

THE ROLE OF OWNERSHIP AND SOCIAL IDENTITY IN PREDICTING

DEVELOPER TURNOVER IN OPEN SOURCE SOFTWARE PROJECTS

by

Pratyush Nidhi Sharma

B.E. Computer Science, VTU, India, 2005

M.S. Computer Science, SUNY at Buffalo, 2008

Submitted to the Graduate Faculty of

Joseph M Katz Graduate School of Business in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/16751949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

UNIVERSITY OF PITTSBURGH

JOSEPH M KATZ GRADUATE SCHOOL OF BUSINESS

This dissertation was presented

by

Pratyush Nidhi Sharma

It was defended on

July 22
nd

, 2013

and approved by

Brian Butler, PhD, Associate Professor, University of Maryland

John Hulland, PhD, Professor, University of Georgia

Kevin Kim, PhD, Associate Professor

Sherae Daniel, PhD, Assistant Professor

 Thesis Director: Dennis Galletta, PhD, Professor

iii

Copyright © by Pratyush Nidhi Sharma

2013

iv

Open source software (OSS) development methodology that promises to produce reliable,

flexible, and high quality software code, at minimal cost, by harnessing the power of distributed

peer review and transparency of process and has become increasingly popular in the past few

years. For-profit companies have increasingly adopted the OSS paradigm to produce quality

software at low cost. A vast majority of OSS projects depend on voluntary contributions by

developers to sustain their development. In this context, turnover of developers has been

considered a critical issue hindering the success of projects. This dissertation develops two

studies addressing the issue. The first study is a methodological pilot and lays the foundation of

this research by focusing on modeling turnover behavior of core open source contributors using a

logistic hierarchical linear modeling approach. It argues that argue that taking both the developer

and the project level factors into account will lead to a richer understanding of the issue of

turnover in open source projects. The second study provides a conceptual integration of

developer and project level factors using the Ownership, Role theory and Social Identity

literatures, and proposes testable hypotheses, methods and findings. The implications of this

research are likely to benefit OSS managers in understanding the developer and project level

factors associated with developer turnover and the contexts in which they interact.

THE ROLE OF OWNERSHIP AND SOCIAL IDENTITY IN PREDICTING

DEVELOPER TURNOVER IN OPEN SOURCE SOFTWARE PROJECTS

Pratyush Nidhi Sharma, PhD

University of Pittsburgh, 2013

v

TABLE OF CONTENTS

PREFACE .. 9

1.0 INTRODUCTION .. 10

2.0 STUDY 1: EXAMINING TURNOVER IN OPEN SOURCE SOFTWARE

PROJECTS USING LOGISTIC HIERARCHICAL LINEAR MODELING

APPROACH .. 19

2.1 THEORETICAL BACKGROUND .. 20

2.1.1 Developer Level Factors ... 20

2.1.2 Project Level Factors .. 22

2.2 METHODOLOGY ... 23

2.2.1 Developer Level Variables ... 23

2.2.2 Project Level Variables .. 25

2.3 STATISTICAL MODELS AND RESULTS .. 26

2.3.1 Logistic Models ... 27

2.3.2 HLM Models ... 29

2.3.3 Unconditional Model .. 29

2.3.4 Conditional Model .. 30

2.4 LIMITATIONS AND FUTURE DIRECTIONS ... 32

2.5 CONCLUSION ... 33

3.0 STUDY 2: THE ROLE OF OWNERSHIP AND SOCIAL IDENTITY IN

PREDICTING DEVELOPER TURNOVER IN OPEN SOURCE SOFTWARE

PROJECTS .. 34

3.1 INTRODUCTION... 34

vi

3.2 LITERATURE REVIEW .. 35

3.2.1 Employee Ownership ... 35

3.2.2 Social Identity Theory .. 37

3.3 HYPOTHESES DEVELOPMENT .. 39

3.4 DATA AND MEASURES .. 44

3.4.1 Sample Inclusion Criteria .. 45

3.4.2 Developer Level Variables ... 47

3.4.3 Project Level Variables .. 51

3.4.4 Project Level Control variables: ... 52

3.5 METHODOLOGY ... 58

3.6 MODELS AND RESULTS .. 63

3.6.1 Unconditional (Null) Models.. 63

3.6.2 Conditional Models... 65

3.7 LIMITATIONS AND FUTURE WORK .. 76

4.0 OVERALL CONTRIBUTIONS ... 78

BIBLIOGRAPHY ... 81

vii

LIST OF TABLES

Table 1. Descriptive Statistics and Correlations ……………………………………………. 27

Table 2. Predicted odds of turnover …………………………………………….………… 28

Table 3. Unconditional Model……………………………………………….…………….… 29

Table 4. Conditional Model ………………………………………………………………… 31

Table 5. Level-1 Descriptive Statistics (Developer Level). N=29496 ……………………… 55

Table 6. Level-2 Descriptive Statistics (Project Level). N=446…………………………… 56

 Table 7. Correlations Among Developer Frequency, Recency, P(Alive) and P(Dead) …… 57

Table 8. Typical examples of developer Recency, Frequency and PALIVE ……………… 58

Table 9. Correlations among Level-1 Predictors and VIF values…………………………. . 61

Table 10. Correlations among Level-2 Predictors and VIF values…………………………. 62

Table 11. Unconditional (Null) Models with DV observed over 90, 180 and 270 day periods 64

Table 12. Results of HLM estimation ……………………………………………………… 68

Table 13. Summary for Hypothesized Relationships ………………………………………… 79

viii

LIST OF FIGURES

 Figure 1. Sample Inclusion Process …………………………….…………………………… 47

Figure 2. Unconditional (Null) Models……………………….……………………………… 63

Figure 3. MODEL 2: One way ANCOVA with Random Effects (main effects) …………… 66

Figure 4. MODEL 3: One way ANCOVA with Random Effects (interaction effects) ……… 71

Figure 5. MODEL 4: Intercepts-as-outcome ………………….……………………………… 73

Figure 6. MODEL 5: Intercepts-as-outcome ………………….……………………………… 75

ix

PREFACE

We wish to express our deepest gratitude to the committee members, Dr. Dennis Galletta, Dr.

Brian Butler, Dr. John Hulland, Dr. Kevin Kim and Dr. Sherae Daniel, for their invaluable

guidance throughout. Special gratitude is reserved for Dr. Rachel Chung, Dr. Richard Moreland

and Ms. Carrie Woods. Without the help of this exceptionally kind group of people, this thesis

would not have been possible. Finally, we wish to thank the Joseph M. Katz Graduate School of

Business and the University of Pittsburgh for providing a stimulating and supportive atmosphere.

x

1.0 INTRODUCTION

Open Source is a software development methodology that promises to produce reliable, flexible,

and high quality software code, at minimal cost, by harnessing the power of distributed peer

review and transparency of process, thereby preventing predatory vendor lock-in
1
. In addition to

the access to source code, Open Source Software (OSS) must meet the criteria of, among others,

free redistribution, ability to modify the source code and create modified works
2.

 The OSS

phenomenon has been of great interest to the field of Information Systems since it has emerged

as a viable and successful alternative to the conventional forms of software production that have

traditionally been the focus of the field.

The existing research in OSS can be broadly organized in three streams. The first stream

of research has focused on the motivations of OSS participants to contribute, especially since

participants may not receive any financial compensation for their efforts. This research has

established that participants are motivated due to a variety of reasons including the need for

software, enjoyment, learning, altruism, ideological commitment, peer recognition and reputation

building (e.g. Feller et al. 2005; Lakhani and Wolf 2003; Shah 2006). A second stream of

research has studied the coordination mechanisms, decision making and management practices

1
 http://opensource.org/

2
 http://opensource.org/docs/OSD

http://opensource.org/
http://opensource.org/docs/OSD

xi

prevalent in OSS (e.g. O’Mahony and Ferraro 2007; Mockus et al. 2003; Crowston et. al. 2005).

Finally, the third stream of existing research has focused on the quality and success of the end-

product (i.e. software) and the socio-technical factors affecting it (e.g. Crowston et al. 2006;

Chengalur-Smith et al. 2010; Setia et. al. 2010; Grewal, et al. 2006, Singh 2010, Singh, et al.

2011; Daniel et. al. 2012).

Open Source Software communities are often cited as prime examples of modern, online,

community based forms of production that have been recognized by organizational theorists as

alternatives to the traditional market and hierarchical forms of organization and production

(O’Mahony and Ferraro, 2007). Such communities depend on voluntary contributions to create

software either for public or private benefit (von Hippel and von Krogh, 2003), shun bureaucracy

and authoritarian forms of governance (Rothschild-Whitt, 1979), and encourage democratic

participation of members involved in production (Rothschild and Russell, 1986). A critical issue

in this context therefore, is how to organize the production of software by directing individuals’

efforts toward a common goal without any contractual or hierarchical reinforcement (O’Mahony

and Ferraro, 2007). Furthermore, it is not trivial to align individual motives and goals with a

common objective (March and Simon, 1958), and hence achieve efficiency in software

production. Such democratic forms of organization face difficulty in decision making and

coordinating and most importantly, in sustaining member activities. Thus, it is essential to create

and nurture a consensual basis of authority to facilitate the management and direction of

development and sustain developer interest and commitment (O’Mahony and Ferraro, 2007).

This issue assumes an even critical importance in the light of the fact that most OSS projects fail

to develop due to a lack of a critical mass of developers needed for sustained development

(Chengalur-Smith et. al., 2010).

xii

Indeed, developer turnover in Open source software (OSS) projects is a non-trivial issue

because of the frequency with which it occurs and its negative impact on project performance.

Turnover is specified as voluntary job termination (Sheridan 1985) or more simply as an

employee leaving a current job (Fields et al. 2005). Robles and Gonzales-Barahona (2006)

analyzed the evolution of some OSS projects (e.g., GIMP, Mozilla) over 7 years and found that

these projects suffered from yearly turnover in core development teams and had to rely heavily

on regeneration. Similar results on turnover were reported by von Krogh et al. (2003) in their

analysis of the Freenet project.

Turnover has been recognized as a critical issue in organization research due to its

adverse effects on firms’ productivity levels (e.g. Ton and Huckman 2008; Shaw 2011).

Turnover is also a critical problem in software development projects because it can lead to

schedule overruns (Collofello et al. 1998) and regenerating teams is a complicated issue (Reel

1999). Regeneration is challenging in OSS development because of the “contribution barrier”

where newcomers face difficulty in acclimatizing themselves with the complex architecture of

the project (Crowston et al. 2004; von Krogh et al. 2003). Once participants overcome this

contribution barrier, it is in the best interest of the project to retain them. Therefore, there is

intense competition for participants among OSS projects (Ahokas and Laurila 2004;

Krishnamurthy 2005).

Past research has studied how OSS communities evolve organization structures for better

effort management and coordination (O’Mahony and Ferraro, 2007; Mockus et al. 2002; von

Krogh et al., 2003). This body of research has consistently pointed to the gradual introduction of

ownership (access to rights) to developers based on meritocracy and expertise. Developers

generally start contributing as peripheral members and are accorded progressively higher set of

xiii

rights, duties and ownership of code modules based on their demonstration of commitment and

expertise
3
. Google Code for example, allows developers to be owners (co-owners), committers

and contributors
4
. Thus, owners may be “sole owners” or “part owners” depending upon the

ownership structure within the project. The owners enjoy the highest levels of rights and have the

ability to control the project structure, code and workforce. Committers’ rights are restricted to

making changes to the code, but not controlling the overall structure of the code or the

workforce. Contributors on the other hand, may only comment and point out issues; however

their rights may be upgraded and they may be allowed to make code commits. Such an

organization allows the module owners to oversee the efficient development of code and grant

rights and duties to developers to make changes to the code.

However, the impact of the organization structure of OSS communities on member

retention is an often a neglected area of work in OSS research. The implicit assumption in the

existing OSS studies is that ownership provides prestige to the owners and makes them more

committed, but what has not been studied is under what conditions do we expect to see such

positive effects of developer ownership levels on their attitudes such as turnover. Expecting a

simple positive main effect of ownership level on retention, however, may be too simplistic due

to the complex nature of the ownership construct and the novelty of the OSS context, as we

outline below.

3
 Different projects may follow different strategies to accord ownership rights. Apache project for example,

follows an emergent ownership structure where some participants emerged as “de facto” owners of modules through

their continued code development and commitment to a module. Mozilla on the other hand, follows an “enforced”

ownership strategy where every change to the code is reviewed by the module owner (Mockus et al. 2002).

4
 http://code.google.com/p/support/wiki/Permissions

http://code.google.com/p/support/wiki/Permissions

xiv

Sociology, Psychology and Organizational Behavior literature have studied the issue of

formal and psychological ownership as an organizational arrangement and employee

participation. Since the 1970s, there has been continued interest in employee ownership,

anchored in the hope that it would promote favorable worker attitudes, strengthen industrial

democracy and enhance firm performance (Pierce and Rodgers, 2004). On the one hand,

researchers following the macro-tradition in this area have tended to focus on the positive effects

of employee ownership on firm level outcomes such as productivity. On the other hand,

researchers following the micro-tradition have treated the individual as the level of analysis and

have sought to observe a simple main effect of level of ownership (equity or share stakes) and

their level of performance (Pierce and Rodgers, 2004). These models suggest that this

ownership-performance relationship is an outgrowth of, among other things, economic incentives

(Conte and Svejnar, 1990) and favorable employee-owner attitudes (Long, 1980). However, in

contrast to positive effect models, there are models that have reported negative effects mainly

due to increased monitoring costs and the free-rider effect (Blasi et al. 1996; Conte and Svejnar,

1990).

In addition, the ownership literature does not offer concrete evidence and the process

involved that can help differentiate among the effect of sole ownership and co-ownership on

employee performance. On the one hand, it may be argued that the effect of sole ownership on

developer retention rates may be greater than the effect of co-ownership because sole ownership

allows for a greater degree of control, authority, and sense of responsibility. Along similar lines,

Wagner and Rosen (1985) argued that as the actual amount of ownership increases, the

incentives associated with making the project may also increase. On the other hand, Long (1978)

argued that when ownership leads to an integration of an employee in the organization,

xv

performance (and hence retention rates) should increase as a result of peer pressure, motivation

and cooperative behaviors. This suggests that the effect of co-ownership on retention rates occur

possibly due to different mechanisms (e.g. peer pressure) than sole ownership. Therefore, it is

unclear whether we may expect greater effects of sole ownership on retention rates as compared

to co-ownership (or vice-versa) and under which conditions. Overall, Pierce and Rodgers (2004)

note that the effects of ownership on employee attitudes are mixed and depend to a great extent

on contextual effects.

In the OSS context, a critical component of the traditional perspective on ownership-

performance relationship (economic incentive) is attenuated or missing, since most developers

work voluntarily on projects without any financial compensation. Additionally, the traditional

ownership models have assumed that an employee works for a given company. However, in the

OSS context developers are not restricted to maintain their association to only a single project at

any given time. Hence developers may simultaneously be involved in multiple projects and may

have different ownership levels in each. Therefore, assuming homogeneity among developers

based on their ownership levels in the project may provide an inaccurate picture. In addition,

each project may have different characteristics that may impact developers’ willingness to

maintain the association with the project. For example, projects may differ on the ratio of

number of owners and the number of developers. Given these issues, we argue that OSS research

needs to study the effect of ownership levels on developer turnover under the varying contextual

surroundings of developer level and project level characteristics.

The existing research on OSS developer motivation has tended to focus on the

explanation of developer activity levels using either the individual perspective (Hars et al. 2003;

Hertel et al., 2003) or the project perspective (Stewart and Gosain 2006; Stewart et al. 2006).

xvi

Empirically, however, since OSS participants are embedded in (often multiple) projects it is

important to relate the characteristics of individuals and the characteristics of projects in which

they function. Previous studies have neglected this important distinction (however, see Setia et.

al., 2010 for an exception).

Disaggregating all project level variables in an individual level analysis may lead to the

violation of the assumption of independence of observations, since all developers will have the

same value on each of the project variables. On the other hand, aggregating developer level

variables to a project level analysis may lead to unused within group information (Raudenbush

and Bryk 2002). Including project level variables in a developer level model is likely to create

aggregation bias, which can underestimate the effects of variables that are estimated at the

inappropriate level. While including aggregated values of developer level variables in a project

level model may fail to fully capture the effects of certain variables (Rumberger 1995). None of

the research studies have attempted to model turnover behavior in OSS in a comprehensive

fashion taking into account both the developer level and project level factors.

In addition, OSS developers do not work in vacuum; rather they work in a very dynamic

environment and may fluidly move across multiple projects, contribute and play different roles in

them simultaneously. Therefore, it is reasonable to expect that both the ownership levels and the

project level characteristics may determine developers’ interactions with projects.

Past research has convincingly established the adverse impacts of developer turnover on

the performance of software projects (Hall et al. 2008, Abdel-Hamid, 1992). However, we are

interested in exploring the inverse relationship, i.e. whether the performance of a software

project itself may contribute to developer turnover. If this is so, then this may create a feedback

xvii

mechanism through which the prospect of sustaining the project may quickly spiral down. In

Psychology literature, Social Identity Theory (SIT) posits that people tend to classify themselves

and others into various social categories such as group membership, religious affiliation etc

(Tajfel and Turner, 1985). Such a social classification allows an individual to define him or

herself in the social environment. Thus, social identification is the perception of oneness or

belongingness to some human aggregate and results in the individual perceiving the fate of a

group as their own. SIT maintains that the need for a positive identity among individuals

produces strong reactions when that identity is threatened, such as in the case of group failure.

When the social identity is unsatisfactory, individuals will either strive to leave their existing

group and join some more positively distinct group or make their group more positively distinct

by contributing (Tajfel and Turner, 1985). Thus, SIT proposes a theoretical mechanism to test

the effect of project (group) performance on the mean turnover rate. Therefore, using the

Ownership literature and the Social Identity Theory (Tajfel and Turner, 1985), we hope to

address the following broad research questions:

 How does a developer’s ownership level influence turnover from a given open

source project, given that a developer may appear in multiple projects at once?

 What other developer level factors moderate the relationship between developer’s

ownership level and turnover from a given project, given that a developer may appear in multiple

projects at once?

 Does project level success or failure moderate the relationship between

developer’s ownership level and turnover from a given project, given that a developer may

appear in multiple projects at once?

xviii

The dissertation is organized as follows. In the next section, we develop a methodological

pilot study that focuses on modeling turnover behavior of core open source contributors using a

logistic hierarchical linear modeling approach. Here, we argue that taking both the developer and

the project level factors into account will lead to a richer understanding of the issue of turnover

in open source projects. This study allowed us to explore whether there exist significant variation

in turnover among OSS projects and whether this variation may be explained using developer

and project level characteristics. We note the implications and deficiencies in this pilot study and

propose that further enhancements leading to a conceptual integration of developer and project

level factors in modeling turnover would lead to a richer understanding rather than just an

empirical integration.

In the second (main) study we explore such a conceptual integration using the Ownership

and Social Identity Theory literatures, propose testable hypotheses, and describe the empirical

methodology and results. This study also compares some alternative ways to measure turnover.

Finally, we conclude with the weaknesses, and overall research and practical implications of this

thesis.

xix

2.0 STUDY 1: EXAMINING TURNOVER IN OPEN SOURCE SOFTWARE PROJECTS

USING LOGISTIC HIERARCHICAL LINEAR MODELING APPROACH
5

This pilot study develops a model of turnover behavior in OSS. The analysis focuses on two

levels: the developer level, which examines factors that may affect developers’ decisions to

become inactive, and the project level, which examines the factors that may influence the rates of

turnover among projects. Specifically, we hope to address the following research questions:

 Do the open source projects vary in their mean turnover rates (intercepts)?

 What developer level factors influence turnover from open source projects?

 What project level factors influence the mean turnover rates among projects?

Answering these questions allows us to motivate our larger goal of studying turnover in

OSS. In what follows, we present a brief theoretical background of the developer and project

level factors that may affect mean turnover rates among projects. This is followed by the

methodology section where we outline the empirical methods used in the study and present the

preliminary results. Finally we conclude by noting the limitations of this work and suggesting the

steps we intend to take in the future to further improve this study.

5
This pilot study has appeared as the following book chapter: Sharma, P.N., Hulland, J. and Daniel, S.

"Examining Turnover in Open Source Software Projects Using Logistic Hierarchical Linear Modeling Approach,"

in I. Hammouda et. al. (Eds): Open Source Systems: Long Term Sustainability, IFIP Advances in Information and

Communication Technology (OSS 2012), v. 378, pp. 331-337, Springer Berlin Heidelberg, 2012.

xx

2.1 THEORETICAL BACKGROUND

Research on participation in OSS projects has mainly focused on two different levels of analysis.

The first, focusing on individual level addresses the general question: What factors motivate

developers to contribute to projects? A second strand of research focuses on the project level

factors. The focus of this research has been: What project level characteristics explain activity

levels in projects? Past studies have tended to focus on one level or the other, but in order to

understand why there is such widespread turnover in OSS projects, it is necessary to consider

both perspectives (Rumberger 1995). In what follows, we describe the developer level and

project level factors that may influence turnover behavior in OSS projects.

2.1.1 Developer Level Factors

Central to our discussion of the developer perspective is the notion of contribution barrier (von

Krogh et al. 2003). If the developer does not have the required knowledge and skills to contribute

to the project then the effort level required by him/her increases. In their study of Freenet, von

Krogh et al. (2003) found that among other skills the knowledge of the programming language

also erected barriers for beginning participants. They confronted the need to learn the language

before they could contribute, thereby increasing the effort required. The knowledge of software

architecture and the development processes also raise this barrier (Crowston et al. 2004). If the

cost of effort required to contribute to the project is excessively high as perceived by the

participant, s/he may not be motivated to continue contributing to the project. As per Crowston

and Fagnot (2008), the higher the domain knowledge of the developer, the lesser is the effort

xxi

needed to contribute and higher the motivation. If an employee (or an OSS participant) does not

have the requisite resources to meet the demands of the organization (or an OSS project) his/her

performance will suffer and s/he is more likely to quit (Kristof-Brown et al. 2005). Developers

with longer tenure are more likely to have scaled contribution barrier because they have had

more time to develop programming skills and to acclimatize themselves with the complex

architecture of the project and its requirements. Therefore we expect that developers with longer

tenure are more likely to remain active in projects.

Furthermore, the higher the number of projects the developer is contributing to, the more

is the effort required to scale the contribution barriers erected by different projects. However, it

may also allow them develop broader and more portable skills. Even so, working on multiple

projects at one time places more demands on developers in terms of their attention and the time

spent contributing. Therefore, we expect that developers who contribute to more number of

projects are more likely to become inactive.

Finally, projects employ developers performing different activities ranging from clerical

to highly intellectual (von Krogh et al. 2003). Since enjoyment in programming is an important

motivator for OSS developers to contribute (Shah 2006), the role of the developers is likely to

influence their decisions to remain active in the project. Roles requiring intellectually

challenging tasks may be more motivating for developers to contribute and to remain active in a

project than roles with more mundane responsibilities.

xxii

2.1.2 Project Level Factors

We focus on two project level factors that may affect developers’ perception of the vitality of the

project – project age and project size. Our argument relies on the notions of the liability of

newness and the liability of smallness of OSS projects (Chengalur-Smith et al. 2010). The

liability of newness suggests that a newer project will be perceived as less legitimate because it

has had less time to establish clear governance procedures such as recruitment strategies, rules

for peer review process and conflict resolution. In addition such a project has had less time to

establish its credibility among the developers and the supporting social network structure, such

as a helpful user community, that may submit bug reports and feature requests (Chengalur-Smith

et al. 2010). Such projects may find it difficult to retain developers. On the other hand, the

projects that have had more time to mature may be in more advanced stages of development and

more active (Crowston and Scozzi 2002). Such mature projects may appeal to the developers

given their greater activity and vitality (Choi et al. 2010). Therefore, we expect older projects to

have lower mean turnover rates.

OSS projects are also likely to be susceptible to the liability of smallness which suggests

that smaller projects may be perceived as having less pragmatic legitimacy resulting in a

difficulty to attract and retain developers (Chengalur-Smith et al. 2010). Size of the developer

base is also important in attracting additional collaborators as it may be considered a sign of

vitality of the project (Choi et al. 2010). Larger projects with more developers may provide more

opportunities for learning and building reputation for developers along with giving them a sense

of importance of the project (Chengalur-Smith et al. 2010). Therefore we expect larger projects

to have lower mean turnover rates.

xxiii

2.2 METHODOLOGY

To explore and explain the nature and impact of a developer and project variables on turnover,

we used archival data. The sample of projects and participants was drawn from SourceForge

(www.SourceForge.net). SourceForge provides open source developers with a centralized place

to manage their development and includes communication tools, version control processes, and

repositories for managing source code. It is one of the largest open source repositories, estimated

to host over 168,000 projects (Madey and Christley 2008).

The sample contained data for 40 currently active projects on SourceForge and 201

developers. The projects were chosen on the basis of their overall activity levels (SourceForge

provides a list of projects that have been most active during their development). All the selected

projects had to be currently active (i.e. at least one developer currently working on them) and

have CVS/SVN repositories on SourceForge that could be mined for developer activity levels. In

many instances projects had separate websites and hosted their CVS/SVN repositories outside

SourceForge. In other cases projects did not provide all the data that we needed. Such projects

were dropped from our data set. SourceForge also provides a webpage for each developer which

contains information about developers’ joining date, current activity, projects that they contribute

to and their roles in the projects.

2.2.1 Developer Level Variables

The following five developer level (level 1) variables, including the outcome variable, turnover,

were collected –

http://www.sourceforge.net/

xxiv

 Turnover – We scanned for developer activity on CVS/SVN code repositories of the

projects. Each project maintains such a code repository that contains the complete history

of its development. The code repository can be scanned for individual developer activity

history. Turnover was operationalized as a binary outcome variable. A developer was

deemed active, coded as 0, if at least one CVS/SVN commit was made by him/her in a 2

month period (March 25th 2010 to May 25th 2010). On the other hand, s/he was deemed

inactive, coded as 1, if s/he had made no commits to the code repository in that period.

Since it is difficult to predict when turnover has happened, such an approach is

reasonable. Joyce and Kraut (2006) also followed a similar approach in their study of

turnover from online newsgroups, however they chose an observation period of six

months to determine turnover. Our choice of a two month period seemed reasonable for

an exploratory study in an open source context since such projects require more active

developer attention than online newsgroups.

 Role of the Developer – We collected the data for the role of each individual developer

from the project webpages. A project may employ developers for various roles that range

in the level and kind of expertise required
6
. Since we did not find enough developers for

each of the possible roles, and on noting that the two most frequently employed roles

6
 Some examples of roles developers may perform in the project are as administrators, developers, document

writers, project managers, packagers, web designers, translators, support technician, cross platform porter, all hands

person etc.

xxv

were those of Developer and Administrator, we created two dummy variables

“Developer” and “Admin” with the base group “Other” (which included all other roles)
7
.

 Number of Projects – We collected the data for the number of OSS projects undergoing

active development that the developer was involved in by scanning individual developer

webpages.

 Tenure – We approximate the tenure of a developer in months by using the date of

joining SourceForge.net. The longer the developer has been on SourceForge, the greater

is his/her chances of having gained enough technical and programming knowledge to

overcome the contribution barrier of a project they may wish to contribute to
8
.

2.2.2 Project Level Variables

The following project level variables (level 2) were collected –

Project Age – The date the project was registered is available on SourceForge. We

calculate the age in number of months since its registration.

Size of Project – The number of developers listed on the project’s webpage.

7
 As evident from Table 1, roughly 25% roles belonged to the Other category. Since Developer and Admin

dummies are correlated we also analyzed the data by merging Other and Admin categories to create a single

Developer dummy variable. In doing so we found that the HLM results did not change appreciably.

8
Since it is difficult to judge when a developer actually starts working on a project, we used their tenure on

SourceForge.net as a proxy. For future work, we are considering operationalizing tenure as the period elapsed since

their first contribution to the focal project, which may be a more robust way of approximating tenure.

xxvi

2.3 STATISTICAL MODELS AND RESULTS

Modeling the effects of developer level and project level variables together presents considerable

conceptual and methodological challenges. The Hierarchical Linear Modeling (HLM) technique

allows researchers to model developer level outcomes within projects and model any between

project differences that arise. Newer versions of HLM also allow appropriate estimating

techniques for dichotomous dependent variables, such as turnover. HLM also allows multivariate

tests based on comparing model deviances (-2 Log Likelihood at convergence) using the Laplace

Estimation method (Raudenbush and Bryk 2002). Deviance (-2LL) is a measure of model fit; the

smaller the deviance is the better is the model fit.

The study was carried out in two parts and follows the approach recommended by

Rumberger (1995). In the first part a developer model of turnover was developed and tested with

logistic regression using only developer level variables. This allows an analysis focused only on

developer level variables. However, this not only ignores project level variables but also assumes

that the effects of developer level variables on turnover do not vary from project to project. This

assumption was tested in the second part of the study.

In the second part of the study logistic HLM analysis was performed. The developer level

model used in this part of the study was based on the results of the first part. It allowed us to

focus the analysis on explaining between project differences in the predicted mean turnover rates

(turnover characteristics adjusted for differences in developer characteristics between projects)

and between project differences in the effects of developer level variables on turnover rates.

Table 1 presents the descriptive statistics and bivariate correlations of variables at individual and

project levels.

xxvii

Table 1. Descriptive Statistics and Correlations

Developer level

(n=201)

Mean s.d. 1 2 4 5

1. Tenure 83.01 36.891 -

2. Number of Projects 2.92 2.763 .325** -

3. Turnover (DV) .62 .486 .136 -.026 -

4. Developer .42 .495 .038 -.081 .024 -

5. Admin .33 .473 -.194** .063 -.189** -.605**

Project level (n=40) Mean s.d. 1 2

1. Age 86.25 43.665 -

2. Size 14.70 23.750 .323* -

*p < 0.05, **p < .001, two-tailed tests

2.3.1 Logistic Models

A series of linear logistic models were developed and tested to measure the effect of developer

level variables on turnover behavior. Turnover is a binary dependent variable that can be

expressed as a probability pi, which takes on the value of unity if the developer i becomes

inactive in the project, zero otherwise. The probability p is transformed into log of odds (or logit)

which is expressed as:

Log [pi / (1-pi)] = β0 + β1 Tenure + β2 Developer + β3 Admin + β4 Number_of_Projects

Logistic Regression was carried out in two steps. In the first step univariate estimates

were computed for all the level 1 independent variables. In the next step we estimated the full

xxviii

multivariate model using the forced entry method. Table 2 presents the exponentiated logistic

coefficients, which represent the ratio of predicted odds of turnover with a one unit increase in

the independent variable to the predicted odds without one unit increase. Thus, a value of one

signifies no change in the odds of turnover. A value greater than (less than) one indicates that the

odds of turnover increase (decrease) due to a unit change in independent variable.

 Table 2. Predicted odds of turnover

Variable Univariate estimates Multivariate estimates

Admin .443* .320*

Developer 1.104 .524

Tenure 1.008 1.007

Number_of_Projects .981 .955

-2LL (initial = 266.583) 254.268

Cox and Snell R
2
 .059

Nagelkerke R
2

Δχ2 = 12.311* (p < .050)

 .081

 *p < 0.05, **p < .001

The univariate and multivariate estimates of “Admin” are both significant and suggest

that administrators have 44.3% lower odds of turnover than the “Other” category. This means

that administrators are more than twice as likely to remain active than developers with “Other”

roles. Since “Admin” was significant in the univariate and multivariate estimates it was retained

for further HLM analysis.

xxix

2.3.2 HLM Models

HLM analysis requires two types of models: a level 1 model to estimate the effects of developer

level variables on turnover and a level 2 model to estimate the effect of project level variables on

the coefficients of the level 1 analysis. HLM analysis allows for the estimated coefficients from

the level 1 model to vary across projects and any such difference can be modeled with project

level variables. We begin the analysis by modeling the unconditional model (base model) with

no predictors at either level.

2.3.3 Unconditional Model

Log [pij / (1-pij)] = β0j

β0j = γ00 + u0j

This model allows us to ascertain the variability in the outcome variable at each of the two levels

i.e. within project and between project variability. The results are shown in Table 3.

Table 3. Unconditional Model

Fixed effect Coefficient se p value

Average project mean γ00 .484 .183 0.012

Random effect Variance component df χ2 p value

Project mean, uoj .314 39 57.48 .028

Deviance (-2LL) 631.288

Estimated parameters 2

xxx

The Null hypothesis H0: τ00 = 0 is rejected (p = .028). This suggests that significant

variation exists among projects in their turnover rates. The intraclass correlation coefficient

(ICC) measures the proportion of total variance in the outcome that is between projects, i.e.

level-2 (Snijders and Bosker, 2012). Resulting ICC values for our analysis suggest that 8.71%

variation in turnover that can be explained by level-2 predictors resides between projects
9
.

Further, for a project with a typical turnover rate (with u0j = 0), the expected log odds of turnover

is .484. This corresponds to a probability of 1/ (1 + e
 (.484)

) = .38. This means that for a typical

developer in a typical project there is a 38% chance of turnover in a 2 month period.

2.3.4 Conditional Model

This model allows part of the variation in the intercept β0 (mean turnover rates) to be explained

by project level variables (project age and size),

Log [pij / (1-pij)] = β0j + β1j Admin

β0j = γ00 + γ01 Proj_Age + γ02 Proj_Size + u0j

β1j = γ10

All the variables were grand mean centered. This centering approach facilitates the

interpretation of the results and also lessens multicollinearity in group level estimation by

reducing the correlation between the group level intercept and slope estimates (Raudenbush

1989). Table 4 presents the results of the conditional model.

9
 Level-1 variance for logistic HLM models is given by while level-2 variance (τ00) is the variance

component of u00 (Snijders and Bosker, 2012).

xxxi

Table 4. Conditional Model

Fixed effect Coefficient se p value

Average project mean γ00 .760** .210 0.001

Proj_Age Slope γ01 .010* .004 0.035

Proj_Size Slope γ02 -0.015* 0.006 0.028

Admin Slope γ10 -1.013** 0.360 0.006

Random effect Variance component df χ2 p value

Project mean, uoj 0.102 37 41.355 .286

Deviance (-2LL) 617.781

Estimated parameters 5

The Null hypothesis H0: τ00 = 0 fails to be rejected (p = .286). This means that after

controlling for project size and age no significant variation remains to be explained. The

proportion of reduction in variance or variance explained at level 2 is .6751, implying that

project size and age account for 67.51% of the explained variance at level 2. The Deviance (-2

Log Likelihood) is also significantly improved from the base model (ΔD = 13.50, χ
2

df = 3, p =

.004), suggesting a good model fit and a fully identified model
10

.

We find that project administrators are 1/ (1 + e
 (1.013)

) = 26.63% less likely to turnover in

the 2 month period than the “other” group, after controlling for other effects in the model.

Additionally, project age and size have small but significant positive and negative effects on

10
 A conditional model that included all developer level variables did not further improve deviance and was

rejected in favor of the more parsimonious model presented here.

xxxii

developer turnover respectively. A unit increase in project age increases the log-odds of turnover

by 0.010, while a unit increase in project size reduces it by .015, all other things being equal.

2.4 LIMITATIONS AND FUTURE DIRECTIONS

Like all empirical work this study is limited in many ways. First, the sample is biased toward

more active projects. Such projects may have well developed infrastructures allowing retention

of active members and/or a constant inflow of newer active members. Including less active

projects in the future should allow for more robust and generalizable results. Second, the use of

binary variable for turnover leads to loss of variance information. Some developers are more

active than others and are more likely to stay active and our analysis should take this into

account. To address this issue in future models we will use each developer's participation history

to calculate a probability of turnover. Similar techniques have been used in marketing research to

calculate the probability that a customer with a given pattern of transactions is still alive

(Schmittlein et al., 1987). Finally we will seek a conceptual integration of developer and project

level factors in modeling turnover rather than just an empirical integration. While the initial

empirical integration lays the groundwork for simultaneous study of individual and project level

factors, additional conceptual integration is needed for a complete understanding of turnover in

open source projects. We consider this study as an important first step toward this end.

xxxiii

2.5 CONCLUSION

In this preliminary study, we modeled turnover behavior of core open source contributors using

logistic hierarchical linear modeling approach. We argue that taking both the developer and the

project level factors into account will lead to a richer understanding of the issue of turnover in

open source projects. Our analysis suggests that developer role, project size and project age are

important predictors of turnover. We find that there exists a significant variation in mean

turnover rates among projects on SourceForge and that project age and project size account for a

sizable proportion of this variation. An understanding of factors that affect turnover in OSS

projects may prove valuable for project managers and allow them to make more informed

decisions in managing the volunteer developer work force. The IS research community will also

benefit from the improved understanding of the interplay of factors across levels in managing

volunteer contributions in virtual teams.

xxxiv

3.0 STUDY 2: THE ROLE OF OWNERSHIP AND SOCIAL IDENTITY IN

PREDICTING DEVELOPER TURNOVER IN OPEN SOURCE SOFTWARE

PROJECTS

3.1 INTRODUCTION

As mentioned earlier, in this study we propose a conceptual integration of developer and project

level variables to analyze turnover. Previous OSS research has neglected the role of the

organization structure (ownership) of OSS communities on member retention. Further, this

research has neglected the inherently nested nature of the developer and project variables. In

order to address these limitations and expand the existing research, this study develops a

Hierarchical Linear Model (HLM) of turnover behavior in OSS. The analysis focuses on two

levels: the developer level, which examines factors that may affect developers’ decisions to

become inactive, and the project level, which examines the factors that may influence the rates of

turnover among projects. This study also compares various measures of developer turnover in the

OSS context. In what follows, we present a brief background of the Ownership and Social

Identity Theory literatures. This is followed by the hypotheses and the methodology sections

where we outline the testable hypotheses and the empirical methods used in the study. Finally we

conclude by noting the limitations of this work and suggesting the steps we intend to take in the

future to further improve this study.

xxxv

3.2 LITERATURE REVIEW

In this section, we outline the current state of research in the Employee Ownership literature and

the Social Identity literature.

3.2.1 Employee Ownership

In Sociological and Economic literature on organizations, a firm is often seen as composed of

four classes of actors: shareholders, board of directors, executives, managers and owners (Kang

and Sorensen, 1999). Shareholders are often thought of as owners of the firm and hence this

literature has often used “equity stake” or “share/stock value” as a proxy to operationalize their

level of ownership. However, there are other possible forms of organization; for example,

owners may be workers (employee owned companies). In entrepreneurial firms, one person may

perform all the tasks (Kang and Sorensen, 1999). A common motivation to introduce employee

ownership in traditional firms has been to increase worker and firm productivity (Pierce and

Rodgers, 2004). In the OSS context, projects have tended to use ownership of modules for

effectively managing the code production, avoiding chaotic code changes, and as a way to

recognize the expertise of an owner-developer (Mockus et al., 2002).

Ownership literature has conceptualized ownership as a dual conceptualization; firstly as

an objective and real state (i.e. formal ownership) and secondly as a perceived state (i.e.

psychological). While formal ownership is viewed as an objective reality and is often seen is a

“bundle of rights”, psychological ownership is viewed as a reflective and experienced state

achieved due to the reality of possession (Pierce and Rodgers, 2004). This psychological state is

xxxvi

more likely to be created when the formal ownership allows control over the owned object,

knowledge of the object, and an investment in an object (Pierce et al. 2001). In the OSS context,

formal ownership is accorded only to developers who have shown expertise with the project code

and who have invested their time in developing it. Therefore, it is very likely that the formal

ownership arrangement in OSS leads to a feeling of psychological ownership among developers.

Pierce et. al. (2001) argued that ownership can be seen as fulfilling three basic human

desires:

1) Efficacy and Effectance: Ownership and the rights that come with it, allow

individuals to feel in control and give them the ability to alter their environment, thus satisfying

their innate need to be efficacious (Beggan, 1991).

2) Self-Identity: Possessions serve as a symbolic expression of self and they are

closely connected to the perception of self-identity and people use ownership for the purpose of

defining themselves and expressing their identity to others (Pierce et al. 2001). Possessions play

a dominant role in forming an owner’s identity and become a part of their extended selves (Belk,

1988). In fact, ownership and identity may be so strongly related that people may engage in

territorial behaviors to identify and defend their possessions (Brown et. al. 2005). To quote

Sartre (1969),

“I am what I have; What is mine is myself”

3) Having a Place (Belongingness): Possessions also allow people to fulfill their

need to “dwell” and they may devote significant resources to targets that may potentially become

their homes (Pierce et al., 2001). When people feel like owners in an organization, their need for

belongingness is met by “having a place” in terms of their needs being met (Avey et. al. 2009).

xxxvii

Therefore, the positive effects of ownership are generally hypothesized because of the

sense of fulfillment, self-esteem and the enhancement to ego it provides. When employees feel

ownership in an organization, they feel a sense of responsibility toward it and tend to engage in

positive behaviors (Avey et. al. 2009). Additionally, Beggan (1992) confirmed the existence of

“mere ownership effect”, the hypothesis that owners rate a target object much more favorably

than non-owners. Because people perceive their possessions as an extension of their self-

identities, they maintain enhanced perceptions of what they own, in order to maintain their

positive identities. The mere ownership effect serves as a basis of motivation to maintain a

positive self-image (Beggan, 1992). Furthermore, he found this effect despite the time people

had to ruminate about the object, thereby suggesting that mere knowledge of ownership is

enough for this effect to take hold, irrespective of the time the object was owned.

 3.2.2 Social Identity Theory

The argument that people seek motivation for self-enhancement through their possessions is

analogous to the idea proposed by Tajfel and Turner (1985) in Social Identity Theory (SIT) that

people make biased judgments in favor of their groups to enhance their individual self-esteem.

SIT posits that people tend to classify themselves and others into various social categories, such

as groups, teams or affiliation (Tajfel and Turner, 1985). A major reason for maintaining this

classification is to find a sense of “belongingness” and maintain positive self-image. The desire

to maintain a positive self-image is so strong that people tend to associate themselves with

successful others even when the connection may be incidental or meaningless. The desire to

maintain an association with another successful entity means that negative feedback on the

xxxviii

group’s functioning may cause people to end their association, the so called cutting off the

reflected failure syndrome (Snyder et. al. 1986). On the other hand, De Cremer et. al. (2002)

showed that under circumstances of negative feedback, some people may actually increase their

association and responsibility to the group. They argued that the kind of reaction people show to

group failure may well depend on how strongly people feel associated to the group.

Social Identity Theory (Tajfel and Turner, 1985) suggests that people’s social identities

may be positively or negatively affected according to the evaluations of those groups to which

they belong. If the group’s status (or success) is lower in comparison to other relevant groups,

people’s social identities may be threatened. In such cases SIT posits that people may respond in

one of the following manner:

1) Individual Mobility: Individuals may leave or dissociate themselves from their

erstwhile group and seek to join a better group. However, this option may not always be readily

available to people, as joining other groups may not always be feasible (Ellemers et. al., 1988).

2) Social Competition: Individuals may respond by working harder to make the

group successful, so that its status relative to other groups may be enhanced.

3) Social Creativity: Individuals may respond by changing the comparison criteria to

a new dimension or changing the values assigned to the attributes so that previously negative

comparisons are now perceived positive (Tajfel and Turner, 1985).

In the next section, we will develop our hypotheses regarding developer turnover in OSS

context using the Ownership literature and Social Identity Theory as our bases.

xxxix

3.3 HYPOTHESES DEVELOPMENT

OSS participants differ from each other, most conspicuously in the rights and duties and the

accompanying ownership stakes they have in the project. In Sociology and Organizational

Behavior literature, an employee’s ownership stake in a firm is often seen as a “bundle” of rights,

powers and privileges (Kang and Sorensen, 1999). Formal employee ownership in a firm is

frequently associated with rights to (1) possess some share of the owned object, (2) exercise

influence (control) over the owned object, and (3) acquire the information about the status of that

which is owned (Pierce et al., 1991). This literature has also studied how varying levels of

employee ownership affect employees’ job attitudes such as turnover and work effectiveness.

Workers-owners of the firm (shareholders) were found to have significantly higher levels of

organizational commitment and lesser levels of turnover than non-shareholders (Long, 1980;

Pierce et. al., 1991). Hammer et al. (1981), while studying the link between ownership and

absenteeism concluded that ownership creates a mechanism through which employees perceive

that their voices may be heard in bringing about organizational change. Thus formal ownership

may create a perception of holding a position of influence and involvement in decision making,

thereby generating a sense of responsibility toward the firm and higher levels of interest and

commitment to it.

In the OSS context, participants may also have varying ownership levels and possess the

corresponding levels of rights (for example, Google Code participants can be sole owners, part

owners, committers or contributors)
11

. Owners (and part owners) possess the highest levels of

11
 http://code.google.com/p/support/wiki/Permissions

http://code.google.com/p/support/wiki/Permissions

xl

rights which include the ability to make changes to the project structure, code and workforce (i.e.

they can move people in or out of the project). Committers possess the ability to make changes to

the code but not the larger project structure or the workforce. Contributors, on the other hand,

possess much restricted rights and can only post comments and point out issues in the code;

however their rights may be upgraded to include code commits. This phenomenon is consistent

with Russell’s (1985) view that ownership systems can be differentiated by the extent to which

they permit rights to be exercised. Prior literature in OSS has studied how participants are

accorded progressively higher rights, duties and the accompanying ownership of the project code

(von Krogh et al. 2003). To be accorded these rights, participants need to demonstrate their

interest, skill and understanding of the code structure. Mockus et al. (2002) studied the process

through which developers are selected and granted ownership of project modules based on their

skills and expertise
12

. Since participants with higher levels of ownership are more likely to be

committed to the development, we propose the following main effect of ownership (level 1

variable) on turnover:

Hypothesis 1: An OSS participant’s level of ownership in the project will be negatively

associated with turnover. Specifically, we hypothesize that sole owners will be least likely to

turnover from a project followed by part owners, committers and contributors respectively.

12
 Different projects may follow different strategies to accord ownership rights. Apache project for example,

follows an emergent ownership structure where some participants emerged as “de facto” owners of modules through

their continued code development and commitment to a module. Mozilla on the other hand, follows an “enforced”

ownership strategy where every change to the code is reviewed by the module owner (Mockus et al. 2002).

xli

As mentioned earlier, OSS developers may work simultaneously on a number of projects

with possibly different ownership levels in each. A given developer may be the sole owner in

one project, co-owner in second, and committer in third. Yet another developer may work on a

single project as an owner. Role theory argues such multiple relationships with multiple roles

may be the cause of psychological stress. For example, Goode (1960) argued that “role strain” is

a natural consequence of performing multiple roles. Role strain comprises of two overlapping

problems: role overload which refers to constraints imposed by time, and role conflict which

refers to discrepant expectations in performing roles irrespective of time (Sieber, 1974). Based

on this we may assume that multiplication of roles causes burden on people and inhibits their

ability to contribute to projects. However, the Theory of Role Accumulation suggests the

following positive outcomes of multiple roles: (1) Overall status security and buffers against

failure, (2) role privileges, (3) resources for status enhancement and role performance, and (4)

enrichment of the personality and ego gratification (Sieber, 1974). Thus, role accumulation

provides a psychological mechanism through which developers may be able to raise their

performance levels. In addition, developers working on multiple projects may be able to apply

skills learned from one context to the other with greater efficiency than others. However, Sieber

(1974) does not deny the inevitability of role overload. Therefore we propose a curvilinear main

effect for the number of projects a developer is involved in (level 2 variable) on turnover:

Hypothesis 2: Overall, the number of projects a developer is associated with has a U-

shaped relationship with turnover in a given project. Specifically, the probability of developer

turnover will decrease up to a point as the number of projects the developer is associated with

on increases, after which it will increase.

xlii

However, as the number of projects a developer works on increase, their perception of

level of “belongingness” may decrease and chances of individual mobility may increase. Such

developers may not feel too attached to a project and may also have other projects they may

seamlessly move into. Because “sole owners” have the greatest burden of responsibilities, in

terms of managing and overseeing the project, they may find it increasingly difficult to devote

time to a given project when there are other projects which require their attention at the same

time. Since their sense of “belongingness” may be diminished, sole owners may be more likely

to ignore certain projects in order to manage their workload better. Part owners, on the other

hand, may rely on the shared ownership structure to leverage help from others in sharing their

burden. Committers and Contributors may also be able to retain activity by sharing the workload

with others. However, since the continuum of ownership levels from sole owners to contributors

represents a decreasing burden of rights and duties, it is likely that lower levels of ownership

may allow developers retain their associations with multiple projects.

Hypothesis 3: The number of currently active projects a developer is associated with,

will moderate the relationship between the level of ownership of the developer and turnover in

that project. Specifically, as the number of associations increase, developers with higher level of

ownership in the focal project will be more likely to leave than developers with lower levels of

ownership.

As proposed by SIT, people strive to maintain positive identities through their social

associations. If their identities are threatened due to low group status or failure they may

disassociate from the group. Therefore we propose the following main effect of project success

(level 2 variable) on turnover,

xliii

Hypothesis 4: Overall, the success of the OSS project is negatively related to turnover in

that project. Specifically, as the project success increases the chances of a developer working in

it leaving are reduced.

However, SIT also proposes that people may also respond to group failure by committing

more to the group thereby facilitating its success (Social Competition). Here we argue that the

decisions developers take, i.e. whether to leave or stay in a failing project, may well depend on

their level of ownership in the project. De Cremer et. al. (2002) found that when group members

received negative feedback, their decision to dissociate from the group often depended on their

level of identification with the group. Developer-Owners of an OSS project achieve their status

either by starting a new project or by demonstrating their expertise through contribution and

commitment to the project. Such developers are also likely to strive to maintain their position

and justify their past association with the project. Indeed, project escalation literature has

similarly argued that managers may maintain their commitment levels to sinking projects in

order to justify the sunk costs (Keil et. al. 1995). In OSS context, the sunk costs are likely to be

the psychological association with the project and the effort spent on it. Therefore we propose

the following interaction effect of ownership (level-1 variable) and project success (level-2

variable) on turnover,

Hypothesis 5: The success of the OSS project will moderate the relationship between the

level of ownership of developer and turnover in that project. Specifically, as the project success

decreases, developers with higher level of ownership will be less likely to leave than developers

with lower levels of ownership.

xliv

3.4 DATA AND MEASURES

Data for this research were collected from Google Code. Google code provides open source

participants with a centralized place to manage their development and includes communication

tools, version control processes, and repositories for source code. It is one of the largest open

source repositories and is estimated to host over 237,802 projects (as of February 2012) out of

which over 71,091 projects were active
13

. We designed a Web Crawler for the purpose of

collecting the developer level and project level data using the R programming environment (R

Development Core Team, 2011). Web Crawlers have been used in previous research to collect

data on OSS projects (e.g., Setia et al. 2010). Additional developer activity data was collected by

downloading the project repositories and parsing them using the CVSAnalY software
14

. This

software allowed us to parse project repositories and store developer contribution data in a

MySQL database.

In the initial stage, data were collected for 5,500 top listed projects on Google code in

August, 2012
15

. These included project level data and a list of 13,989 unique developers who

contributed to these projects. This set of 5,500 projects and 13,989 developers form our initial

sample. In the next stage, additional project level data were collected for 22,948 other projects

that the core set of developers additionally work on, but that do not fall in our core sample of

5,500 projects. Thus, all 13,989 developers fall under the 28,448 projects.

13
 We got these numbers by querying the February, 2012 Google code database dump, hosted by Flossmole.

http://code.google.com/p/flossmole/

14
 http://git.libresoft.es/cvsanaly/

15
 http://code.google.com/hosting/search?q=&btn=Search+Projects

http://code.google.com/p/flossmole/
http://git.libresoft.es/cvsanaly/
http://code.google.com/hosting/search?q=&btn=Search+Projects

xlv

3.4.1 Sample Inclusion Criteria

Once we had captured the initial dataset, we applied various sample inclusion criteria on project

characteristics in order to select the appropriate sample of projects and developers that reflect the

population that we sought to generalize our results to.

We represent the sample inclusion criteria as a set of filters that were applied to the initial

sample of 5500 projects (Figure 1 represents the process):

 Filter 1: We excluded projects of size 1, i.e. projects with only one developer, since

involvement in such a project may not be meaningful as a group process such as social

identity. Stewart et. al. (2006) also used a similar exclusion criterion.

 Filter 2: Out of a total of 2111 projects that were left post filter 1, about 82% used SVN

based version control system, while 11% used Mercurial and 7% used GIT systems. Due

to the differences in the way workflow is organized in these source code management

systems, Rodriguez-Bustos and Aponte (2012) found differences among developer

contributions when projects migrated from one system to the other. Therefore, in order to

control for any differences among projects that use SVN versus GIT or Mercurial, we

excluded projects that used Mercurial or GIT repositories.

 Filter 3: In the next stage we excluded either projects whose source code could not be

read and parsed, or did not exist anymore, or were moved to different project hosting

sites such as GitHub or SourceForge. In order to flag projects that had possibly migrated,

we performed automated text analysis of project descriptions using keywords such as

“migrate”, “move”, “GitHub”, and “SourceForge”. The project descriptions of projects

xlvi

were then manually checked in order to make sure to exclude projects that had actually

migrated to other hosting sites.

 Filter 4: In the next step, we excluded projects that either were course or class related and

hence potentially temporary (e.g. https://code.google.com/p/swe574-group2-

spring2013/), hosted only documents and not code, were test projects created by

developers to test the Google code environment (e.g.,

https://code.google.com/p/211227358-testproject/), or were sponsored by a company

such as Google. In order to flag projects that were possibly course related, we performed

automated text analysis of project descriptions using keywords such as “course”,

“assignment”, “student”, “university”, “school”, “college”. The project descriptions of

projects were then manually checked in order to make sure to exclude projects that were

actually course or assignment related and hence potentially temporary. This allowed us to

retain projects that were the product of individual developers working under self-volition,

and voluntary basis.

 Filter 5: In the final step, we excluded projects that showed no activity in the 30 day

period prior to data collection. This was done to ensure that only currently active projects

were included in the sample. Stewart et. al. (2006) also used a similar exclusion criterion.

The final sample consisted of 446 projects and 2949 unique developers. The project

repositories of these 446 projects were parsed and stored in a MySQL database using the

CVSAnalY software in order to analyze individual developer activities. The 2949 developers in

this sample also worked on other 4445 “secondary” projects that did not overlap with the “focal”

sample of 446 projects. Thus, all the 2949 unique developers work under 4891 projects.

https://code.google.com/p/swe574-group2-spring2013/
https://code.google.com/p/swe574-group2-spring2013/
https://code.google.com/p/211227358-testproject/

xlvii

Figure 1. Sample Inclusion Process

3.4.2 Developer Level Variables

The following developer level variables, including the outcome variable, turnover, were

collected –

a) Dependent Variable (Turnover): Measuring turnover in a voluntary non-

contractual setting (such as OSS) is a non-trivial problem since the developers may go inactive

for an elongated period of time, and then may return. The current research approach to measure

turnover in such settings is to observe inactivity over an elongated, often arbitrary, period of time

(e.g. Joyce and Kraut, 2006). However, this approach results in right-censored measurement of

Filter

1

Start

Exclude

Filter

2
Exclude

Filter

3
Exclude

Filter

4
Exclude

Filter

5
Exclude

Stop

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

n = 5500

n = 2111

n = 1720

n = 1581

n = 1481

n = 446

xlviii

turnover, since a developer may return after the observation period has ended. Since, to the best

of author’s knowledge, there are no established methods to measure turnover in the OSS context,

we use Schmittlein et. al’s (1987) Pareto/NBD approach to operationalize turnover. Originally

proposed in the Marketing literature to track a customer’s lifetime value in a non-contractual

setting, this approach assumes that customers buy at a steady (albeit stochastic) rate for a period

of time and then become inactive. The time to dropout is modeled using the Pareto (exponential-

gamma mixture) timing model, and the repeat buying behavior is modeled using the NBD

(Poisson-Gamma mixture) counting model. This approach has been shown to work quite well in

modeling actual customer behavior based on their past buying behavior (Fader et. al. 2005). We

argue that a similar approach can be used to track developer contributions and model their

lifetime and dropout behaviors.

In this approach a developer’s activity on the code (i.e. code commit) may be considered

an “event” (analogous to a “purchase” event). A developer who is active is considered “Alive”,

while a developer that is inactive for any reason is considered “Dead”. A developer who is active

at time t = 0 is observed up to a suitable time “T”. During this observation period, the developer

makes “X” number of code commits with the last commit coming at time “TX”, 0 < TX ≤ T. The

value “X” is considered the “Frequency” of commit activity while “TX” is considered “Recency”.

The Pareto/NBD approach then allows us to calculate the conditional probability that the

developer is still alive after the observation period, P(Alive|(X, TX, T), subject to the following

assumptions outlined by Schmittlein et al. (1987):

 While alive, a developer makes commits to the code according to a Poisson

process with a rate λ. The Poisson process implies exponentially distributed interpurchasing

times with the resulting “lack of memory” property (Schmittlein et. al. 1987). This is a

xlix

reasonable assumption in the OSS context since the development of code is not bound by any

regular schedule, and a developer may have a constant probability to contribute to the code.

 Each developer remains alive for a lifetime which has an exponentially distributed

duration with death rate μ. The events that could trigger “death” (such as a new career, lifestyle

change, etc.) may arrive in a Poisson manner. The arrival of all possible death events is the

superposition of the individual events, and is best approximated as a Poisson process (Karlin and

Taylor, 1975). Thus, this assumption is also reasonable in the OSS context.

 The activity rate λ and the death rate μ for different developers are distributed

according to different gamma distributions in the population. Further, λ and μ are distributed

independently of each other. It is reasonable to assume that different developers have different

activity and death rates. Some developers are more active than others and other developers may

become disenchanted with the project sooner than others. The gamma is a flexible distribution

that can capture most reasonable distributions. Further, a frequent developer may become

disenchanted with the project sooner and die. On the other hand, another developer may become

more strongly attached to the project. Thus, there is no a-priori reason to favor a positive

correlation between λ and μ over negative (Schmittlein et. al. 1987).

Thus, given a developer’s Frequency and Recency profile we can construct a developer’s

conditional probability of turnover, P(DEATH) as 1 – P(ALIVE|(X, TX, T)). Each OSS project

maintains a code repository that contains the complete history of its development including each

individual developer’s activity history. We downloaded the project SVN repositories and parsed

them into a MySQL database using the CVSAnalY tool. To generate the conditional probability

we chose to observe the developers for 3 different observation periods of 90, 180, and 270 days

to capture their activities over a short, medium and long term respectively. Joyce and Kraut

l

(2006) also used a similar observation period of 180 days. We queried the MySQL database to

generate each developer’s Frequency (X) and Recency (TX) profile over the 90, 180 and 270 day

observation periods.

We then calculated PDEATH90, PDEATH180 and PDEATH270 as three separate

outcome variables for each developer in our sample using the “Buy-Till-You-Die”(BTYD)

package in R (Dziurzynski, Wadsworth, Fader et. al. 2012)
16

. As we argue later in the paper,

further analysis allowed us to select one of the most appropriate among the three outcome

variables, which was then used for modeling the turnover behavior using developer and project

level predictor variables.

There are several advantages to using the Pareto/NBD approach over heuristic

approaches that have been used in the past. One heuristic approach that has been applied is to

deem a developer inactive if he/she has been inactive for at least a given period of time (Joyce

and Kraut, 2006; Sharma et. al. 2012). Such a heuristic ignores a developer’s historic pattern of

activity and does not allow us to generate a probability measure (Schmittlein et. al. 1987). It also

leads to a loss in information by neglecting to differentiate between more frequently active

developers from less active ones. Furthermore, once the developer has been deemed inactive it

ignores their possibility of a comeback. Unlike the heuristic approaches, the Pareto/NBD

approach not only takes into account “how many distinct days of activity” were shown by a

developer but also the “recent most activity”. An added advantage of the Pareto/NBD approach

16
 Since the outcome variables are proportions, it is recommended that the arcsine transformations (i.e. sin

-1

(√PDEAD)) be performed in order to normalize the distribution (Hogg and Craig, 1995). Our results remained

unchanged when using the transformed version of the DVs. Hence we report our results using the untransformed

versions for ease of interpretation.

li

is the ability to predict future activity levels of developers (expected number of commits in the

future). This can allow researchers and OSS managers to not only predict the available active

workforce in the future and manage the project accordingly, but also to calculate the expected

number of commits for the project in the future by summing over the expectations of the current

developer base(Schmittlein et. al. 1987).

b) Ownership level of developer: As mentioned earlier, Google Code lists the

ownership status of a developer as an owner, co-owner, committer or contributor. We used 3

dummy variables, “Part Owner Dummy”, “Committer Dummy” and “Contributor Dummy”, to

capture the different levels of ownership, with “Sole Owner” as the reference group.

c) Number of Projects a developer is associated with: We collected the number of

projects a developer is associated with, “Number of Projects”. This information is available on

each developer’s profile page on Google code along with the corresponding ownership level.

Further, to explore any possible curvilinear effects (i.e. H2), we also calculated (Number of

Projects)
 2

.

3.4.3 Project Level Variables

The following project level variables were collected –

Project Success: Project success in the OSS context can be measured using a variety of

indicators, since it is a multidimensional construct (Stewart et. al. 2006). A simple and popular

measure of a project’s “popularity” or its extent of “use” in OSS literature has been the number

of times a project’s code has been downloaded (Crowston et. al. 2006). However, since older

lii

projects have had more time to accumulate the number of downloads, we divided this variable by

project age and log-transformed it to correct the skew, i.e. “Log (Downloads By Age)”.

In addition, successful project development also involves interacting with the user and

developer communities and fulfilling their bugs and feature requests. Google code allows users

and developers to report “issues” with the project. The proportion of issues resolved by the

developer team can be a helpful measure of the strength of a project’s processes and ultimately

its success (Crowston et. al. 2006). Therefore, we calculated the ratio of issues closed by the

developer team (i.e. resolved) to the number of issues reported, “Proportion of Issues Resolved”,

as a second measure of project success.

3.4.4 Project Level Control variables:

The following variables were used as controls:

a) Project Age: We controlled for “Project Age”, i.e. the time in years from the first

code commit made on the project. Chengalur-Smith et al (2010) argued that a new project may

suffer from the liability of newness which suggests that such a project might be perceived as less

legitimate because it has had less time to establish clear governance procedures such as

recruitment strategies, rules for peer review process and conflict resolution. In addition such a

project has had less time to establish its credibility among the developers and the supporting

social network structure, such as a helpful user community, that may submit bug reports and

feature requests. Such projects may find it difficult to retain developers.

liii

b) Project size: Butler (2001) has shown that a community’s size may impact the

level of turnover in it. We controlled for the number of developers working on the project,

“Number of Developers”. Each project lists the number of developers associated with it.

c) Project License: License restrictiveness has been to shown to impact the level of

developer interest in the project (Stewart et. al. 2006). The use of restrictive licenses, i.e. licenses

with a viral clause (such as the GNU GPL), may affect developers’ and users’ perceptions of

cost and benefits of developing and using the software by restricting compatibility of code with

other software products and its commercialization potential. In accordance with Stewart et. al.’s

(2006) work, we distinguish between projects with and without a license carrying a viral clause.

In addition, there were a few projects (n=16) which did not clarify the license being used. We

created 2 dummy variables “Permissive License” and “Other License” with restrictive licenses as

the reference group.

We present the descriptive statistics of level-1 and level-2 variables in Tables 5 and 6

respectively. The correlations among developer Recency (X), Frequency (TX), PALIVE and the

outcome variable PDEAD are presented in Table 7 for each of the three observation periods. We

note that all the correlations in Table 7 were significant, and that the correlations are highest

among the adjacent periods, as was to be expected. The pattern of correlations among X, TX and

PALIVE/ PDEAD for any given period showed that both Frequency and Recency are correlated

highly with PALIVE/PDEAD, however that Recency is more strongly correlated than

Frequency. This suggests that a more recently active developer has more chances of being alive

than a frequent developer whose last activity was further in the past. This leads to, at first glance

somewhat counterintuitive, but reasonable suggestion that a developer who might have

contributed heavily in past has lower probability of being alive than a less frequent developer

liv

who contributed very recently. We present some typical examples of developer Recency,

Frequency and PALIVE values in Table 8. Comparing the developers 5 and 6 we find that even

though developer 6 did have one activity in the 90 day period, he has lower chances of being

alive than developer 5 who made no commits during this period. Another interesting observation

can be made when comparing developers 4 and 5. Even though developer 4 has been more and

recently active than developer 5, his chances of being alive are slightly lower than developer 5.

This is because the Pareto/NBD model assumes different activity and death rates among

developers. A developer who has a history of frequent contributions will have to not only

maintain the contribution level but will have to be more recently active as well in order to get

higher PALIVE values. On the other hand, a developer who has been a historically lethargic

contributor might still have higher chances of being alive because the model assumes a slower

activity rate for him. This is where the Pareto/NBD crucially differs from the heuristic

approaches that have been used.

lv

Table 5. Level-1 Descriptive Statistics (Developer Level). N=2949

Variable Mean S.D Minimum Maximum

Frequency of Activity during 90 day period (X90) 1.72 6.42 0 62

Recency of Activity during 90 day period (TX90) 10.40 25.56 0 90

P(Alive) at the end of 90 day period (PALIVE90) 0.22 0.24 0 1

P(Dead) at the end of 90 day period (PDEAD90) 0.78 0.24 0 1

Frequency of Activity during 180 day period (X180) 3.12 11.86 0 124

Recency of Activity during 180 day period (TX180) 24.11 54.87 0 180

P(Alive) at the end of 180 day period (PALIVE180) 0.17 0.27 0 1

P(Dead) at the end of 180 day period (PDEAD180) 0.83 0.27 0 1

Frequency of Activity during 270 day period (X270) 4.35 16.85 0 199

Recency of Activity during 270 day period (TX270) 36.45 80.85 0 270

P(Alive) at the end of 270 day period (PALIVE90) 0.13 0.25 0 1

P(Dead) at the end of 270 day period (PDEAD270) 0.87 0.25 0 1

Part Owner Dummy 0.32 0.46 0 1

Committer Dummy 0.55 0.50 0 1

Contributor Dummy 0.07 0.26 0 1

Number of Projects 3.26 5.09 1 144

(Number of Projects)
2
 36.47 434.04 1 20736

Part Owner Dummy × Number of Projects 1.37 4.39 0 144

Committer Dummy × Number of Projects 1.51 3.21 0 99

Contributor Dummy × Number of Projects 0.14 0.68 0 12

lvi

Table 6. Level-2 Descriptive Statistics (Project Level). N=446

Variable Mean S.D Minimum Maximum

Project Age (in years) 2.97 1.98 0.03 15.51

Number of Developers 6.79 7.39 2 51

Permissive License Dummy 0.51 0.50 0 1

Other License Dummy 0.04 0.19 0 1

Proportion of Issues Resolved 0.53 0.34 0 1

Log (Downloads By Age) 2.92 1.39 -0.66 6.15

lvii

Table 7. Correlations Among Developer Frequency, Recency, P(Alive) and P(Dead)

 X90 TX9

0

PAli

ve90

PDea

d90

X180 TX1

80

PAliv

e180

PDead

180

X27

0

TX2

70

PAlive

270

PDead

270

X90 1 .99 .55 -.55 .92 .89 .34 -.34 .89 .85 .22 -.22

TX90 .99 1 .60 -.60 .91 .89 .38 -.38 .88 .85 .25 -.25

PAlive

90

.55 .60 1 -1 .51 .53 .56 -.56 .50 .51 .44 -.44

PDead9

0

-.55 -.60 -1 1 -.51 -.53 -.56 .56 -.50 -.51 -.44 .44

X180 .92 .91 .51 -.51 1 .99 .49 -.49 .96 .94 .34 -.34

TX180 .89 .89 .53 -.53 .99 1 .55 -.55 .96 .94 .40 -.40

PAlive

180

.34 .38 .56 -.56 .49 .55 1 -1 .48 .51 .67 -.67

PDead1

80

-.34 -.38 -.56 .56 -.49 -.55 -1 1 -.48 -.51 -.67 .67

X270 .89 .88 .50 -.50 .96 .96 .48 -.48 1 .99 .41 -.41

TX270 .85 .85 .51 -.51 .94 .94 .51 -.51 .99 1 .49 -.49

PAlive

270

.22 .25 .44 -.44 .34 .40 .67 -.67 .41 .49 1 -1

PDead2

70

-.22 -.25 -.44 .44 -.34 -.40 -.67 .67 -.41 -.49 -1 1

Note: All correlations are significant at .01 level (2-tailed).

lviii

Table 8. Typical examples of developer Recency, Frequency and PALIVE

Developer X90 TX90 PALIVE90 X180 TX180 PALIVE180 X270 TX270 PALIVE270

1 18 90 1 26 171 .94 41 270 1

2 24 90 1 60 180 1 92 270 1

3 1 87 .98 1 87 .52 1 87 .28

4 0 0 .14 8 166 .93 9 242 .89

5 0 0 .14 0 0 .06 1 237 .91

6 1 1 .03 1 1 .00 1 1 .00

7 1 1 .01 8 158 .87 23 267 .99

3.5 METHODOLOGY

Modeling the effects of developer level and project level variables turnover presents considerable

conceptual and methodological challenges. Most studies in OSS literature focus on activity

levels in project by considering either the developer level variables (Hertel et. al, 2003; Hars et

al., 2002), or project level factors such as license choice and organizational sponsorship (Stewart,

et al 2006). To the best of the authors’ knowledge, none of the studies have looked at turnover in

open source projects by considering both levels of analysis (see Setia et al. 2010 for an

exception). Including project level variables in a developer level model is likely to create

aggregation bias, which can underestimate the effects of variables that are estimated at the

inappropriate level. While including aggregated values of developer level variables in a project

level model may fail to fully capture the effects of certain variables (Rumberger, 1995).

lix

The Hierarchical Linear Modeling (HLM) technique allows researchers to model

developer level outcomes within projects and model any between project differences that arise as

a part of the nested design
17

 (Raudenbush and Bryk, 2002). Although we had hypothesized that a

developer’s characteristics (ownership level, number of project associations) would impact

turnover from project, there are reasons to believe that such effects may vary across projects.

Thus, the effect of developer characteristics is nested within the effect of project level

characteristics. A nested structure of the data also means that the independence of observations

can no longer be assumed – developers working in one project may be more similar to each other

than developers working on another project. HLM relaxes the independence assumption and

allows information to be analyzed across multiple levels and hence is more robust for multilevel

data than OLS (Luke, 2004). Finally, our theoretical framework proposes hypotheses that are

composed of constructs operating and interacting at two levels, thereby suggesting a need for a

multilevel model.

There is no single best way to build multilevel models and individual steps that a

researcher should take in building the models depends on the research questions (Luke, 2004). A

typical approach requires first testing an unconditional model and incrementally building

conditional models (Setia et. al. 2010). An unconditional or a “Null” model is a simple one-way

ANOVA model with random effects. It involves no predictors at any level and is useful to judge

17
 A nested design assumes that a developer works on only one among the 446 “focal” projects. If this

assumption is not valid then a cross-classified should be considered (Raudenbush and Bryk, 2002). However, in our

data set there were only 80 developers, i.e. 2.71% of total 2949, who worked on multiple focal projects. Since there

is practically no variation for a cross-classified design, we instead chose to randomly delete “extra” developer

associations within the focal projects. This way each developer worked on only one focal project in our sample as

required by the nested design.

lx

the proportion of variability in the DV (turnover) across the developer and project level

predictors (i.e. within and between projects). The Null model can be useful tool to judge if a

multilevel model is warranted in the first place. Once the need for multilevel modeling has been

established, the researcher then proceeds to build a series of conditional models (i.e. models with

predictors) in order to explain the variability in the DV. Typically, the models are built bottoms-

up by constructing the level-1 model first to explain within-group (i.e. within-project) variability

and then explaining between-group variability using level-2 predictors (Snijders and Bosker,

2012; Raudenbush and Bryk, 2002).

While entering the variables in the model, it is recommended that they should be

centered. We also centered all our variables, except the dummies, before the analysis. Centering

the variable allows for ease of interpretation, reduces multicollinearity concerns and enhances

the quality of the results (Setia et. al. 2010). All the developer level variables were group-mean

centered while the project level variables were grand-mean centered (Raudenbush and Bryk,

2002). Next, in order to test for any multicollinearity among predictor variables, we checked for

correlations among variables and the corresponding VIF values. As can be seen in Tables 9 and

10, none of the correlation values were abnormally high. In addition, none of the VIF values

were greater than 5. This suggested that multicollinearity was unlikely to be an issue. In the next

section, we present the HLM models that were run and the accompanying results. We utilized

full-maximum likelihood procedure to test our models in the HLM7.0 software (Bryk et. al.

1996).

lxi

Table 9. Correlations among Level-1 Predictors and VIF values

 Part Owner

Dummy

Committer

Dummy

Contributor

Dummy

Number of

Projects

VIF

Part Owner

Dummy

1 -.75 -.19 .16 4.34

Committer

Dummy

-.75 1 -.31 -.13 4.65

Contributor

Dummy

-.19 -.31 1 -.10 2.09

Number of

Projects

.16 -.13 -.10 1 1.02

Note: All correlations are significant at .01 level (2-tailed). None of the VIF values are above 10.

lxii

Table 10. Correlations among Level-2 Predictors and VIF values

 Project

Age

Number of

Developers

Permissive

License

Dummy

Other

License

Dummy

Proportio

n of

Issues

Resolved

Log

(Downloa

ds By

Age)

VIF

Project Age 1 .21** .03 -.13** .21** .19** 1.14

Number of

Developers

.21** 1 .02 .08 .19** -.06 1.10

Permissive License

Dummy

.03 .02 1 -.19** .04 .11* 1.06

Other License

Dummy

-.13** .08 -.19** 1 -.03 -.11* 1.08

Proportion of

Issues Resolved

.21** .19** .04 -.03 1 .14** 1.09

Log (Downloads

By Age)

.19** -.06 -.11* -.11* .14** 1 1.09

Note: All correlations are significant at .01 level (2-tailed). None of the VIF values are above 10.

lxiii

3.6 MODELS AND RESULTS

3.6.1 Unconditional (Null) Models

As mentioned earlier, an unconditional model does not allow any predictor variables and is only

used to estimate the level of variance that resides within and between projects. We ran three

different Null models for the three DVs, namely PDEAD90, PDEAD180 and PDEAD270. This

allowed us to select the best DV for further analysis with conditional models. Figure 2 shows the

3 unconditional models.

Dependent Variable PDEAD90 PDEAD180 PDEAD270

Null Model PDead90ij = β0j + rij

β0j = γ00 + u0j

PDead180ij = β0j + rij

β0j = γ00 + u0j

PDead270ij = β0j + rij

β0j = γ00 + u0j

Figure 2. Unconditional (Null) Models

Where, PDead90ij represents the outcome probability for i
th

 developer in the j
th

 project,

β0j is the mean outcome for the j
th

 project, rij is the unique effect of the i
th

 developer (error) with a

variance σ2, γ00 is the grand mean of turnover in the population and u0j is the random effect of j
th

project with variance τ00. Table 11 presents the results of the 3 null models.

lxiv

Table 11. Unconditional (Null) Models with DV observed over 90, 180 and 270 day periods.

Fixed Effects PDEAD90 PDEAD180 PDEAD270

Intercept, γ00 .774*** .822** .857***

Random Effects

Level-2 variance, τ00

= var(uoj)

Level-1 variance, σ
2
= var(rij)

.00422***

.05163

.00860***

.06614

.00727***

.05776

As can be seen in Table 11, the population mean of probability that a given developer is

dead (PDEAD) increases from 77.4% to 85.7% with an increase in the observation length. Thus,

projects tend to lose developers with time, a rather expected result. Note that our study was

limited to tracking developers that were already associated with the projects and ignores new

developers that may have joined the projects during the observation period. Thus it seems

essential for projects to keep on attracting new members in order to survive. The level-2

variances, τ00, in all 3 models are highly significant suggesting the need for further exploration

with conditional models. In order to select the best observation period (best outcome variable)

we noted the following in table 11:

 The total variance in the outcomes available for explanation (τ00 + σ
2
) increases

from .05585 for the 90 day period to .07474 for the 180 day period, an increase of 33.82%.

Surprisingly, the total variance for the 270 day period (.06503) is less than the 180 day period, a

decrease of 12.99%.

lxv

 The Intraclass Correlation Coefficient (ICC)
18

 values for the 3 models suggest

that the proportion of explainable level-2 (i.e. between project) variance increases from 7.55%

(90 day) to 11.50% (180 days) but drops slightly to 11.18% (270 day period).

These observations suggest that the 180 day period might be more suitable than 90 and

270 day periods on the basis of amount of variation available for explanation. In addition, we

found that there were 87 additional developers that contributed in the 180 day period that did not

contribute at all in the 90 day period. These 87 developers represent a sizable addition to the 517

developers who had made at least one commit during the 90 day period. The similar number for

the 270 day period was 41, i.e. less than half. The 180 day observation period has also been used

in previous research, although using the heuristic measures of turnover (Joyce and Kraut, 2006).

Finally, the 180 day period, being half-way between the short-term and long-term periods, offers

a reasonable compromise and is also practically feasible for researchers wishing to study

turnover in non-contractual settings. The above arguments suggested to us that measuring the

outcome over the 180 day period (i.e. PDEAD180) was preferable over others, given our data.

Thus, we retained PDEAD180 as the outcome variable to be further analyzed using the

conditional models.

3.6.2 Conditional Models

The conditional model allows predictors at both levels so that parts of sources of variability in

the outcome may be accounted by the measured variables. However, the conditional models for

18
 The ICC is the proportion of level-2 variance to the total variance (Snijders and Bosker, 2012).

lxvi

HLM allow for an extraordinarily rich class of modeling possibilities (Raudenbush and Bryk,

2002). As mentioned earlier, a typical approach is to model within-project variability first using

level-1 predictors, and then modeling the between-project variability using level-2 predictors. In

order to test for the main effects of level-1 predictors (i.e. H1 and H2) we tested a main effect

only one-way ANCOVA with random effects model (Model 2). Figure 3 presents Model 2.

Level-1 Model:

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + rij

Level-2 Model: β0j = γ00 + u0j

β1j = γ10

β2j = γ20

β3j = γ30

β4j = γ40

β5j = γ50

Figure 3. MODEL 2: One way ANCOVA with Random Effects (main effects)

Where, γ00 is the mean probability of turnover for a typical sole owner (reference group)

associated with 3.26 projects across all projects
19

; γ10, γ20 and γ30 represent the differences in

probabilities of turnover among a typical part owner, committer and contributor as compared to a

typical sole owner (reference group) respectively. Finally, γ50 and γ60 represent the main effects of

19
 Note that the variable Number of Projects was centered with a mean of 3.26.

lxvii

Number of Projects and (Number of Projects)
 2

, i.e. linear and curvilinear effects, on probability

of turnover. The third column of Table 12 presents the results of model 2
20

.

20
 For ease of reference, Table 12 also presents the results of the null model (Model 1).

lxviii

Table 12. Results of HLM estimation

Fixed Effects Model 1 Model 2 Model 3 Model 4 Model 5

Intercept, γ00 .774*** .651*** .628*** .616** .620***

For H1: Ownership (reference group: “Sole

Owner”),

Part Owner, γ10

Committer, γ20

Contributor, γ30

.114***

.231***

.275***

.144***

.252***

.299***

.142***

.261***

.312***

.137***

.253***

.297***

For H2: Developer’s Project Associations,

Number of Projects, γ40

(Number of Projects)
2
, γ50

-.002

.00002*

.004

.00004**

.005

.00004**

.004

.00003*

For H3: Ownership × Number of Projects,

Part Owner × Number of Projects, γ60

Committer × Number of Projects, γ70

Contributor × Number of Projects, γ80

-.010***

-.006*

-.008

-.010**

-.007*

-.011

-.009*

-.006

-.008

For Project Level Control Variables,

Project Age, γ01

Permissive License, γ02

Other License, γ03

Number of Developers, γ04

.003

.023

-.007

-.001

.003

.023

-.008

-.001

For H4: Project Success Variables,

Proportion of Issues Resolved, γ05

Log (Downloads By Age), γ06

-.061***

-.011**

-.040

-.032**

lxix

For H5: Ownership × Project Success,

Part Owner × Proportion of Issues Resolved, γ11

Part Owner × Log (Downloads By Age), γ12

Committer × Proportion of Issues Resolved, γ21

Committer × Log (Downloads By Age), γ22

Contributor × Proportion of Issues Resolved, γ31

Contributor × Log (Downloads By Age), γ32

-.066

.024

.022

.018

.050

.035*

Random Effects

Level-2 variance, τ0
2

= var(uoj)

Level-1 variance, σ
2

= var(rij)

.00860***

.06614

.00998***

.06047

.00978***

.06041

.00884***

.06040

.00919***

.06002

Model Fit

Deviance (-2 log likelihood)

Deviation Difference (Δχ
2
)

Estimated Parameters

Level-1 R
2

599.467

3

379.029

220.438***

8

5.73%

372.246

6.783*

11

6.08%

352.835

19.411***

17

7.35%

342.342

10.493

23

7.39%

Notes: *p<.10, **p<.05, ***p<.01. Deviation differences are calculated as the absolute differences in

deviance values between the current and the previous model, e.g., ΔD3=|D3-D2| etc. Significance of this

difference is tested after accounting for the estimated parameters in the models.

In HLM, the Deviance difference test allows comparison of two nested models on same

data set. The difference in deviances of two models can be used as a chi-squared distributed test

statistic with a degree of freedom that equals the difference in number of estimated parameters

(Snijders and Bosker, 2012). The deviance test comparison between Model 1 and 2 suggested

lxx

that model 2 was a significantly better fit to the data than model 1, ΔD = 220.438, χ
2

df = 5, p <

.01.

The coefficients γ10, γ20 and γ30 were all significant at the .01 level. The value γ10 = .114

suggests that a typical part owner was 11.4% more likely to turnover than a typical sole owner.

In addition, a typical committer and contributor were 23.1% and 27.5% more likely to turnover

than sole owner in the 180 day period. These findings support H1, which suggested that higher

levels of ownership in the project are associated with lower levels of turnover.

The linear effect of Number of Projects, γ40, was not significant. However, the curvilinear

effect, γ50, was significant. The positive value of γ50 suggested a convex or U-shaped effect

supporting H2. Next, in order to test the interaction hypothesis between ownership and number

of projects a developer is associated with (H3), we analyzed model 3 as an extension of model 2

but with the interaction terms. Figure 4 presents model 3.

lxxi

Level-1 Model:

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy

× Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor ×

Number of Projects) + rij

Level-2 Model: β0j = γ00 + u0j

β1j = γ10

β2j = γ20

β3j = γ30

β4j = γ40

β5j = γ50

β6j = γ60

β7j = γ70

β8j = γ80

 Figure 4. MODEL 3: One way ANCOVA with Random Effects (interaction effects)

 Where, γ60, γ70 and γ80 represent differences in slopes of part owners, committers and

contributors with the slope for sole owners (γ40) for the relationship between turnover and

Number of Projects, respectively.

After including the 3 interaction terms (model 3) the model fit was significantly

improved in comparison to model 2 as suggested by the deviance difference test
21

, ΔD = 6.783,

χ
2

df = 3, p < .10. The coefficients γ60 and γ70 were significant suggesting that the differences in

21
 Adding interaction terms of ownership with (Number of Projects)

 2
did not lead to an

improved model and thus were not included.

lxxii

slopes among part owners and committers with sole owners were significant. However, this

difference was not significant for contributors. That is, there were significant differences in the

prediction of turnover probability by Number of Projects between part owners and sole owners,

and between committers and sole owners. The negative sign on part owner slope (γ60 + γ40 = -

0.60) and committer slope (γ60 + γ40 = - 0.20) suggested that part owners and committers were

less likely to turnover than sole owners with an increase in Number of Projects, thereby

supporting H3. The random effects for model 3 showed that, even though reduced in comparison

to model 2, there was still significant residual variance remaining at level-2 (τ0 = 00978, p < .01).

This suggested modeling this variance with level-2 predictors.

In order to test for the effect of project success on turnover probability (H4) we included

the variables Proportion of Issues Resolved and Log (Downloads By Age) as level-2 predictors,

while controlling for developer characteristics. The project level variables that were controlled

for were Project Age, Permissive License, Other License and Number of Developers. This

intercepts-as-outcome (model 4) is presented in Figure 5, while the results are presented in the

5
th

 column of Table 12.

lxxiii

Level-1 Model:

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy ×

Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor ×

Number of Projects) + rij

Level-2 Model:

β0j = γ00 + γ01 (Project Age) + γ02 (Permissive License Dummy) + γ03 (Other License Dummy)

+ γ04 (Number of Developers) + γ05 (Proportion of Issues Resolved) + γ06 (Log (Downloads by

Age)) + u0j

β1j = γ10

β2j = γ20

β3j = γ30

β4j = γ40

β5j = γ50

β6j = γ60

β7j = γ70

β8j = γ80

 Figure 5. MODEL 4: Intercepts-as-outcome

Where, γ05 and γ06 represent the effects of Proportion of Issues Resolved and Log

(Downloads By Age) on the mean probability of turnover, i.e. the main effect of project success;

and γ01, γ02, γ03 and γ04 represent the effect of control variables.

The deviance difference test in Table 12 showed that model 4 was a significant

improvement over model 3, ΔD = 19.411, χ
2

df = 6, p < .01. We also observed significant negative

effects of Proportion of Issues Resolved (γ05 = -.061, p < .01) and Log (Downloads By Age) (γ05 =

lxxiv

-.011, p < .01) on probability of turnover thereby supporting H4. Interestingly, none of the

control variables had a significant effect on the outcome. The variance component of level-2

random effect was reduced compared to model 3, however it was still significant (τ0 = 00884, p <

.01).

Next, in order to test if there were cross-level interactions (i.e. interactions among level-1

and level-2 predictors) as hypothesized in H5, we tested a slopes-as-outcome (model 5) as

presented in Figure 5. The results are presented in the 6
th

 column of Table 12.

The deviance difference test showed that model 5 was not better than model 4, ΔD =

10.493, χ
2

df = 6, p >.10, and hence was rejected in favor of the more parsimonious and better

fitting model 4 (Raudenbush and Bryk, 2002). Thus, we did not find any support for H5.

lxxv

Level-1 Model:

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy ×

Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor ×

Number of Projects) + rij

Level-2 Model:

β0j = γ00 + γ01 (Project Age) + γ02 (Permissive License Dummy) + γ03 (Other License Dummy)

+ γ04 (Number of Developers) + γ05 (Proportion of Issues Resolved) + γ06 (Log (Downloads by

Age)) + u0j

β1j = γ10 + γ11 (Proportion of Issues Resolved) + γ12 (Log (Downloads by Age))

β2j = γ20 + γ21 (Proportion of Issues Resolved) + γ22 (Log (Downloads by Age))

β3j = γ30 + γ31 (Proportion of Issues Resolved) + γ32 (Log (Downloads by Age))

β4j = γ40

β5j = γ50

β6j = γ60

β7j = γ70

β8j = γ80

Figure 6. MODEL 5: Intercepts-as-outcome

lxxvi

3.7 LIMITATIONS AND FUTURE WORK

This study is limited in several ways. First, we only chose to observe developer contributions as

code commits. However, past research has shown the importance of other kinds of contributions,

often by peripheral developers, such as code documentation, managing websites, wikis and

mailing lists, popularizing projects through positive word-of-mouth etc. (Setia et. al 2010).

However, since code commits are a necessary (but not sufficient) condition for the success of an

open source project, understanding factors that may impact the actual code development are

necessary.

Second, we only chose to observe projects that used SVN as their code management

system and neglected projects that used other increasingly popular systems such as GIT and

Mercurial. While it is our conjecture that our results should be generalizable to projects using

other SCM systems, it remains a work for the future.

Third, our choice of project success measures is in no manner exhaustive. Past OSS

literature has differentiated between the market success, technical success and team effectiveness

of the project and why such a distinction is warranted (e.g. Grewal et. al. 2006, Stewart and

Gosain 2006, Crowston et. al. 2004, Sagers 2004, Crowston and Scozzi 2002). It would be

interesting to further explore what kind of project success matters more for which relationship. In

addition, Shah (2006) argued that OSS developers are motivated for a variety of reasons and

explored the differences between core and peripheral developers. Therefore, it would be

interesting to see what kinds of project success or failure impacts the retention rates of which

group.

lxxvii

. Fourth, we had excluded projects that did not show any activity in the 30 day period

before data collection, an arbitrary cut-off. However, on revisiting some projects that were

excluded it was found that the projects were still in-development. In fact there were some

projects that were “resurrected” after long periods of inactivity. This has the potential to bias our

results in favor of recently active projects.

Fifth, we assumed that any developer whose name was listed on the project was still

associated with it. While this is true in a formal sense, some developers may have “left” the

project even though their names still appeared on the project list. There were many developers in

our data set that never made any code commits in any observation period. In such a case, their

Pareto/NBD PDEAD values kept decreasing with increasing observation periods. On the other

hand, there were some developers that “resurrected” themselves and became more active as

observation period increased. This suggests that future researchers might be able to uncover

interesting findings using longitudinal or time-series analyses.

Finally, we only analyzed projects that were not sponsored by an external agency.

Increasingly, many for-profit companies are sponsoring open source projects and paying

developers to work on them (West and O’Mahony, 2008). Our results cannot be generalized to

such settings and more work is required to distinguish any differences in the phenomena

analyzed in this study among sponsored projects.

lxxviii

4.0 OVERALL CONTRIBUTIONS

There are likely to be several contributions of this work. Table 13 presents a summary of the

hypotheses and results of the empirical analyses. First, we merged the Ownership and Social

Identity literatures to argue that the effect of ownership on member retention is moderated by the

threat to the identity, i.e. project success. We showed that managing ownership structures are

critical for projects to maintain an active developer base. Overall, sole owners were least likely

to turnover followed by part owners, committers and contributors. However, as the number of

project associations increased, lower ownership levels were associated with greater chances of

retention. This presents a trade-off for project managers in terms of managing the ownership

structures in the project. The implications are likely to be generalizable to other online

community forms of production such as Wikis.

Second, we argued that the correct way to model OSS developer participation level is to

acknowledge the inherently nested nature of the data. Analyzing effects at multiple (i.e. at

individual and group) levels and how they may interact allows for a deeper understanding of how

developers are likely to continue working on projects. For example, is there a difference in

turnover rates among sole-owners in a small project (with few other developers) and sole-owners

in a large project? In the former case, the sole owner may feel lower levels of accountability

while in the latter case he/she may feel more accountable and responsible for the well-being of

the project. This opens up interesting avenues as to how the size and the presence and number of

lxxix

other owners affect the performance of a developer. Since OSS developers work under multiple

contexts, it is very likely that the extra-project context also matters. This will allow OSS

researchers to begin exploring how developers regulate their commitment levels across multiple

projects.

Table 13. Summary for Hypothesized Relationships

Hypothesis 1: An OSS participant’s level of ownership in the project will

be negatively associated with turnover. Specifically, we hypothesized

that sole owners will be least likely to turnover from a project followed

by part owners, committers and contributors respectively.

Supported

Hypothesis 2: Overall, the number of projects a developer is associated

with has a U-shaped relationship with turnover in a given project.

Specifically, the probability of developer turnover will decrease up to a

point as the number of projects the developer is associated with on

increases, after which it will increase.

Supported

Hypothesis 3: The number of currently active projects a developer is

associated with, will moderate the relationship between the level of

ownership of the developer and turnover in that project. Specifically, as

the number of associations increase, developers with higher levels of

ownership in the focal project will be more likely to leave than

developers with lower levels of ownership.

Supported

Hypothesis 4: Overall, the success of the OSS project is negatively

related to turnover in that project. Specifically, as the project success

increases the chances of a developer working in it leaving are reduced.

Supported

Hypothesis 5: The success of the OSS project will moderate the

relationship between the level of ownership of developer and turnover in

that project. Specifically, as the project success decreases, developers

with higher level of ownership will be less likely to leave than

developers with lower levels of ownership.

Not Supported

Third, we introduced a practical way of operationalizing turnover and are the first to

show the application of the Pareto-NBD model in an online community context. We argued that

this approach is preferable over the heuristic measures that have been used in the past, and can

become an important tool for future researchers. In order to assess the adequate length of

lxxx

observation period, we compared 3 potential outcomes spread over short, medium and long term,

and concluded that a medium term observation period appears suitable in the OSS context. In

fact, the Pareto-NBD model may be strained if very long histories of developer activities are

taken into account (Schmittlein et al. 1987). If the complete past of a developer that has worked

for years is taken into account, the death rate μ will be close to zero, thus allowing the developer

to stay alive for a very long time in the future. In the Marketing context, Schmittlein et al. (1987)

recommended an observation period not greater than 2 years even in presence of more data.

Since other online voluntary contexts such as Wikis may inherently different rates of

development and life cycles, it opens the door for researchers to assess appropriate periods in

these fresh contexts.

lxxxi

BIBLIOGRAPHY

Abdel-Hamid, T., “Investigating the Impacts of Managerial Turnover/Succession on Software

Project Performance”, Journal of Management Information Systems, 9(2), 1992.

Avey, J. Avolio, B. Crossley, C. and Luthans, F. “Psychological Ownership: Theoretical

Extensions, Measurement, and Relation to Work Outcomes,” Journal of Organizational

Behavior, (30) 2009, pp 173-191.

Beggan, J. K. “On the social nature of nonsocial perception: The mere ownership effect,” Journal

of Personality and Social Psychology (62) 1992, pp 229–237.

Beggan, J. K. “Using what you own to get what you need: The role of possessions in satisfying

control motivation,” Journal of Social Behavior and Personality (6:6) 1991, pp 129-146.

Belk, R. W. "Possessions and the Extended Self," Journal of Consumer Research (15) 1988, pp

139-168.

Brown G., Lawrence, T. B. and Robinson, S. L. “Territoriality in Organizations,” Academy of

Management Review (30) 2005, 577-594.

Bryk, A., Raudenbush, S. and Congdon, R. “HLM. Hierarchical Linear and Non Linear

Modeling with the HLM/2L and HLM/3L Programs,” Chicago: Scientific Software

International, 1996.

Butler, B. "Membership Size, Communication Activity, and Sustainability: A Resource-Based

Model of Online Social Structures," Information Systems Research (12:4) 2001, pp 346-

362.

Chengalur-Smith, I. N., Sidorova A. and Daniel S. (2010) “Sustainability of Open-Source

Projects: A Longitudinal Study” Journal of the Association for Information Systems Vol.

11: Iss. 11, Article 5.

Conte, M. A. and Svejnar, J. “The Performance Effects of Employee Ownership Plans,” in:

Paying for Productivity: A look at the Evidence, A.S. Blinder (ed.), Brookings Institution,

Washington DC, 1990.

Crowston, K. and Scozzi, B. “Open Source Software Projects as Virtual Organizations:

Competency Rallying for Software Development,” IEE Proceedings-Software, 149(1),

2002.

Crowston, K., Annabi, H., Howison, J., and Masango, C. "Effective Work Practices for Software

Engineering: Free/Libre Open Source Software Development," Proceedings of the 2004

http://aisel.aisnet.org/jais/vol11/iss11/5/
http://aisel.aisnet.org/jais/vol11/iss11/5/

lxxxii

ACM Workshop on Interdisciplinary Software Engineering Research, ACM New York,

Newport Beach, CA, 2004.

Crowston, K., Wei, K., Li, Q., Eseryel, U. and Howison, J. “Coordination of Free/Libre Open

Source Software Development,” Proceedings of the International Conference on

Information Systems, Las Vegas, NV, 2005.

Daniel, S. L., Agarwal, R., and Stewart, K.J. "The Diverse Effects of Diversity in Global,

Distributed Collectives: A Study of User Participation in Open Source Projects,"

forthcoming at Information Systems Research, 2012.

Ellemers, N., Knippenberg, V.A., De Vries, N. and Wilke, H. “Social identification and

permeability of group boundaries,” European Journal of Social Psychology (18) 1988, pp

497-513.

Fader, P., Hardie, B. and Lee, K. “Counting Your Customers the Easy Way: An Alternative to

the Pareto/NBD Model,” Marketing Science, vol. 24 (2), pp.275-284, 2005.

Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. “Perspectives on Free and Open Source

Software,” Cambridge, MA: MIT Press.

Goode, W. “A Theory of Role Strain,” American Sociological Review (25) 1960, pp 483-496.

Grewal R., Lillien, G., and Mallapragada G., “Location, Location, Location: How Network

Embeddedness Affects Project Success in Open Source Systems”, Management Science,

52 (7), 2006.

Hall, T., Beecham, S., Verner, J. and Wilson, D. “The impact of staff turnover on software

projects: the importance of understanding what makes software practitioners tick”,

Proceedings of the 2008 ACM SIGMIS CPR conference on Computer personnel, 2008

Hars, A. and Ou, S. “Working for free? Motivations of participating in open source projects,”

(Proceedings of the 34th Hawaii International Conference on System Sciences)”

International Journal of Electronic Commerce (6:3) 2002, pp 25–39.

Hertel, G., Niedner, S., and Herrmann, S. "Motivation of Software Developers in Open Source

Projects: an Internet-Based Survey of Contributors to the Linux Kernel," Research Policy

(32) 2003, pp 1159-1177.

Hogg, R., McKean, J. and Craig, A. “Introduction to Mathematical Statistics,” 5th ed., Prentice

Hall, 2005.

Joyce, E., and Kraut, R.E. 2006. "Predicting Continued Participation in Newsgroups," Journal of

Computer Mediated Communication (11), pp. 723-747.

Kang, D.L. and Sorenson, A.B. “Ownership organization and firm performance,” Annu. Rev.

Sociol (25) 1999, pp 121-144.

Karlin, S. and Taylor, H. “A First Course in Stochastic Processes,” Academic Press, New York,

1975.

Keil, M., Truex III, D. and Mixon R. “The Effects of Sunk Cost and Project Completion on

Information Technology Project Escalation,” IEEE Transactions on Engineering

Management, 42(4), 1995.

lxxxiii

Lakhani, K. and Wolf, R., “Why Hackers Do What They Do: Understanding Motivation Efforts

in Free/F/OSS Projects,” Working Paper, MIT Sloan School of Management, 2003.

Long, R. “The Effects of Employee Ownership on Organizational Identification, Job Attitudes,

and Organizational Performance: A Tentative Framework and Empirical Findings,”

Human Relations, 31, 1978.

Long, R. “Job Attitudes and Organizational Performance under Employee Ownership,” The

Academy of Management Journal (23:4) 1980, pp. 726-737.

Luke, D. “Multilevel Modeling,” Quantitative Applications in the Social Sciences, Sage, 2004.

March, J. G., and Simon, H. A. Organizations. New York: Wiley, 1958.

Mockus, A., Fielding, R. T., and Herbsleb, J. “D. Two case studies of open source software

development: Apache and Mozilla,” ACM Transactions on Software Engineering and

Methodology, (11) 2002, pp 309–346.

O’Mahony, S. and Ferraro, F. “The Emergence of Governance in an Open Source Community,”

Academy of Management Journal (50:5) 2007, pp 1079–1106.

Pierce, J. and Rodgers, L. “The Psychology of Ownership and Worker-Owner Productivity,”

Group & Organization Management (29:5) 2004, pp 588-613.

Pierce, J. L., Kostova, T. and Dirks, K. “Toward a Theory of Psychological Ownership in

Organizations,” Academy of Management Review (26) 2001, pp 298-310.

R Development Core Team. 2011. “R: A Language and Environment for Statistical Computing,”

the R Foundation for Statistical Computing, Vienna, Austria

Raudenbush, S.W. and Bryk, A.S. Hierarchical Linear Models (Second Edition), Thousand

Oaks, Sage Publications, 2002.

Robles, G., and Gonzalez-Barahona, J.M. "Contributor Turnover in Libre Software Projects," in:

IFIP International Federation for Information Processing: Open Source Systems,

Springer, Boston, 2006.

Rodriguez-Bustos, C. and Aponte, J. “How Distributed Version Control Systems Impact Open

Source Software Projects,” in the 9
th

 IEEE Conference on Mining Software Repositories,

pp. 36-39, 2012.

Rothschild-Whitt, J. “The collectivist organization: An alternative to rational-bureaucratic

models,” American Sociological Review (44) 1979, pp 509–527.

Rothschild, J. and Russell, R. “Alternatives to bureaucracy: Democratic participation in the

economy”, in: Annual review of sociology, Short, J. F. (ed.), Annual Reviews, Palo Alto,

CA, 1986.

Sagers, G., "The Influence of Network Governance Factors on Success in Open Source Software

Development Projects" (2004). ICIS 2004 Proceedings.

Sartre, J.P. Being and Nothingness: A Phenomenological Essay on Ontology, Philosophical

Library: New York, 1969 (First Published in 1943).

lxxxiv

Setia, P., Rajagopalan, B., Sambamurthy, V. and Calantone R. “A Theory and Empirical Test of

Peripheral Developer Contributions to the Open Source Development Model,”

Information Systems Research (Articles in Advance) 2010, pp 1-23.

Schmittlein, D.C., Morrison, D.G., and Colombo, R. 1987. “Counting Your Customers: Who Are

They and What Will They Do Next?,” Management Science (33:1).

Sharma, P.N., Hulland, J. and Daniel, S. "Examining Turnover in Open Source Software Projects

Using Logistic Hierarchical Linear Modeling Approach," in I. Hammouda et. al. (Eds):

Open Source Systems: Long Term Sustainability, IFIP Advances in Information and

Communication Technology (OSS 2012), v. 378, pp. 331-337, Springer Berlin

Heidelberg, 2012.

Shaw, J. “Turnover Rates and Organizational Performance: A Review, Critique and Research

Agenda,” Organizational Psychology Review, 1(3), 2011.

Sieber, S. “Toward a Theory of Role Accumulation,” American Sociological Review (39) 1974,

pp 567-578.

Singh, P. “The Small World Effect: The Influence of Macro Level Properties of Developer

Collaboration Networks on Open Source Project Success.” ACM Transactions of

Software Engineering and Methodology, 20(2), 2010.

Singh, P., Tan, Y. and Mookerjee, V. “Network Effects: The Influence of Structural Social

Capital on Open Source Project Success”, Management Information Systems

Quarterly, 35(4), 2011.

Snijders, T. and Bosker, R. “Multilevel Analysis: An Introduction to Basic and Advanced

Multilevel Modeling,” Second Edition, Sage, 2012.

Stewart, K. and Gosain, S. “The impact of ideology on effectiveness in open source software

development teams,” MIS Quarterly (30:2) 2006, pp 291-314.

Stewart, K.J., Ammeter, T.A. and Maruping, L. 2006. “Impacts of License Choice and

Organizational Sponsorship on User Interest and Development Activity in Open Source

Software Projects,” Information Systems Research (17:2), pp. 126-144.

Tajfel, H. and John T. “The social identity theory of intergroup behavior,” in: Worcehl, S. and

Austin, W.G. (eds.), Psychology of Intergroup Relations, 2
nd

 edition, Nelson-Hall,

Chicago, 1985.

Ton, Z. and Huckman, R. “Managing the Impact of Employee Turnover on Performance: The

Role of Process Conformance,” Organization Science, 19(1), 2008.

von Hippel, E. and von Krogh, G. “Open source software and the “private-collective” innovation

model: Issues for organization science,” Organization Science (14) 2003, pp 209–223.

von Krogh, G., Spaeth, S., and Lakhani, K. R. “Community, joining, and specialization in open

source software innovation: A case study,” Research Policy (32) 2003, pp 1217–1241.

Wagner, I. and Rosen C. “Employee Ownership-Its Effects on Corporate Performance,”

Employment Relations Today, 12, 1985.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1112860
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1112860
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1111868
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1111868

lxxxv

West, J and O’Mahony, S. “The Role of Participation Architecture in Growing Sponsored Open

Source Communities,” Industry & Innovation, 15:2, pp.145-168, 2008.

