

To cite this document: Ouhamou, Yassine and Grolleau, Emmanuel and Hugues, Jérôme

Mapping AADL models to a repository of multiple schedulability analysis techniques.

(2013) In: 16th IEEE International Symposium on Object/component/service-oriented Real-

time distributed computing (ISORC 2013), 13-21 Jun 2013, Paderborn, Germany.

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 8384

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/16754580?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Mapping AADL models to a repository
of multiple schedulability analysis techniques

Yassine Ouhammou
LIAS/ISAE-ENSMA

86961 Futuroscope, France
ouhammoy@ensma.fr

Emmanuel Grolleau
LIAS/ISAE-ENSMA

86961 Futuroscope, France
grolleau@ensma.fr

Jérôme Hugues
Université de Toulouse, ISAE

31055 Toulouse, France
jerome.hugues@isae.fr

Abstract—To fill the gap between the modeling of real-time
systems and the scheduling analysis, we propose a framework that
supports seamlessly the two aspects: (1) modeling a system using
a methodology, in our case study, the Architecture Analysis and
Design Language (AADL), and (2) helping to easily check tem-
poral requirements (schedulability analysis, worst-case response
time, sensitivity analysis, etc.). We introduce the usefulness of
an intermediate framework called MoSaRT, which supports a
rich semantic concerning temporal analysis. We show with a case
study how the input model is transformed into a MoSaRT model,
and how our framework is able to generate the proper models
as inputs to several classic temporal analysis tools.

I. INTRODUCTION

The design phase of real-time embedded systems can span
over several years, such as in the avionics domain. Moreover,
software development costs are sharply impacted by wrong
design choices made in the early stages of development but
often detected after the implementation. Timing faults are
among vulnerabilities which must be detected at an early stage
of the life-cycle, to ensure that a system is feasible. This
kind of prediction is based on scheduling analysis. Thus, the
design must be as clear as possible, especially concerning the
temporal behavior, and it should offer facilities for designers
to detect any timing anomaly.

Nowadays, many domain specific languages (like AADL,
MARTE, etc.) are used to design real-time systems, by model-
ing the different system’s artifacts and non-functional proper-
ties so as to support different kinds of analysis. Nevertheless,
the use of these design languages during the real-time design
phase provides abstract models, and puts real-time designers in
front of efficiency and expressiveness problems. The problem
is that the more expressive the model is, the more complex
is the feasibility test. However, the choice of the abstraction
level and the complexity of the analysis are very substantial
points. Consequently, one needs to separate the modeling of
a system from its analysis. We propose the use of a pivot
language related to the temporal analysis, to help designers to
choose the appropriate abstraction level (task models), and to
orient designers to the appropriate temporal tests.

To support this vision, we have developed a pivot-language-
based framework: the MoSaRT framework (Modeling Oriented
Scheduling Analysis of Real-Time system) [15] [17]. This
article presents a case study, which stresses the feasibility of
this framework starting from an AADL model (Architecture
Analysis and Design Language). The choice of AADL is due
to its wide utilization in the industry.

The remainder of this article is organized as follows.
Section II introduces the motivations of our work. Section III
gives a brief description of MoSaRT. Section IV highlights the
transition form AADL models to MoSaRT. Then, Section V
depicts a conception chain from the model to the schedulability
analysis. Finally, Section VI concludes this article.

II. STATE OF ART

Real-time embedded systems have evolved in terms of
hardware architectures (uniprocessor, multiprocessor, etc.) and
software aspects. This advance leads, on one hand, to an evo-
lution of real-time schedulability analysis tests. On the other
hand many standard design languages have been proposed
providing models with artifacts for schedulability analysis.

A. Schedulability Analysis : Techniques and Tools

The domain of a schedulability test is defined by a real-
time context: tasks characteristics (timing requirements), rela-
tionships between tasks and execution platform characteristics.
Scheduling theory has been originally studied for the basic
Liu and Layland model [1], and extended to cover more
precise task models. The basic task model is mathematically
simple (periodic independent tasks), but is a distant abstrac-
tion regarding most practical applications. Since scheduling
analysis performs a worst-case analysis, imprecision in models
and methods increases pessimism leading to a severe over-
dimensioning of critical systems. Refinements of the task
model and analysis techniques have been proposed. They are
based on seminal works like the worst-case response time [2],
the sensitivity analysis [3], the priority assignment [4], the
multi criteria optimization [5], and the approximation of re-
sponse time [6].

Scheduling analysis techniques have benefited from the
model-driven engineering. Several commercial and academic
schedulability analysis tools provide some subsets of feasi-
bility tests to help designers in the analysis phase, such as
SymTA/S [7], MAST [8], Cheddar [9], etc. Each of these tools
uses a different set of concepts to create the input models for
simulation and analysis. However, the meta-models of those
timing analysis tools differ because they depend on different
real-time contexts. Therefore, designers are forced to modify
their models to fit the input tool formalism.

B. AADL description and related concerns

AADL (Architecture Analysis and Design Language)1 is an
architecture description language for embedded systems. The
description of an architecture in AADL consists in the descrip-
tion of its components and their hierarchic composition. There
are three types of components category: software, hardware
and system. Interactions between components are expressed
through their interface (ports, access to bus, data, etc.).

AADL contains a rich semantics and set of properties to
support many families of analysis, including schedulability
analysis. This richness makes the use of AADL for temporal
analysis expensive in terms of design expertise in addition to
the lack of strictness in the definition of its semantics. So,
designers have to choose between having models containing
an adequate set of elements allowing different verifications
techniques, and enriching the scope of the applicable schedu-
lability analysis techniques. Referring to AADL as a standard
language dedicated to different kinds of analysis, the latter
choice leads to loose this benefit.

Recently, some AADL-related research works aim at help-
ing designers during the modeling phase in order to get a
coherent system architecture. Moreover, several analysis tools
have been proposed to analyze AADL models. Some works
are more generic and they consist in transforming AADL
to a formal model in order to treat the model behavior like
Fiacre [10], or the work of [11] where authors are interested in
the architectural validation to ensure the architecture coherence
by using formal methods and constraint satisfaction problems.
Peres et al. [12] have also proposed a verification method for
real-time system by using model checking. These approaches
face technical complexity and combinatorial explosion. Thus,
these problems complicate their utilization. Some works are
focusing on schedulability analysis. For instance, Cheddar can
use design patterns [13] by extracting a set of information
from AADL models. This extraction requires a set of ad-hoc
information that must be mentioned to support the analysis of
AADL models, and which is recognized only by the Cheddar
tool. On the other side, the recognition of the design patterns is
based only on the architectural model, then it does not consider
the behavior of the modeled system.

C. Problem Statement

We note that most activities around AADL analysis assume
that the designers know which specific technique they have to
apply. Yet, choosing the appropriate schedulability tests is a
complex task: one needs to understand the whole real-time
context of the system. A real-time context is based on the
system architecture but also on the behavior implied by the
values of real-time properties (i.e. arbitrary deadlines, concrete
tasks, task dependency, etc.).

The difficulty of using the schedulability tests has an
influence on the development of systems. Indeed, the steep
learning curve behind many of the current model analysis
methods has been one of the major impediments to their
adoption.

The classical conception from the modeling phase to the
temporal analysis phase leads to a potential gap (pessimism

1http://www.aadl.info

and over-dimensioning) due to the estrangement between the
abstract model and the practical application [17]. The gap
becomes more glaring due to the passage from technical space
modeling to the analysis tools.

We summarize the tackled problems as follows: the appli-
cability of real-time scheduling techniques remains a strong
issue, as one has to ensure that the model is compliant with
implicit design patterns, to select the appropriate analysis tests,
to find appropriate tools providing those tests, then to transform
the model to other formalisms corresponding to the input
formalism of each tool. All these issues are covered by the
MoSaRT framework, presented in the next sections.

III. MOSART FRAMEWORK

The MoSaRT framework supports engineers during the
design phase to dimension their models, and to analyze their
applications with several third-party tools. MoSaRT framework
is an intermediate between real-time design languages and
temporal or scheduling analysis tools. It is an open framework
linking both sides. First, the modeling side which is based on
a modeling specific language dedicated for designers. Second,
the analysis side which is based on an analysis repository
provided by real-time analysts in order to have a chain of
transformation and verification starting from design languages
down to analysis tools.

A. MoSaRT design language

The MoSaRT language [14] [15] is a domain specific
language enriched by a set of non-functional properties related
to the timing analysis (see Figure 1). It offers a design based
on two layers: the operational layer and the application layer.
The operational layer is composed of the hardware model,
the software architecture model and the behavioral model of
this software architecture. The application layer corresponds
to the functional model. In this article, we restrict our focus
to the operational layer, that covers the analytical temporal
properties. They are conceived as generic concepts in order
to support current and future real-time contexts. This allows
MoSaRT language to cover several complex temporal models
and permits to have an open meta-model which is easily
extensible.

MoSaRT language is enriched by several rules to enforce
structural correctness, e.g. all required properties are correctly
set, a correct topology for connections, etc. Once the model
passes the structural verification, then it is “ready” for temporal
analysis. The structural rules are organized in three categories.
Architectural rules, safety rules and vivacity rules.

The implementation of MoSaRT language is based on
Ecore [16] which is a scripting language for meta-models.
Moreover, the structural rules are injected in the MoSaRT
meta-model as a set of constraints implemented in Object
Constraint Language (OCL).

B. MoSaRT Analysis Repository

We propose a flexible way to unify modeling and analysis
efforts to support scheduling analysis. The MoSaRT framework
proposes an analysis repository, which can be enriched by
the analysts. The goal of the analysis repository is to identify

Fig. 1. General structure of MoSaRT language

which analysis model is applicable to the design model. Thus,
the analysis repository orients the designers to the appropriate
analysis tests and also to the prospective analysis tools which
provide these tests [17].

Figure 2 shows the interactions between the real-time
analyst and the designer via MoSaRT framework.

The analyst provides an analysis repository model (or edits
an existing one) by specifying the different components (task
models, tools, tests, etc.). The relevant elements of a repository
model must be well-defined, each rule being related to a
scheduling analysis ability rule. This kind of rules is injected in
MoSaRT language as OCL constraints. Thanks to these rules,
the repository analysis model provided by an analyst processes
the design model, and the identification process can be run
for checking the fitting task models, tests and tools which
match the design model. If the analysis repository model is
rich enough, the designer obtains the checking results showing
details concerning the design model and offering also the
transformation functions to run the analysis process.

IV. FROM AADL TO MOSART

The proximity between the real-time concepts of AADL
and MoSaRT reduces the mapping difficulty and eases its
utilization as a pivot language. Moreover, the non-functional
properties related to the schedulability analysis are highly
required by analysis tools. MoSaRT contains most of those
properties as generic concepts, and thus enables MoSaRT to
be easily connected to several tools.

Fig. 2. Different models at different conception levels showing the interaction
between analysts and designers via MoSaRT framework

The temporal analysis concepts contained in MoSaRT lan-
guage include the ones contained in AADL. Still, the mapping
rules are not based just on simple matching operations: it
is also based on merging operations, forking operations, etc.
Table I represents the mapping of some relevant elements and
some schedulability analysis properties. The prefix of the name
of each element is related to the package where the element
is contained. Then, “Hp” means “HardwarePlatform” package,
“So” means “SoftwareOperators” package, “Sb” means “Soft-
wareBehaviour” package, and “rtp” means that the element
represents a temporal property.

A. Transformation implementation

There are many possible formalisms supporting AADL de-
signs. We have opted for AAXL which is the XML formalism
of AADL. The AAXL formalism facilitates the interoperability
of AADL models.

AADL (version 2) provides two meta-models. A meta-
model of the AADL declarative models and a meta-model of
AADL model instances. Both kinds of meta-models conform
to the Meta Object Facility (MOF) [18]. In other words, if one
would like to model a real-time system using AADL, one has
firstly to do a model (it conforms to the meta-model of the
AADL models). Then, this model has to be instantiated to get
the model instance (it conforms to meta-model of the AADL
model instances) which represents the practical system.

The implementation of the mapping rules uses ATL (Atlas
Transformation Language) [19]. It is a language for trans-
forming models to other models. ATL is a bidirectional trans-

Elements
AADL MoSaRT

System

GlobalSystem
SystemSoftwareSide
GlobalBehaviour
SystemFunctionnalSide
SystemHardwareSide

Process SoSpaceProcess

Thread
SoSchedulableTask
SbTaskAcitvity
SbTimeTrigger

Processor
HpProcessingUnit
HpProcessorInterconnector
(in multiprocessor case)

Data SoLocalCommResource
or SoRemoteCommResource

Data port SbCommunicationRelation
Properties

AADL MoSaRT
Scheduling Protocol rtpSchedulingPolicy
Dispatch Protocol rtpPeriodicity
Period Period or InterArrival
Compute Execution Time rtpExecutionTime

TABLE I. PART OF THE MAPPING BETWEEN AADL AND MOSART

Fig. 3. Architecture of the transformation process between AADL and
MoSaRT

formation language, this quality of ATL allows us to keep
traceability information. Then, through MoSaRT framework
we can ensure an incremental process for editing and analyzing
models. Figure 3 shows the input and output files which are
required for a successful transformation process. Thus, in order
to get an output file model (e.g “InstanceExample.mosart”)
corresponding to the meta-model of MoSaRT language (rep-
resented by “MoSaRT.ecore” file), the transformation process
implemented by ATL (e.g. “AADL2MoSaRT.atl” program file)
needs four kinds of files. The three meta-models of AADL
models (represented by “Aadl2.ecore” file), AADL model
instances (represented by “Instance.ecore” file) and MoSaRT
language. The fourth type is the model instance file (e.g.
“InstanceExample.aaxl2”).

Listing 1 represents an example of a forking operation

transforming the “Thread” AADL element to “SoSchedula-
bleTask” and “SbTaskActivity” MoSaRT elements.

Listing 1. Example of a transformation rule using ATL
l a z y r u l e Thread To SoSchedu lab leTask {
from t h : INST ! Componen t Ins t ance (t h . c a t e g o r y =# t h r e a d)
us ing{ l i s t O f P r o p e r t y :
Sequence (AADL2! P r o p e r t y A s s o c i a t i o n)=
t h . o w n e d P r o p e r t y A s s o c i a t i o n ;}
to s t : MoSaRT ! ” MoSaRT : : S o f t w a r e P l a t f o r m
: : S o f t w a r e O p e r a t o r s : : S o S c h e d u l a b l e T a s k ” (
name <− t h . name ,
r e p r e s e n t e d A c t i v i t y <−t h i s M o d u l e . T h r e a d T o S b T a s k A c t i v i t y (t h))
do { f o r (p rop in l i s t O f P r o p e r t y) {
t h i s M o d u l e . P r o p e r t i e s O f T a s k (prop , s t) ;}}}

B. Transformation impact on the MoSaRT framework facilities

Figure 4 shows a global scenario stressing the different
facilities of MoSaRT framework. In order to enhance and to
ease the utilization of different design language and schedula-
bility analysis techniques, the position of MoSaRT framework
between both sides allows a friendly utilization. MoSaRT
goal is to take benefit from the modeling spaces (supports of
different design languages) and the variety of analysis tools
(implementation of different techniques).

For instance, one can import a model instance of a standard
meta-models (like AADL, MARTE, East-ADL, etc.), analyze
it by different analysis tools and compare the results. The
difficulty of this transition is reduced by MoSaRT framework
thanks to its capabilities of structural verification, temporal
analysis identification and refinement / abstraction. While the
importation is using a bidirectional transformation technique
like ATL [19], that ensures the reverse transformation and
maintains the traceability for the restitution process.

Fig. 4. Global scenario showing various MoSaRT framework facilities

V. CASE STUDY

Through this case study, we illustrate the transformation
process from AADL model to MoSaRT model and we high-
light the temporal analysis capabilities of MoSaRT framework.
As an example, we have chosen to design a simplified mini
UAV (Unmanned Aerial Vehicle) [?].

A. System description

The UAV is an aircraft able to fly and perform a mission
without human presence on board. The practical application
of this system is based on a set of interactions and commu-
nications between the aircraft and the ground station, where
the system application embedded on the aircraft represents a
critical point because of its resource limitations and aerody-
namic constraints. In this paper we are interested in the assisted
mode: in this mode, the operator gives a high level order to
the UAV, like an angle of turn, a ground speed, and a vertical
speed. The flight control system is embedded and is in charge
of the control of the surfaces and engine in order to comply to
the operator orders. Then, Figure 5 represents different sensors
and actuators related to the flight control and the surrounding
functions.

Fig. 5. Different UAV components and their interactions during the assisted
mode

The used components of the embedded system are:

• A modem for the transmission and reception of mes-
sages.

• An Inertial Measurement Unit, IMU, to acquire the
attitude (roll, pitch, yaw) of the UAV.

• The servomotors which are rotary actuators that allow
a precise control of the angular position of the aileron-
s/elevators. The same kind of output is used to control
the engine throughput.

• The micro-controller: an uniprocessor using OS-
EK/VDX as a real-time operator system. It is the
main element of this architecture. It reads in parallel
the information coming from different sensors, treats
them and sends commands to actuators. Equipments
connected to the microcontroller operate at different
rhythms within specific time constraints. For exam-
ple, the modem receiver connected to the serial port
operates at a frequency of 10Hz and sends its data
to the microcontroller byte by byte at a rate of 115
kbits per second. The set of bytes transmitted during a
period represents the frame. The microcontroller must
read each byte before the arrival of the next byte to
avoid the risk of losing the entire frame. The IMU has
the same type of requirements. Similarly, the system
has to refresh the commands sent to the actuators at

a period of 20ms. These commands are sent as PPM
signals (Pulse Position Modulation).

The table shown in Figure 6 summarizes the different
properties of the task set. T is the period of a task, WCET
its worst-case execution time, D its deadline and P its priority.
(xN) assigned to “imuAcquisition” and “modemAcquisition”
tasks means that the task has to be executed N times during
its period to receive a message CAN frame by CAN frame or
byte by byte. All the tasks are executed on a processor using a
fixed priority scheduling policy. The priority ceiling protocol
is used to handle resources.

Fig. 6. The UAV task characteristics (s is the time unit used)

B. System conception using AADL

Figure ?? represents an excerpt of the architecture of
the studied system. It shows the different tasks and their
communication relationships.

Fig. 7. Part of AADL model of the case study example

We present only a part of the AADL model, ex-
pressed in textual language (see Listing 2) to illus-
trate some relevant properties. We use the property
First Dispatch T ime to represent the tasks which have
to be executed N times during their periods. In our system,
First Dispatch T ime of Taski+1 ≥ Deadline of Taski.
For example, First Dispatch T ime of imuAcqTask1 is
0µs, First Dispatch T ime of imuAcqTask2 is 360µs and
First Dispatch T ime of imuAcqTask3 is 720µs.
The system’s implementation (shown in Figure ??) should be
instantiated in order to get the instantiation file. Then, we will
have all the required elements for the transformation.

Listing 2. AADL model of the case study example

.
thread implementat ion i m u A c q u i s i t i o n R e g u l a t e . impl

p r o p e r t i e s
P r i o r i t y => 4 ;
D i s p a t c h P r o t o c o l => p e r i o d i c ;
P e r i o d => 20000 us ;
Compute Execut ion Time => 16000 us . . 16000 us ;
D e a d l i n e => 18000 us ;

end i m u A c q u i s i t i o n R e g u l a t e . impl ;
.
p r o c e s s implementat ion s c h e d u l e r . impl

subcomponents
imuAcqTask1 : thread i m u A c q u i s i t i o n . impl
{F i r s t D i s p a t c h T i m e => 0 us ;} ;
imuAcqTask2 : thread i m u A c q u i s i t i o n . impl
{F i r s t D i s p a t c h T i m e => 360 us ;} ;

.
imuAcq Regula teTask : thread i m u A c q u i s i t i o n R e g u l a t e . impl
{F i r s t D i s p a t c h T i m e => 1080 us ;} ;
modemAcqTask1 : thread modemAcquis i t ion . impl
{F i r s t D i s p a t c h T i m e =>0us ;} ;

.
modemAcqTask10 : thread modemAcquis i t ion . impl
{F i r s t D i s p a t c h T i m e =>720us ;} ;
modemAcqTaskEnd : thread modemAcquis i t ionEnd . impl
{F i r s t D i s p a t c h T i m e =>800us ;} ;

.

C. Transformation to MoSaRT language

The MoSaRT model obtained after the transformation is
shown in figure 7. The part (a) of Figure 7 represents an
extract from the software architecture of the system. The part
(b) is an extract from the hardware architecture of the system.
Then, the part (c) of Figure 7 shows an extract from the
software behavior of the system, this model allows to design
the temporal characteristics of tasks, their relationships and the
manner that each task is triggered. Part (d) will be discussed
later (in Section ??). We admit that the model meets every
structural requirement so we can move to the step of the
schedulability analysis.

D. Schedulability Analysis Step

This step starts by running the MoSaRT analysis repository.
This latter can be provided by real-time expert analyst without
requiring a high modeling knowledge. The result found de-
pends on the content of the analysis repository. Figure 8 shows
the result provided by our current MoSaRT analysis repository.
Part (a) of Figure 8 presents the task set characteristics
extracted from the MoSaRT model (Parts (a), (b) and (c) of
Figure 7). Part (b) of Figure 8 presents the schedulability tests
which correspond to the real-time context of the model and the
scientific papers where designers can find more details about
the proposed tests. This result also offers to the designers some
tools which support the appropriate analysis techniques and
transforms the model to different input formalism tools (see
Part (c) of Figure 8).

Cheddar and MAST are among proposed analysis tools.
After the transformation process from MoSaRT to these
schedulability analysis tools, we obtain the results presented
in Parts (x) and (y) of Figure 9. That means the model of our
case study is not schedulable because the processor utilization
is over 100%. However, the result provided by Cheddar (Part
(y)) means Cheddar tool is not able to propose a test supporting
the temporal characteristics of the model.

The designer can try to change the design characteristics
or to modify the hardware architecture by using a multicore

Fig. 8. Parts (a), (b) and (c) represent an extract from the MoSaRT
model obtained via the transformation process from AADL model. Part (d)
represents an extract from the refined model [The refinement is realized by a
transformation from MoSaRT to MoSaRT]

system for example. These choices requires an additional
development time, and they may lead to the over-dimensioning.
Nonetheless, We note that a generalized task model (i.e. When
model ’A’ is a generalization of model ’B’, then, the behavior
of model ’A’ includes the worst and the best cases behavior
of model ’B’) is proposed by the analysis repository (parts (b)
of Figure 8).

This means our model can be refined in order to be sup-
ported by this generalized model. In this case, the refinement
is not based on adding more specifications, but it is related
to a semantic specification. This means that the behavior
of the model can be viewed differently by maintaining the
same architecture. The MoSaRT analysis repository proposes
this refinement process which is based on an endogenous
transformation (from MoSaRT to MoSaRT).

An excerpt of the refinement result is illustrated on Part

Fig. 9. The result provided by MoSaRT Analysis Repository after applying
the model shown in Parts (a), (b) and (c) of Figure 7

Fig. 10. Parts (x) and (y) are the results provided by MAST and Cheddar
tools, these results are related to the model of Figure 7 (Parts a, b and c)

(d) of Figure 7. The new model maintains the same hardware
and software architecture. The sole impact is related to the
behavioral side. Thus, the new model is composed from Parts
(a), (b) and (d) of Figure 7. Due to this refinement, the
independent tasks having the same period are regrouped in one
transaction. Hence, we obtained an offset-based model instead
of having a periodic task model. The new model is composed
of four transactions. Moreover, the analysis of the new model

gives an interesting result. It is provided by a third-party offset
analysis tool based on Tindell work [20]. Figure 10 shows
the analysis result of the refined model. C is the worst-case
execution time, D represents the deadline, T is the period and
B is the blocking time related to the use of shared resources.
r corresponds to the response time and R corresponds to the
original response time. The comparison between r and R values
shows a significant difference related to the pessimism of the
periodic model compared to the transaction model.

Fig. 11. Analysis result provided by offset analysis tool. The result is related
to the refined model of Figure 7

E. Restitution of the analysis results

Once the schedulability analysis step is finished, we move
to the restitution step. That starts by enriching the MoSaRT
model through its output properties like “blocking time” and
“response time” (see Part (d) of Figure 7). Then, we run the
reverse transformation from MoSaRT to AADL.

Listing 3. AADL model adjusted after the analysis step
system uav
.

end uav ;
.
thread group t r a n s a c t i o n 1
f e a t u r e s
c a n D a t a P o r t : i n data p o r t ;
a t t B o x : r e q u i r e s data a c c e s s a t t i t u d e B o x . impl ;
ppmBox : r e q u i r e s data a c c e s s ppmCmdBox . impl ;
i n s t r u c t i o n s B o x : r e q u i r e s data a c c e s s i n s t r u c t i o n s B o x . impl ;
end t r a n s a c t i o n 1 ;
.
thread group implementat ion t r a n s a c t i o n 1 . impl
subcomponents

imuAcqTask1 : thread i m u A c q u i s i t i o n . impl
{D i s p a t c h O f f s e t => 0 us ;

Worst Case Response Time => 120 us ;} ;
imuAcqTask2 : thread i m u A c q u i s i t i o n . impl
{D i s p a t c h O f f s e t => 360 us ;

Worst Case Response Time => 120 us ;} ;
imuAcqTask3 : thread i m u A c q u i s i t i o n . impl
{D i s p a t c h O f f s e t => 720 us ;
Worst Case Response Time => 120 us ;} ;
imuAcq Regula teTask : thread i m u A c q u i s i t i o n R e g u l a t e . impl
{D i s p a t c h O f f s e t => 1080 us ;
Worst Case Response Time => 16620 us ;
Blocking Time=> 500 us ;} ;

.
p r o p e r t i e s
P e r i o d => 20000 us ;
end t r a n s a c t i o n 1 . impl ;

.
p r o c e s s implementat ion s c h e d u l e r . impl

subcomponents
t r a n s a c t i o n 1 : thread group t r a n s a c t i o n 1 . impl ;
t r a n s a c t i o n 2 : thread group t r a n s a c t i o n 2 . impl ;
t r a n s a c t i o n 3 : thread group t r a n s a c t i o n 3 . impl ;
t r a n s a c t i o n 4 : thread group t r a n s a c t i o n 4 . impl ;

.
end s c h e d u l e r . impl ;
.

Listing 3 represents a piece of the adjusted model.
The transaction is interpreted as a “thread group” element.
Each “thread group” contains a set of tasks having the
same period and being independent from each other. Thus,
we only changed the semantic view of the model with-
out modifying the architecture of the UAV control system.
The First Dispatch T ime property has been converted
into Dispatch Offset. Worst Case Response T ime and
Blocking T ime have been added in the model to refine
scheduling metrics.

VI. CONCLUSIONS

This paper presented an approach to assist designers
throughout the design process to cope with the difficulty of
design and analysis of real-time systems. We presented the
utility of the MoSaRT framework to reduce the gap between
the design languages and the temporal analysis tools. More-
over, we highlighted the utilization of the MoSaRT language as
a pivot temporal analysis design language, and the utilization
of the MoSaRT analysis repository as a schedulability analysis
advisor. We tested our approach using AADL as a formalism
of input model and then we called a set of automatized
actions until arriving to the appropriate analysis tests which
correspond to the real-time context of the input system model.
Our future works will focus on stabilizing this work in order
to support complex architectures. We are also working on
the transformation process from other design languages to
MoSaRT framework. To benefit from temporal analyst skills
and designer skills and to unify their efforts we intend to make
this work available by sharing a stable version as soon as
possible under a LGPL license.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[2] M. Joseph and P. K. Pandya, “Finding response times in a real-time
system,” Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[3] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis for fixed-
priority real-time systems,” Real-Time Syst., vol. 39, pp. 5–30, August
2008.

[4] N. Audsley and Y. Dd, “Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times,” 1991.

[5] R. Mishra, N. Rastogi, D. Zhu, D. Moss, and R. Melhem, “Energy
aware scheduling for distributed real-time systems,” in IPDPS 2003,
p. 21.

[6] T. H. C. NGuyen, P. Richard, and E. Bini, “Approximation techniques
for response-time analysis of static-priority tasks,” Real-Time Systems,
vol. 43, pp. 147–176, 2009.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[8] J. L. Medina Pasaje, M. González Harbour, and J. M. Drake, “Mast real-
time view: A graphic uml tool for modeling object-oriented real-time
systems,” in RTSS 2001, pp. 245–256.

[9] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible
real time scheduling framework,” in SIGAda 2004, pp. 1–8.

[10] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Zilio, M. Filali, and
F. Vernadat, “Formal verification of aadl specifications in the topcased
environment,” in Proceedings of the 14th Ada-Europe International
Conference on Reliable Software Technologies.

[11] M. de Roquemaurel, T. Polacsek, J.-F. Rolland, J.-P. Bodeveix, and
M. Filali, “Assistance la conception de modles l’aide de contraintes,”
in AFADL 2010, pp. 181–196.

[12] F. Peres, P.-E. Hladik, and F. Vernadat, “Specification and verification
of real-time systems using pola,” IJCCBS, pp. 332–351, 2011.

[13] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini, P. Dissaux, and J. Legrand,
“An ada design pattern recognition tool for aadl performance analysis,”
in SIGAda, 2011, pp. 61–68.

[14] Y. Ouhammou, E. Grolleau, M. Richard, and P. Richard, “Towards a
simple meta-model for complex real-time and embedded systems,” in
MEDI 2011, pp. 226–236.

[15] ——, “Model driven timing analysis for real-time systems,” in ICESS
2012, pp. 1458–1465.

[16] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2008.

[17] Y. Ouhammou, E. Grolleau, M. Richard, and P. Richard, “Reducing
the gap between design and scheduling,” in The 20th International
Conference on Real-Time and Network Systems (RTNS), ACM, Ed.,
Nancy, France, November 2012.

[18] OMG, OMG Meta Object Facility (MOF) Core Specification.
Object Management Group, Inc, 2011. [Online]. Available:
www.omg.org/spec/MOF/2.4.1/

[19] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–
39, 2008.

[20] K. Tindell, “Adding Time-Offsets to schedulability analysis,” Depart-
ment of Computer Science, University of York, Tech. Rep. YCS-1994-
221, 1994.

