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Abstract—Actual industrial ambition is to remove a maximum
of sensor to improve reliability and cost. Performances are
then decreasing a lot, specially for a system with variable
parameters and direct drives. Moreover, a two-mass system
representing numerous class of industrial problem can become
unstable. Keeping stability, a simple controller and observer
tuning approach and a lower time consuming are main goals
of this study. A previous calculated state feedback is used as
base for two Kalman filters with special a noise matrix. An
evolutionary algorithm optimizes observer’s degrees of freedom
to keep stability all over the stiffness variation. The results show
that the stability and performances are kept on an experimental
test bench.

Keywords : motion control, robust control, Kalman filter-
ing, Stiffness variation, Evolutionary algorithm

I. INTRODUCTION

Numerous systems working in hard surroundings as crusher,
rolling mill or driller have their reliability dramatically de-
creased by sensors. Due to large parameter variations of axis
stiffness, inertia or friction depending on load (driller deepness
tool, thickness of iron...), modeling such systems is possible
by a well-known two-mass system. Controlling such a system
is then harder due to a difference between the load and the
motor speeds, then removing the load speed sensor can lead
to oscillation or to an unstable system if the system is looped
with motor speed or by a non adapted observer.

Several methods exist, slowing down system response by
looping with the motor speed or implementing a robust ob-
server. Previous work [2] or robust synthesis [6] prove that
keeping the system performances under variations is feasible
with a simple controller as an optimized state feedback. This
kind of structure is highly adapted to add an observer. Different
structures allow robust state reconstruction, adaptive structure
[3] or extended Kalman filter [8] provide a correct control but
are complex and time consuming due to the algorithm which
disable faster variations of the computed parameters to avoid
oscillations.

Following previous work objectives [2] (simplest and min-
imal time consuming control law keeping performances all
over the parameter variations), two Kalman filter structures are
implemented and described here, after the system presentation.
In the first one, a state noise matrix is considered diagonal,
the second one computes a state noise matrix representing
the system dynamic matrix variation. This allows to decrease

the number of parameter to tune and simplify the tuning.
Nevertheless, degrees of freedom are too numerous, so, an
evolutionary algorithm replaces thus human being to scan the
better solution. Then the last section describes experimental
results obtained with each structures.

II. SYSTEM MODELLING
A. Actuator implementation

Permanent Magnet Synchronous Motor (PMSM) is the most
used drive in machine tool servos and in modern speed control
applications due to its desirable features(compact structure,
high air-gap flux density, high power density, high blocked
torque). Moreover, the position of the motor has to be known
for self-control of this kind of machine thus added known Park
transformation. This transformation gives constant current
values at steady state and shift problem for tracking current
reference to a current regulation problem. Advantages are
numerous : simpler current controllers, two controllers instead
of three and most important, a lower requested controllers
bandwidth. Finally in a pulse width modulation control of the
inverter, the current loop dynamic is chosen slower to allow
inverter linearization but as faster as necessary to neglect the
influence of this one in such speed control. Furthermore, to
design the current controllers, a linear PMSM model is used.
This hypothesis requires to saturate current to stay into linear
magnetic state.

B. Mechanical specifications

Considering that electrical parameters are constant, the
torque is thus correctly applied on rotor. As explained in
introduction, the stiffness can not be neglected and lead to a
more complex model. Furthermore, on the considered system,
the impossibility to measure the load speed for technical or
financial reasons leads to implement an observer to control
properly the load speed. Despite the motor speed measure-
ment, the varying stiffness imposes to recalculate the state
variable to not have an oscillating or unstable load control. To
implement such automatic item, the system has to be modelled
by a state space equation as shown on (1) where : T, is the
applied motor torque, 7; is the load torque, J,,, f,, and Jj,
fi are inertias and frictions of respectively the motor and load
side and K7 represents the stiffness of the axis and the joint.
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Fig. 1: The test bench

C matrix gives motor speed as output until load speed is
controlled because this is the only sensor set up on test bench.
Moreover, the three state variables belong to the system :
the motor and the load speed (w,, and w;) and the position
difference (A#). But to achieve convergence, it is imposed to
also know the load torque (7;) consequently a new variable
representing this torque is added to the state vector. It is now
a four dimension vector X 4.
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All the test bench parameters and so the simulated system
parameters have been chosen to describe an industrial case of
a such problem. The test bench id presented on Fig. 1. the
three phases motor is powered by an inverter and produces
torque. The varying stiffness is created by replacing spring.
Two different stiffness are available to have from a flexible to
a rigid system [K7,,,in. KT maz)- Following sections describe
the control laws implemented on system and their performance
upon the stiffness variation.

III. CONTROL LAW

Previous work [2] focused on how to design a constant
gain controller to minimize effect of parameter variations
using a linear quadratic criterion. This controller uses all state
variables and is convenient to be coupled with an observer.
Nevertheless as explained in [2], the current control is ne-
glected in the speed loop. To achieve this assumption, the
dynamic of each loop is carefully chosen to avoid them to
impact on the other loop. In fact, inner dynamic loop is 5 to
10 times larger than outer dynamic loop.

To meet the previous system requirements, an observer is
implemented and the control law scheme become as drawn
on Fig. 2. The load parameter variations imply a modification
of matrix A and remove possibility of using a Luenberger
observer. In fact, a Luenberger observer is sensitive to system
evolutions and that can drive this system to unstability. How-
ever, other techniques exists to solve such problem. Kalman
filtering [5] is a quite interesting method by considering

Init :

the parameter variations as a state variable noise. The two
following sections present two methods of Kalman filtering
gain computation and out tuning algorithm.

figure

IV. KALMAN FILTER

A Kalman filter is an optimal observer in noises rejection
point of view. From the motor speed w,, measurement, the
provided torque 7T, and the dynamic sampled model based
on mechanical relation (2) discretized and noised from (1),
state may be rebuild.

Xk+1 :AXk+Bka+wk (2)

W = C Xy + vy,

X is the state vector, T}, the input, w,, the output and w
and v are respectively the state and output noise. However,
to assure filter convergence, critical assumption must stay
effective, noise have to be white Gaussian noise with a null
mean.

Then, implementing the filter on a calculator follows the
three sequential steps :

Initial value of state vector Xq|o and the error covariance

matrix Py are given to the observer.

1 : The algorithm’s loop is beginning at the correction step
by computing the filter gain (3). Then state variables
(4) and the covariance matrix (5) are updated with new
measurement.

2 : The last step is predicting the new state used by controller

(6) and covariance (7).
This last step allows to compare the prediction with the

measurement by looping at previous step and step by step
having the correct state estimation.

Kiy1 = PoypC"(CPypnC" + R (3)

Xk+1|k+1 = XkJrllk + K1 (W) k41 4)
~CXjp1pk)

Priijprr = (I = Kp1C)Prgap (5)

Xppe = AXyy +BUg (6)

Peap = AP AT +Q (N

The main challenge of this control structure is to tune the
@ and R matrices defining the output shape. Two methods are
now proposed, one commonly used and one other using model
variation. Note that a normalisation is made to avoid numerical
quantification problem between state variable composed with
heterogenous quantity. 7y matrix in Fig 2 is diagonal and
bounds state variables between —1 and 1.

A. Common @Q and R matrices (KS4)

The first method consists choosing matrices as white un-
correlated noise with a null mean, so matrices are diagonals
as detailed in (8). Matrices are normally first set up with
estimated noise values and tuned by trial and error. Matrices



Fig. 2: Implemented sensorless speed control

Q@ and R with a four order state vector let five parameters to
tune (one on input and four on state) by the algorithm.

Blw] = 0 Blww!] = { @ B ;
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Parameter variations imply that matrices do not match with
classical noises. They have to describe state variables shape
modifications which are not gradable as a white gaussian
noise. Then to optimally solve the parameters, an evolutionary
algorithm presented in section V tunes the matrices.

B. Model variation tuning (KR4)

The second method is extracted and theoretically proved in
[7]. A dynamic matrix additive variation (A + AA) is taken
into account by modifying the state system as shown in (9) to
meet a standard robust representation.

Xkt AXy + Biywy, + BTy,
Zr = I(Xk
Wi = CXg+ g 9
w, = Iz
Blb — eA(KTmar)Tem —_ eA(KTmin)TEm

So By, represents the available additive variation range (9)
here, stiffness variation and I' the rate of variation at step
k. This uncertainty is extracted from the system in another
gain block I' and the system is then linearized. If I" infinity
norm is lower than 1 then system can be rebuild by Kalman
filter unless noises are correlated. The open loop system is
stable consequently, the calculation of Hoo norm of transfert
function % proves that system observes small gain theorem
condition. This allows to compute a stable observer. However,
the implementation of the covariance error prediction (7)
changes to become (10).

Py = APy AT + Q + By BT (10)

D

By (11) represents the variation rated by ¢ of the dynamic
sampled matrix. It is multiplied by its transpose to have a
semi-definite positive matrix. Some state variables are not
affected by model variation as the load torque. Into the
Kalman filter theory, only variables with a non nul variance
evolves. The Q matrix allows this kind of variable to evolve
by giving them a non nul variance as in standard Kalman
filter definition and converge to a correct value. Finally this
method has three unknown to be tuned by algorithm : the
rating of By matrix, the input noise and the load torque noise.
Then, to have best solution for comparison with previous
design shape, parameters are tune by the same algorithm
to have comparable results. Following section describes the
implemented evolutionary algorithm.

V. EVOLUTIONARY ALGORITHM

Given the human abilities, the both presented structures
require to deals with a great number of variables. To overcome
this difficulty and to scan faster a large space of possible
solution, an evolutionary algorithm has been implemented.
Extracted from [1], and first presented in [4] by Fogel, this
algorithm searches the best set of unknown by evolving item
parameters as made in nature. It means that only a combination
and a mutation are allowed between input parameters weighted
by a normal distribution. These parameters are the noise
variances necessary to tune the filter (3 for kr4 and 5 for ks4).
The final value is the best solution found.

The principle of this algorithm is presented on Fig. 3.
Firstly, classifying items from the most competitive to the
less interesting one is a priority, then an evaluation criterion
should be calculated. In fact, this optimization ensures that
the system has the minimal output deviation for all system
variations. The criterion is the difference between the time
response of the system with sensor with maximal stiffness
Oref = (Jl, 11, KTmM) and the load speed measured for
all variations taken into account. The optimization is obtained
when the global deviation is minimized. This system has the
requested response which the observer and the controller try
to maintain whatever parameters are. Then a set of parameter
variations O is defined. © represents all the parametric varia-
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Fig. 3: Evolutionary algorithm

tion bounds to be taken into account. In this case, © has two
sets of parameter which are the upper and lower bounds of
stiffness variation. All © time responses of the system driven
with the chosen observer are computed. After all experiments,
the criterion (12) is computed to evaluate the performance of
the structure. The criterion is computed for each variations
of the set © and all effects are summed. Hence, all variations
have to be as closed as possible to reference without any rating
between bounds. The purchased purpose is to have an overall
optimization and not one optimized variation.

Fo= Sy @it Orep)-
wi(t, ©))2dt + [ abs((Ton (t, Orey)
—T(t.0,))) -t - dt)

(12)

A close regards on criterion reveals two summed items. The
first item is the integral quadratic error between the tested
response and the reference, this error is relevant when the
difference is high thus here for the transient time. Nevertheless,
the algorithm takes high coefficients to minimize the transient
deviation and this increases the noise’s effects which create
small speed variations avoided by speed regulation. Conse-
quently, the second item is the integral time absolute error
which amplifies the error for steady state because the error is
multiplied by time (ITAE).

Secondly, each item has a vector of parameters : the three
or five coefficients listed in section IV that observers need
(the output of the algorithm), plus one standard deviation per
observer’s parameters to achieve the mutation.

Thirdly, the optimization needs following steps to be effec-
tive :

1 : The parent’s creation allows the algorithm to start. The
observer parameters are randomly chosen inside the al-
lowed bounded space by an uniform distribution.

2 : The children’s birth is operated with two calculations, a
recombination is the first. Two parents are randomly cho-
sen and each parameter is modified by a weighted mean
of both parents parameters. The weighting is randomly
defined by an uniform distribution.

The second operation is a mutation. The parameters
used as standard deviation mutate following a normal
distribution with a constant standard deviation.

The observer parameters mutate with a normal distribu-
tion with previous mutated standard deviation which are
included in the set of parameters. This ambiguous method
is used to achieve a quick overview of the allowed space.

3 : Finally, the algorithm is ended when the criterion value
is quite similar between two consecutive iteration after a
minimal number of steps.

All methods and constants to be defined are explained into
the standard reference [1]. Tuning the filter’s gains is now
possible in two or three hours with a Pentium 4 2.4 Ghz. The
last section will show and compare the experimental results
of the proposed filters.

VI. RESULTS

The test bench showed in Fig. 1 has mechanical character-
istics printed into Table. I. Axis is driven by a 2.5 kW PMSM
powered through a PWM inverter switching at 15 kHz. The
overall system is controlled with a DSpace 1104 controller.
Current ADC have a ten bit accuracy. Motor resolver has 4096
points per turn accuracy and load position sensor has a 3000
points per turn accuracy. As explained, this sensor is only used
to save speed shape for offline comparison.

First of all, the two figures showed are the system response
optimized for a load torque step and for both stiffness bounds
(250 and 2000Nm.rd~1). This kind of trial is relevant for
this system because the speed regulations have most of time
no varying reference and have to avoid speed deviation under
load variation. Tests show first a response to a 30 rd.s~! speed
step and at time 0.5s a load torque variation from 0 to 5 Nm.

In the rigid version Fig. 4(a), the speed step response is
a little faster for kr4 with an overshoot equal to 5%, ks4
observer does not provide overshoot then, the time response is
a little slower. Contrarily, the load torque variation response is
quite slower for kr4. At the minimal stiffness Fig. 4(b), kr4 is
always a little faster for the load speed step time response but
slower for the load torque variation. The shaping response is a
dealing between increasing the effect of parameter variations
or the load torque variations. The maximal stiffness response
is the fastest of the both and torque oscillations for the load
torque variation shows that system is reacting as quick as

Parameter motor load
Torque (Nm) 16 7 (brake)
Inertia (kg - m?) 2.6-1073 [ 50.5.10 3
Friction (Nm -s-rd~ %) | 5.4-1073 | 11.4-103
Stiffness (Nm - rd— 1) [500; 2000] (springs)

TABLE I: Test bench parameters
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Fig. 4: Response to a load seep step and a load torque
disturbance

possible before becoming unstable. ks4 has a better load torque
response because of its uncorrelated parameter allowing a
more precise design. But the load speed step response is faster
for kr4 (Fig. 4(a)) because each parameters of the state noise
matrix is defined to be proportionally valued for the system
variation. Additionally, kr4 has the lower number of parameter
to tune than ks4 and state noise matrix is chosen with the
system variation and not by trial and error. This allows the
algorithm to save a lot of time, nearly 25% faster by decreasing
the space to scan.

VII. CONCLUSION

Two methods of tuning a Kalman filter are experimented for
parameter variant two-mass system. Only stiffness variations
are experimented. Both of them have quite similar response
after tuning of the five noise variances of ks4 and two noise
variances and rating of the variation of the dynamic matrix

with an evolutionary algorithm. ks4 manages to regulate a load
torque variation a slighter better but contrarily occurs for load
speed variation. The main difference is due to the number of
parameter to tune. ks4 with its highest number of uncorrelated
parameters happens to manage a slighter better regulation.
Nevertheless, kr4 design by using directly state matrix into
noise definition has a smaller space to scan and more intuitive
design which allow to gain on design time.
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