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a b s t r a c t

An experimental impact study has been conducted on sandwich structures to identify and improve ar-

mour solutions for aeronautical applications. The objectives are to find the best configurations, i.e. the

non-perforated targets with the minimal weight and back deformations. Medium-velocity impacts

(120 m/s) have been conducted using a 127 g spherical projectile. The targets are simply supported at the

rear of the structure. Two potential choices of front skin have been identified for the sandwich structure:

3 mm thick AA5086-H111 aluminium plates and dry aramid stitched fabrics (between 8 and 18 plies).

The dry stitched fabrics appear to be an original solution, which associates a lightweight structure and a

good perforation resistance. Moreover, a strong coupling has been found between the front skin and the

core. The impact tests indicate that aluminium honeycomb core associated with aluminium skins show

mitigated results. However, the combination of dry fabric front skin and aluminium honeycomb show

better performances than aluminium sandwiches, with a global weight decrease.

1. Introduction

Aeronautical structures and especially zones of the aircraft

fuselage can be potentially subjected to foreign object impacts, like

ice, engine debris or birdstriking. This study aims to identify and to

optimize armoured structures against hard projectiles through

experimental impact tests. These impacts are characterized by

medium-velocities and high energies: 120 m/s and 1 kJ. In this

paper, several criteria are chosen to select and compare the armour

solutions: minimal weight and residual deformation without

perforating. Sandwich structures appear to be potential armour

architectures, providing an increase in bending rigidity without a

significant increase in structural weight. They are currently used in

numerous applications like for instance helicopter blades, ship

hulls or optical benches for space applications. A complete litera-

ture review on sandwich structures subjected to impact is very

difficult to establish due to the wide variety of target materials and

impact conditions.

Aluminium sandwiches composed by aluminium plates as skins

and aluminium cores (honeycomb or foam) are currently used

against shocks in naval structures, or against impacts [1e3].

Sandwich structures using composite materials are foreseen as

armour solutions, due to their stiffness and lightweight properties.

Either associations of dry fabrics or interlock structures and

ceramic layers, either metallic structures (mostly steel thick plates)

are often used in ballistic studies. Among these materials, ceramics

and steel are not chosen because their high densities do not fit to

the aeronautical constraints. Thus, aluminium, composites and dry

fabrics are identified as potential materials and structures consid-

ering medium-velocity impacts. Therefore, the literature revue fo-

cuses on sandwich or layered structures using these materials.

Considering aluminium plates, the literature relates that

aluminium ductility can play a major role in impact resistance. For

instance, Børvik et al. [4] showed that the ballistic limit of AA5083-

H116 is 20% higher that the AA7075-T651 (244 m/s impact on

20 mm thick targets), which is although more resistant with a yield

stress twice as high. Several material and thicknesses combinations

have been tested in the literature. In ballistic impacts, the associ-

ation of a ductile material as the first layer associated with a high

strength material gives the best impact performances [5] (flat and

conical projectiles of 200 g launched at 400 m/s on steel layers

targets). The layering of aluminium or steel plates to improve

impact performances has been widely studied in the literature [6e

9]. However, it is difficult to establish a clear tendency. For instance,

Gupta et al. [6] showed that 1100-H12 aluminium plates perform a
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better impact resistance than layered targets with the same total

thickness (1e3 mm). Nevertheless, stratification seems to be ad-

vantageous with thick targets, typically around 6 mm [7]. Marrom

et al. [10] as well as Radin et al. [11] compared the performances of

monolithic structures and of layers in contact or separated by an air

gap. They both showed that layered structures in contact give

better results than monolithic structures or layered structures with

a gap between each layer, for a same total weight.

Concerning the dry fabrics behaviour, Cheeseman et al. [12]

made a synthetic review on the different parameters influencing

the ballistic impact performances of these structures. The impact

conditions as the projectile velocity, the target dimension, and the

boundary conditions (aperture size [13], target dimension) are the

most significant parameters. For instance, Zeng et al. [14] showed

that the energy absorbed by two edges clamped Twaron targets is

4.5 times the absorbed energy in the case of total clamping (under

350 m/s). The fabric orientation at 45" shows good results by

increasing the loading area and the length of the principal yarns.

The fundamental parameters related to the fabric are the fibre

material, the ply number and the friction properties. Fabrics made

of aramid (Kevlar 49, Twaron), polyethylene (Spectra, Dyneema),

PBO fibres (Zylon) are mostly used. Roylance et al. [15] showed that

the cover factor is also an important parameter. It consists in the

percentage of area covered by the fabric (related to the width and

pitch of warp and weft yarns) and an optimal range is defined

between 60 and 95% to avoid yarn sliding under the projectile.

Moreover, the yarn surface properties are also to be considered as

friction leads to larger amounts of absorbed energy. A study con-

ducted by Briscoe and Motamedi [16] noted that a lubricant

addiction lead to a decrease in the fabric absorbed energy. Ac-

cording to the authors, the role of yarn friction in the resistance

against perforation and energy absorption is not totally understood

yet and needs further investigations. Karahan et al. [17] and Ahmad

et al. [18] studied the effect on ply number and stitching on aramid

fabrics. Karahan et al. [17] showed that no significant difference in

energy absorption is observed varying the stitching pattern

(perimeter, 50 mm edge grids, etc). Ahmad et al. [18] showed an

increase in ballistic limit with stitched targets (þ8% with 2 in edges

stitching compared to targets without stitching). Note that

numerous experimental and numerical studies are conducted on

dry fabric structures. However, multi-layered structures, or fabrics

associated with other materials are rarely investigated in the

literature. Moreover, the use of dry stitched fabrics within a sand-

wich structure is not yet studied to our knowledge.

Many studies have been conducted on sandwich structures

subjected to impact [19e22]. At the onset of impact, compressive

waves propagate under the projectile and provoke local out-of-

plane shear damage of the skins and core crushing. In a second

step, a global shear/bending deformation of the structure is

observed. Note that if the initial projectile velocity is superior to the

ballistic limit, the bending effect does not appear. Abrate [23] noted

that few studies worked on the sandwich configurations while

many of them considered the projectile parameters effects (shape,

mass and velocity). This is why results are sometimes in conflict

from a study to another. However, it is necessary to study a wide

number of sandwich configurations in order to understand the

complex coupling between facing and core which largely dictates

the impact damage for a given loading. Abrate noted that the

penetration resistance is mostly governed by the overall rigidity of

the targets and the facing penetration resistance. In case of com-

posite facing sandwiches fail through matrix cracks, fibre fracture

and delamination. The structures also exhibit core crushing and

facesheet debonding. Buitrago et al. [24] conducted impact tests

and numerical simulations on sandwiches using composite face-

sheets (carbon fibre with epoxy resin, 2 mm thick) and an

aluminium honeycomb 20 mm thick (velocities in the range of 92e

548 m/s). The skins are identified as the main factor responsible for

the energy absorption (respectively 46%, 13% and 41% for the front

skin, the core and the back skin).

The previous synthesis showed that many studies were con-

ducted on specific materials or structures like aluminium plates,

dry fabric assemblies, etc. However, the interaction of different

materials assembled in a structure is rarely addressed due to the

large number of experiments necessary to identify couplings and

structural effects. Moreover, contrary to ballistic or low-velocity

impacts, medium-velocity impacts with high energies are few

studied in the literature. This study aims to identify and compare

sandwich structures subjected to medium-velocity impacts.

Several assemblies of skins and core are studied to determine the

respective role of each part of the sandwich and possible couplings

as well as to propose ways of material and geometrical

optimizations.

The experimental impact set-up, target description and impact

results are given in Section 2. Then, the behaviour of aluminium

sandwiches is described in Section 3, followed by the study of

sandwich structures with dry fabric front skin in Section 4. The

non-perforated structures are compared in Section 5. Finally,

concluding remarks are given in Section 6.

2. Experimental set-up

2.1. Impact test conditions

Normal impact tests are conducted using a gas gun. A spherical

projectile of 127 g and 30 mm diameter is launched at an average

velocity Vini of 120 m/s at the centre of the targets. The projectile is

composed by a hardened steel spherical nose and shank and is

supposed perfectly rigid. The cylindrical shankwith 8mmdiameter

and 50 mm length is screwed to the rear of the nose. The same

projectile is reused for all impact tests. A high speed camera is used

to measure the projectile displacement and velocity during the test

by following to the painted shank. Square targets of 200, 300 or

400-mm side are simply supported at the rear by a square frame

with an aperture of 170-mm side (see Fig. 1). These boundary

conditions are more representative of impact on real structures

such as the aircraft fuselage compared to clamping along four

edges. The experimental set-up and several camera pictures are

given in Fig. 1.

In the particular case of dry fabrics, the boundary conditions are

defined in order tobe representative of a real structure of about 600-

mm side. During the impact, the primary yarns (i.e. the yarns situ-

ated under the projectile) are loaded in tension, which induces a

yarn elongation. The additional distance is called de-crimping

length (see Fig. 2a and b). This distance can be calculated knowing

the structure size and the weave properties. When considering the

fabrics used in this study (cf. Table 1) the yarn crimp reaches 0.4% for

the twill fabric and respectively 0.51%and3.5% for theplainweave in

the weft and warp direction. Therefore, the de-crimping length can

reach 2.4 mm in the twill fabric and respectively 3.1 and 21 mm in

the weft and warp direction of the plain fabric for a 600-mm side

panel. In order to represent this mechanism with smaller samples

comprised between 200 and 300-mm side, a free-edges boundary

conditionhas been chosen. Thus, theyarns canpotentially slide from

the target extremity, providing an additional length under the

impact point (Fig. 2c and d).

2.2. Material description and targets identification

The tested sandwich structures are assembled using aluminium

or dry fabric front skins. Honeycomb core of different thicknesses



(from 10 to 30 mm) and materials (aluminium and Nomex) have

been selected. Impact results on aluminium plates are used as

reference cases. Among the wide choice of aluminium alloys, the

5XXX family alloys is chosen due to their ductile behaviour and

their positive strain rate sensitivity which increases the skin

resistance against the perforation [25]. More particularly, the

AA5086-H111 aluminium alloy has been used as front and/or rear

skin. Then, sandwich structures are assembled and tested using the

same skin configurations, with the addition of aluminium honey-

comb cores of several thicknesses. After that, dry fabrics are tested

as a new front skin in sandwich structures.

The materials and structures used for the sandwiches assembly

are described in Table 1.

The sample identification contains data about the front skin, the

core and the rear skin respectively. Each material is associated with

a letter (see Table 1) and an index indicates the layer thickness or

the number of plies (for fabric skins). A global index reports the

target dimension (200, 300 or 400-mm side). For instance, a 200-

mm side sandwich composed by a 12 plies of twill fabric as front

skin, a 10-mm thick aluminium honeycomb and a 1-mm thick

aluminium rear skin is noted [T12AH10A1]200. If a tested structure is

assembled without core, a synthetic notation is used: a 300-mm

side aluminium target with a 2-mm thick front skin and a 1-mm

thick rear skin is represented by [A2þ1]300.

Additional data are given concerning the sandwich assembly.

Fabrics are assembled according to a quasi-isotropic stratification

by combining plies oriented in 0/90" and #45" directions in the

following order: [0"/45"]n, sym with n ¼ 2, 3, 4. These structures are

stitched in order to maintain the dry plies together. Therefore, a

para-aramid filament is used (K-Tech 75, 0.23 mm diameter). The

stitching pattern is a square grid of 10 or 20-mm side.

Skins and core are assembled using a Redux! adhesive film. In

the case of dry fabric front skin, the plies are stitched and then

bonded to the core. Therefore, the last ply (ply in contact with the

core) is totally impregnated with the Redux! bond.

2.3. Impact results

The initial velocity presents dispersions due to the experimental

set-up, so the value can be substantially different between the

tested samples. However, the initial projectile velocity Vini is

measured from the camera pictures for each configuration, so the

variability is known and taken into account in the analysis. The

indexes Rf and Rr are respectively associated with the status of the

front and the rear skin after impact and are set to “N”, “C” or “Y” in

case of non perforation, limit case and perforation. The residual

projectile velocity Vres is measured after the end of contact between

the projectile and the target. Positive values of residual velocity

indicate perforationwhile negative values are measured during the

projectile rebound. The measure of Vini and Vres gives respectively

the initial kinetic energy of the projectile Eini and residual energy

Eres, which indicates the energy absorbed by the target Eabs. The

maximum projectile displacement dmax and the residual indenta-

tion Ires are measured in non-perforated cases only. The maximum

projectile displacement is obtained from the camera pictures dur-

ing the impact. The residual indentation is measured after impact

by 3D correlation on the rear face of the rear skin. The weigh per

unit surface rs is given for each configuration in Table 2.

Fig. 2. a) Real structure e initial state; b) during impact; c) tested targets (free edges

boundary condition) e initial state; d) during impact.

Table 1

Skins and cores representation and material data.

Figure Name Description

At AA5086 aluminium plates (2700 kg/m3);

t ¼ 1 or 2 mm thick.

Ti Aramid twill fabric: 2/2 twill, 220 g/m2,

6.5 ends/cm. Twaron 2200 HM fibre

(1620 dtex); number of plies i ¼ 8, 12 or 16.

Pi Aramid plain weave fabric: 170 g/m2,

6.7 ends/cm. Twaron 2200 fibre (1210 dtex);

number of plies i ¼ 12 or 18.

AHt Aluminium honeycomb (Hexcel): 30-mm

thick (3/8-5052-.004, 86.5 kg/m3), 20 mm

thick (ACG-3/8, 53 kg/m3), 10 mm thick

(ACG-1/4, 72 kg/m3)

NHt Nomex honeycomb (Hexcel): 20 mm

thick (HRH-78-1/8-3.0, 48 kg/m3)

Fig. 1. Experimental set-up and high speed camera pictures.



3. Impact on aluminium sandwiches and core thickness

influence

The study firstly focuses on “aluminium sandwiches”, i.e.

aluminium skins with aluminium honeycomb core. Several sand-

wich structures have been impacted varying the rear skin and the

core thicknesses. The impact results are synthesized in Table 2 for

sandwich structures (group 2) and compared with aluminium

plates (group 1).

3.1. Target size effect

The target dimensions are suspected to influence the impact

results of both aluminium plates and sandwiches. Particularly, a

significant difference is noticed between the 200 and 300-mm side

samples. Deformed targets after impact are presented in Fig. 3.

It can be shown from Fig. 3c that residual deformations reach

the plate boundary in the case of 200-mm side sandwiches. A

global bending effect of the structure and the target rotation at the

vicinity of the support induce significant plate and core

deformations (which implies a greater amount of absorbed energy).

The increase of target maximum indentation is also noticed: for

instance, the [A2þ2]200 target is more indented than [A2þ1]400
despite a higher total thickness. It appears from these observations

that 200-mm side targets behaviour is not representative of real

structures. On the contrary, 300 and 400-mm side sandwiches are

not deformed until the target size due to inertial effects which

prevent the momentum of the structure near the boundary con-

dition. Thus, 300 and 400-mm side targets results can be easily

compared, but the comparison between 200 and 300-mm side

samples is more delicate.

3.2. Damage mechanisms observations

The impact results on aluminiumplates underline a limit rupture

case for the [A2þ1]400 target with a circular rupture at the rear of the

target, extended only to the 1-mm thick plate (see Fig. 4a and b). The

[A2þ2]200 target is not perforated but a necking zone can be clearly

seen near the impact point at the back of non-perforated samples

(Fig. 4c). Aluminium plates in sandwich structures generally fail

Table 2

Structure configurations and impact results synthesis.

ID Figure rs [kg/m
2] Vini [m/s] Rf/Rr Vres [m/s] Eabs [J]/% Eini dmax [mm] Imax [mm]

Group 1: aluminium plates

[A2þ1]400 8.19 124.4 N/C %22.4 951/96.8% 41.6 30.3

[A2þ2]200 10.9 126.6 N/N %9.3 1011/99% 31.9 31.7

Group 2: aluminium sandwiches

[A2AH10A2]200 11.8 120.0 N/N e

a
e

a
e

a 24.7

[A2AH20A2
(1)]200 12.0 122.5 C/N %6.3 949/99.5% 48.5 23.8

[A2AH20A2
(2)]200 12.0 125.3 Y/Y 25.4 955/95.9% / /

[A2AH10A1]300 9.0 114.9 Y/Y 62.6 590/70.3% / /

[A2AH20A1]300 9.4 117.9 Y/Y 62.2 638/72.2% / /

Group 3a: dry fabric front skin sandwiches (200-mm side targets)

[T16AH10A2]200 10.2 123.2 N/N %12.0 955/99.1% 54.4 39.3

[T8AH10A2]200 8.3 126.0 C/Y 0.0 1199b/99.9% / /

Group 3b: dry fabric front skin sandwiches (300-mm side targets)

[T12AH30A1]300 8.4 115.2 N/N %3.0 843/99.9% 56.7 25.3

[P12AH30A1]300 8.0 123.8 N/N %5.8 971/99.8% 54.3 29.4

[P18NH20A1]300 7.5 114.4 N/N %12.9 821/98.7% 56.2 28.5

a Measure problem occurring during the test.
b Particular case with a projectile weight of 151 g instead of 127 g.



through plug initiation (Fig. 4b) and the formation of petals (Fig. 3b),

which is a typical failure mode of ductile targets [26].

Two similar sandwiches namely [A2AH20A2
(1)]200 and

[A2AH20A2
(2)]200 have been impacted at two different initial veloc-

ities, respectively 122.5 and 125.3 m/s. The first case

[A2AH20A2
(1)]200 is identified as a limit case as only the front skin is

perforated (Fig. 5a). The second sample is totally perforated

(Fig. 5b). Different damage mechanisms can be observed from re-

sidual sandwich profiles shown in Fig. 5. The [A2AH20A2
(1)]200 target

shows a 16-mm diameter circular rupture of front skin under the

spherical nose and secondary cracks propagation resulting in petals

formation. In the second case [A2AH20A2
(2)]200, a circular cap of

18 mm diameter is formed and remains partially attached to the

front skin. Honeycomb buckling is observed in both cases under the

front skin and the honeycomb is totally crushed under the pro-

jectile. In addition, out-of-plane shear deformations are observed in

the core from the impact point to the target extremity. High out-of-

plane skin deformations near the impact lead to a rupture of the

bond between the core and the rear skin in a zone of 60 and 85 mm

radius for [A2AH20A2
(1)]200 and [A2AH20A2

(2)]200 respectively (note

that in the second case the rear plate is almost separated from the

rest of the target).

The [A2AH10A1]300 and [A2AH20A1]300 are totally perforated due

to the target size increase (from 200 to 300-mm side) and the rear

plate thickness decrease (from 2 to 1-mm thick). However the

corresponding reference of aluminium plates [A2þ1]400 is not totally

perforated (limit case of aluminium plates alone).

3.3. Influence of core in aluminium sandwich structures subjected

to impact

As for as the projectile evolution of the reference case [A2þ2]200,

a change can be observed in the slope from about 0.4 ms after the

onset of impact and the projectile braking is decreasing after this

limit. A previous study on aluminium plates showed that the first

stage is attributed to the local indentation of the plates and the

second is due to a structural effect (see Fig. 7). This behaviour

consists in a global bending of the target in the same direction than

the projectile (which explains the decrease of projectile braking)

and occurs when the deformations in the plates reach the boundary

condition (see Figs. 7 and 8a). This mechanism leads to a large

amount of absorbed energy. It is not or partially seen in perforated

cases, depending on the front skin rupture apparition in the impact

sequence.

The sandwich structures appear to brake the projectile less

efficiently than the skins configuration, as shown in Fig. 6a (gap of

about 15 m/s from 0.16 ms impact duration between [A2þ2]200 and

[A2AH20A2
(1)]200). However, the skins configuration [A2þ2]200 is

more indented than the sandwich structures as shown in Fig. 6b

(þ27% and þ41% indentation compared to respectively

[A2AH20A2
(1)]200 and [A2AH10A2]200). The [A2AH20A2

(1)]200 and

[A2AH10A2]200 residual profiles are very close and show a double

curvature, global and local as described in Refs. [19e22]. However,

the front skin local curvature appears to be larger in the sandwich

configuration than in the skins alone, which is probably due to the

radial sliding of the honeycomb providing a gap between the two

skins (see Figs. 5a and b, and 6b as well as the corresponding

scheme in Fig. 8b and c).

In the sandwich structure, a partial de-coupling occurs due to the

separation of the two skins. It consists in a deformation of the front

skin alone, followed by the reaction of both skins together (see

Fig. 8b). This case corresponds typically to the [A2AH10A2]200
configuration where no skins rupture occurs and the plastic de-

formations reach the boundary condition for both skins (see Fig. 5c).

In a virtual sandwich configuration with a very thick core, it

could be envisaged that the front skin fails before the contact be-

tween both skins and the rear skin deformation (as illustrated in

Fig. 7c). In this case, the two skins would react simultaneously,

resulting in a decrease of the energy absorption in the target, (no

structural effect occurring and earlier rupture initiation) and thus

higher residual velocities of the projectile. Both [A2AH20A2
(1)]200 and

[A2AH20A2
(2)]200 configurations are intermediate cases between the

partial and total de-coupling shown in Fig. 8b and c. The projectile

velocity evolution is similar for these two configurations until

0.34 ms. After this moment, the two curves gradually differ,

resulting in a negative residual velocity in the first case (projectile

rebound) and a positive value (target perforation) in the second

case. Considering the experimental data available, no explanation

can be given to justify the difference in the velocity evolution be-

tween the [A2AH20A2
(1)]200 and the [A2AH20A2

(2)]200 cases on the one

hand, and between these sandwich and the [A2þ2]200 skins on the

other hand. However, a potential scenario can be proposed.

Considering that the front skin local curvature and deformation

(depending on the core height as shown in Fig. 6b) is higher in the

sandwich structure, the onset of rupture may appear earlier in the

sandwich than in the plates (and probably before the contact of the

two skins as shown in Fig. 8c). Therefore, the rupture initiation and

propagation in the front skin sandwich structure could be the

explanation for the first divergence between the skins and the

sandwich cases, occurring after 0.2 ms.

4. Impact of sandwiches with dry fabric skins

A preliminary study of the front skin choice in the sandwich

impact resistance has been conducted. Dry stitched fabrics, com-

posite skins and aluminium skins have been tested as front skin in

several sandwich structures. The composite front skin sandwiches

were systematically perforated, for a similar or superior weight

Fig. 3. [A2AH20A1]300 target: a) front view; b) rear view; c) front view of

[A2AH20A2
(1)]200.



than aluminium skins. This result is attributed to the fibre-matrix

adhesion which stops the relative move of the yarns and results

in a stiff but fragile behaviour. Moreover, the front skin damage

remains local which implies a decrease of energy absorption. On

the contrary, the dry front skin samples were not perforated despite

a lower area density than the impregnated cases and no fibre

rupture has been observed. This result shows that the use of dry

fabric skins is more advantageous than composites in medium-

velocity impacts.

Thus, several sandwich structures with dry fabrics front skin and

aluminium honeycomb and rear plates are tested and compared in

this section. Several parameters are studied: target size, number of

plies, weave pattern (twill and plain) and core characteristics

(thickness and properties). The impact results of dry fabric front

skin structures are synthesized in Table 2 (group 3).

4.1. Damage mechanisms observation of group 3a targets

The [T8AH10A2]200 target composed by 8 dry fabric plies as front

skin is the only perforated case of the group 3. Note that the same

structure with 16 dry fabric plies is not perforated. Yarn sliding

appears to be one of the most significant damage mechanisms for

the first plies. A cross shape sliding is noticed for the primary yarns,

i.e. yarns situated directly under the projectile. The observed

damage are represented by a scheme in Fig. 9 for 0/90" and #45"

oriented plies and the example of [T8AH10A2]200 is given in Fig. 10a.

In this case, yarn sliding is visible from the target boundary to the

impact location. Note that the sliding distance is very similar be-

tween the weft and the warp direction for twill and plain fabrics.

Fig. 4. [A2þ1]400 target: a) front skin; b) rear skin; c) rear skin of the [A2þ2]200 sample.

Fig. 5. Residual profiles of different targets: a) [A2AH20A2
(1)]200; b) [A2AH20A2

(2)]200; c)

[A2AH10A2]200.



In order to obtain a better understanding of the energy ab-

sorption mechanisms in dry fabric skins, damage mechanisms of

each ply have been observed after impact.

The average sliding distance of the primary yarns reach

respectively 140, 70 and 20 mm for the first 0/90" oriented plies

(plies n"1, 3 and 5 respectively) and 45 and 0 mm for the #45"

oriented layers (plies n"2, 4). These yarns are visible in Fig. 10b at

the rear of the target and form a pocket which stopped the pro-

jectile. The difference of sliding distance between 0/90" oriented

layers and #45" layers can be associated with the superior yarn

length and the yarn crossing increase.

From the 6th layer, no yarn sliding is observed. The stitched

points vicinities are partially impregnated with resin due to the

adhesive film used to bond the core and the rear of the fabric skin

(see Fig. 10c). Moreover, yarn and matrix ruptures can be noticed

near the impact location. As a result, considering that the resin

impregnation highly influences the fabric properties and impact

performances (as shown in the introduction of Section 4), only the

5 first layers have to be considered as dry fabrics.

In addition to principal yarn sliding, other damage mechanisms

can be observed in the front skin. Firstly, no yarn rupture is

observed in dry plies. It is due to the free edges boundary condi-

tions and the possibility for yarns to slide instead of break.

Fig. 6. Aluminium sandwiches targets: a) projectile velocity; b) residual profiles.

Fig. 7. Local and global deformation in a sandwich structure during the impact [27].

Fig. 8. Propositions for impact scenarii on skins and sandwich structures.



However, stitching points are broken around the impact point in a

zone of approximately 60 mm radius. This rupture may be associ-

ated with high out-of-plane deformations of the initial woven

pattern near the impact (see Fig. 9a). However, the partial

impregnation of the stitch points near the 6th ply which is also a

possible cause of stitching rupture.

The same damage mechanisms than those described in Section

3 are observed in the core and the rear skin of the sandwich: partial

cap formation of the aluminium rear skin (Fig. 10b), secondary

cracks, honeycomb crushing and adhesive bond rupture between

the core and the rear skin at the impact vicinity. Several energy

absorption mechanisms can be identified from the [T8AH10A2]200
target. Firstly, the wide plastic deformations of the rear skin,

extended from the impact location to the boundary condition as

well as the plate rupture are associated with significant energy

absorption. The part of energy absorbed in the core is supposed to

be low because of the limited zone concerned. Several potential

energy absorption mechanisms in dry fabrics can be identified. The

most significant one may be associated with frictional contact

properties between the yarns through several contacts: weft/warp

yarn crossings, contacts between the plies and between the pro-

jectile and the first ply [22].

Note that the primary yarns sliding of [T8AH10A2]200 is superior

to the maximum allowable sliding displacement defined in Section

2.1, set to 12 mm for a twill weave. Therefore, the free-edges

boundary conditions chosen for 200-mm side configurations in-

fluence the target performances. The experimental test conducted

on 200-mm side target is less critical than a real case by allowing a

longer yarn sliding distance. Thus, further tests have been con-

ducted on bigger sandwich structures of 300-mm side to be more

representative of the real case.

4.2. Damage mechanisms observation of group 3b targets

On the contrary to aluminium sandwiches, none of the 300-mm

side sandwiches with dry fabric skins are perforated (Table 2). The

primary yarn sliding distance is measured from the samples after

impact. The average values reach respectively 10 and 13.8 mm

(Fig. 11d) for plain and twill woven pattern, which is in the allow-

able range considering the boundary conditions hypothesis (see

Section 2.1).

The target observation of Fig. 11a and b shows highly deformed

folds from the impact point to the target extremity. They are

initiated from the last impregnated ply (the 8th ply which is in

contact with the core) which is highly deformed. In these zones, a

local debonding of the adhesive film is observed between the fabric

skin and the core. The folds are more pronounced for plain than for

twill weave because of the higher stiffness of the plain woven

pattern. Note that they are not visible in the 200-mm side targets

due to a global bending deformation of the structures. The

aluminium honeycomb located under the front skin is highly

deformed in compression under the projectile, with a partial

densification at the vicinity of impact (Fig. 11c). Moreover, a rupture

of the adhesive bond assembling the honeycomb cells is visible

near the support, showing high in-plane traction solicitations. The

previous observations are directly relied to the target dimension, as

for aluminium sandwich structures. Indeed, in 300-mm side

Fig. 9. Damage of fabrics: a) in 0/90" plies; b) in #45" plies.

Fig. 10. [T8AH10A2]200 sandwich after impact: a) ply n"1 of the front skin; b) side view;

c) 6th ply of the front skin.



samples, no global bending is observed due to inertial effects,

contrary to 200-mm side targets for which a rotation appears near

the boundary condition. Therefore, the damage observed in 300-

mm side targets are out-of-plane compression and shear in a

localized zone instead of global structure bending for 200-mm side

samples.

It seemed interesting to assembly Nomex instead of aluminium

honeycomb with dry fabrics in order to reduce the target weight.

Thus, a 20 mm-thick Nomex honeycomb core has been tested with

18 plies of dry fabrics as a front skin. The weight per unit area

reaches 7.5 kg/m2 compared to 8 kg/m2 with the aluminium hon-

eycomb structure and only 12 plies of aramid fabrics. Several views

of the target after impact are seen in Fig. 12. Note that the

compressive damage in Nomex honeycomb is visible in a large area

around the impact location, contrary to the localized buckling and

de-bonding of the aluminium honeycomb cells shown in Fig. 11c.

Moreover, this configuration is less indented than the

[P12AH30A1]300 configuration, probably due to the increase in fabric

plies and thus in the transverse rigidity of the front skin.

4.3. Impact results of dry fabric skins

The velocity curves seen in Fig. 13a show the evolution of non-

perforated sandwiches as well as corresponding aluminium refer-

ence cases ([A2þ2]200 and [A2þ1]400). In comparison with the

[A2þ2]200 aluminium skin configuration of the same dimensions, it

can be noticed that the projectile braking decreases with the use of

dry fabric front skin, especially at the onset of impact. This may be

associated with the very low out-of-plane stiffness of the fabric

front skin and the time needed to initiate the fabric reaction and

damage: yarn stretching, woven pattern deformation, primary

yarns sliding, etc. Note that similarly to aluminium sandwiches,

structural effects can be observed from the velocity curves of dry

fabric front skin sandwiches. However, the slope change is not

pronounced and appears from about 0.5 ms.

Fig. 11. Front views of: a) [T12AH30A1]300 target; b) [P12AH30A1]300 target; c) honeycomb damage of [T12AH30A1]300; d) sliding distance of primary yarns of [T12AH30A1]300.

Fig. 12. [P18NH20A1]300 target: a) front view; b) side view.



The behaviour during the impact sequence is very close when

comparing the targets with twill or plain weaves. Several fluctua-

tions can be noticed from the velocity curve of the [T12AH30A1]300
target, which are less pronounced for the same configuration with

plain fabric. This behaviour is may be due to the rupture of the

honeycomb cells bond near the support, as shown in Fig. 11c. This

damage is also observed to a lesser extend in the plain fabric front

skin sandwich, which results in a smoother curve. Note that this

phenomenon is not observed in the case of 200-mm side targets,

because of the global bending deformation.

The residual indentation given in Fig. 13b is measured from the

rear skin profiles for several configurations. Concerning residual

indentation of 200-mm side targets, the low out-of-plane stiffness of

dry fabrics and the target dimensions leads to a significant increase of

target indentation, as shown in Fig.13b (24%ofmaximumindentation

for [T16AH10A2]200 compared to the [A2þ2]200 aluminium configura-

tion). Similarly to aluminium sandwiches, the target dimension

decrease induces global bending deformation of the target corre-

sponding to an increase of residual indentation. However, the 300-

mm side configurations are less indented than aluminium plates

alone due to the core thickness increase: %3%, %5.9% and %16.5% of

indentation for respectively [P12AH30A1]300, [P18NH20A1]300 and

[T12AH30A1]300 compared to [A2þ1]400.

5. Structures comparison and discussion

The targets can be compared from the point of view of the per-

formance criteria evoked in Section 1: no perforation with minimal

weight and back deformation. Several non-perforated structures are

compared considering the energy reported to the weight per unit

areaor theenergy reported to themaximumindentation (see Fig.14).

Note that the ratios are calculated using the initial kinetic energy and

not the absorbed energy due to initial velocity dispersions of the

projectile. Thus, the ratios given in Fig. 14 have to be considered as

lower limits of the targets, except for the [A2AH20A2
(1)]200 and the

[A2þ1]400 targets, which are limit cases of perforation.

The best configurations identified in terms of kinetic energy per

weight per unit surface are [P18NH20A1]300 and [P12AH30A1]300.

These structures clearly outperform aluminium plates and sand-

wiches like [A2þ1]400 and [A2AH20A2
(1)]200 as they are limit cases of

rupture. However, the complexity of the structure studied (wide

choice of material and geometrical parameters choice), as well as

the lack of experimental data in dynamic tests are strong limita-

tions to properly explain these results. Moreover, the literature

rarely addresses studies on multi-ply fabric structures or multi-

material targets, so that the influence of coupling or structural ef-

fects is not known. One can only say that the energy dissipation

mechanisms in dry fabrics and aluminium front skins are clearly

different. In the tested impact conditions, the rupture of the front or

rear aluminium skin is often observed whereas the dry fabric front

skin “failed” only in one configuration (yarn sliding without

rupture). Thus, the perforation resistance of this type of skin ap-

pears to be higher than those of aluminium plates which could

partially explain the better results of the associated sandwich

configurations.

Fig. 13. a) Projectile velocity evolution during impact; b) residual profile after impact

for Groups 1 and 3.

Fig. 14. Non-perforated structures comparison considering the ratio of initial kinetic energy: a) per density per unit surface; b) per maximum indentation.



Concerning the aluminium plates, the presence of aluminium

honeycomb core is not advantageous in terms of weight and

resistance against perforation (see [A2AH20A2
(1)]200 and [A2þ2]200).

Configurations using twill fabrics are less interesting than plain

fabric structures due to their substantial weight per unit surface

(respectively 220 g/m2 and 170 g/m2 for twill and plain weaves).

The increase of core thickness induced a slight increase of the target

weight, which is largely balanced by a possible decrease of the

fabric ply number without perforating (see the comparison be-

tween [T16AH10A2]200 and [T12AH30A1]300).

The structures can be also comparedwith the criterion of kinetic

energy reported to the target indentation. Fig. 14b compares the

structures performances for non-perforated 300-mm side targets.

It can be seen that the results are very close between the selected

structures: criterion comprised between 31.5 and 33.5. The sand-

wich configurations outperform the aluminium skins. Indeed, the

target indentation decreases with the increase of core thickness,

which is a global tendency observed for both dry fabrics and

aluminium front skins.

6. Conclusion

An experimental study has been conducted in order to identify

potential solutions of sandwich structures subjected to impacts.

Several points have to be underlined:

1. The front skin choice is very important for the target perfora-

tion resistance. Aluminium and dry fabric are potential candi-

dates and have been tested in this study as front skin.

2. The target dimension influences the impact performances.

300-mm side targets are representative of real structures but

this is not the case of 200-mm side samples: deformations of

the target edges and momentum of the target near the

support.

Concerning aluminium sandwiches, i.e. aluminium skins with

aluminium honeycomb core:

3. Non-perforated cases of sandwich structures are less indented

than aluminium skins alone.

4. It appears from the experiments that the sandwich structures

have a lower resistance against the perforation, compared to

the associated skins configurations. As an example, a limit of

perforation is obtained with a 200-mm side sandwich with a

20 mm thick honeycomb core impacted at 950 J, while the

same configuration with aluminium skins alone is not perfo-

rated. The experimental data available is not sufficient in

establishing possible impact scenarii to explain these results.

However, a hypothese based on the possible link between the

core thickness, skins de-coupling and the onset of rupture in

the front skin is proposed in this paper.

Concerning dry fabric front skin sandwiches:

5. Dry fabrics give better impact results than fabrics impregnated

with resin. The resin provides an increase of rigidity of the skin

and fails locally under the projectile under out-of-plane shear

solicitation. This leads to the rupture of the total structure. To

solve the problem of fabrics assembling, several dry fabrics are

thus assembled by stitching.

6. Free-edges boundary conditions have been chosen for dry

fabric skins samples to reproduce the potential de-crimping

length of a real clamped structure.

7. Dry fabric front skin sandwiches show a good perforation

resistance compared to aluminium sandwiches or plates, with

a comparable or lower total weight and indentation, especially

for 300-mm side configurations.

8. No yarn rupture is observed in dry fabric structures. Several

mechanisms susceptible to dissipate the projectile energy are

identified: primary yarns sliding, in-plane deformations of the

initial woven pattern, frictional effects (contacts betweenweft/

warp yarns, between plies and between the first ply and the

projectile), deformation and yarn rupture of partially resin

impregnated plies, etc.

9. A configuration of sandwich structure using Nomex instead of

aluminium honeycomb has been tested. The target showed

good impact performance, with a decreasing weight and back

indentation without perforating.
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