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Abstract — In this paper, Pareto Genetic Algorithms
are applied to solve multiobjective optimisation
problems. In particular, a recent version of the non-
dominated sorting genetic algorithm (NSGA-II) is
presented. A self-adaptive recombination scheme is
used for crossover operators to improve the algorithm
efficiency. Tests on mathematical functions of various
difficulties are carried out to show the robustness of
self-adaptation. Finally, the self-adaptive NSGA-II is
applied to the optimal design of an electrical system
based on a inverter — permanent magnet motor —
reducer — load association. It allows to reduce the
global losses and weight in the system and help the
designer to understand couplings and interactions
between design variables in relation to technological
constraints and objectives.

1. INTRODUCTION

The purpose of multiobjective optimisation consists in
minimising (or maximising) simultaneously several
objectives f; related to common design variables. The
main difficulty of a multiobjective problem generally
resides in the existence of conflicts between the different
objectives. Therefore, there is no point in the design
variable space, which leads to a simultaneous
minimisation of all objectives. Consequently, the global
solution of a multiobjective problem is characterised by a
set of solutions expressing the best trade-offs according to
each objective. This optimal set represents the Pareto
front [HOR, 94]. The traditional approach to solve this
class of problems consists in converting the multiobjective
problem into a scalar optimisation problem by aggregating
or weighting the objectives in a global quality function.
This technique is rather hazardous because of the
difficulty to find suitable weighting coefficients and
normalisation factors to homogenise the different physical
criteria in the global quality function. Furthermore,
complete optimal front determination requires to solve a
set of scalar problems with different weighting factors.

Since the mid-1990s, there has been a growing interest in
solving multiobjective problems by Genetic Algorithms
(GA’s) [HOR, 94] [SRI, 95] [ZIT, 99] [DEB, 00]. GA’s
are capable of searching for multiple Pareto-optimal
solutions in parallel from a single run.

Section II presents the fundamentals of Pareto Genetic
Algorithms to solve multiobjective problems and refers to
the second version of the non-dominated sorting genetic
algorithm as example. Section III examines a self-adaptive
recombination scheme to improve Pareto Genetic
Algorithms efficiency. Tests on standard multiobjective
problems of the literature are presented in section IV to
show the interest of self-adaptation. Finally, section V
illustrates the application of Pareto Genetic Algorithms to
the optimal design of electrical systems.

II. PARETO GENETIC ALGORITHMS

In the past, standard GA’s have been successfully used to
find the global solution of single objective problems
[HOL, 75][GOL, 89]. More recently, niching methods
have been developed to minimise the effect of genetic
drift resulting from the selection operator in the traditional
GA and allow the parallel investigation of multiple
solutions in the population [SAR, 98]. GA with niching
can be modified to find the Pareto front of a
multiobjective problem by using a specific selection
operator based on a Pareto domination criterion. Assume a
minimisation problem with n objectives and consider two
vectors X, Y from the parameter space. Then, X is said to
dominate Y [HOR, 94][ZIT, 99] iff:

Vi=l.n: f(X)< f;(Y) and 3je ln= f,(X)< f,(¥)

Using tournaments based on this domination rule for the
selection operator, GA with niching is able to approximate
the solution of a multiobjective problem by distributing its
population along the Pareto front. These algorithms are
referred to Multi-Objective Genetic Algorithms (MOGA)
or Pareto Genetic Algorithms (Pareto GA).

From a randomly initialised population, a Pareto GA
evaluates the non-dominated solutions and preserves them
in a specific archive (non-dominated set). At each
generation, Pareto tournaments are used to select
individuals from the archive to create the mating pool
(parents of the current generation). Parents are crossed
and mutated to explore new solutions (children of the
current generation). The population of children and the
archive are merged to assess the non-dominated set of the
next generation. If the number of non-dominated
individuals is higher than the size of the archive, a



clustering method is used to preserve most representative
solutions and eliminate others in order to keep a constant
archive size. Note also that niching is used in the selection
scheme when individuals involved in a tournament have
the same domination rank. The structure of a Pareto GA is
depicted in Fig. 1.

The second version of the non-dominated sorting genetic
algorithm (NSGA-II) is based on the principles of Pareto
GA’s previously exposed. In the NSGA-II, selection is
performed with Pareto ranking tournaments associated
with a crowded comparison operator to induce niching in
the objective space. NSGA-II determines all successive
fronts in the population (the best front corresponding to
the non-dominated set). Moreover, a crowding distance is
used to estimate the density of solutions surrounding each
individuals on a given front. In a tournament, if
individuals belong to the same front, the selected one is
that with the greater crowding distance. This niching
index is also used in the clustering operator to distribute
uniformly the individuals on the Pareto front. All details
of the algorithm can be found in [DEB, 00]

II1. SELF-ADAPTIVE RECOMBINATION SCHEME

Most of researches in the field of Pareto GA’s have been
concentrated on selection, elitism and niching operators.
Only few works have been done on recombination
procedures. In this paper, we examine the efficiency of
three different crossovers for real encoded GA’s i.e. the
simulated binary crossover (SBX), the blend crossover
(BLX) [ESH, 93] and the crossover used in the Breeder
Genetic Algorithm (BGAX) [SCH, 94]. Finally, a self-
adapting scheme is proposed to help the GA to use the
most suitable crossover operator in relation to the
characteristics of objective functions during the search.

A.  The blend crossover (BLX-¢)

From two parent solutions p| and p), the BLX-o
crossover creates one child ¢’ as follows :

archive archive
(non-dominated set) (non-dominated sef)
Elitism ’
Selection + Niching >—
Crossover + Mutation J
Mating pool New solutions
(parents) (children)

Merging (Clustering if necessary)

Fig. 1. Structure of a Pareto GA (one step generation)

¢ =pl+B(py-pi) (1)

where S is a random variable in the interval [-a,1+ ],
i denoting the index related to parameters of the child and
parents solutions. If & is set to zero, this crossover creates
a random solution inside the range defined by the parents
similarly to the arithmetical crossover [MIC, 92].
Eshelman and Schaffer have reported that BLX-0.5 (with
o = 0.5) performs better than BLX with any other o value
in a number of test problems [ESH, 93].

B.  The simulated binary crossover (SBX)

SBX operator simulates the working principle of the
single point crossover operator on binary strings. From
two parent solutions p{ and p)}, it creates two children
¢; and ¢} as follows :

{ ¢ =05[(1+ B)pi + (1= B)ph] @
¢ =0.5[(1=B)pi +(1+ P)p} ]

with a spread factor S defined by (3),

1
(2u)p1 ifu<0.5
L 3)

p= 1 n+l .
otherwise
2(1—u)

where u is a random variable in the interval [0,1] and 7 is
a nonnegative real number that characterises the
distribution of the children in relation to their parents. A
large value of 77 gives a higher probability for creating
children near parents. Acting alone and without any
mutation scheme, SBX presents interesting properties of
self-adaptation  similarly to Evolution Strategies
[DEB, 991].

C. The Breeder GA crossover (BGAX)

From two parent solutions p; and pj, the BGAX
crossover creates one child ¢’ as follows :

i i
c’=pfi—(p12, pi)Aié‘ “)

“Pz 4! “
where A, is normally set to 0.5 time the domain definition
of the parameter i and the metric denotes the Euclidean

distance in the parameter space. J is computed from a
distribution that favours small values :

§=27k (5)

where u is a random variable in the interval [0,1], the
precision constant k£ being typically set to 16. Note that in
[SCH, 94], the child was placed more often in the
direction to the best parent, p; being the parent with the
better fitness and the minus sign in (4) was chosen with
probability 0.9. In our work, we decide to not favour any
parent (the choice of p; and the sign in (4) are made with
a probability 0.5).



In Fig. 2, the probability density function per child for the
three investigated crossover operators is depicted. The
corresponding parents p, and p, are marked with a full
circle. Note that BGAX with k=16 essentially reinforces
local exploration since it tends to create children in the
neighbourhood of their parents.

D. Towards a self-adapting recombination scheme

As it is not possible to a priori know which crossover
operator will be the most efficient on a specific problem,
we propose a self-adaptive scheme similar to that of
Spears for binary encoded GA’s [SPE, 95]. It consists in
associating in the chromosome of individuals an
additional gene (X-gene) that codes the type of crossover
to apply during the recombination. When recombining two
parents, the type of crossover to operate is chosen
randomly from the X-gene of the parents. Using this
procedure, the GA will favour the crossover that produces
the best children through the selection operator. To avoid
premature convergence to a particular type of crossover,
the X-gene also undergoes mutation.

IV. MATHEMATICAL TESTS
A. Test functions

We consider three multiobjective problems of the
literature [DEB, 00][ZIT, 98] displayed in Table I.

EC4 is a multimodal continuous problem which contains
217 local Pareto fronts. The global Pareto front is obtained
with g=1 and is convex. EC6 has a non-uniformly
distributed search space with solutions non-uniformly
distributed along the Pareto front (the front is biased for
solutions for which fi(x,) is close to one). The Pareto
front is obtained with g=1 and is non-convex. SCH is a
generalisation of the Schaffer’s problem. It is
characterised by a large variable space domain and a
convex Pareto front.

B.  Performance criteria

To assess the efficiency on the previous test problems of
the NSGA-II with the crossover operators presented in
section III, we propose different performance criteria :

e  Average deviation to the Pareto-optimal front

The average distance of the non-dominated set to the
Pareto-optimal front £ is computed as follows [ZIT, 99]:

_ 1

£=— ) min{la—a*| a*e F* 6
B Z; Ula-a*| } (6)

where F (respectively F*) denotes the non-dominated set

in the final population (respectively the theoretical Pareto-

optimal front), a and «* belonging to each subset. The

metric in (6) is the Euclidean distance computed in the

objective space.

0.8

-~ SBX (n=1)
— BGAX (k=16)

061~ BLX-0.5

0.4

Probability density function per child

0.2 " _\V__f_ ;_\__=

0 * .
P b, 10

Fig. 2. Probability distribution of children solutions

TABLE I: MULTIOBJECTIVE TEST PROBLEMS

Problem Characteristics
fi)=x 0<x <1
fx)=gl1- /ﬁ —5<x <5 i=2,..,10
EC4 g
10
where g =91+ Z(x,2 —10cos(4m;))
f,(x) = 1—exp(~4x,)sin® (67x,)
f(x)=g(-(f/g)) 0<x<1 i=1,.,10
EC6 0 0.25
where g = 1+9[Zx,/9]
1 10
fl(x)=Efo -1000< x, <1000 i=1,...,10
SCH o
1 Z 5
S(x)=— x,—2)"
fo(x) 02 (x;-2)
e Spread

We define the spread &, as the average minimum
distance of the non-dominated set to the Pareto-optimal
solutions that minimises each objective independently :

n
£ =¥ minfa—a;
€min = — min "a_aimin
n“
i=1
*

where n is the number of objectives and a],,, represents
the theoretical solution of the Pareto-optimal front that
minimises the ith objective.

aeF} @)

e  Spacing

Spacing A is a measure based on consecutive distances
among the solutions of the non-dominated set. It assesses
the ability of the GA to distribute its population uniformly
along the Pareto-optimal front :

=

1
A=|F|—_12

i=1

d,-d| (8)

where d, is the Euclidean distance between two
consecutive solutions of the non-dominated set, d being



the average of these distances. A value of zero for this
metric indicates all the non-dominated solutions found are
equidistantly spaced. Unlike the definition of A in
[DEB, 00], we do not include in the non-dominated set the
boundary solutions of the theoretical Pareto-optimal front
to take into account the spread (spread is independently
evaluated by (7)).

C. Tests results

All tests are made with the same number of objective
function evaluations. The NSGA-II is run for 200
generations with a population size of 100. The archive
size is also set to 100 and the crossover probability is 1.
NSGA-ITI uses the BGA mutation operator [SCH, 94] with
a mutation rate of 1/m (where m is the number of
variables). The X-genme undergoes mutation with a
probability of 5%. For all investigated tests, 100 runs are
made with random populations to take into account the
stochastic nature of the GA. An average statistic is taken
from the final population for the performance criteria.

We present in Tables II-1V the values of the performance
criteria on the investigated problems for the NSGA-II in
relation to each crossover operator. Best values are
indicated in bold types and margin errors with 95%
confidence are given in brackets. From these results, we
propose a sort of the crossover operators (ranking
efficiency) on each problem.

Note that best results are always obtained by a simple
crossover acting alone. As it can be seen from Table II,
NSGA-II with BLX-0.5 clearly outperforms other
operators on EC4. On the other hand, NSGA-II with
BGAX gives the best results on EC6 but performs
extremely poorly on SCH (convergence was not achieved
after 200 generations ; only one non-dominated individual
was found in the final population in all runs). Except with
SBX crossover, NSGA-II fails to spread correctly its
population on SCH. Therefore, SBX is ranked at the top
of the sort for this problem despite a slightly lowest
quality for £ and A.

These results indicate that the sensitivity to the crossover
operator can not be neglected. Therefore, using multiple
crossover operators through a self-adaptive scheme tends
to improve the robustness of the Pareto GA. We verify
this property in our tests since the self-adaptive scheme
performs extremely well whatever the type of problem
(the ranking efficiency always equals 2).

V. OPTIMAL DESIGN OF ELECTRICAL SYSTEMS

The design of complex systems composed of
heterogeneous elements requires a global approach which
takes into account couplings and interactions between the
different sub-systems The mathematical formulation
resulting from this global approach leads to optimisation
problems with continuous and discrete design variables,
several constraints and multiple objectives. Because of

TABLE II : PERFORMANCE CRITERIA ON PROBLEM EC4

Crossover Deviation SEread Spacing Ranking
scheme £ €min A efficiency
BGAX (k=16) [?)f;;] [(1)123] [g:(llﬁ] p:or
SBX (17=1) [(1):?3(1)] [(llifgg] [g:ggg] go30d
BLX-0.5 [(1)31??] [(llﬂg] [gﬁgéz] excelllent
Self-adaptive [(1)?22] [(1)‘32] [88(2)213] Veryzgo()d

TABLE Il : PERFORMANCE CRITERIA ON PROBLEM EC6

Crossover Deviation SEread Spacing Ranking
scheme £ € min A efficiency
0.000 0.000 0.006 1
BGAX(=16) 16000 [0.000]  [0.000] excellent
0.185 0.001 0.202 3
SBXUED  o018]  [0.000]  [0.022] good
3.167 2.399 0.415 4
BLX-0.5 [0.097]  [0.078]  [0.036] poor
Selfadaptive 0.014 0.000 0.024 2
P [0.006]  [0.000] [0.010]]  very good

TABLE IV : PERFORMANCE CRITERIA ON PROBLEM SH

Crossover Deviation SEread Spacing Ranking
scheme £ € min A efficiency
4
BGAX (k=16) no convergence extremely poor
0.007 0.086 0.006 1
SBX (7=1) [0.000] [0.006] [0.000] excellent
0.004 0.209 0.004 3
BLX-0.5 [0.000] [0.008] [0.000] good
Self-adaptive 0.004 0.118 0.005 2
P [0.000] [0.009] [0.000] very good

these issues, the use of Pareto GA seems to be suitable. In
this section, we illustrate the application of the NSGA-II
with the previous self-adaptative recombination scheme to
the optimal design of an electrical system based on an
inverter fed permanent magnet machine — reducer — load
association. The optimisation procedure consists in
finding optimal configurations with regard to two
objectives. On the one hand, the aim is to increase the
whole energy efficiency by reducing system losses. On the
other hand, the weight of the permanent magnet machine
has to be minimised. The system structure, associated
objectives and design variables are depicted in Fig 3.

R, : Radius / Length Ratio [0.1, 5.0]
Js : Current Density (A\mm?) [1,10]
p : Number of pole pairs [1, 10]

| N: reducer ratio [1,10] l

Fond : SWitching frequency khz)
11, 20]

E : Voltage Level (V)
[5, 500]

~ L i Torque =50 Nm
== - = ™ Speed =50 radis |
Inverter Motor
Losses Losses
o
Motor -
i

Fig. 3. System structure — objectives and design variables



A. Optimisation procedure

Finding optimal configurations for the system needs the
use of appropriate models. The choice of these models
must be done with accuracy and speed computation
considerations. Including these requirements, the
permanent magnet machine appears like the most complex
sub-system. The use of finite elements is banned with
regard to the speed computation but we must be able to
evaluate electrical parameters related to geometric
variations. Consequently, we choose an analytical model
for the motor design and losses (iron and joule)
computation [SLE, 92]. Inverter conduction and switching
losses are also based on analytical models [TUR, O1].
Note that the system design is characterised by a vector of
six parameters X ={E,J,R,, p,N,F,,;}. The number

of pole pairs p and the reducer ratio N are discrete
variables. Four additional constraints are related to
association restrictions between sub-systems and
technological limits :

e temperature of motor winding lower than 150°C
e permanent current lower than demagnetisation current
o slot opening higher than minimum winding section

e inverter switching frequency higher than 20 times
electrical frequency of the permanent magnet machine

The structure of the optimisation procedure is shown in
Fig 4.

B.  Optimisation results and analysis

The optimisation of the electrical system is carried out
using the NSGA-II with the characteristics defined in
section IV-C for 100 generations. 10 runs are made to take
into account the stochastic nature of the GA. The global
Pareto-optimal front resulting from these runs is displayed
in Fig. 5. Boundary configurations of the Pareto-optimal
front are shown. Note that the discontinuity of the front is
related to the discrete nature of p and N. We also indicate
in Fig. 6 the evolution of the rate of children created with
each crossover operators in the self-adaptive
recombination scheme during generations. In the first
generations, each crossover is approximately applied with
the same rate. Around the 30" generation, NSGA-II
converges to the Pareto optimal configurations of the
system. Therefore, finding better solutions becomes
harder and harder. Only local search can improve
solutions by increasing accuracy. This explains why
NSGA-II tends to favour the BGAX comparatively to
SBX and BLX-0.5 which are more suitable for global
search.

In order to help the designer in the optimisation results
analysis, variations of design variables, constraints and
sub-criteria along the front are studied. Fig 7 shows the
evolution of motor and inverter losses as a function of
global losses.

)

N Torque-Speed c,

> »| Specificati L
Cqp, =50 Nm
W, =50rad.s

Smooth poles
analytical model
design

Pareto P
Genetic Algorithm

>
>
>
>
>
>
E Ve
Inverter —b\

3 Conduction Losses  Switching Losses
Pcond Psw

Objectives Computing
Constraints Computing ]4—

Fig. 4. Optimisation procedure
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= 40 " Pareto front p=9
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Fig. 5. Pareto-optimal front of the electrical system design problem
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Fig. 6. Crossover rate per generation (average of 100 runs)
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Inverter losses essentially depend on the steady state
current /,, of the motor and switching frequency F,,, .

Optimisation results show that supply voltage E is always
near from its maximum value of 500 V. Since the load
power P, =2.5kW = El,, is constant, this high level

voltage allows the minimisation of steady state current,
and consequently the minimisation of inverter conduction
losses. Moreover, design variables N, p and F, 6 are
directly linked through the constraint defined by
Foua 220pNQ , . The variations of p and N in Fig 8-9

explain the increase of the inverter switching frequency
(Fig. 10) which leads to inverter losses growth.

10

9

8

Number of pole pairs

120 140 160 180 220 240
Global losses (W)

Fig. 8. Variation of the number of pole pairs along the Pareto front
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Fig. 9. Variation of the reducer ratio along the Pareto Front
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Fig. 10. Variation of the switching frequency along the Pareto front

Iron and Joule losses evolution is shown in Fig. 11-12.
The minimisation of iron losses is linked to the
minimisation of the stator weight and electrical frequency
of the motor. In order to balance iron losses increase
related to the stator weight, we see that the heaviest
machines are characterised by a low pole number and a
low reducer ratio value. When the motor weight is
decreasing, p and N can increase without damaging iron
losses. However, when the reduction of the motor weight
is not enough to balance the increase of iron losses, the
increase of p leads to higher iron losses. Moreover, it can
be seen that the reducer ratio is rapidly growing to its
maximum value in order to guaranty minimum motor
weight. Minimising the motor weight as the reducer ratio
equals 10 can be done by increasing the current density
and the number of pole pairs. Fig 13 shows that thermal
constraint on winding machine temperature is near from
the limit of 150°C when global losses are higher than
160W. While iron losses are growing with the increase of
p, joule losses and current density are limited by the
thermal constraint (see Fig.11-14). These observations
explain the evolution of the motor shape in Fig. 15.
Optimisation shows that minimising the machine weight,
with respect of the maximum temperature, leads to a
change of the motor shape, expressed by the variations of
the motor radius/length ratio R, Thermal behaviour of
winding is linked to the ability of the motor to exchange

70
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g@

Iron losses (W)
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a
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120 140 160 180
Global losses (W)

200 220 240
Fig 11. Variations of iron losses along the Pareto front
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Fig 12. Variations of joule losses along the Pareto front
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calories with ambient air. Therefore, R,. is increasing to
guaranty the maximisation of the motor exchange surface
with ambient air in order to limit heating effects.

IV. CONCLUSION

In this paper, a self-adaptive Pareto GA is applied to solve
multiobjective optimisation problems. The robustness of
the proposed self-adaptive recombination scheme is
shown on mathematical test functions of various
difficulties. The interest of this algorithm is not only

justified by its ability to minimise multiple objectives
simultaneously by approximating the Pareto front of the
problem. Applied to the optimal design of an electrical
system based on an inverter fed permanent magnet
machine — reducer — load association, the Pareto GA
allows the system designer to compare and study
characteristics and particularities of various optimal
configurations. Exploiting design variable, constraint and
objective variations along the optimal front help to
understand coupling phenomena in the whole system. The
final choice between all Pareto-optimal configurations can
be a posteriori done in relation to other considerations :
total harmonic distortion, cogging torque, economical
costs, ...
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