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In this paper, double-walled carbon nanotubes (DWNTs) network layers were patterned using inkjet transfer printing. The
remarkable conductive characteristics of carbon nanotubes (CNTs) are considered as promising candidates for transmission
line as well as microelectronic interconnects of an arbitrary pattern. In this work, the DWNTs were prepared by the catalytic
chemical vapor deposition process, oxidized and dispersed in ethylene-glycol solution. The DWNTs networks were deposited
between electrodes contact and then characterized at DC through current–voltage measurements, low frequency, and high
frequency by scattering parameters measurements from 40 MHz up to 40 GHz through a vector network analyzer. By
varying the number of inkjet overwrites, the results confirm that the DC resistance of DWNTs networks can be varied accord-
ing to their number and that furthermore the networks preserve ohmic characteristics up to 100 MHz. The microwave trans-
mission parameters were obtained from the measured S-parameter data. An algorithm is developed to calculate the
propagation constant “g”, attenuation constant “a” in order to show the frequency dependence of the equivalent resistance
of DWNTs networks, which decreases with increasing frequency.
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I . I N T R O D U C T I O N

As consequence of the increasing availability of nanomater-
ials, new classes of functional materials have entered the
R&D landscape. The use of materials based on carbon nano-
tubes (CNT) has risen to become one of the most emblematic
examples as they appear to be a promising building block for a
large variety of nanotechnologies. Carbon nanotubes are
cylinder-like structures made of rolled-up graphene sheets.
Actually, they are one of the most-studied nanomaterials,
owing to their high strength [1], good electrical conductivity
[2], and excellent thermal conductivity [3]. Important appli-
cations include CNT-based composite polymer to improve
conductive properties [4] or enhance microwave perform-
ances such as those to alleviate the problem of electrical char-
ging in dielectrics used for electrostatic actuation of
RF-MEMS [5] and in composite doped polymers in order to
synthesize broadband microwave absorbing or shielding
materials [6]. Hence, the motivation to create the layout or

topology of the CNT network will depend on the application,
and so, for instance, a sensor based on CNTs should essen-
tially be formed with single-walled carbon nanotubes
(SWNTs) for semiconducting properties and with minimal
percolation path [7]. On the other hand, interconnects or elec-
trodes materials would require higher density and metallic
properties of CNTs by using essentially the multi-walled
carbon nanotubes (MWNTs) to maximize current transport
capacity [8]. It has been recently reported that MWNTs
were successfully printed using a commercial desktop inkjet
printer [9]. However, the MWNTs exhibit essentially conduct-
ing properties in comparison with double-walled carbon
nanotubes (DWNTs) that present semiconducting and con-
ducting properties. The latter can be implemented in
electronic devices with tunability properties.

On the other hand, inkjet printing technology is experien-
cing an increasingly central role in large consumer electronics
manufacturing as selective transfer process. Recently, its use
has been broadened to prototyping of circuits in microwave
range [10]. Inkjet printing of DWNTs has been demonstrated
to yield good control on pattern linewidth and uniformity
of the printed pattern at low manufacturing costs. Current
and future electronics systems, and in particular, radio-
frequency (RF) ones, demand multiple functionalities while
guaranteeing miniaturization, reliability, and temperature
stability.

At this date, only a few preliminary studies have been
reported on MWNTs-based inkjet printing and characteriz-
ations of such material as conductive pattern at low and
especially at high frequency [11, 12].
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Sébastien Pacchini
Email: pacchini@laas.fr;

1CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33
56133 6964.
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The development carried out to obtain thin film layers
endowed with enhanced functionalities such as the tunability
of conductive properties in the specific case of inkjet-printed
DWNTs layer is herein presented. DWNT ink has been inves-
tigated in order to obtain a good dispersion of DWNTs in sol-
ution suitable for inkjet printing, and monitor the long-term
stability. The electrical characteristics of the networks of
DWNTs have been evaluated at DC, low, and high frequency.

I I . E X P E R I M E N T A L S E T U P
A N D S A M P L E P R E P A R A T I O N

A) DWNT ink preparation
The DWNTs are prepared by catalytic chemical vapor depo-
sition synthesis as described earlier [9]. That the samples
obtained contain typically ca. 80% of DWNT, together with
15% of SWNT, and 5% triple-walled CNT.

Stable suspensions of DWNT in ethylene glycol were pre-
pared with functionalized DWNT. Functionalization was
obtained by the oxidation of DWNTs at 1308C (24 h) in
HNO3 3 M. After oxidation, the functionalized DWNTs
were dried at 808C in air, overnight. The suspension of
DWNTs or “DWNTs ink” was prepared by adding 1 mg of
oxidized DWNT to 10 ml of ethylene glycol. The advantage
of ethylene glycol is its high boiling point (1988C), which pre-
vents drying after the ejection nozzle, and therefore, creating
uniform DWNTs networks. The suspension was homogen-
ized by tip sonication for 1 h (three times 20 min to avoid
overheating), with the tip sonicator operated at 30%.

B) Tests structures fabrication
In this experiment, inkjet printing is carried out by means of
an ALTATECH Semiconductor printer equipped with a single
inkjet head (Micro Fab) compatible with the available
DWNTs ink. Based on previous studies [13–15], the jetting
conditions, such as, surface tension of the ink, jetting speed,
particle size, substrate surface condition, humidity, and
environment temperature have been investigated in order to
generate uniform ink droplets.

Figure 1(a) represents a coplanar waveguide (CPW), in
which electrodes contacts have been fabricated by the evapor-
ation of Ti/Au (500 Å/5000 Å) on a 1 mm silicon dioxide
(SiO2) deposited by plasma-enhanced chemical vapor depo-
sition and high resistivity silicon substrate (HRS). HRS was
used, because it provides a very smooth reference surface,

guarantees satisfactory RF performances, and is widely used
in microwave and millimeter-wave applications due to its
compatibility with the RF-integrated circuit process.

In order to carry out the electrical characterization, a CPW
test vehicle is used to host the printed layer of DWNTs. The
size width (W: 90 mm) and the gap (S: 65 mm) between the
signal line and the ground plane (G: 700 mm) are defined to
obtain 50 V impedance lines. In order to fabricate a 400 mm
of line length, whose width is equal or smaller than the drop
diameter, a surface treatment is used. The process allows
increasing the contact angle (u), hence, confining the hydro-
phobic area. A contact angle of 1108 is obtained by using a
solution composed of 2% octadecyltrichorosilanein trichlor-
oethylene. The next step in the deposition consists of the
inkjet printing and patterning of DWNTs suspension on
hydrophobic area, as shown in Fig. 1(b), in order to form
the transmission line. To study the electrical parameters of
the networks of DWNTs, the number of overwrites was inves-
tigated (from 1 to 17 overwrites). After deposition with 17
overwrites, the DWNT networks demonstrate a good homo-
geneous deposition pattern, as shown in Fig. 1(c).

The SEM images (Figs 2(a) and 2(b)) show good contact
with the electrode and line of DWNTs. After 10 overwrites,
the networks are denser and fill the void unoccupied by
DWNTs.

I I I . C H A R A C T E R I Z A T I O N
O F D W N T P A T T E R N S

A) DC characterization of DWNT patterns
Electrical resistance of DWNTs patterns were measured at
room temperature using an Agilent 4142B modular DC
source controlled by a computer. The results were obtained
on the test structures presented in Fig. 1 and repeated on
several different samples. Different densities were character-
ized, started by one overwrite up to 17 overwrites. The DC
results showing the variation of the electrical resistance and
I–V curves are displayed in Figs 3(a) and 3(b). These curves
are symmetric with respect to the applied voltage so that
only the sweep over the positive range 0–10 V is illustrated.

As mentioned above, repetitive printing makes a dense
network formation of DWNTs and the resistance value of
this DWNTs networks follows a reverse proportionality with
respect to the number of overwrites. The resistance value
decreases from 500 MV for single overwrite and down to
8 kV for 17 printing. Therefore, for an increasing density of

Fig. 1. (a) CPW test structure realized onto silicon dioxide and silicon substrate (HRS), (b) inkjet printing process, and (c) microscope picture of the test structure
with DWNT network.
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DWNTs networks, equivalent to 10 printings, the resistance
could be reduced by three orders of magnitudes. The resis-
tivity is likely sensitive at the uniformity of DWNTs deposited,
and the high resistivity value is due to poor DWNTs networks
on the substrate.

From the near-zero bias results, a little non-linearity of 5%
can be observed for these tested structures. This deviation can
be likely associated to a tunneling mechanism phenomenon
between the adjacent DWNTs. Sheng et al. [15] have
studied the electrical conductivity of disordered material and
proposed the thermally activated voltage fluctuation across
the insulating gaps as the dominating factor in determining
the temperature and field dependences of the conductivity.

This deposition technique allows a wide range of resistance
in the function of the number of overwrites. These measure-
ment values are represented in Fig. 4. The variance resistance
follows the exponential behavior because of the better perco-
lation of the deposited DWNTs.

Compared to other similar works (see Table 1), an advan-
tage of the DWNT networks presented here is the very low
value of resistance attained for a much smaller number of over-
writes. This can be attributed to the properties of the DWNTs
which present a higher conductivity in comparison with
SWNTs and the deposition technique with inkjet printing.

B) Low-frequency characterization
of DWNT patterns
The measurements are performed with an Agilent 4294A
impedance analyzer from 10 Hz to 100 MHz. The impedance

and the phase dispersion curve were given in Figs 5(a) and
5(b), respectively. The measurements show a typical RLC
circuit behavior. Depending on the length of the network
(400 mm) and essentially on the density of DWNTs, the struc-
tures show an ohmic conductance (f ≈ 08) up to 1 MHz for
10 overwrites and over the entire considered frequency

Fig. 2. (a) SEM image of DWNT network deposited, and (b) SEM close up of DWNTs on electrode contact.

Fig. 3. (a) Variation graph of DWNTs networks resistance, and (b) and I–V curve of the DWNTs networks.

Fig. 4. Variation graph of resistance versus the number of overwrites.

Table 1. Summary of reported properties of CNT deposited by inkjet
printing.

References Our [9] [16]

Types of CNT DWNT MWNT SWNT
Resistance value �4.8 kV �1 MV �5.7 kV
Number of printing 17 90 8

double-walled carbon nanotubes-based ink 3



range for 15 and 17 overwrites. At higher frequencies (above
1 MHz for the 12 overwriting), the charge transport seems
to be dominated by reactive (inductive and capacitive) com-
ponents. At this point, the most likely explanation is that
the material presents an inductive behavior caused by the
interaction of single DWNTs. At lowest density (one over-
write), the inductive behavior is increased by the resonance
peak at 10 MHz caused due to various reasons. Primary, the
connection between different structures of nanotubes
(SWNTs and DWNTs) and different properties (semiconduc-
tor or conductor) can lead to an inductive behavior. Moreover,
the network of nanotubes can be considered as a network ran-
domly oriented and connected with unoccupied and occupied
area on the surface. The network is presented as some individ-
ual components. The DWNTs can form a tiny coil which
would explain the inductive behavior. Kordas et al. and
Song et al. described the same behavior in the function of
CNT-density [9–18].

The comparison with higher-density samples shows that
the overall inductive behavior due to the conducting
DWNTs is masked and the ohmic transport seems to domi-
nate. The resonance peak should be further investigated at
low and high frequencies.

C) Microwave measurements
The RF behavior of these DWNT-based networks has been
studied through scattering parameter measurements in the
range 40 MHz to 40 GHz, by using a vector network analyzer

coupled to an on-wafer probe station setup. Several test
structures (as those in Fig. 1) have been characterized and
the measured S-parameters showed good repeatability. The
reflection data (|S11|) of one of the test structures is plotted
in Figs 6(a) and 6(b) and compared with the reference open
structure. The layout of the open structure is identical to the
active structure except that no DWNTs are deposited on the
substrate.

From the measured S-parameter data, the wave propa-
gation constant g and characteristic impedance Z can be
extracted using the theory presented in [19]. First, the
devices are considered as a symmetric two-port network so
that |S11| ¼ |S22| and |S21| ¼ |S12|, and the propagation con-
stant is extracted using the following relationship for a lossy

Fig. 5. (a) Variation graph of impedance in function of frequency, and (b) and phase for different number of overwrites.

Fig. 6. S-parameters data of the DWNT network (17 overwrites) in dashed line and open circuit in continuous line measured from 0.4 to 40 GHz: (a) amplitude
of |S11| in dB, and (b) phase of |S11| in degree.

Fig. 7. Real and imaginary parts of the DWNTs dynamic impedance Z with
respect to the frequency from 0.04 to 40 GHz.
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transmission line:

gl = al + jbl = Argch
1 − S2

11 + S2
21

2S2
21

( )

=
�����������������������
(R + jvL)(G + jvC)

√
. (1)

And the characteristic impedance Z can be represented as
follows:

Z =
����������
R + jv L
G + jvC

√
. (2)

If g and Z are known, the R, L, G, and C values can be
obtained by combining (1) and (2).

R represents the series resistance per unit length; L rep-
resents the total self-inductance of the two conductors per
unit length; the shunt capacitance per unit length C is due to
the finite thickness of the two conductors, and the shunt con-
ductance G models dielectric loss in the material between the
conductors per unit length. These distributed transmission
parameters explain the RF signal propagation constant and
the impedance of characteristics in the frequency domain.

Figures 6(a) and 6(b) show the amplitude and the phase of
the input reflection |S11| data obtained from the high density
of DWNT networks (17 overwrites) that measured from 0.04
to 40 GHz. In this density of DWNTs, we have said that the
transmission line is essentially ohmic.

For comparison, the measurements of the open samples are
also displayed. By comparing the data from the open-circuit
samples, a capacitive effect caused by the very small gap
between the electrodes can be noticed.

The input reflection magnitudes |S11| of the network of
DWNTs decreases from 0.15 dB at few gigahertz to less
than 1.4 dB at 40 GHz, which indicates that the CNT transmit
a much larger signal than the open structure.

Figure 7 shows the magnitude of the real and imaginary
parts of DWNTs’ line impedance as a function of frequency,
obtained from the average data. The magnitude of both the
real and imaginary parts decreases from 5.47 kV at 0.5 GHz
to 1.6 V at 40 GHz. The imaginary part remains negative,
which means RC . LG according to (2). The impedance of
DWNT networks displays a capacitive character.

Note that the total contribution to the transmission is not
only from the DWNT network itself, but also from the

housing CPW structure. At high frequency, both the capaci-
tance of the DWNTs and the parasitic capacitance between
the IN/OUT electrodes contribute to the transmission.

Figure 8 shows C and G values extracted as described in this
section. In Fig. 8(a), the capacitance C rapidly decreases from
185 to 41 fF/mm. Figure 8(b) shows that G increases from 0.1
to 1.6 mS/mm. It is usually assumed that the dielectric loss is
negligible at lower frequencies, while conductive losses
prevail. One reason behind this is that the frequency-dependent
shunt conductance could be associated to the substrate skin
effect, where the time-varying magnetic flux penetrating into
the silicon substrate leads to frequency-dependent fields.

I V . C O N C L U S I O N S

In this paper, the DC and RF characteristics of DWNT net-
works printing by the inkjet process for potential application
in the RF transmission line have been presented. The electrical
characterizations highlighted a dependency of the measured
resistance from the number of overwrites. Its value could be
reduced from 150 MV to 8 kV from 1 to 17 overwrites,
respectively.

At low frequency, we observed that the impedance was
proportional to the number of overwrites and presented
ohmic characteristics in wide bandwidth for high density of
DWNTs. In low density, the line of DWNTs demonstrated
a resonance peak at 10 MHz.

By using of S-parameters and Z measurements from 0.04 to
40 GHz, the transmission parameters (G, C) were extracted.
The conductance of DWNTs networks increases significantly
as the frequency increases. The capacitance decreases with
increasing frequency and the dielectric loss increases. This is
one of the first experimental results that support the frequency
dependence of DWNT networks printed by inkjet at high fre-
quency. Further experimental and theoretical investigations are
still needed in order to well understand the transmission mech-
anism of DWNT networks in the microwave frequency range.
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des Systèmes du Centre National de Re-
cherche Scientifique) and the University
of Paul Sabatier, Toulouse, France, in
2008. His studies have demonstrated
the potentialities of carbon nanotubes

into microwave applications. The work has been carried out
in collaboration with the LPICM laboratory (Laboratory of
the Polytechnic in Paris), CIRIMAT laboratory, and the
French Space Agency (CNES) in Toulouse. He has authored
or coauthored over 13 papers in refereed journals and confer-
ence proceeding. From January 2009, he has joined the Micro
and Nanosystems for Wireless Communication research
group in LAAS-CNRS and he is very implicate in the study
of novel nanomaterial for microwave application. He works
in collaboration with university, industry, and research part-
ners in national and international projects of CNT and ferro-
electric material (BST).

Emmanuel Flahaut works as a CNRS
researcher at the CIRIMAT (Inter-
University Centre for Research and
Engineering of Materials) at the Univer-
sity Paul Sabatier in Toulouse, France.
He received his Ph.D. in 1999 from the
University of Toulouse (catalytic chemi-
cal vapor deposition (CCVD) synthesis
of carbon nanotubes (CNT) and the

investigation of CNT-containing nanocomposite ceramics)
and his Habilitation in 2007. He has developed a synthesis
route allowing the gram-scale synthesis of double-walled
CNT (DWCNT) with ca. 80% selectivity associated to a
good purity. He was a post-doctoral research assistant at
Oxford University in the group of Pr Malcolm Green where
he worked on the filling of CNT with 1D-crystals. His main
research fields are the CCVD synthesis and functionalization
of CNT (DWCNT in particular), for various applications (in-
terconnections in nanoelectronics, composite materials, sen-
sors). In collaboration with biologists (toxicologists,
ecotoxicologists), Dr. E. Flahaut is working on the human
health issues related to CNT as well as the study of their
environmental impact (he is leading a French program on
this topic). He is author or coauthor of 106 articles in inter-
national peer-reviewed journals and has currently been advi-
sor or co-advisor of nine Ph.D. students.

Norbert Fabre received the engineer di-
ploma in 1982 from the Conservatoire
National des Arts et Métiers of Tou-
louse. He works at LAAS laboratory
(Laboratory for Analysis and Architec-
ture of Systems) of CNRS since 1971.
In 2005, he was awarded by the Cristal
of CNRS. He has managed the Technol-
ogy Service (TEAM) of the LAAS during

20 years up to 2006. Now, his research interests are inkjet
printing technology and alternatives technologies.

6 se’ bastien pacchini et al.
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