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Original scientific paper 
Abstract: This research treats power optimization for energy converters, 
such as thermal, solar and electrochemical engines (fuel cells). A common 
methodology is developed for the assessment of power limits in thermal 
systems and fuel cells. Thermodynamic analyses lead to converter 
efficiency and limiting power. Steady and dynamic systems are 
investigated. Static optimization of steady systems applies the differential 
calculus or Lagrange multipliers, dynamic optimization of unsteady 
systems uses variational calculus and dynamic programming. The primary 
result of the first is the limiting value of power, whereas that of the second 
is a total generalized work potential. The generalizing quantity depends on 
the thermal coordinates and a dissipation index, h, i.e. the Hamiltonian of 
the problem of minimum entropy production. The advanced 
thermodynamics, of an irreversible nature, implies stronger bounds on 
work delivered or supplied than the classical reversible work. It is shown 
how various analytical developments can efficiently be synthesized to 
quantitatively evaluate power limits in thermal systems and fuel cells of a 
simple topology (without countercurrent flows). 

Termodinamičke osnove termokemijskih energetskih sustava i 
gorivnih članaka* 

Izvornoznanstveni članak 
Sažetak: Ovo se istraživanje bavi optimizacijom snage sustava za 
pretvorbu energije poput termičkih, solarnih i elektrokemijskih (gorivni 
članci). U radu je razvijena jedinstvena metoda procjene granice snage u 
termičkim sustavima i gorivnim člancima. Termodinamičkim analizama 
dolazi se do učinkovitosti sustava za pretvorbu i granične snage. Istražuju 
se stacionarni i nestacionarni sustavi. Za statičku optimizaciju stacionarnih 
sistema primjenjuju se diferencijalni račun ili Lagrangeovi faktori; 
dinamička optimizacija nestacionarnih sustava koristi varijacijski račun i 
dinamičko programiranje. Rezultat prvog je ograničavajuća vrijednost 
snage dok je rezultat drugog ukupni poopćeni potencijal rada. Poopćenje 
ovisi o termičkim koordinatama i indeksu disipacije, h, npr. Hamiltonov 
operator problema minimalne entropije. Razvijena termodinamika 
nepovratnih sustava implicira čvršće granice na potrošeni ili predani rad 
nego što je to kod termodinamike povratnih procesa. Pokazano je kako 
različite analize mogu efikasno biti sintetizirane u svrhu kvantitativne 
procjene granica snage u termičkim sustavima i gorivnim člancima 
jednostavne topologije (bez protustrujnih tokova). 
 

 
1. Introduction  
    This paper reviews a synthesizing thermodynamic 
approach to modeling and power optimization in diverse 
energy converters, such as thermal, solar and chemical 
engines. Thermodynamic principles lead to a 
converter’s efficiency and limiting generated power. 
Efficiency equations serve to solve problems in the 
upgrading and downgrading of a resource medium. Real 
work yield is a cumulative effect obtained in a system of 
a resource fluid, engines, and an infinite bath. While 
optimization of steady systems requires the use of 
differential calculus and Lagrange multipliers, dynamic 

optimization involves variational calculus and dynamic 
programming. The primary result of the static 
optimization is the limiting value of power, whereas that 
of the dynamic optimization (treated here with 
particular care) is a finite-rate counterpart of the 
classical potential of reversible work (exergy). This 
generalized potential depends on thermal coordinates 
and a dissipation index, h, i.e. the Hamiltonian of the 
related problem of minimum entropy production. The 
generalized potential implies stronger bounds on work 
delivered or supplied than the reversible work potential. 
In reacting systems the chemical affinity constitutes a 
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prevailing counterpart of the thermal efficiency. 
Therefore, in reacting mixtures flux balances are applied 
to derive power yield in terms of an active part of 
chemical affinity. The power maximization approach is 
finally applied for fuel cells treated as flow engines 
driven by fluxes of chemical reagents and the 
electrochemical mechanism of electric current 
generation. Analyzed are the performance curves of a 
SOFC system and the effect of typical design and 
operating parameters on the cell performance. The 
theory combines a recent formalism worked out for 
chemical machines with the Faraday’s law which 
determines the intensity of the electric current 
generation. The steady-state model of a high-
temperature SOFC is considered, which refers to 
constant chemical potentials of incoming hydrogen fuel 
and oxidant. Lowering of the cell voltage below its 
reversible value is attributed to polarizations and 

imperfect conversions of reactions. A power formula 
summarizes the effect of transport laws, irreversible 
polarizations and the efficiency of power yield.  
The reversible electrochemical theory is extended to the 
case with dissipative chemical reactions; this case 
includes systems with incomplete conversions, 
characterized by “reduced affinities” and an idle run 
voltage. The efficiency decrease is linked with 
thermodynamic and electrochemical irreversibilities 
expressed in terms of polarizations (activation, 
concentration and ohmic). The effect of incomplete 
conversions is modeled in a novel way assuming that 
substrates can remain after the reaction and that side 
reactions may occur. Optimum and feasibility 
conditions are obtained and discussed for some 
important input parameters such as the efficiency, 
power output, and electric current density of the cell. 

 
Symbols/Oznake 
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Dn, nD~  
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G  
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Tn 

Te 
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- temperature power exponent  
- temperaturna provodnost 
- specific heat [Jg-1K-1, Jm-3K-1, Jmol-1K-1] 
- specifični toplinski kapacitet [Jg-1K-1, Jm-3K-1, 

Jmol-1K-1] 
- generalized profit and gauge profit at stage n 
- poopćena dobit i dobit razlike na stupnju  n 
- Gibbs function 
- Gibbs-ova funkcija 

- resource flux [gs-1, mols-1] 
- tok izvora [gs-1, mols-1] 

- rate vector with components f1, ..fk.. fs 
- vektor brzine s komponentama  f1, ..fk.. fs 

- intensity of generalized profit 
- intenzitet poopćene dobiti 

- Hamiltonian function 
- Hamiltonova funkcija 

- Lagrangian, intensity of generalized cost 
- Lagrangeov op., intenzitet poopćenog troška 

- minimum performance function [J, or Jmol-1] 
- funkcija minimalnog predloška [J, ili Jmol-1] 
- entropy  [JK-1] 
- entropija  [JK-1] 

- variable temperature of resource fluid [K] 
- varijabilna temperatura fluida izvora [K] 

- temperature after stage n [K] 
- temperatura nakon stupnja n [K] 

- constant temperature of environment [K] 
- konstantna temperature okoliša [K] 

- Carnot temperature control [K] 
- Carnotova temperatura [K] 
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Greek letters/Grčka slova 
 
- coefficient, frequency constant [s-1] 
- koeficijent, frekvencijska konstanta [s-1] 
- Lagrange multiplier, time adjoint 
- Lagrange-ov faktor, priključno vrijeme 
- first-law efficiency [-]1 
- učinkovitost (I. glavni stavak) [-] 
- time interval [s,-] 
- vremenski interval [s,-] 
- factor of machine irreversibility [-] 
- faktor nepovratnosti procesa u stroju [-] 

- intensity factor [-] 
- faktor intenziteta [-] 
- nondimensional time or number of HTU (x/HTU) 
- bezdimenzijsko vrijeme ili broj jedinica 

prijenosa topline (x/HTU) [-] 
 
 
Subscripts/Indeksi 
 
- electric 
- električni 
- k-th state variable 
- varijabla k- tog stanja 

- molar flow 
- molarni tok 
- first and second fluid 
- prvi i drugi fluid 
* modified cost or profit 
* modificirani trošak ili modificirana dobit 
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- u rate of controlling of T in time τ  [K] 
- u brzina kontroliranja T u vremenu τ  [K] 

- time [s] 
- vrijeme [s] 

- control vector 
- kontrolni vektor 

- temperature rate control, dΤ/dτ  [K] 
- kontrola brzine promijene temp, dΤ/dτ  [K] 

- maximum performance funct. [J, or Jmol-1] 
- funkcija maksimalnog predloška [J, ili Jmol-1] 

- work and power 
- rad  i snaga [J, Js-1] 

- state vector 
- vektor stanja 

- enlarged state vector including time  
- uvećani vektor stanja koji uključuje i vrijeme 

- adjoint variable 
- priključna varijabla 
 

 

e  

I 

n 

f 

Superscripts/Indeksi 
 
- environment 
- okoliš 
- initial state 
- početno stanje 
- stage number 
- broj stupnja 

- initial state 
- početno stanje 
‘ modified quantity 
‘ modificirani iznos 
 

     
    Calculations of the maximum power show that the 
data differ for power generated and consumed, and 
depend on parameters of the system, e.g., current 
intensity, number of mass transfer units, polarizations, 
electrode surface area, average chemical rate, etc. These 
data provide bounds for SOFC energy generators, which 
are more exact and informative than reversible bounds 
for electrochemical transformation. 
     
    Applications of thermodynamics of finite rates lead to 
solutions which describe various forms of bounds on 
power and energy production (consumption) including 
in dynamical cases finite-rate generalizations of the 
standard availabilities. In this research we treat power 
limits in static and dynamical energy systems driven by 
nonlinear fluids that are restricted in their amount or 
magnitude of flow, and, as such, play the role of 
resources.  
    A power limit is an upper (lower) bound on power 
produced (consumed) in the system. A resource is a 
valuable substance or energy used in a process; its value 
can be quantified by specifying its exergy, a maximum 
work that can be obtained when the resource relaxes to 
the equilibrium. Reversible relaxation of the resource is 
associated with the classical exergy. When dissipative 
phenomena prevail, generalized exergies are essential. 
In fact, generalized exergies quantify deviations of the 
system’s efficiency from the Carnot efficiency. An 
exergy is obtained as the principal component of the 
solution to the variational problem of extremum work 
under suitable boundary conditions. Other components 
of the solution are optimal trajectory and optimal 
control. In purely thermal systems (those without 
chemical changes) the trajectory is characterized by 
temperature of the resource fluid, T(t), whereas the 
control is Carnot temperature T’(t) defined in our 

previous work [1, 2]. For chemical systems also 
chemical potential(s) µ’(t) plays a role. Whenever T’(t) 
and µ’(t) differ from T(t) and µ(t) the resource relaxes  
 
with a finite rate and with an efficiency vector different 
from the perfect efficiency. Only when T’ = T and µ’ 
= µ the efficiency is perfect, but this corresponds with 
an infinitely slow relaxation of the resource to the 
thermodynamic equilibrium with the environment fluid. 
    The structure of this paper is as follows. Section 2 
discusses various aspects power optimization. Properties 
of steady systems are outlined in Sec. 3, whereas those 
of dynamical ones are outlined in Sec. 4. Section 5 
develops quantitative analyses of resource downgrading 
(in the first reservoir) and outlines properties of 
generalized potentials for finite rates. Sections 6-8 
discuss various Hamilton-Jacobi-Bellman equations 
(HJB equations) for optimal work functions, as 
solutions of power yield problems. Extensions for 
simple chemical systems are outlined in Sec. 9, whereas 
fuel cells are considered in Sects. 10-13. Section 14 
analyses some power experiments in FC systems, 
whereas Section 15 summarizes the most important 
results.  
    The size limitation of this paper does not allow for 
inclusion of all derivations to make the paper self-
contained, thus the reader may need to turn to some 
previous works, [1] - [5]. In view of the difficulties in 
getting analytical solutions in complex systems, 
approximations by difference equations and numerical 
approaches are treated in a separate paper [3], which, in 
particular, discusses the convergence of numerical 
algorithms with solutions of HJB equations and the role 
of Lagrange multipliers in dimensionality reduction. 
These issues are linked therein with the theory of 
viscosity solutions to the PD equations, discovered by 
Crandall and Lions in 1983 and developed in the last 
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two decades. The theory of viscosity solutions is 
nowadays the main theory concerning HJ and HJB 
equations. The contemporary theory is quite complete 
and ensures existence and uniqueness results for non-
differentiable and even discontinuous solutions. Its 
basic premise is that, in general, value functions of 
variational integrals are non-smooth and hence solutions 
are sought in the viscosity sense [3]. Their calculation 
typically amounts to suitable discretization and the use 
of discrete dynamic programming. Viscosity solutions 
of HJB equations are also discussed in a recent book 
[14]. 
 

2. Finite Resources and Power 
Optimization  

 
    The limited amount or flow of a resource working in 
an engine causes a decrease of the resource potential in 
time (chronological or spatial). This is why studies of 
resource downgrading apply dynamical optimization 
methods. From the optimization viewpoint, the 
dynamical process is every one with a sequence of 
states, developing either in chronological time or in 
(spatial) holdup time. The first group refers to unsteady 
processes in non-stationary systems; the second group 
may involve steady state systems.  
    In a process of energy production, two resting 
reservoirs do interact through an energy generator 
(engine). In this process power flow is steady only when 
two reservoirs are infinite. When one, say, upper, 
reservoir is finite, its thermal potential must decrease in 
time, which is a consequence of the energy balance. 
Any finite reservoir is thus a resource reservoir. It is the 
resource property that leads to the dynamical behavior 
of the fluid and its relaxation to the equilibrium with an 
infinite lower reservoir (usually the environment).  
    Alternatively, fluid at a steady flow can replace the 
resting upper reservoir. The resource downgrading is 
then a steady-state process in which the resource fluid 
flows through a pipeline or stages of a cascade and the 
fluid’s state changes along a steady trajectory. As in the 
previous case, the trajectory is a curve describing the 
fluid’s relaxation towards the equilibrium between the 
fluid and the lower reservoir (the environment). This is 
sometimes called “active relaxation” as it is associated 
with the simultaneous work production. It should be 
contrasted with “dissipative relaxation”, a well-known, 
natural process between a body or a fluid and the 
environment without any power production.  
    Relaxation (either active or dissipative) leads to a 
decrease of the resource potential (i.e. temperature) in 
time. An inverse of the relaxation process is the one in 
which a body or a fluid abandons the equilibrium. This 
cannot be spontaneous; rather the inverse process needs 
a supply of external power. This is the process referred 
to as thermal upgrading of the resource, which can be 
accomplished with a heat pump. 
 

3. Steady State Systems 
 
    A great deal of research on power limits published to 
date deals with stationary systems, in which case both 
reservoirs are infinite. They all refer to curves of power 
in terms of some control variable, such as the power 
curve presented in Fig.1.  This case refers to steady-
state analyses of the Chambadal-Novikov-Curzon-
Ahlborn engine (CNCA engine [6]) in which energy 
exchange is described by the Newtonian law of cooling, 
or the Stefan-Boltzmann engine, a system with the 
radiation fluids and the energy exchange governed by 
the Stefan-Boltzmann law [7]. Due to their stationarity 
(caused by the infiniteness of both reservoirs), controls 
maximizing power are lumped to a fixed point in the 
state of space. In fact, for the CNCA engine, the 
maximum power point may be related to the optimum 
value of a free (unconstrained) control variable which 
can be efficiency η or Carnot temperature T’. In terms 
of the reservoirs temperatures T1 and T2 and the internal 
irreversibility factor Φ, one finds 21

21=′ /)( ΦTTTopt [4]. 
For the Stefan-Boltzmann engine, exact expression for 
the optimal point cannot be determined analytically, yet, 
this temperature can be found graphically from the chart 
P=f(T’).  

 
Figure 1. Maximum power relaxation curve for black 
radiation without constraint on the temperature [8]. 
 
Slika 1. Relaksacijska krivulja maksimalne snage za zračenje 
crnog tijela bez ograničenja temperature [8]. 
 
    Moreover, the method of Lagrange multipliers can 
successfully be applied [8]. As their elimination from a 
set of resulting equations is quite easy, the problem is 
broken down to the numerical solving of a nonlinear 
equation for the optimal control T’.  
    Finally, the so-called pseudo-Newtonian model [4, 5], 
which uses the state or temperature dependent heat 
exchange coefficient, α(T3), omits, to a considerable 
extent, analytical difficulties associated with the Stefan-
Boltzmann equation. Applying this model in the so-
called symmetrical case, where both reservoirs are filled 
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up with radiation, one shows that the optimal (power 
maximizing) Carnot temperature of the steady radiation 
engine is the same as that for the CNCA engine [4]. 
This equation is, in fact, a good approximation under 
the assumption of transfer coefficients dependent solely 
on bulk temperatures of reservoirs. 
 
4. Dynamical Systems 
 
    The evaluation of dynamical energy yield requires the 
knowledge of an extremal curve rather than an 
extremum point. This is associated with the application 
of variational methods (to handle functional extrema) in 
place of static optimization methods (to handle extrema 
of functions).  
    For example, the use of the pseudo-Newtonian model 
to quantify the dynamical energy yield from radiation 
gives rise to an extremal curve describing the radiation 
relaxation to the equilibrium. This curve is non-
expotential, the consequence of the nonlinear properties 
of the relaxation dynamics. Non-expotential are also 
other curves describing the radiation relaxation, e.g., 
those obtained while using the Stefan-Boltzmann 
equation (symmetric and hybrid, [4,5]).  
    Analytical difficulties associated with dynamical 
optimization of nonlinear systems are severe; this is 
why diverse models of power yield and diverse 
numerical approaches are applied. The optimal (e.g. 
power-maximizing) relaxation curve T(t) is associated 
with the optimal control curve T’(t); they both are 
components of the dynamic optimization solution to a 
continuous problem. In the corresponding discrete 
problem, formulated for numerical purposes, one 
searches for optimal temperature sequences {Tn} and 
{T’n}. Various discrete optimization methods involve: 
direct search, dynamic programming, discrete maximum 
principle, and combinations of these methods.  
    Minimum power supplied to the system is described 
in a suitable way by the function sequences Rn(Tn, tn), 
whereas maximum power produced, by the functions 
Vn(Tn, tn). The profit-type performance function V and 
cost-type performance function R simply differ by sign, 
i.e., Vn(Tn, tn) = - Rn(Tn, tn). The beginner may find the 
change from symbol V to symbol R and back as 
unnecessary and confusing. Yet, each function is 
positive in its own, natural regime of working (V - in the 
engine range and R - in the heat pump range).  
    Importantly, energy limits of dynamical processes are 
inherently connected with the exergy functions, the 
classical exergy and its rate-dependent extensions.  
    To obtain classical exergy from power functions it 
suffices to assume that the thermal efficiency of the 
system is identical with the Carnot efficiency.  
    On the other hand, non-Carnot efficiencies lead to 
generalized exergies. The latter depend not only on 
classical thermodynamic variables but also on their 
rates. These generalized exergies refer to state changes 
in a finite time, and can be contrasted with the classical 

exergies that refer to reversible quasistatic processes 
evolving in time infinitely slowly. The benefit obtained 
from generalized exergies is that they define stronger 
energy limits than those predicted by classical exergies.  
    A systematic approach to exergies (classical or 
generalized) based on work functionals leads to several 
original results in the thermodynamics of energy 
systems, in particular it allows an explanation for the 
unknown properties of the exergy of black-body 
radiation or solar radiation, and it shows that the 
efficiency of the solar energy flux transformation is 
equal to the Carnot efficiency. To date this has not been 
a commonly accepted result, as a number of recent 
investigations have shown.  
 
5. Towards a Finite-Rate Exergy 
 
    Two different works, the first associated with 
resource downgrading during its relaxation to the 
equilibrium and the second – with the reverse process of 
resource upgrading, are essential (Fig.2). During the 
approach to equilibrium, the engine mode takes place 
such that work is released, during the departure-heat-
pump mode the engine mode occurs such that work is 
supplied. Work W delivered in the engine mode is 
positive by assumption (“engine convention”).  
    The sequence of irreversible engines (CNCA or 
Stefan-Boltzmann) serves to determine a rate-dependent 
exergy extending the classical exergy for irreversible, 
finite rate processes. Before maximization of a work 
integral, process efficiency η has to be expressed as a 
function of state T and a control, i.e. energy flux q or 
rate dT/dτ, to assure the functional property (path 
dependence) of the work integral. The integration must 
be preceded by maximization of power or work at flow 
w (the ratio of power and flux of driving substance) to 
assure an optimal path.  
    The idea of an infinite number of infinitesimal CNCA 
steps, necessary for exergy calculations, is illustrated in 
Fig. 2.  

 
Figure 2. Two works: Limiting work produced and limiting 
work consumed are different in an irreversible process.  
 
Slika 2. Dva rada: Granice predanog i utrošenog rada su 
različite u nepovratnom procesu 
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    Each small step is a work-producing (consuming) 
stage with the energy exchange between two fluids and 
a thermal machine through finite “conductances”.   
    The optimal work is sought in the form of a potential 
function that depends on the end states and duration. For 
appropriate boundary conditions, the principal function 
of the variational problem of extremum work coincides 
with the notion of an exergy, the function that 
characterizes the quality of resources.   
    For the radiation engine, it follows from the Stefan-
Boltzmann law that the effective transfer coefficient 
α1 of the radiation fluid is necessarily temperature- 
dependent, α1 .3

1∝ T The second or low-T fluid represents 
the usual environment, as defined in the exergy theory. 
This fluid possesses its own boundary layer as a 
dissipative component, and the corresponding exchange 
coefficient is α2. In the physical space, the flow 
direction of the resource fluid is along the horizontal 
coordinate x. The optimizer’s task is to find an optimal 
temperature of the resource fluid along the path that 
extremizes the work consumed or delivered.  
    Total power obtained from an infinite number of 
infinitesimal engines is determined as the Lagrange 
functional of the following structure                      

∫∫ ′−=′=
f

i

f

i

t

t

t

t

fi dtTTTηTcGdtTTfW  ),()(),(][ 0T,T     (1) 

where f0 is power generation intensity, G  – resource 
flux, c(T)  specific heat, η(T, T’) – efficiency in terms of 
state T and control T’, further T – enlarged state vector 
comprising state and time,  t – time variable (residence 
time or holdup time) for the resource contacting with 
the heat transfer surface. Sometimes one uses a non-
dimensional time τ, identical with the so-called number 
of the heat transfer units. Note that, for the constant 
mass flow of a resource, one can extremize power per 
unit mass flux, i.e., the quantity of work dimension 
called “work at flow”. In this case Eq. (1) describes a 
problem of extremum work. Integrand f0 is common for 
both modes, yet the numerical results it generates differ 
by sign (positive for engine mode; “engine 
convention”). 
    When the resource flux is constant, a work functional 
describing the thermal exergy flux per unit flux of 
resource can be obtained from Eq. (1) 
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Note that the independent variable in this equation is T, 
i.e., it is different than that in Eq. (1).  
    The function f0 in Eq. (1) contains a thermal 
efficiency function, η, described by a practical 
counterpart of the Carnot formula. When T > Te, 
efficiency η  decreases in the engine mode above ηC 
and increases in the heat-pump mode below ηC. At the 
limit of vanishing rates, dT/dt = 0 and TT →′ . Then the 

work of each mode simplifies to the common integral of 
the classical exergy.  For the classical exergy 
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Nonlinearities can have thermodynamic and kinetic 
origins; the former refer, for example, to state dependent 
heat capacity, c(T), the latter to energy exchange. 
Problems with linear kinetics (Newtonian heat transfer) 
are an important subclass. In these problems fluid’s 
specific work at flow, w, is described by the equation
  

                                                      

dτ
TT
TTTcT

dT
T
TTcGWw

f

i

f

i

t

t

e

T

T

e
fi

′
−′

−









−−==

∫

∫
2)()(

1)(/][ T,T

      (4) 

  
where 

                                       

χ
αατ tt

cG
Fvax

cG
Fa

H
x vv

TU
=

′
=

′
=≡ 

                (5) 

 
is the non-dimensional time of the process. Equation (5) 
assumes that a resource fluid flows with velocity v 
through cross-section F and contacts with the heat 
transfer exchange surface per unit volume av [1]. 
Quantity τ is identical to the so-called number of heat 
transfer units.  
    Solutions to work extremum problems can be 
obtained by: 
a) variational methods, i.e., via the Euler-Lagrange 
equation of variational calculus 
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In the example considered above, i.e., for a thermal 
system with linear kinetics  
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which corresponds with the optimal trajectory  
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(τi = 0 is assumed in Eq. (8).) However, the solution of 
the Euler-Lagrange equation does not contain any 
information about the optimal work function. This is 
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assured by solving the Hamilton-Jacobi-Bellman 
equation (HJB equation, [9]).   
 b) dynamic programming via the HJB equation for the 
‘principal function’ (V or R), also called the extremum 
work function. For the linear kinetics it is considered 
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Observe that all rates (f0 and f) and derivatives of V are 
evaluated at the final state (the so-called ‘forward 
equation’). The extremal work function V is a function 
of the final state and total duration. After evaluation of 
optimal control and its substitution to Eq. (9), one 
obtains the nonlinear equation 
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which is the Hamilton-Jacobi equation of the problem. 
Its solution can be found by the integration of work 
intensity along an optimal path, between the limits Ti 

and Tf. A reversible (path independent) part of V is the 
classical exergy A(T, Te, 0).   
    Details of models of multistage power production in 
sequences of infinitesimal engines are known from 
previous publications [1]-[5]. These models provide 
power generation functions f0 or thermal Lagrangians l0 
= -f0 and dynamical constraints. Numerical methods 
apply suitable discrete models, for the given rates f0 and 
f. An important issue is the convergence of these 
discrete models to continuous ones [3]. 
 
6. HJB Equations for Nonlinear Power 
Systems 
 
    We shall display here some Hamilton-Jacobi-Bellman 
equations for power systems described by nonlinear 
kinetics.  
    A suitable example is a radiation engine whose power 
integral is approximated by a pseudo-Newtonian model 
of radiative energy exchange associated with the 
optimal function 
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where υ =α(T3)(T’-T). An alternative form uses the 
Carnot temperature T’ explicit in υ [5]. Optimal power 
(11) can be referred to as the integral 
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This process is described by the pseudolinear kinetics 
dT/dt = f(T, T’) consistent with υ =α(T3)(T’-T). A 
general form of the HJB equation for the work function 
V is 
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where f0 is defined as the integrand of Eq. (11) or (12).  
    A more exact model or radiation conversion relaxes 
the assumption of the pseudo-Newtonian transfer and 
applies the Stefan-Boltzmann law. For a symmetric 
model of radiation conversion (both reservoirs 
composed of radiation), 
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The coefficient 101 )( −−= mhv pcaσβ  is related to the molar 

constant of photons density 0
mp  and the Stefan-

Boltzmann constant σ. In the physical space, the power 
exponent a=4 for radiation and a=1 for a linear 
resource. With the state equation  
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[5] applied in general Eq. (19) we obtain a HJB 
equation 
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Dynamics (15) is a characteristic equation for Eq. (16). 
    For a hybrid model of radiation conversion (upper 
reservoir composed of the radiation and lower reservoir 
of a Newtonian fluid, [5]) the power integral is 
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and the corresponding Hamilton-Jacobi-Bellman 
equation is 
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7. Analytical Aspects of Linear and Pseudo-
Newtonian Kinetics 
 
    In all HJB equations extremized expressions there are 
some Hamiltonians. By applying the feedback control, 
the optimal driving temperature T' or other control is 
implemented as the quantity maximizing the 
Hamiltonian with respect to control T’ at each point of 
the path. The maximization of H leads to two equations. 
The first expresses optimal control T' in terms of T and z 
= - ∂V/∂T; for  Eq. (9) we find 
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whereas the second is the original equation (9) without 
the maximizing operation 
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To obtain the optimal control function T'(z, T) one 
should solve the second equality in equation (19) in 
terms of T'. The result is the extremum Carnot control T' 
in terms of T and z = - ∂V/∂T, 
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    This formula is next substituted into (20); the result is 
the nonlinear Hamilton-Jacobi equation  
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which contains the energy-like (extremum) Hamiltonian 
of the extremal process 
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    For a positively-defined H, each Hamilton-Jacobi 
equation for optimal work preserves the general form of 
autonomous equations known from analytical 
mechanics and the theory of optimal control. 
    Expressing the extremum Hamiltonian (23) in terms 
of state variable T and Carnot control T' yields an 
energy-like function satisfying the following relations 
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E is the Legendre transform of the work Lagrangian l0 = 
- f0 with respect to the rate u = dT/dτ . 
    Assuming a numerical value of the Hamiltonian, say 
h, one can exploit the constancy of H to eliminate 
∂V/∂T. Next, combining the equation H=h with the 
optimal control (21), or with an equivalent result for 
energy flow control u =T ’- T 
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yields the optimal rate u = T  in terms of temperature T 
and the Hamiltonian h  
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A more general form of this result, which applies to 
systems with an internal dissipation (factor Φ) and 
applies to the pseudo-Newtonian model of radiation, is 
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This result is obtained by the application of variational 
calculus to nonlinear radiation fluids with the 
temperature dependent heat capacity cv(T)=4a0T3. In 
conclusion, the pseudo-Newtonian systems produce 
power relaxing with the optimal rate 
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where ξ , defined on the basis of Eq. (27), is an intensity 
index and hσ =h/T. Positive ξ refers to the heating of the 
resource fluid in the heat-pump mode, and the negative 
refers to the cooling of this fluid in the engine mode. 
Equations (27) and (28) describe the optimal trajectory 
in terms of the state variable T and the constant h. The 
corresponding optimal (Carnot) control is 
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    The presence of the resource temperature T in the 
function ξ proves that, in comparison with the linear 
systems, the pseudo-Newtonian relaxation curve is not 
exponential. 
 

8. Optimum Power Functions for Linear 
and Quasilinear Kinetics  
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    A solution can now be found to the problem of the 
Hamiltonian representation of extremal work. Let us 
begin with linear systems. Substituting temperature 
control (29) with the constant ξ into the work functional 
(4) and integrating along an optimal path yields the 
extremal work function 
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This expression is valid for every process mode. The 
integration of Eq. (27), subject to end conditions 
T(τi)=Ti and T(τf)=Tf, allows expression Eq. (30) in 
terms of the process duration.  
    For the radiation cv(T)=4a0T3, where a0 is the 
radiation constant, an optimal trajectory solving Eqs. 
(27) and (29) is  
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The integration limits refer to the initial state (i) and the 
current state of the radiation fluid, i.e. temperatures Ti 
and T corresponding with τi and τ. The optimal curve 
(31) refers to the case when the radiation relaxation is 
subject to a constraint resulting from Eq. (28).   
    Equation (31) is associated with the entropy 
production term in Eq. (12). The corresponding 
extremal work function per unit volume of flowing 
radiation has the form 
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    Also, the related exergy function, obtained from (32) 
after using the exergy boundary conditions, has an 
explicit analytical form. The classical availability of 
radiation at flow resides in the exergy equation in 
Jeter’s [10] form 
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9. Work Functions for Chemical Systems   
 
    The developed methodology can be extended to 
chemical and electrochemical engines. Here we shall 
make only a few basic remarks. In chemical engines 
mass transports participate in the transformation of 
chemical affinities into mechanical power [11]. Yet, as 
opposed to thermal machines, in chemical ones 
generalized reservoirs are present, capable of providing 
both heat and substance. When infinite reservoirs assure 
constancy of chemical potentials, problems of 
extremum power (maximum of power produced and 

minimum of power consumed) are static optimization 
problems. For finite reservoirs, however, amount and 
chemical potential of an active reactant decrease in 
time, and the considered problems are those of dynamic 
optimization and variational calculus.  
    The simplest model of a power producing chemical 
engine is that with an isothermal and isomeric reaction, 
A1-A2 =0 [11]. Power and efficiency formulae for the 
chemical system follow from the entropy conservation 
and energy balance in the power-producing zone of the 
system (active part).  
    In “endoreversible” chemical engines, total entropy 
flux is continuous through the active zone. When a 
formula describing this continuity is combined with 
energy balance we find in the isothermal case 
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where n is an invariant molar flux of reagents. Process 
efficiency ζ is defined as power yield per molar flux, n, 
i.e.,                                           

'2'1/ µµζ −== np          (35) 
 
This efficiency is identical with the chemical affinity of 
the reaction in the active part of the system. While ζ is 
not dimensionless, it correctly describes the system. 
    For a steady engine, the following function defines 
the chemical efficiency in terms of fuel flux n and mole 
fraction x (Fig. 3) 
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Figure 3. Fuel flux n in terms of the efficiency of power 
production ζ  in a chemical engine.  
 
Slika 3. Tok goriva n u pogledu učinkovitosti proizvodnje 
energije ζ  u kemijskom motoru. 
 
    Equation (36) shows that an effective concentration 
of the reactant in the upper reservoir  x1eff = x1 – g1

-1n is 
decreased, whereas an effective concentration of the 
product in the lower reservoir x2eff = x2 + g2

-1n is 
increased due to the finite mass flux. Therefore 

 , 
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efficiency ζ decreases nonlinearly with n. When the 
effect of resistances is ignorable or flux n is very small, 
reversible efficiency, ζC, is attained.  
    The power function, described by the product ζ(n)n, 
exhibits a maximum for the finite value of the fuel flux, 
n.  
    Application of Eq. (36) to an unsteady system leads 
to the functional of an integral work  
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(X=x/(1-x).). Some particular properties of this 
functional can be deducted from the constancy of the 
Hamiltonian function. For low rates and large 
concentrations X  (mole fractions x1 close to the unity) 
the optimal relaxation rate is approximately constant. 
Yet, in an arbitrary situation rates are state dependent to 
preserve the constancy of Hamiltonian H in Eq. (37). 
However, getting a complete solution for the maximum 
of the integral (37) requires the use of numerical 
approaches which usually apply Bellman’s method of 
discrete dynamic programming. 
    The discrete path optimality condition is represented 
by Bellman’s recurrence equation  
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with the control u=dXn/dτ1 and the extended state vector 

),(~ nnn tX≡x . The one stage profit Dn is the discrete 
representation of the integrand in Eq. (37). Low 
dimensionality of the state vector   assures a good 
accuracy of the DP solution. Moreover, this accuracy 
can still be improved by introducing a Lagrange 
multiplier associated with the elimination of the time 
variable from the set of state variables. The accuracy of 
numerical results is then excellent. Numerical issues 
associated with the application of discrete models 
describing power systems are discussed in detail in [3]. 
     The corresponding cascade scheme, which illustrates 
the principle of calculations for the power maximization 
in the chemical engine, is presented in Fig. 4. 
    Extensions of Eq. (36) are available for multireaction 
systems [12].  
 

 
  
Figure 4. A cascade scheme for the calculation of the 
dynamical chemical engine by Bellman’s method of dynamic 
programming. 
 

Slika 4. Kaskadna shema računanja dinamičkog kemijskog 
motora Bellmanovom metodom dinamičkog programiranja. 
 
10. Fuel Cells as Electrochemical Engines  
 
    A fuel cell continuously transforms a part of chemical 
energy into electrical energy by consuming fuel and 
oxidant. Fuel cells (FC) are electrochemical engines. 
Their role for environmental protection cannot be 
underestimated. The main advantage of fuel cells in 
comparison to heat engines is that their efficiency is not 
a major function of device size.  
    In this paper, the power maximization approach is 
applied for the purpose of determining power limits in 
imperfect fuel cells, where power decreases with current 
because of the prevailing effect of loss phenomena in 
sufficiently large electric currents. 
    In a previous work [1] we modeled power production 
and its limits in purely thermal systems with finite rates. 
In particular, radiation engines were analyzed as 
nonlinear systems governed by laws of thermodynamics 
and transport phenomena. Temperatures T of resource 
media were the only necessary variables to describe 
these systems. However, fuel cells are more general 
systems in which both temperatures T and chemical 
potentials µk are essential. They are continuously 
working power generators propelled by fluxes of both 
energy and substances.  
    The basic structure of fuel cells includes the 
electrolyte layer in contact with a porous anode and 
cathode on either side. Gaseous fuels are fed 
continuously to the anode (negative electrode) 
compartment and an oxidant (i.e., oxygen from air) is 
fed continuously to the cathode (positive electrode) 
compartment. Electrochemical reactions take place at 
the electrodes to produce an electric current. The basic 
reaction is the electrochemical oxidation of fuel, usually 
hydrogen, and the reduction of the oxidant, usually 
oxygen. This principle makes a fuel cell similar to a 
chemical engine. In the FC process in Fig. 5, streams of 
fuel (H2) and oxidant (O2) interact; the process is 
propelled by diffusive and/or convective fluxes of heat 
and mass, transferred through the cell ‘conductances’ or 
boundary layers.  
    Power is created in the cell generator which exploits 
the fuel stream in contact with the anode and the oxidant 
stream in contact with the cathode. Both electrodes are 
separated by the electrolyte. As in thermal and radiation 
engines [4-8,13] transfer mechanisms and properties of 
conducting layers influence the rate of power yield. 
    Fuel cell systems working in the power yield mode 
are electrochemical flow engines propelled by chemical 
reactions. Their performance is determined by 
magnitudes and directions of participating streams and 
by the mechanism of electric current generation.  
   The lowering of voltage in a cell below its reversible 
value is a good measure of cell imperfection and 
operative cell efficiency.  
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Figure 5. Principle of a solid oxide fuel cell 
  
Slika 5. Princip rada gorivnog članka sa čvrstim oksidima kao 
elektrolitom (SOFC) 
 
     The goals of the FC-related sections include: (a) 
formulation of a thermo-electro-chemical model for 
imperfect fuel cells, especially for those with 
incomplete chemical conversions, (b) implementation of 
the model to simulate the behavior of high-T solid oxide 
fuel cells, (c) prediction of various losses of the voltage 
and their effect on the cell performance, and (d) 
application of fuel cell characteristics for the purpose of 
determining power limits.  
 
11. Power Generation in Fuel Cells  
 
    Knowledge of operational voltage is required to 
define a cell efficiency as the ratio χ = V/E, where E is 
the reversible cell voltage or the equilibrium cell 
potential. For power density in terms of χ one obtains 
p=iEχ or p=χ prev, which means that the efficiency is 
equal to the ratio of the actual power to the maximum 
reversible power. This definition links the fuel cell 
efficiency with the second law, and stresses the 
substantial role of the operational voltage. 
    Assume that all incoming streams (those with 
“higher” Gibbs flux Gin = G1’) represent a common 
phase of “substrates” (all system’s components in the 
state before the chemical transformation, index 1’). All 
outgoing streams (those with a “lower” Gibbs flux Gout 
= G2’) represent the common phase of “products” (all 
system components in the state after the transformation, 
index 2’). The power expression follows from entropy 
conservation and energy balance in the reversible part of 
the system. For an isothermal reactor power yield is 
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This formula shows that, in a steady isothermal process, 
the power yield of a chemical engine system is the 
difference between the input and output flux of the 
Gibb’s function [11, 14, 15].  
    We can transform Eq, (39) to a pronouncing form of 
Eq. (40), below, specific to the case of the complete 
conversion. In this case the components are numbered 
such that species 1,2 …i are substrates and species i+1, 
i+2 …m are products. The total power yield of an 
isothermal multi-reaction process is 
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Quantities jn are molar chemical fluxes of reagents, i.e. 
products of the electrode surface area F and 
heterogeneous rates, rj.  
    In the case of a complete conversion, power yield 
from the unit electrode area equals the sum of products 
of the affinity driving forces and the reaction rates 
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    Yet, the assumption about the complete 
transformation of substrates into products can be 
relaxed, and the present paper shows how this can be 
done for fuel cells. By considering chemistry of systems 
with power production and transport phenomena, one 
can quantitatively estimate the effects of incomplete 
conversions. The related formula resembles the one 
which describes the effect of the internal entropy 
production within these systems [12].  
    For a single isothermal chemical reaction, the 
corresponding power formula which generalizes Eq. 
(41) to include the effect of incomplete conversions can 
be written in the form 
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where primed quantities refer to the inputs and outputs 
of the chemically active zone which include the total 
heat flux '1Q  (involving the sensible heat flux, q1’, and 
the sum of products of partial entropies and fluxes of 
species multiplied by the temperature T). The quantity  
Π1’ is “one-way chemical affinity” attributed to 
reactants with known chemical potentials [12,14], 
whereas '1n  is (positive) chemical flux defined as the 
product of the heterogeneous reaction rate and the 
electrode area. Internal imperfection functions, Φ and Ξ, 
are respectively related to internal entropy production 
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and incomplete conversion. The fraction Ξ and 
coefficient Ψ introduced in [12] characterize the 
detrimental increase of chemical potentials of reaction 
products caused by their dilution by remaining 
reactants.  
    The power formula of Eq. (42) generalizes the 
idealized power of an “endoreversible” system (with Ξ 
= 1), in which case the difference Π1’ – Π2’ is the 
chemical affinity or –∆g. This formula is a power 
component which represents the power yield caused by 
the chemical flux n1’. In effect, electrochemical power is 
generated with non-ideal chemical efficiency ξ = 
Π1’−ΞΠ2’. For the simplest reaction, 1 ⇔ 2, the 
efficiency equals ξ =µ1’ − Ξµ2’, which is lower than µ1' 

− µ2'. 
     Effectively, in the engine mode where Ξ = <1, the 
system with internal imperfections behaves as it would 
operate with the decreased affinity of an effective value 
Π1’− ΞΠ2’. Of course, the power yield is decreased due 
to this imperfection [16, 17]. 
 
12. Effect of Transport Phenomena on 
Power Yield 
 
    Transported energy and components drive power 
generation in fuel cells. Interestingly, there exists a 
formal link between the mathematics of thermal engines 
and fuel cells. To show this link, let us begin with a 
simple chemical engine and recall that the power 
producing force in an endoreversible thermal engine 
equals T1’ – T2’, whereas the propelling force in the 
simplest chemical engine is µ1’ – µ2’. (For brevity we 
limit ourselves to the case of a simple isomerisation 
reaction A1-A2 = 0.)  
    For the bulks of the streams or reservoirs, the related 
differences of temperature and chemical potential are T1 
– T2 and µ1 – µ2. Since the deviations of T1’ and µ1’ from 
T1 and µ1 are of purely dissipative origin and the bulk 
differences T1 – T2, and µ1 – µ2 are identical with the 
“open circuit” (Carnot) values for the “active” 
differences T1’ – T2’ and µ1’ – µ2’, we may write  
 

T1’ –T2’ = T1 –T2 – Is(R1s + R2s)              (43) 
 

µ1’ – µ2’ = µ1 –µ2 – In(R1n + R2n),                (44) 
 
where Is and In are the conserved currents of entropy and 
matter flowing through the energy-generating zone of 
the system. The indices 1 and 2 refer, respectively, to 
the resistances in the “upper” and “lower” part of the 
engine system. 
    The active (power producing) driving forces 
corresponding with Eqs. (43) and (44) are the 
temperature difference and chemical affinity.  
    Total power yield is described by the formula  
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    In terms of total (summary) resistances, Eq. (45) can 
be written in the form  
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    An important problem is an extension of the above 
equation allowing an approximate evaluation of power 
limits in electro-chemical generators and fuel cells 
under the assumption of the simplest topology of 
currents flows, excluding countercurrent contacting.  
    We focus on the power generators described by the 
formalism of inert components [18, 19] rather than on 
the ionic description [20]. Within this formalism Eq. 
(45) can easily be generalized to the case of coupled 
transfer of heat, mass and electric charge in all the 
dissipative conductors of the system.  
    We assume, for simplicity, that, in the 
electrochemical case, the active (power producing) 
driving forces involve: one temperature difference, 
single chemical affinity and an operating voltage V = φ1-
φ2. (A generalization involving more affinities is 
obvious.)  
    The related power expression is 
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    This formula constitutes the simplest possible account 
of linear thermo-electro-chemical systems; indeed it 
does not contain any “topology parameter” which could 
possibly increase the power yield efficiency. We call the 
so-simplified systems “benchmark thermo-electro-
chemical systems”. They are represented by Eq. (47), 
which excludes complex configurations of flows 
contacting, such as countercurrent contacts of streams 
(that may exist in fuel cells and increase power yield 
efficiencies). Systems described by Eq. (47) satisfy 
Ohm type or Onsager type laws linking thermodynamic 
fluxes and thermodynamic forces (dissipative driving 
forces represented by products RikIk in Eq. (47)).  
    Below we shall attempt to develop a simple theory of 
power limits for so-standardized and so-simplified 
thermo-electro-chemical systems (benchmark systems). 
After introducing the enlarged vector of all driving 
potentials μ~ = (T, µ, V), the flux vector of all currents 

I~ = (Is, In, Ie), and the overall resistance tensor R~ , Eq. 
(47), can be written in a simple and concise matrix-
vector form 

                                                                                                      
IIRΙμμ ~~:~  ~).~~( 21 −−=p    (48) 
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13. Power Limits in Thermal Systems and 
Fuel Cells 
 
    While the dimensionality of the potential vector μ~  
will certainly be much larger in some real systems, the 
structure of Eq. (48) will be preserved whenever this 
equation will be considered in the vector form.  
     Maximum power corresponds with the vanishing 
partial derivatives  

                                                 
0~.~ 2 ~~ ~/ 21 =−−=∂∂ IRμμΙp   . (49) 

 
Therefore, the optimal (power-maximizing) vector of 
currents at the maximum point of the system can be 
written in the form 

                                       

Fmp IμμRI ~
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21
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    The above result means that in the strictly linear 
systems the power-maximizing current vector mpI~ is 
equal to one half of the purely dissipative current at the 
Fourier-Onsager point, 

mpI~ . The latter point refers to the 
system’s state at which no power production occurs. 
    Consistently, Eqs. (48) and (50) yield the following 
result for the maximum power limit of the system 
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    In terms of the purely dissipative flux vector at the 
Fourier-Onsager point, FI~ , the above limit of maximum 
power is represented by the equation 
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    On the other hand, power dissipated at the Fourier-
Onsager point equals 

                                                  
 ~~:~

FFFp IIR= .                              (53) 
 
    Comparison of Eqs. (52) and (53) proves that, in the 
considered benchmark thermo-electro-chemical 
systems, only 25% (at the most) of power dissipated in 
the natural transfer process can be transformed into the 
noble form of the mechanical power. This is a result 
which, probably, cannot easily be generalized to 
nonlinear transfer and complex flow systems and those 
fuel cells in which countercurrent contacts of flows 
prevail (in the latter systems the considered efficiencies 
of power yield can be much higher than 25%).  

    The above analysis proves that a link exists between 
the mathematics of thermal engines and fuel cells, and 
also that the theory of fuel cells can be unified with the 
theory of thermal and chemical engines. Yet the 
topological differences of both systems may 
occasionally render both of them quite dissimilar. 
 
14. Some Experimental Data for Fuel Cells 
 
    Already the forms of Eqs. (47) and (48) are sufficient 
to claim that the thermal force formula and the power 
formula for the thermal engine are similar to the voltage 
and power formulae in the fuel cell system. In this spirit, 
we present a brief analysis of some experimental data.  
    The lowering of voltage in fuel cells below the 
reversible voltage is a good measure of their 
imperfection. Yet we need to distinguish between 
Nernst ideal voltage E0 and/or the idle run voltage, E0. It 
is the latter quantity from which all rate dependent 
losses of voltage should be subtracted. A number of 
approaches for calculating these polarization losses have 
been reviewed in literature by Zhao, Ou and Chen [16].  
The details of calculations of the idle run voltage E0 are 
thoroughly discussed by Wierzbicki [17] who has 
implemented the Aspen PlusTM software to investigate 
the behavior of the SOFC-based energy system using 
his own theoretical model of power yield kinetics. His 
calculations were compared with the experimental 
findings of the voltage and power in a laboratory FC 
system. 
    In some situations the difference between E0 and E0 is 
a current independent loss which may be described by 
the fraction Ξ  characterizing the detrimental increase of 
chemical potentials of products caused by their dilution 
by un-reacted substrates. With the concept of effective 
nonlinear resistances the operating voltage can be 
represented as the departure from the idle run voltage E0 
(the quantity which replaces the reversible voltage E0 in 
more involved situations)   
 
         V = E0 - Vint= E0 -Vact -Vconc - Vohm   

         = E0 - I(Ract + Rconc + Rohm)                       (54) 
 
(Note the analogy between this equation and Eqs. (46) 
and (47)). The losses, called polarization, include three 
main sources: activation polarization (Vact), ohmic 
polarization (Vohm), and concentration polarization 
(Vconc). They refer to the equivalent activation resistance 
(Ract), equivalent ohmic resistance (Rohm), and 
equivalent concentration resistance (Rconc). 
    Activation and concentration polarization occur at 
both anode and cathode locations, while resistive 
polarization represents ohmic losses throughout the fuel 
cell. Activation polarization Vact is neglected in the 
model of ref. [17], nonetheless the power curve is 
typical.  
    As the voltage losses increase with current, the 
initially increasing power begins finally to decrease for 
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sufficiently large currents, so that the maxima of power 
are observed (Fig. 6). The data include the losses of the 
idle run attributed to the flaws in the electrode 
constructions and other imperfections which result in a 
static open circuit voltage that is in reality lower than E0 
. 
    Moreover, in the literature there are many other 
experimental and theoretical examples showing power 
maxima in fuel cells and proving the suitability of the 
thermal machine theory to chemical and electrochemical 
systems. 
    The voltage equation used in Wierzbicki’s SOFC 
calculations is: 
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where a limiting current is defined by the equation 
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in which C1 is an experimentally determined parameter.  
    Power density is simply the product of voltage V and 
current density i 

Vip  = .   (57) 
     In an ideal situation (no losses) the cell voltage is 
defined by the Nernst equation. Yet, while the first term 
of Eq. (55) defines the voltage without load, it 
nonetheless takes into account the losses of the idle run, 
caused by flaws in electrode constructions and other 
imperfections. They decrease the open circuit voltage 
below the theoretical value. The losses include ohmic 
polarization and concentration polarization. 
 

 
Figure 6. Voltage-current density and power-current density 
characteristics of the SOFC for various temperatures. 
Continuous lines represent the Aspen PlusTM calculations in 
testing the model versus the experiments. The lines were 
obtained in Wierzbicki’s MsD thesis supervised by S. 
Sieniutycz and J. Jewulski [17]. Points refer to experiments of 
Wierzbicki and Jewulski at the Warsaw Institute of Energetics 
(Wierzbicki [17], and his ref. 18).  
 

Slika 6. Karakteristike napona, gustoće struje i gustoće snage 
kao međusobne funkcije (napon-gustoća struje i gustoća 
struje-gustoća snage) na raznim temperaturama u gorivnom 
članku (SOFC). Kontinuirane linije predstavljaju Aspen 
PlusTM račune testiranja modela usporedno s eksperimentom. 
Linije su pronađene u Wierzbickievom doktorskom radu 
pisanom uz mentorstvo S. Sieniutycza i J. Jewulskija [17]. 
Točke se referiraju na pokuse Wierzbickija and Jewulskija na 
Varšavskom institutu za energetiku (Wierzbicki [17], i 
njegove ref.. 18). 
 
    The second term of Eq. (55) quantifies ohmic losses 
associated with the electric resistance of electrodes and 
flow resistance of ions through the electrolyte. The third 
term refers to mass transport losses. Quantity iL is the 
particular current density arising when the fuel is 
consumed in the reaction with the maximum rate. 
    Curves of power density of a SOFC fuel cell for 
varying hydrogen content in the fuel were also obtained 
by experiments of M. Blesznowski and A. Zieleniak in 
the Fuel Cell Department at the Institute of Power 
Engineering [21]. These data were applied for the 
purpose of the validation of the SOFC thermodynamic 
model in Blesznowski’s forthcoming PhD thesis, 
supervised by the present author.   
 
15. Conclusion 
 
    The models developed in this paper describe the 
physical and chemical performance of thermal machines 
and irreversible fuel cells under various operating 
conditions. Lowering of thermal efficiencies is 
attributed to differences between the temperatures and 
chemical potentials in the bulks and their counterparts in 
the circulating fluid.  
    Similarly, lowering of the SOFC efficiency is linked 
with polarizations (activation, concentration and ohmic) 
and incomplete conversions. The effect of incomplete 
conversion has been modeled assuming that substrates 
can remain after the reaction and that side reactions may 
occur. 
    Optimum and feasibility conditions have been 
obtained for a fuel cell, and discussed for some input 
parameters such as efficiency, power output, and 
electric current density of the cell.  
    Calculations of optimal power show that the data 
differ for power generated and consumed, and depend 
on the parameters of the system, e.g., current intensity, 
number of mass transfer units, polarizations, electrode 
surface area, average chemical rate, etc. These data 
provide bounds for SOFC energy generators, which are 
more exact and informative than the reversible bounds 
for electrochemical transformation. 
    The power production bounds (limits) obtained in this 
paper are enhanced in comparison with those predicted 
by classical thermodynamics. As opposed to classical 
thermodynamics, these power bounds depend not only 
on changes of the thermodynamic state of participating 
resources but also on process irreversibilities, process 
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direction and the mechanism of heat and mass transfer. 
In fact, this research provides enhanced power bounds.  
    In thermostatics, the bound on the work produced 
coincides with that on the work consumed. The 
generalized thermo-kinetic bounds, obtained here, are 
stronger than those predicted by thermostatics. Only for 
infinitely long durations or for processes with excellent 
transfer (an infinite number of transfer units) the 
thermokinetic bounds reduce to the classical 
thermostatic bounds. 
    The general theoretical framework of the present 
paper is consistent with the ideas developed in the fields 
called “finite time thermodynamics” and “entropy 
generation minimization”, as presented, for example, in 
the books by de Vos [7], Sieniutycz and Jeżowski [14], 
Bejan and Mamut [22] and others. Occasionally, this 
framework may involve classical exergy analyses such 
as those presented in the books by Szargut, Morris and 
Steward [23], Dincer and Rosen [24] and other sources 
of this sort. We also would like to point out some of the 
related papers already published in the present journal 
(Strojarstvo, [25]), which deal with the numerical 
investigation of the effects of porous properties on the 
performance of fuel cells and which can provide further 
valuable information regarding  that subject in the 
present work. 
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