are losing a large mass in the early hours. This loss is not

identical for the different agglomerated cork, with or without

epoxy resin incursion (5% for cork 190 kg/m3 and 4.5% for cork

270 kg/m3, after heating at 100 °C during 10 h). The cork density

and the epoxy resin incursion influence its ability to absorb water.

The resin presence in the cork 270 kg/m3 increases its water

absorption capacity by 26%.

The impact of sandwich with cork core and carbon/epoxy skins

has also received little attention. A comparison between the

mechanical behaviour during impact of sandwich plates with foam

core and those with cork core has shown that the last ones have a

maximum impact force larger than the first panels. The minimum

difference observed is about 25%. In addition, the sandwich lami-

nates with cork core have a more important capacity to absorb

the impact energy with low depth damage [20]. Finally, recent

works show the thermal protection influence on impacted dam-

aged composites structures used for launcher’s fairing. Experimen-

tal tests were conducted on cork shielded and unshielded panels

[21]. The results showed that for a Carbone/epoxy unidirectional

laminate T300/914, the delamination onset energy is about 3 times

greater when the cork thickness is 3.5 mm and about 7 times

greater when the thickness is 6.5 mm.

For better exploitation of the available resources in Algeria and

with the economic and environmental benefits that this country

holds, this research might be used to lighten the building construc-

tion by replacing existing solutions (insulation bricks, plaster, sip-

orex, etc.) by sandwich panels made from jute/epoxy skins and

agglomerated cork core manufactured by the infusion process.

Nevertheless, sandwich plates can be subjected to accidental dam-

age such as a falling object (e.g. hammer, screwdriver, etc.), and

therefore it is necessary to characterise this material during the

low energy dynamic impact loading and compare results with qua-

si-static indentation loads.

With the mentioned background, this work deals with the

mechanical behaviour of sandwich panels made of jute/epoxy

skins and cork core under low energy impact and quasi-static

indentation. The main goal is to carry out an experimental study

in order to determine the influence of impact energy and cork den-

sity, by means of the force–displacement curves and the damage

size, and propose a jute/epoxy-cork composite sandwich damage

chronology.

2. Experimental procedure

2.1. Material

The employed material is a sandwich composed of jute–epoxy

skins and cork core, manufactured by one-shot infusion method.

In this case, the jute woven skins and the cork core are infused

in only one step, as shown in Fig. 1. The skins are laid-up with a

[0°]s stacking sequence. The skin mechanical properties are given

in Table 1 [1]. Three cork densities are studied with the following

values 160, 270 and 310 kg/m3. These values correspond to a 4–

16, 3–5 and 1–2 mm granulate size respectively. The employed

epoxy resin is referenced as LY5052, associated to its HY5052 hard-

ener. When the infusion is completed, the obtained sandwich is

polymerised in a woven at 80 °C during 12 h. The Table 2 gives

the sandwich specimen’s final dimension manufactured with the

mentioned materials (see Fig. 2).

2.2. Impact tests

The experimental equipment used for the impact tests is illus-

trated in Fig. 3. It is mainly composed by a guide column support-

ing a Kistler force sensor equipped with an impactor. Two laser

sensors and an oscilloscope are the measuring devices. A rigid table

with a 125 � 75 mm2 window holding system, where the sand-

wich plates are held to complete the parts of the equipment.

The impactor is composed by a 2 kg free falling main block cou-

pled with a 10 KN force sensor and a 12.7 mm diameter hemi-

spherical tip. The first laser sensor allows calculating the starting

contact velocity; meanwhile the second gives the displacement

Fig. 1. Manufacturing process by infusion of sandwich panels.



of the non-impacted side. The sensor’s signals are synchronised by

the oscilloscope.

The impact force, Fimpact, between the impactor and the speci-

men is determined from the sensor measured force, Fmeasured, by

the Eq. (1):

F impact ¼
mimpactor

mimpactor ÿmtip

Fmeasured ð1Þ

where mimpactor and mtip are the impactor total mass (2.056 kg) and

the hemispherical tip mass (0.176 kg), respectively.

As a consequence of the absence of a specific standard impact

test method for sandwich structures, impact tests were performed

following the recommendations of ASTM D7136/D7136M-05,

which suggest the Eqs. (2)–(4) for obtaining the main testing

results:

Ei ¼
mimpactor

2
V2

i ð2Þ

dðtÞ ¼ di þ V i t þ
g

2
t2 ÿ

Z t

0

Z t

0

F impact ðtÞ

mimpactor

dt

� �

dt ð3Þ

EpðtÞ ¼
mimpactor

2
V2

i ÿ VðtÞ2
� �

þmimpactor g dðtÞ ð4Þ

where Ei is the impact energy (J), Vi is the impact velocity (m/s), g is

the acceleration due to gravity (9.81 m/s2), V(t) is the impactor

velocity at time t (m/s), di is the impactor displacement from the ref-

erence position at time t = 0 (m), d(t) is the impactor displacement

from the reference position at time t (m) and Ep(t) is the sandwich

plate energy at time t (J).

2.3. Indentation tests

For quasi-static indentation tests, we used a 4206 Instron ma-

chine. The machine force sensor (10 KN) provides the force signal

applied to the specimen. The indentor is identical to that used in

Table 1

Mean mechanical properties of composite jute/epoxy [1].

Density (kg/m3) Et (GPa) Ef (GPa) G (GPa) mlt mtl rtR (MPa) rfR (MPa) sR (MPa)

1165 ± 0.01 4.5 ± 0.6 3.2 ± 0.2 1.45 0.24 0.27 38 ± 6 80 ± 8 23

Table 2

Mean geometrical parameters of sandwich specimens.

Sandwich reference Cork density (kg/m3) b (mm) ea (mm) h (mm) L (mm) es (mm)

SD 160 160 100.22 ± 0.4 10.48 ± 0.8 13.32 ± 0.5 150 1.42 ± 0.15

SD 270 270 100.5 ± 0.21 12.04 ± 0.67 14.86 ± 0.49 // 1.41 ± 0.09

SD 310 310 100.37 ± 0.42 11.13 ± 0.37 14.61 ± 0.17 // 1.74 ± 0.1

Fig. 2. Geometry of sandwich panel.
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Fig. 3. Impact equipment. (a) Experimental device with recording system and (b) device scheme.



impact tests. The indentor displacement s(t) is controlled by those

of the testing machine crossbar, while loading and unloading test

speeds are 2 mm/min. The indentor displacement and the opposite

side deflection are measured by two LVDTs installed parallel to the

vertical axis (Fig. 4). The displacements are obtained through the

respective conversion factors. Among other things, Solatron LVDTs

types BS25 were used during testing. The three signals (force and

two displacements) are recorded by the data acquisition system

Yokogawa DL708.

The machine force sensor signal can be directly used to deter-

minate the force acting on the specimen, D1 V =D1 KN while the

displacements are obtained by converting the two LVDTs voltage

signals:

dstðtÞ ¼ 2:5
mm

V
� ULVDT1ðtÞ ð5Þ

fst ¼ 2:5
mm

V
� ULVDT2ðtÞ ð6Þ

where 2.5 mm
V

is the conversion factor. The plate energy is obtained

by an identical manner to that used in the dynamic tests:

EpðtÞ ¼

Z

dstðtÞ

0

FðtÞ ddstðtÞ ¼ FðtÞ � DdstðDtÞ þ Eðt ÿ DtÞ ð7Þ

During the test, the energy reaches a maximum value. However,

a residual energy value is recorded at the end of the test which rep-

resents the energy dissipated during the specimen damage.

In this study and to verify results repeatability, we repeated

only the impact and equivalent indentation tests for 7 and 10 J

energies.

After the impact and the quasi-static indentation tests, the per-

manent indentation depth are measured using a three-dimensional

measuring machine ‘‘MC 1200C’’ (Fig. 5). To measure the indenta-

tion depth, the machine is equipped with an electronic probe with

which we crate plate upper surface referential representing the

zero level. Then, the probe scans the damaged zone and gives the

indentation depth.

3. Results and discussion

3.1. Impact tests

The results in Fig. 6 show the evolution of the impact force vs.

time for four impact energies, obtained on a SD 310 sandwich

plate. It is noticed that for impact energies below 15 J, these curves

are not far removed from a sine wave. The impact test performed

with energy of 15 J resulted in a damage of the non-impacted skin.

From Fig. 6, two critical values can be distinguished, the first one

relates the first damage force, and the second one represents the

maximum impact force recorded by the force sensor, which are

noted as F0 and Fmax, respectively. For a 310 kg/m3 cork density,

the first damage force increases with impact energy. This growth

is about 40% when the impact energy increases from 5.22 to 9.95 J.

Fig. 7 shows the impact force evolution vs. the displacement

calculated from Eq. (3) for a SD 310 sandwich plate. Up to a dis-

placement of about 0.25 mm, dynamic effects due to the plate iner-

Indentor

Specimen

LVDTsensor

Force Cell

LVDT sensor

Window support

Fig. 4. Equipment arrangement for indentation testing.

Fig. 5. Three-dimensional measuring machine ‘‘MC 1200C’’.

1st damage force 

F0
Maximum force 

Fmax

Fig. 6. Temporal impact force curves for the SD 310 composite sandwich.

Zone A

Fig. 7. Impact force vs. impactor displacement curves for the SD 310 composite

sandwich.



tia can be observed. In the following analysis, they will be ne-

glected. Subsequently, we recorded a linear force evolution (plates

bending stiffness being of the order of 0.74 KN/mm) until approx-

imately 0.6 mm displacement where variations begin to appear.

They are caused by the specimen’s damage onset. A second linear

evolution follows with a 0.25 KN/mm slope which is much lower

compared to the first one, this means that the plate rigidities de-

creases. Nevertheless, the force continues to increase despite other

minor damage formation. When the maximum displacement is

reached, the force begins to decrease steadily to zero.

After the appearance of the first damage, a slight drop in the

sandwich plate linear stiffness is registered, noted as zone A

(Fig. 7). During a short time, the plate returns to its linear stiffness

with the appearance of several oscillations followed by a gradual

increase in the force signal. This can be explained on one side by

the numerous damages caused by the impactor penetration into

the specimen, and on the other hand, by the increment of the cork

density due to the compression phase which leads to a compres-

sion modulus growth. The compression phenomenon was demon-

strated in previous works during quasi-static compression tests on

natural cork [22]. Also, during the compression phase, three

phenomena corresponding respectively to the elastic bending,

the buckling and the crushing of the cell walls are identified. The

oscillations observed in Fig. 7 may be related to the buckling

phenomenon. Also, it is noticed that the residual displacement

for SD 310 sandwich laminates increases with the impact energy;

in fact it increases from 3.3 to 5.6 mmwhen the energy grows from

5.22 to 9.95 J. However, for the SD 160, the residual displacement

is more important. In this case, when the impact energy doubles,

residual displacement is greater than three times, from 2.32 mm

for 5.18 J to 7.84 mm for 10.37 J.

The levels of maximum force recorded by the sensor are

strongly influenced by the cork density. As shown in Fig. 8, the

Fig. 8. Maximum force Fmax vs. impact energy.
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Fig. 9. SEM observation of sandwich SD 160 and SD 310. (a) SD 160 with one cork agglomerate, (b) SD 160 with 3 cork agglomerates, and (c) SD 310 with various cork

agglomerates.

Fig. 10. Permanent indentation vs. impact énergies.

Fig. 11. Energies ratio Ed/Ei for the different sandwich materials.



maximum force decreases from 1654 to 1497 N when the cork

density increases from 270 to 310 kg/m3 for 7 J impact energy. This

can be explained by the fact that low cork density increases the

grain size which results into a higher porosity. This implies that

during the manufacturing of the sandwich plates, the resin infil-

trates into the pores increasing the local rigidity of the material,

as shown in Fig. 9. However, for the lowest cork density, SD 160,

the force distribution recorded as a function of impact energy

shows a random distribution. This distribution may be related to

the impactor/target local contact area, which can occur either over

a cork grain as shown in Fig. 9a, or over a cork-resin interface as

illustrated in Fig. 9b, or totally on a rich zone of resin as indicated

in Fig. 9b. Concerning the other densities, this observation is not

completely true as seen in Fig. 9c. In the latter, the plate consists

with a small cork grain sizes. This does not allow a large amount

of resin infiltration to the plate inside. By cons, for Fig. 9a and b,

Table 3

Overview of the conducted dynamic tests on the jute–epoxy/cork sandwich

specimens.

Sandwich

reference

Ei (J) ddyn max

(mm)

F dyn max

(KN)

aper

(mm)

Ed/Ei (%)

SD 160 5.18 3.73 1.88 1.24 85.93

7.41 5.64 2.15 2.7 90.51

10.57 8.68 1.99 4.91 97.39

15.73 15 1.86 6.99 101.62

SD 270 4.97 4.72 1.57 1.41 84.89

7.31 6.98 1.65 2.57 88.58

10.74 8.18 2.1 2.95 89.74

15.59 9.07 2.67 3.56 94.75

SD 310 5.22 6.3 1.39 2.16 75.93

7.23 8.06 1.5 3.31 87.14

10.38 9.57 1.68 3.64 90.45

15.4 14.42 1.98 3.83 96.56

(a)5 mm 

Weft fiber fracture 

Cork cracking (b) 

Weft fiber fracture 

5 mm 

Broken granulates  

Fig. 12. Cross section photographs showing the damage state for two sandwich laminates with 7 J of impact energy. (a) SD 310 sandwich and (b) SD 160 sandwich.

(c) Displacement 6.98 mm (d) Displacement 6.3 mm

(a) Displacement 8.68 mm (b) Displacement 15 mm 

Fig. 13. Comparison of the force–indentor displacement curves for the indentation and impact tests on the jute/epoxy-cork sandwich laminates.



the cork have very high grain sizes so impressive pores are filled

with resin during the plate manufacture by vacuum infusion.

The plot in Fig. 10 shows the permanent indentation depth aper

evolution for the three sandwich materials as a function of the im-

pact energy. When the impact energy rises from 5 to 7 J, a signifi-

cant increase in permanent indentation depth is recorded for all

tested densities. It is also noticed that for the impact energies supe-

rior to 7 J, the permanent indentation depth increases slowly for

the SD 270 and SD 310 sandwich laminates. However, for the SD

160 sandwich, the permanent indentation depth increases signifi-

cantly until the total specimen rupture. This difference may be re-

lated to the difference of energy dissipated by the three materials

as well as to the energy dissipation modes.

The results of Fig. 11 show the cork density and the energy of

impact influence on the sandwich dissipated energy-impact ratio

Ed/Ei. It is observed that an increase in the cork density causes a de-

crease of the energies ratio. For 5 J impact energy, the cork density

transition from 310 to 160 kg/m3 raises the Ed/Ei ratio from 76% to

86%. If the impact energy grows, this trend is still observed but the

difference is less important. As it can be seen, the Ed/Ei ratio only

raises by 3.2% with 7 J impact energy.

With the less dense cork, the resin quantity which infiltrates the

pores is more important. Therefore an increment in the resin quan-

tity results in a change of the material proprieties. In this case, the

local stiffness is not the same and thus its ability to absorb energy.

Table 3 summarises the main performed impact test results.

The various failure mechanisms that can occur during a sand-

wich laminates panel’s impact are [23]:

� Skin fracture in tension or compression.

� Core fracture in tension or compression.

� Shear failure.

� Skin-core delamination.

� Upper skin local damage under the impactor.

In Fig. 12, it is shown the post-impact damage state of the sand-

wich panels for 7 J impact energy. The cork damaged areas, for the

SD 310 sandwich laminates, are manifested by the presence of

cracks between granulate interfaces, as observed in Fig. 12a. How-

ever when the density is lower than 310 kg/m3, in addition to

interface granulate cracks, cracks through the cork granulates

and cork failure by compression are also observed (Fig. 12b). In

the case of rovimat/polyester–PVC foam sandwich panels impact

(Ei is of the order of 200 J), core damage leads to ±45° transverse

shear failure in the foam. This is due to the failure propagation at

the core/skin sandwich material interface [23].

Concerning the impacted skins, the observed damage is pro-

duced by two loading modes. At the impactor centre, compressive

laminate fracture is noticed for all sandwich panels. However,

shear damages are detected near the impacted area.

The cork-based sandwich (regardless the type of granulate) pre-

sented considerably higher load values than those obtained for

other type of high performance core materials. Compared with

high performance foams, sandwich components with cork agglom-

erates have a high energy absorption capacity with minimum dam-

age occurrence, resulting in better crashworthiness properties

when impact loading is expected during service [20].

Fig. 14. Comparison of dynamic and static tests with respect to the maximal force.



Fig. 15. The energies ratio ‘‘Ed/Emax’’ as function of the maximal energy.

Fig. 16. Permanent indentation depth histograms for the jute/epoxy-cork sandwich laminates.



3.2. Comparison of dynamic and static tests

The static and dynamic tests have a common parameter, i.e., the

maximum indentor displacement. Thus, a good opportunity is gi-

ven to compare the results of both test types. First, a force–dis-

placement curves comparison is performed for tests with the

same maximum displacement (Fig. 13). The curve slopes (speci-

mens bending stiffness @F
@d
) for the two linear sections are identical

for static and dynamic loading. As the load is more stable during

indentation tests compared to the impact, the generated forces

are better distributed over the plate.

Fig. 14 shows the maximum force evolution for impact and

indentation tests. Generally, the maximum force values were

greater during the impact tests (about 11.17%, 1.85% and 10.32%

for SD 160, SD 270 and SD 310 respectively). In Fig. 14b, the max-

imum force value for impact test is lower than that of the indenta-

tion one. This can be explained, as it has been suggested

previously, by the impactor/plate contact area which can occur

either over a cork grain (Fig. 9a) or over a cork-resin interface or

totally on rich zone of resin (Fig. 9b).

The area under the force–displacement curve until the maxi-

mum displacement is the maximum or total tested plate energy:

EmaxðdÞ ¼

Z

dmax

0

F dd ð8Þ

The greater the area in the indentation hysteresis cycle, the lar-

ger the energy dissipated by the plate. This dissipated energy is due

to the damage formation in the specimen. A comparison of the ‘‘Ed/

Emax’’ energies ratio based on the maximum energy is illustrated in

Fig. 15. It should be noted that this ratio is generally higher in im-

pact than in indentation tests (between 3.61% and 8.25% for SD

160, and 6.29% for SD 270). This difference may be related to the

kinematics deformations, which is faster in the impact tests com-

pared to the indentation ones. During dynamic tests, the effort ex-

erted on a microscopic element increases rapidly that does not

leave enough time for the load transfer.

Although the energy dissipation is higher for dynamic tests, the

permanent indentation depth ‘‘aper’’ is larger during the quasi-sta-

tic indentation (Fig. 16). The permanent indentations generated by

indentation tests are 16% deeper for SD 160, 27% for SD 270, and

17% for SD 310 compared to those of impact tests.

Fig. 17 shows the post-indentation damage on sandwich panels.

Sandwich SD 310 cork damage manifests by the intergranular

cracks (Fig. 17a). However, when the cork density is less than

310 kg/m3, intergranular cracking is replaced by a cork grain crack

(Fig. 17b) or grain rupture (Fig. 17c). Concerning the impacted skin,

the observed damages are generated by two loading types: lami-

nate compression fracture in the indentor centre for all the sand-

wich panels with skin shears on the vicinity of the damaged area.

During the jute/epoxy-cork sandwich material indentation

loading, the first damage to appear is upper skin compression

cracking (indentation) at the impact zone followed by cork inter-

granular cracking (Fig. 18). By increasing the applied force, it ap-

pears a shear of the upper skin near the impacted area as well as

cork cracks (Fig. 17a) and/or cork grain failure (Fig. 17b and c). This

damage scenario can be easily adopted for dynamic loading such as

impact test.

4. Conclusion

The experimental characterisation of impact behaviour by fall-

ing mass and quasi-static indentation of a new jute/epoxy-cork

sandwich materials has been undertaken. The results show that

the cork density and the impact energy affect noticeably the depth

damage, the force responsible of the first damage, F0, as well as the

maximum force supported by the sandwich panel, Fmax.

It has been noted that these forces rise with increasing the im-

pact energy and reducing the cork density. When the density in-

creases from 160 to 310 kg/m3, the maximum force recorded

decreases of about 60%. This difference can be explained by the fact

that, during the manufacturing process by infusion, the resin infil-

trates the pores of the agglomerated cork, which leads to increase

the material local stiffness.

The sandwich panels manufactured with low density cork are

characterised by low elastic behaviour and have a deeper perma-

nent indentation. The increment of the cork density from 160 to
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Fig. 17. Cross section photographs showing the damage state for three sandwich laminates after indentation tests. (a) SD 310 Sandwich, (b) SD 270 Sandwich, and (c) SD 160

Sandwich.
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Fig. 18. Cross section photographs showing the damage state for two sandwich laminates after first indentation damage. (a) SD 160 Sandwich and (b) SD 310 Sandwich.



310 kg/m3 leads to a reduction of 3.72% in the energy dissipation

capacity when the impact energy is 7 J.

Concerning the damage extent, the decrease in cork density

from 310 to 160 kg/m3, generates an 18.43% drop in the permanent

indentation depth during the impact tests. This depth drop is al-

ways found for the indentation tests, but its extent was reduced

to 5.12%.

By comparing the impact test results to those of indentation, it

can be concluded that:

� The maximum forces applied on the jute/epoxy-cork sandwich

composites, during impact tests, are superior to those of inden-

tation ones.

� This sandwich material type has an energy dissipation capacity,

under impact loading, higher than the indentation loading.

� The permanent indentations generated by the quasi-static

indentation are deeper than those created by falling weight

impact.
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