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Open source software (OSS) development methodology that promises to produce reliable, 

flexible, and high quality software code, at minimal cost, by harnessing the power of distributed 

peer review and transparency of process and has become increasingly popular in the past few 

years. For-profit companies have increasingly adopted the OSS paradigm to produce quality 

software at low cost. A vast majority of OSS projects depend on voluntary contributions by 

developers to sustain their development. In this context, turnover of developers has been 

considered a critical issue hindering the success of projects. This dissertation develops two 

studies addressing the issue. The first study is a methodological pilot and lays the foundation of 

this research by focusing on modeling turnover behavior of core open source contributors using a 

logistic hierarchical linear modeling approach. It argues that argue that taking both the developer 

and the project level factors into account will lead to a richer understanding of the issue of 

turnover in open source projects. The second study provides a conceptual integration of 

developer and project level factors using the Ownership, Role theory and Social Identity 

literatures, and proposes testable hypotheses, methods and findings. The implications of this 

research are likely to benefit OSS managers in understanding the developer and project level 

factors associated with developer turnover and the contexts in which they interact.  
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1.0 INTRODUCTION 

Open Source is a software development methodology that promises to produce reliable, flexible, 

and high quality software code, at minimal cost, by harnessing the power of distributed peer 

review and transparency of process, thereby preventing predatory vendor lock-in
1
. In addition to 

the access to source code, Open Source Software (OSS) must meet the criteria of, among others, 

free redistribution, ability to modify the source code and create modified works
2.

 The OSS 

phenomenon has been of great interest to the field of Information Systems since it has emerged 

as a viable and successful alternative to the conventional forms of software production that have 

traditionally been the focus of the field.    

The existing research in OSS can be broadly organized in three streams. The first stream 

of research has focused on the motivations of OSS participants to contribute, especially since 

participants may not receive any financial compensation for their efforts. This research has 

established that participants are motivated due to a variety of reasons including the need for 

software, enjoyment, learning, altruism, ideological commitment, peer recognition and reputation 

building (e.g. Feller et al. 2005; Lakhani and Wolf 2003; Shah 2006).  A second stream of 

research has studied the coordination mechanisms, decision making and management practices 

                                                 

1
 http://opensource.org/  

2
 http://opensource.org/docs/OSD 

http://opensource.org/
http://opensource.org/docs/OSD
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prevalent in OSS (e.g. O’Mahony and Ferraro 2007; Mockus et al. 2003; Crowston et. al. 2005). 

Finally, the third stream of existing research has focused on the quality and success of the end-

product (i.e. software) and the socio-technical factors affecting it (e.g. Crowston et al. 2006; 

Chengalur-Smith et al. 2010; Setia et. al. 2010; Grewal, et al. 2006, Singh 2010, Singh, et al. 

2011; Daniel et. al. 2012).              

Open Source Software communities are often cited as prime examples of modern, online, 

community based forms of production that have been recognized by organizational theorists as 

alternatives to the traditional market and hierarchical forms of organization and production 

(O’Mahony and Ferraro, 2007). Such communities depend on voluntary contributions to create 

software either for public or private benefit (von Hippel and von Krogh, 2003), shun bureaucracy 

and authoritarian forms of governance (Rothschild-Whitt, 1979), and encourage democratic 

participation of members involved in production (Rothschild and Russell, 1986). A critical issue 

in this context therefore, is how to organize the production of software by directing individuals’ 

efforts toward a common goal without any contractual or hierarchical reinforcement (O’Mahony 

and Ferraro, 2007). Furthermore, it is not trivial to align individual motives and goals with a 

common objective (March and Simon, 1958), and hence achieve efficiency in software 

production. Such democratic forms of organization face difficulty in decision making and 

coordinating and most importantly, in sustaining member activities. Thus, it is essential to create 

and nurture a consensual basis of authority to facilitate the management and direction of 

development and sustain developer interest and commitment (O’Mahony and Ferraro, 2007). 

This issue assumes an even critical importance in the light of the fact that most OSS projects fail 

to develop due to a lack of a critical mass of developers needed for sustained development 

(Chengalur-Smith et. al., 2010).  
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Indeed, developer turnover in Open source software (OSS) projects is a non-trivial issue 

because of the frequency with which it occurs and its negative impact on project performance. 

Turnover is specified as voluntary job termination (Sheridan 1985) or more simply as an 

employee leaving a current job (Fields et al. 2005). Robles and Gonzales-Barahona (2006) 

analyzed the evolution of some OSS projects (e.g., GIMP, Mozilla) over 7 years and found that 

these projects suffered from yearly turnover in core development teams and had to rely heavily 

on regeneration. Similar results on turnover were reported by von Krogh et al. (2003) in their 

analysis of the Freenet project.   

Turnover has been recognized as a critical issue in organization research due to its 

adverse effects on firms’ productivity levels (e.g. Ton and Huckman 2008; Shaw 2011). 

Turnover is also a critical problem in software development projects because it can lead to 

schedule overruns (Collofello et al. 1998) and regenerating teams is a complicated issue (Reel 

1999). Regeneration is challenging in OSS development because of the “contribution barrier” 

where newcomers face difficulty in acclimatizing themselves with the complex architecture of 

the project (Crowston et al. 2004; von Krogh et al. 2003). Once participants overcome this 

contribution barrier, it is in the best interest of the project to retain them. Therefore, there is 

intense competition for participants among OSS projects (Ahokas and Laurila 2004; 

Krishnamurthy 2005).  

Past research has studied how OSS communities evolve organization structures for better 

effort management and coordination (O’Mahony and Ferraro, 2007; Mockus et al. 2002; von 

Krogh et al., 2003). This body of research has consistently pointed to the gradual introduction of 

ownership (access to rights) to developers based on meritocracy and expertise. Developers 

generally start contributing as peripheral members and are accorded progressively higher set of 
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rights, duties and ownership of code modules based on their demonstration of commitment and 

expertise
3
. Google Code for example, allows developers to be owners (co-owners), committers 

and contributors
4
. Thus, owners may be “sole owners” or “part owners” depending upon the 

ownership structure within the project. The owners enjoy the highest levels of rights and have the 

ability to control the project structure, code and workforce. Committers’ rights are restricted to 

making changes to the code, but not controlling the overall structure of the code or the 

workforce. Contributors on the other hand, may only comment and point out issues; however 

their rights may be upgraded and they may be allowed to make code commits. Such an 

organization allows the module owners to oversee the efficient development of code and grant 

rights and duties to developers to make changes to the code. 

However, the impact of the organization structure of OSS communities on member 

retention is an often a neglected area of work in OSS research. The implicit assumption in the 

existing OSS studies is that ownership provides prestige to the owners and makes them more 

committed, but what has not been studied is under what conditions do we expect to see such 

positive effects of developer ownership levels on their attitudes such as turnover. Expecting a 

simple positive main effect of ownership level on retention, however, may be too simplistic due 

to the complex nature of the ownership construct and the novelty of the OSS context, as we 

outline below.   

                                                 

3
 Different projects may follow different strategies to accord ownership rights. Apache project for example, 

follows an emergent ownership structure where some participants emerged as “de facto” owners of modules through 

their continued code development and commitment to a module. Mozilla on the other hand, follows an “enforced” 

ownership strategy where every change to the code is reviewed by the module owner (Mockus et al. 2002).              

4
 http://code.google.com/p/support/wiki/Permissions  

http://code.google.com/p/support/wiki/Permissions
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Sociology, Psychology and Organizational Behavior literature have studied the issue of 

formal and psychological ownership as an organizational arrangement and employee 

participation. Since the 1970s, there has been continued interest in employee ownership, 

anchored in the hope that it would promote favorable worker attitudes, strengthen industrial 

democracy and enhance firm performance (Pierce and Rodgers, 2004). On the one hand, 

researchers following the macro-tradition in this area have tended to focus on the positive effects 

of employee ownership on firm level outcomes such as productivity. On the other hand, 

researchers following the micro-tradition have treated the individual as the level of analysis and 

have sought to observe a simple main effect of level of ownership (equity or share stakes) and 

their level of performance (Pierce and Rodgers, 2004). These models suggest that this 

ownership-performance relationship is an outgrowth of, among other things, economic incentives 

(Conte and Svejnar, 1990) and favorable employee-owner attitudes (Long, 1980). However, in 

contrast to positive effect models, there are models that have reported negative effects mainly 

due to increased monitoring costs and the free-rider effect (Blasi et al. 1996; Conte and Svejnar, 

1990).  

In addition, the ownership literature does not offer concrete evidence and the process 

involved that can help differentiate among the effect of sole ownership and co-ownership on 

employee performance. On the one hand, it may be argued that the effect of sole ownership on 

developer retention rates may be greater than the effect of co-ownership because sole ownership 

allows for a greater degree of control, authority, and sense of responsibility. Along similar lines, 

Wagner and Rosen (1985) argued that as the actual amount of ownership increases, the 

incentives associated with making the project may also increase. On the other hand, Long (1978) 

argued that when ownership leads to an integration of an employee in the organization, 
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performance (and hence retention rates) should increase as a result of peer pressure, motivation 

and cooperative behaviors. This suggests that the effect of co-ownership on retention rates occur 

possibly due to different mechanisms (e.g. peer pressure) than sole ownership. Therefore, it is 

unclear whether we may expect greater effects of sole ownership on retention rates as compared 

to co-ownership (or vice-versa) and under which conditions. Overall, Pierce and Rodgers (2004) 

note that the effects of ownership on employee attitudes are mixed and depend to a great extent 

on contextual effects.  

In the OSS context, a critical component of the traditional perspective on ownership-

performance relationship (economic incentive) is attenuated or missing, since most developers 

work voluntarily on projects without any financial compensation. Additionally, the traditional 

ownership models have assumed that an employee works for a given company. However, in the 

OSS context developers are not restricted to maintain their association to only a single project at 

any given time. Hence developers may simultaneously be involved in multiple projects and may 

have different ownership levels in each. Therefore, assuming homogeneity among developers 

based on their ownership levels in the project may provide an inaccurate picture. In addition, 

each project may have different characteristics that may impact developers’ willingness to 

maintain the association with the project. For example, projects may differ on the ratio of 

number of owners and the number of developers. Given these issues, we argue that OSS research 

needs to study the effect of ownership levels on developer turnover under the varying contextual 

surroundings of developer level and project level characteristics.  

The existing research on OSS developer motivation has tended to focus on the 

explanation of developer activity levels using either the individual perspective (Hars et al. 2003; 

Hertel et al., 2003) or the project perspective (Stewart and Gosain 2006; Stewart et al. 2006). 
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Empirically, however, since OSS participants are embedded in (often multiple) projects it is 

important to relate the characteristics of individuals and the characteristics of projects in which 

they function. Previous studies have neglected this important distinction (however, see Setia et. 

al., 2010 for an exception).  

Disaggregating all project level variables in an individual level analysis may lead to the 

violation of the assumption of independence of observations, since all developers will have the 

same value on each of the project variables. On the other hand, aggregating developer level 

variables to a project level analysis may lead to unused within group information (Raudenbush 

and Bryk 2002). Including project level variables in a developer level model is likely to create 

aggregation bias, which can underestimate the effects of variables that are estimated at the 

inappropriate level. While including aggregated values of developer level variables in a project 

level model may fail to fully capture the effects of certain variables (Rumberger 1995). None of 

the research studies have attempted to model turnover behavior in OSS in a comprehensive 

fashion taking into account both the developer level and project level factors.  

In addition, OSS developers do not work in vacuum; rather they work in a very dynamic 

environment and may fluidly move across multiple projects, contribute and play different roles in 

them simultaneously. Therefore, it is reasonable to expect that both the ownership levels and the 

project level characteristics may determine developers’ interactions with projects.                

Past research has convincingly established the adverse impacts of developer turnover on 

the performance of software projects (Hall et al. 2008, Abdel-Hamid, 1992). However, we are 

interested in exploring the inverse relationship, i.e. whether the performance of a software 

project itself may contribute to developer turnover. If this is so, then this may create a feedback 
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mechanism through which the prospect of sustaining the project may quickly spiral down. In 

Psychology literature, Social Identity Theory (SIT) posits that people tend to classify themselves 

and others into various social categories such as group membership, religious affiliation etc 

(Tajfel and Turner, 1985). Such a social classification allows an individual to define him or 

herself in the social environment. Thus, social identification is the perception of oneness or 

belongingness to some human aggregate and results in the individual perceiving the fate of a 

group as their own. SIT maintains that the need for a positive identity among individuals 

produces strong reactions when that identity is threatened, such as in the case of group failure. 

When the social identity is unsatisfactory, individuals will either strive to leave their existing 

group and join some more positively distinct group or make their group more positively distinct 

by contributing (Tajfel and Turner, 1985). Thus, SIT proposes a theoretical mechanism to test 

the effect of project (group) performance on the mean turnover rate. Therefore, using the 

Ownership literature and the Social Identity Theory (Tajfel and Turner, 1985), we hope to 

address the following broad research questions:  

 How does a developer’s ownership level influence turnover from a given open 

source project, given that a developer may appear in multiple projects at once? 

 What other developer level factors moderate the relationship between developer’s 

ownership level and turnover from a given project, given that a developer may appear in multiple 

projects at once?  

 Does project level success or failure moderate the relationship between 

developer’s ownership level and turnover from a given project, given that a developer may 

appear in multiple projects at once?  
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The dissertation is organized as follows. In the next section, we develop a methodological 

pilot study that focuses on modeling turnover behavior of core open source contributors using a 

logistic hierarchical linear modeling approach. Here, we argue that taking both the developer and 

the project level factors into account will lead to a richer understanding of the issue of turnover 

in open source projects. This study allowed us to explore whether there exist significant variation 

in turnover among OSS projects and whether this variation may be explained using developer 

and project level characteristics. We note the implications and deficiencies in this pilot study and 

propose that further enhancements leading to a conceptual integration of developer and project 

level factors in modeling turnover would lead to a richer understanding rather than just an 

empirical integration.  

In the second (main) study we explore such a conceptual integration using the Ownership 

and Social Identity Theory literatures, propose testable hypotheses, and describe the empirical 

methodology and results. This study also compares some alternative ways to measure turnover. 

Finally, we conclude with the weaknesses, and overall research and practical implications of this 

thesis.        
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2.0 STUDY 1: EXAMINING TURNOVER IN OPEN SOURCE SOFTWARE PROJECTS 

USING LOGISTIC HIERARCHICAL LINEAR MODELING APPROACH
5
 

This pilot study develops a model of turnover behavior in OSS. The analysis focuses on two 

levels: the developer level, which examines factors that may affect developers’ decisions to 

become inactive, and the project level, which examines the factors that may influence the rates of 

turnover among projects. Specifically, we hope to address the following research questions:  

 Do the open source projects vary in their mean turnover rates (intercepts)?  

 What developer level factors influence turnover from open source projects? 

 What project level factors influence the mean turnover rates among projects? 

Answering these questions allows us to motivate our larger goal of studying turnover in 

OSS. In what follows, we present a brief theoretical background of the developer and project 

level factors that may affect mean turnover rates among projects. This is followed by the 

methodology section where we outline the empirical methods used in the study and present the 

preliminary results. Finally we conclude by noting the limitations of this work and suggesting the 

steps we intend to take in the future to further improve this study.    

                                                 

5 
This pilot study has appeared as the following book chapter: Sharma, P.N., Hulland, J. and Daniel, S. 

"Examining Turnover in Open Source Software Projects Using Logistic Hierarchical Linear Modeling Approach," 

in I. Hammouda et. al. (Eds): Open Source Systems: Long Term Sustainability, IFIP Advances in Information and 

Communication Technology (OSS 2012), v. 378, pp. 331-337, Springer Berlin Heidelberg, 2012.  
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2.1 THEORETICAL BACKGROUND 

Research on participation in OSS projects has mainly focused on two different levels of analysis. 

The first, focusing on individual level addresses the general question: What factors motivate 

developers to contribute to projects? A second strand of research focuses on the project level 

factors. The focus of this research has been: What project level characteristics explain activity 

levels in projects? Past studies have tended to focus on one level or the other, but in order to 

understand why there is such widespread turnover in OSS projects, it is necessary to consider 

both perspectives (Rumberger 1995). In what follows, we describe the developer level and 

project level factors that may influence turnover behavior in OSS projects.        

2.1.1 Developer Level Factors 

Central to our discussion of the developer perspective is the notion of contribution barrier (von 

Krogh et al. 2003). If the developer does not have the required knowledge and skills to contribute 

to the project then the effort level required by him/her increases. In their study of Freenet, von 

Krogh et al. (2003) found that among other skills the knowledge of the programming language 

also erected barriers for beginning participants. They confronted the need to learn the language 

before they could contribute, thereby increasing the effort required. The knowledge of software 

architecture and the development processes also raise this barrier (Crowston et al. 2004). If the 

cost of effort required to contribute to the project is excessively high as perceived by the 

participant, s/he may not be motivated to continue contributing to the project. As per Crowston 

and Fagnot (2008), the higher the domain knowledge of the developer, the lesser is the effort 
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needed to contribute and higher the motivation. If an employee (or an OSS participant) does not 

have the requisite resources to meet the demands of the organization (or an OSS project) his/her 

performance will suffer and s/he is more likely to quit (Kristof-Brown et al. 2005). Developers 

with longer tenure are more likely to have scaled contribution barrier because they have had 

more time to develop programming skills and to acclimatize themselves with the complex 

architecture of the project and its requirements. Therefore we expect that developers with longer 

tenure are more likely to remain active in projects.  

Furthermore, the higher the number of projects the developer is contributing to, the more 

is the effort required to scale the contribution barriers erected by different projects. However, it 

may also allow them develop broader and more portable skills. Even so, working on multiple 

projects at one time places more demands on developers in terms of their attention and the time 

spent contributing. Therefore, we expect that developers who contribute to more number of 

projects are more likely to become inactive.   

Finally, projects employ developers performing different activities ranging from clerical 

to highly intellectual (von Krogh et al. 2003). Since enjoyment in programming is an important 

motivator for OSS developers to contribute (Shah 2006), the role of the developers is likely to 

influence their decisions to remain active in the project. Roles requiring intellectually 

challenging tasks may be more motivating for developers to contribute and to remain active in a 

project than roles with more mundane responsibilities.  



 

xxii 

 

2.1.2 Project Level Factors 

We focus on two project level factors that may affect developers’ perception of the vitality of the 

project – project age and project size. Our argument relies on the notions of the liability of 

newness and the liability of smallness of OSS projects (Chengalur-Smith et al. 2010). The 

liability of newness suggests that a newer project will be perceived as less legitimate because it 

has had less time to establish clear governance procedures such as recruitment strategies, rules 

for peer review process and conflict resolution. In addition such a project has had less time to 

establish its credibility among the developers and the supporting social network structure, such 

as a helpful user community, that may submit bug reports and feature requests (Chengalur-Smith 

et al. 2010). Such projects may find it difficult to retain developers. On the other hand, the 

projects that have had more time to mature may be in more advanced stages of development and 

more active (Crowston and Scozzi 2002). Such mature projects may appeal to the developers 

given their greater activity and vitality (Choi et al. 2010). Therefore, we expect older projects to 

have lower mean turnover rates.  

OSS projects are also likely to be susceptible to the liability of smallness which suggests 

that smaller projects may be perceived as having less pragmatic legitimacy resulting in a 

difficulty to attract and retain developers (Chengalur-Smith et al. 2010). Size of the developer 

base is also important in attracting additional collaborators as it may be considered a sign of 

vitality of the project (Choi et al. 2010). Larger projects with more developers may provide more 

opportunities for learning and building reputation for developers along with giving them a sense 

of importance of the project (Chengalur-Smith et al. 2010). Therefore we expect larger projects 

to have lower mean turnover rates.   
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2.2 METHODOLOGY 

To explore and explain the nature and impact of a developer and project variables on turnover, 

we used archival data. The sample of projects and participants was drawn from SourceForge 

(www.SourceForge.net). SourceForge provides open source developers with a centralized place 

to manage their development and includes communication tools, version control processes, and 

repositories for managing source code. It is one of the largest open source repositories, estimated 

to host over 168,000 projects (Madey and Christley 2008).  

The sample contained data for 40 currently active projects on SourceForge and 201 

developers. The projects were chosen on the basis of their overall activity levels (SourceForge 

provides a list of projects that have been most active during their development). All the selected 

projects had to be currently active (i.e. at least one developer currently working on them) and 

have CVS/SVN repositories on SourceForge that could be mined for developer activity levels. In 

many instances projects had separate websites and hosted their CVS/SVN repositories outside 

SourceForge. In other cases projects did not provide all the data that we needed. Such projects 

were dropped from our data set. SourceForge also provides a webpage for each developer which 

contains information about developers’ joining date, current activity, projects that they contribute 

to and their roles in the projects.  

2.2.1 Developer Level Variables  

The following five developer level (level 1) variables, including the outcome variable, turnover, 

were collected – 

http://www.sourceforge.net/
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 Turnover – We scanned for developer activity on CVS/SVN code repositories of the 

projects. Each project maintains such a code repository that contains the complete history 

of its development. The code repository can be scanned for individual developer activity 

history. Turnover was operationalized as a binary outcome variable. A developer was 

deemed active, coded as 0, if at least one CVS/SVN commit was made by him/her in a 2 

month period (March 25th 2010 to May 25th 2010). On the other hand, s/he was deemed 

inactive, coded as 1, if s/he had made no commits to the code repository in that period. 

Since it is difficult to predict when turnover has happened, such an approach is 

reasonable. Joyce and Kraut (2006) also followed a similar approach in their study of 

turnover from online newsgroups, however they chose an observation period of six 

months to determine turnover. Our choice of a two month period seemed reasonable for 

an exploratory study in an open source context since such projects require more active 

developer attention than online newsgroups.        

 Role of the Developer – We collected the data for the role of each individual developer 

from the project webpages. A project may employ developers for various roles that range 

in the level and kind of expertise required
6
.  Since we did not find enough developers for 

each of the possible roles, and on noting that the two most frequently employed roles 

                                                 

6
 Some examples of roles developers may perform in the project are as administrators, developers, document 

writers, project managers, packagers, web designers, translators, support technician, cross platform porter, all hands 

person etc.  



 

xxv 

 

were those of Developer and Administrator, we created two dummy variables 

“Developer” and “Admin” with the base group “Other” (which included all other roles)
7
.  

 Number of Projects – We collected the data for the number of OSS projects undergoing 

active development that the developer was involved in by scanning individual developer 

webpages.  

 Tenure – We approximate the tenure of a developer in months by using the date of 

joining SourceForge.net. The longer the developer has been on SourceForge, the greater 

is his/her chances of having gained enough technical and programming knowledge to 

overcome the contribution barrier of a project they may wish to contribute to
8
.       

2.2.2 Project Level Variables  

The following project level variables (level 2) were collected – 

Project Age – The date the project was registered is available on SourceForge. We 

calculate the age in number of months since its registration.  

Size of Project – The number of developers listed on the project’s webpage.  

                                                 

7
 As evident from Table 1, roughly 25% roles belonged to the Other category. Since Developer and Admin 

dummies are correlated we also analyzed the data by merging Other and Admin categories to create a single 

Developer dummy variable. In doing so we found that the HLM results did not change appreciably.       

8 
Since it is difficult to judge when a developer actually starts working on a project, we used their tenure on 

SourceForge.net as a proxy. For future work, we are considering operationalizing tenure as the period elapsed since 

their first contribution to the focal project, which may be a more robust way of approximating tenure.       
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2.3 STATISTICAL MODELS AND RESULTS  

Modeling the effects of developer level and project level variables together presents considerable 

conceptual and methodological challenges. The Hierarchical Linear Modeling (HLM) technique 

allows researchers to model developer level outcomes within projects and model any between 

project differences that arise. Newer versions of HLM also allow appropriate estimating 

techniques for dichotomous dependent variables, such as turnover. HLM also allows multivariate 

tests based on comparing model deviances (-2 Log Likelihood at convergence) using the Laplace 

Estimation method (Raudenbush and Bryk 2002). Deviance (-2LL) is a measure of model fit; the 

smaller the deviance is the better is the model fit.  

The study was carried out in two parts and follows the approach recommended by 

Rumberger (1995). In the first part a developer model of turnover was developed and tested with 

logistic regression using only developer level variables. This allows an analysis focused only on 

developer level variables. However, this not only ignores project level variables but also assumes 

that the effects of developer level variables on turnover do not vary from project to project. This 

assumption was tested in the second part of the study.  

In the second part of the study logistic HLM analysis was performed. The developer level 

model used in this part of the study was based on the results of the first part. It allowed us to 

focus the analysis on explaining between project differences in the predicted mean turnover rates 

(turnover characteristics adjusted for differences in developer characteristics between projects) 

and between project differences in the effects of developer level variables on turnover rates. 

Table 1 presents the descriptive statistics and bivariate correlations of variables at individual and 

project levels. 
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Table 1. Descriptive Statistics and Correlations 

Developer level 

(n=201) 

Mean  s.d. 1 2 4 5 

1. Tenure 83.01 36.891 -    

2. Number of Projects 2.92 2.763 .325** -   

3. Turnover (DV) .62 .486 .136 -.026 -  

4. Developer .42 .495 .038 -.081 .024 - 

5. Admin .33 .473 -.194** .063 -.189** -.605** 

Project level (n=40) Mean s.d. 1 2   

1. Age 86.25 43.665 -    

2. Size 14.70 23.750 .323* -   

*p < 0.05, **p < .001, two-tailed tests 

2.3.1 Logistic Models  

A series of linear logistic models were developed and tested to measure the effect of developer 

level variables on turnover behavior. Turnover is a binary dependent variable that can be 

expressed as a probability pi, which takes on the value of unity if the developer i becomes 

inactive in the project, zero otherwise. The probability p is transformed into log of odds (or logit) 

which is expressed as:  

Log [pi / (1-pi)] = β0 + β1 Tenure + β2 Developer + β3 Admin + β4 Number_of_Projects 

Logistic Regression was carried out in two steps. In the first step univariate estimates 

were computed for all the level 1 independent variables. In the next step we estimated the full 
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multivariate model using the forced entry method. Table 2 presents the exponentiated logistic 

coefficients, which represent the ratio of predicted odds of turnover with a one unit increase in 

the independent variable to the predicted odds without one unit increase. Thus, a value of one 

signifies no change in the odds of turnover. A value greater than (less than) one indicates that the 

odds of turnover increase (decrease) due to a unit change in independent variable.  

         Table 2. Predicted odds of turnover 

Variable Univariate estimates Multivariate estimates 

Admin .443* .320* 

Developer 1.104 .524 

Tenure 1.008 1.007 

Number_of_Projects .981 .955 

-2LL (initial = 266.583)  254.268 

Cox and Snell R
2
  .059 

Nagelkerke R
2
 

Δχ2  = 12.311* (p < .050) 

 .081 

     *p < 0.05, **p < .001  

The univariate and multivariate estimates of “Admin” are both significant and suggest 

that administrators have 44.3% lower odds of turnover than the “Other” category. This means 

that administrators are more than twice as likely to remain active than developers with “Other” 

roles. Since “Admin” was significant in the univariate and multivariate estimates it was retained 

for further HLM analysis.      
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2.3.2 HLM Models 

HLM analysis requires two types of models: a level 1 model to estimate the effects of developer 

level variables on turnover and a level 2 model to estimate the effect of project level variables on 

the coefficients of the level 1 analysis. HLM analysis allows for the estimated coefficients from 

the level 1 model to vary across projects and any such difference can be modeled with project 

level variables. We begin the analysis by modeling the unconditional model (base model) with 

no predictors at either level.  

2.3.3 Unconditional Model   

Log [pij / (1-pij)] = β0j 

β0j = γ00 + u0j 

This model allows us to ascertain the variability in the outcome variable at each of the two levels 

i.e. within project and between project variability. The results are shown in Table 3.  

Table 3. Unconditional Model 

Fixed effect  Coefficient se p value 

Average project mean γ00  .484 .183 0.012 

Random effect Variance component df χ2 p value 

Project mean, uoj .314 39 57.48 .028 

Deviance (-2LL) 631.288    

Estimated parameters 2    
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The Null hypothesis H0: τ00 = 0 is rejected (p = .028). This suggests that significant 

variation exists among projects in their turnover rates. The intraclass correlation coefficient 

(ICC) measures the proportion of total variance in the outcome that is between projects, i.e. 

level-2 (Snijders and Bosker, 2012). Resulting ICC values for our analysis suggest that 8.71% 

variation in turnover that can be explained by level-2 predictors resides between projects
9
. 

Further, for a project with a typical turnover rate (with u0j = 0), the expected log odds of turnover 

is .484. This corresponds to a probability of 1/ (1 + e
 (.484)

) = .38.  This means that for a typical 

developer in a typical project there is a 38% chance of turnover in a 2 month period.    

2.3.4 Conditional Model  

This model allows part of the variation in the intercept β0 (mean turnover rates) to be explained 

by project level variables (project age and size),  

Log [pij / (1-pij)] = β0j + β1j Admin 

β0j = γ00 + γ01 Proj_Age + γ02 Proj_Size + u0j 

β1j = γ10 

All the variables were grand mean centered. This centering approach facilitates the 

interpretation of the results and also lessens multicollinearity in group level estimation by 

reducing the correlation between the group level intercept and slope estimates (Raudenbush 

1989). Table 4 presents the results of the conditional model.   

                                                 

9
 Level-1 variance for logistic HLM models is given by      while level-2 variance (τ00) is the variance 

component of u00 (Snijders and Bosker, 2012).   
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Table 4. Conditional Model 

Fixed effect Coefficient se  p value 

Average project mean γ00 .760** .210  0.001 

Proj_Age Slope γ01 .010* .004  0.035 

Proj_Size Slope γ02 -0.015* 0.006  0.028 

Admin Slope γ10 -1.013** 0.360  0.006 

Random effect Variance component df χ2 p value 

Project mean, uoj 0.102 37 41.355 .286 

Deviance (-2LL) 617.781    

Estimated parameters  5    

 

The Null hypothesis H0: τ00 = 0 fails to be rejected (p = .286). This means that after 

controlling for project size and age no significant variation remains to be explained. The 

proportion of reduction in variance or variance explained at level 2 is .6751, implying that 

project size and age account for 67.51% of the explained variance at level 2. The Deviance (-2 

Log Likelihood) is also significantly improved from the base model (ΔD = 13.50, χ
2

df = 3, p = 

.004), suggesting a good model fit and a fully identified model
10

.        

We find that project administrators are 1/ (1 + e
 (1.013)

) = 26.63% less likely to turnover in 

the 2 month period than the “other” group, after controlling for other effects in the model. 

Additionally, project age and size have small but significant positive and negative effects on 

                                                 

10
 A conditional model that included all developer level variables did not further improve deviance and was 

rejected in favor of the more parsimonious model presented here.      
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developer turnover respectively. A unit increase in project age increases the log-odds of turnover 

by 0.010, while a unit increase in project size reduces it by .015, all other things being equal.   

2.4 LIMITATIONS AND FUTURE DIRECTIONS 

Like all empirical work this study is limited in many ways. First, the sample is biased toward 

more active projects. Such projects may have well developed infrastructures allowing retention 

of active members and/or a constant inflow of newer active members. Including less active 

projects in the future should allow for more robust and generalizable results. Second, the use of 

binary variable for turnover leads to loss of variance information. Some developers are more 

active than others and are more likely to stay active and our analysis should take this into 

account. To address this issue in future models we will use each developer's participation history 

to calculate a probability of turnover. Similar techniques have been used in marketing research to 

calculate the probability that a customer with a given pattern of transactions is still alive 

(Schmittlein et al., 1987). Finally we will seek a conceptual integration of developer and project 

level factors in modeling turnover rather than just an empirical integration. While the initial 

empirical integration lays the groundwork for simultaneous study of individual and project level 

factors, additional conceptual integration is needed for a complete understanding of turnover in 

open source projects. We consider this study as an important first step toward this end.  
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2.5 CONCLUSION 

In this preliminary study, we modeled turnover behavior of core open source contributors using 

logistic hierarchical linear modeling approach. We argue that taking both the developer and the 

project level factors into account will lead to a richer understanding of the issue of turnover in 

open source projects. Our analysis suggests that developer role, project size and project age are 

important predictors of turnover. We find that there exists a significant variation in mean 

turnover rates among projects on SourceForge and that project age and project size account for a 

sizable proportion of this variation. An understanding of factors that affect turnover in OSS 

projects may prove valuable for project managers and allow them to make more informed 

decisions in managing the volunteer developer work force. The IS research community will also 

benefit from the improved understanding of the interplay of factors across levels in managing 

volunteer contributions in virtual teams.  
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3.0 STUDY 2: THE ROLE OF OWNERSHIP AND SOCIAL IDENTITY IN 

PREDICTING DEVELOPER TURNOVER IN OPEN SOURCE SOFTWARE 

PROJECTS 

3.1 INTRODUCTION  

As mentioned earlier, in this study we propose a conceptual integration of developer and project 

level variables to analyze turnover. Previous OSS research has neglected the role of the 

organization structure (ownership) of OSS communities on member retention. Further, this 

research has neglected the inherently nested nature of the developer and project variables. In 

order to address these limitations and expand the existing research, this study develops a 

Hierarchical Linear Model (HLM) of turnover behavior in OSS. The analysis focuses on two 

levels: the developer level, which examines factors that may affect developers’ decisions to 

become inactive, and the project level, which examines the factors that may influence the rates of 

turnover among projects. This study also compares various measures of developer turnover in the 

OSS context. In what follows, we present a brief background of the Ownership and Social 

Identity Theory literatures. This is followed by the hypotheses and the methodology sections 

where we outline the testable hypotheses and the empirical methods used in the study. Finally we 

conclude by noting the limitations of this work and suggesting the steps we intend to take in the 

future to further improve this study.    
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3.2 LITERATURE REVIEW  

In this section, we outline the current state of research in the Employee Ownership literature and 

the Social Identity literature. 

3.2.1 Employee Ownership 

In Sociological and Economic literature on organizations, a firm is often seen as composed of 

four classes of actors: shareholders, board of directors, executives, managers and owners (Kang 

and Sorensen, 1999). Shareholders are often thought of as owners of the firm and hence this 

literature has often used “equity stake” or “share/stock value” as a proxy to operationalize their 

level of ownership. However, there are other possible forms of organization; for example, 

owners may be workers (employee owned companies). In entrepreneurial firms, one person may 

perform all the tasks (Kang and Sorensen, 1999). A common motivation to introduce employee 

ownership in traditional firms has been to increase worker and firm productivity (Pierce and 

Rodgers, 2004). In the OSS context, projects have tended to use ownership of modules for 

effectively managing the code production, avoiding chaotic code changes, and as a way to 

recognize the expertise of an owner-developer (Mockus et al., 2002).         

Ownership literature has conceptualized ownership as a dual conceptualization; firstly as 

an objective and real state (i.e. formal ownership) and secondly as a perceived state (i.e. 

psychological). While formal ownership is viewed as an objective reality and is often seen is a 

“bundle of rights”, psychological ownership is viewed as a reflective and experienced state 

achieved due to the reality of possession (Pierce and Rodgers, 2004). This psychological state is 
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more likely to be created when the formal ownership allows control over the owned object, 

knowledge of the object, and an investment in an object (Pierce et al. 2001). In the OSS context, 

formal ownership is accorded only to developers who have shown expertise with the project code 

and who have invested their time in developing it. Therefore, it is very likely that the formal 

ownership arrangement in OSS leads to a feeling of psychological ownership among developers.     

Pierce et. al. (2001) argued that ownership can be seen as fulfilling three basic human 

desires: 

1) Efficacy and Effectance:  Ownership and the rights that come with it, allow 

individuals to feel in control and give them the ability to alter their environment, thus satisfying 

their innate need to be efficacious (Beggan, 1991).  

2) Self-Identity: Possessions serve as a symbolic expression of self and they are 

closely connected to the perception of self-identity and people use ownership for the purpose of 

defining themselves and expressing their identity to others (Pierce et al. 2001). Possessions play 

a dominant role in forming an owner’s identity and become a part of their extended selves (Belk, 

1988). In fact, ownership and identity may be so strongly related that people may engage in 

territorial behaviors to identify and defend their possessions (Brown et. al. 2005). To quote 

Sartre (1969),  

“I am what I have; What is mine is myself” 

3) Having a Place (Belongingness): Possessions also allow people to fulfill their 

need to “dwell” and they may devote significant resources to targets that may potentially become 

their homes (Pierce et al., 2001). When people feel like owners in an organization, their need for 

belongingness is met by “having a place” in terms of their needs being met (Avey et. al. 2009).        
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Therefore, the positive effects of ownership are generally hypothesized because of the 

sense of fulfillment, self-esteem and the enhancement to ego it provides. When employees feel 

ownership in an organization, they feel a sense of responsibility toward it and tend to engage in 

positive behaviors (Avey et. al. 2009). Additionally, Beggan (1992) confirmed the existence of 

“mere ownership effect”, the hypothesis that owners rate a target object much more favorably 

than non-owners. Because people perceive their possessions as an extension of their self-

identities, they maintain enhanced perceptions of what they own, in order to maintain their 

positive identities. The mere ownership effect serves as a basis of motivation to maintain a 

positive self-image (Beggan, 1992). Furthermore, he found this effect despite the time people 

had to ruminate about the object, thereby suggesting that mere knowledge of ownership is 

enough for this effect to take hold, irrespective of the time the object was owned.    

 3.2.2 Social Identity Theory 

The argument that people seek motivation for self-enhancement through their possessions is 

analogous to the idea proposed by Tajfel and Turner (1985) in Social Identity Theory (SIT) that 

people make biased judgments in favor of their groups to enhance their individual self-esteem. 

SIT posits that people tend to classify themselves and others into various social categories, such 

as groups, teams or affiliation (Tajfel and Turner, 1985). A major reason for maintaining this 

classification is to find a sense of “belongingness” and maintain positive self-image. The desire 

to maintain a positive self-image is so strong that people tend to associate themselves with 

successful others even when the connection may be incidental or meaningless. The desire to 

maintain an association with another successful entity means that negative feedback on the 
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group’s functioning may cause people to end their association, the so called cutting off the 

reflected failure syndrome (Snyder et. al. 1986). On the other hand, De Cremer et. al. (2002) 

showed that under circumstances of negative feedback, some people may actually increase their 

association and responsibility to the group. They argued that the kind of reaction people show to 

group failure may well depend on how strongly people feel associated to the group.  

Social Identity Theory (Tajfel and Turner, 1985) suggests that people’s social identities 

may be positively or negatively affected according to the evaluations of those groups to which 

they belong. If the group’s status (or success) is lower in comparison to other relevant groups, 

people’s social identities may be threatened. In such cases SIT posits that people may respond in 

one of the following manner:  

1) Individual Mobility:  Individuals may leave or dissociate themselves from their 

erstwhile group and seek to join a better group. However, this option may not always be readily 

available to people, as joining other groups may not always be feasible (Ellemers et. al., 1988).    

2) Social Competition: Individuals may respond by working harder to make the 

group successful, so that its status relative to other groups may be enhanced.  

3) Social Creativity: Individuals may respond by changing the comparison criteria to 

a new dimension or changing the values assigned to the attributes so that previously negative 

comparisons are now perceived positive (Tajfel and Turner, 1985).       

In the next section, we will develop our hypotheses regarding developer turnover in OSS 

context using the Ownership literature and Social Identity Theory as our bases.  
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3.3 HYPOTHESES DEVELOPMENT 

OSS participants differ from each other, most conspicuously in the rights and duties and the 

accompanying ownership stakes they have in the project. In Sociology and Organizational 

Behavior literature, an employee’s ownership stake in a firm is often seen as a “bundle” of rights, 

powers and privileges (Kang and Sorensen, 1999). Formal employee ownership in a firm is 

frequently associated with rights to (1) possess some share of the owned object, (2) exercise 

influence (control) over the owned object, and (3) acquire the information about the status of that 

which is owned (Pierce et al., 1991). This literature has also studied how varying levels of 

employee ownership affect employees’ job attitudes such as turnover and work effectiveness. 

Workers-owners of the firm (shareholders) were found to have significantly higher levels of 

organizational commitment and lesser levels of turnover than non-shareholders (Long, 1980; 

Pierce et. al., 1991). Hammer et al. (1981), while studying the link between ownership and 

absenteeism concluded that ownership creates a mechanism through which employees perceive 

that their voices may be heard in bringing about organizational change. Thus formal ownership 

may create a perception of holding a position of influence and involvement in decision making, 

thereby generating a sense of responsibility toward the firm and higher levels of interest and 

commitment to it.             

In the OSS context, participants may also have varying ownership levels and possess the 

corresponding levels of rights (for example, Google Code participants can be sole owners, part 

owners, committers or contributors)
11

. Owners (and part owners) possess the highest levels of 

                                                 

11
 http://code.google.com/p/support/wiki/Permissions  

http://code.google.com/p/support/wiki/Permissions
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rights which include the ability to make changes to the project structure, code and workforce (i.e. 

they can move people in or out of the project). Committers possess the ability to make changes to 

the code but not the larger project structure or the workforce. Contributors, on the other hand, 

possess much restricted rights and can only post comments and point out issues in the code; 

however their rights may be upgraded to include code commits. This phenomenon is consistent 

with Russell’s (1985) view that ownership systems can be differentiated by the extent to which 

they permit rights to be exercised.  Prior literature in OSS has studied how participants are 

accorded progressively higher rights, duties and the accompanying ownership of the project code 

(von Krogh et al. 2003). To be accorded these rights, participants need to demonstrate their 

interest, skill and understanding of the code structure.  Mockus et al. (2002) studied the process 

through which developers are selected and granted ownership of project modules based on their 

skills and expertise
12

. Since participants with higher levels of ownership are more likely to be 

committed to the development, we propose the following main effect of ownership (level 1 

variable) on turnover:  

Hypothesis 1: An OSS participant’s level of ownership in the project will be negatively 

associated with turnover. Specifically, we hypothesize that sole owners will be least likely to 

turnover from a project followed by part owners, committers and contributors respectively.  

                                                 

12
 Different projects may follow different strategies to accord ownership rights. Apache project for example, 

follows an emergent ownership structure where some participants emerged as “de facto” owners of modules through 

their continued code development and commitment to a module. Mozilla on the other hand, follows an “enforced” 

ownership strategy where every change to the code is reviewed by the module owner (Mockus et al. 2002).              
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As mentioned earlier, OSS developers may work simultaneously on a number of projects 

with possibly different ownership levels in each. A given developer may be the sole owner in 

one project, co-owner in second, and committer in third. Yet another developer may work on a 

single project as an owner. Role theory argues such multiple relationships with multiple roles 

may be the cause of psychological stress. For example, Goode (1960) argued that “role strain” is 

a natural consequence of performing multiple roles. Role strain comprises of two overlapping 

problems: role overload which refers to constraints imposed by time, and role conflict which 

refers to discrepant expectations in performing roles irrespective of time (Sieber, 1974). Based 

on this we may assume that multiplication of roles causes burden on people and inhibits their 

ability to contribute to projects. However, the Theory of Role Accumulation suggests the 

following positive outcomes of multiple roles: (1) Overall status security and buffers against 

failure, (2) role privileges, (3) resources for status enhancement and role performance, and (4) 

enrichment of the personality and ego gratification (Sieber, 1974). Thus, role accumulation 

provides a psychological mechanism through which developers may be able to raise their 

performance levels. In addition, developers working on multiple projects may be able to apply 

skills learned from one context to the other with greater efficiency than others. However, Sieber 

(1974) does not deny the inevitability of role overload. Therefore we propose a curvilinear main 

effect for the number of projects a developer is involved in (level 2 variable) on turnover: 

Hypothesis 2: Overall, the number of projects a developer is associated with has a U-

shaped relationship with turnover in a given project. Specifically, the probability of developer 

turnover will decrease up to a point as the number of projects the developer is associated with 

on increases, after which it will increase.  
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However, as the number of projects a developer works on increase, their perception of 

level of “belongingness” may decrease and chances of individual mobility may increase. Such 

developers may not feel too attached to a project and may also have other projects they may 

seamlessly move into. Because “sole owners” have the greatest burden of responsibilities, in 

terms of managing and overseeing the project, they may find it increasingly difficult to devote 

time to a given project when there are other projects which require their attention at the same 

time. Since their sense of “belongingness” may be diminished, sole owners may be more likely 

to ignore certain projects in order to manage their workload better. Part owners, on the other 

hand, may rely on the shared ownership structure to leverage help from others in sharing their 

burden. Committers and Contributors may also be able to retain activity by sharing the workload 

with others. However, since the continuum of ownership levels from sole owners to contributors 

represents a decreasing burden of rights and duties, it is likely that lower levels of ownership 

may allow developers retain their associations with multiple projects.   

Hypothesis 3: The number of currently active projects a developer is associated with, 

will moderate the relationship between the level of ownership of the developer and turnover in 

that project. Specifically, as the number of associations increase, developers with higher level of 

ownership in the focal project will be more likely to leave than developers with lower levels of 

ownership.  

As proposed by SIT, people strive to maintain positive identities through their social 

associations. If their identities are threatened due to low group status or failure they may 

disassociate from the group. Therefore we propose the following main effect of project success 

(level 2 variable) on turnover,   



 

xliii 

 

Hypothesis 4: Overall, the success of the OSS project is negatively related to turnover in 

that project. Specifically, as the project success increases the chances of a developer working in 

it leaving are reduced. 

However, SIT also proposes that people may also respond to group failure by committing 

more to the group thereby facilitating its success (Social Competition). Here we argue that the 

decisions developers take, i.e. whether to leave or stay in a failing project, may well depend on 

their level of ownership in the project. De Cremer et. al. (2002) found that when group members 

received negative feedback, their decision to dissociate from the group often depended on their 

level of identification with the group. Developer-Owners of an OSS project achieve their status 

either by starting a new project or by demonstrating their expertise through contribution and 

commitment to the project. Such developers are also likely to strive to maintain their position 

and justify their past association with the project. Indeed, project escalation literature has 

similarly argued that managers may maintain their commitment levels to sinking projects in 

order to justify the sunk costs (Keil et. al. 1995). In OSS context, the sunk costs are likely to be 

the psychological association with the project and the effort spent on it. Therefore we propose 

the following interaction effect of ownership (level-1 variable) and project success (level-2 

variable) on turnover,     

Hypothesis 5: The success of the OSS project will moderate the relationship between the 

level of ownership of developer and turnover in that project. Specifically, as the project success 

decreases, developers with higher level of ownership will be less likely to leave than developers 

with lower levels of ownership. 
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3.4 DATA AND MEASURES 

Data for this research were collected from Google Code. Google code provides open source 

participants with a centralized place to manage their development and includes communication 

tools, version control processes, and repositories for source code. It is one of the largest open 

source repositories and is estimated to host over 237,802 projects (as of February 2012) out of 

which over 71,091 projects were active
13

. We designed a Web Crawler for the purpose of 

collecting the developer level and project level data using the R programming environment (R 

Development Core Team, 2011). Web Crawlers have been used in previous research to collect 

data on OSS projects (e.g., Setia et al. 2010). Additional developer activity data was collected by 

downloading the project repositories and parsing them using the CVSAnalY software
14

. This 

software allowed us to parse project repositories and store developer contribution data in a 

MySQL database.   

In the initial stage, data were collected for 5,500 top listed projects on Google code in 

August, 2012
15

. These included project level data and a list of 13,989 unique developers who 

contributed to these projects. This set of 5,500 projects and 13,989 developers form our initial 

sample. In the next stage, additional project level data were collected for 22,948 other projects 

that the core set of developers additionally work on, but that do not fall in our core sample of 

5,500 projects. Thus, all 13,989 developers fall under the 28,448 projects.  

                                                 

13
 We got these numbers by querying the February, 2012 Google code database dump, hosted by Flossmole. 

http://code.google.com/p/flossmole/   

14
 http://git.libresoft.es/cvsanaly/ 

15
 http://code.google.com/hosting/search?q=&btn=Search+Projects  

http://code.google.com/p/flossmole/
http://git.libresoft.es/cvsanaly/
http://code.google.com/hosting/search?q=&btn=Search+Projects


 

xlv 

 

3.4.1 Sample Inclusion Criteria  

Once we had captured the initial dataset, we applied various sample inclusion criteria on project 

characteristics in order to select the appropriate sample of projects and developers that reflect the 

population that we sought to generalize our results to.    

We represent the sample inclusion criteria as a set of filters that were applied to the initial 

sample of 5500 projects (Figure 1 represents the process): 

 Filter 1: We excluded projects of size 1, i.e. projects with only one developer, since 

involvement in such a project may not be meaningful as a group process such as social 

identity. Stewart et. al. (2006) also used a similar exclusion criterion.  

 Filter 2: Out of a total of 2111 projects that were left post filter 1, about 82% used SVN 

based version control system, while 11% used Mercurial and 7% used GIT systems. Due 

to the differences in the way workflow is organized in these source code management 

systems, Rodriguez-Bustos and Aponte (2012) found differences among developer 

contributions when projects migrated from one system to the other. Therefore, in order to 

control for any differences among projects that use SVN versus GIT or Mercurial, we 

excluded projects that used Mercurial or GIT repositories.  

 Filter 3: In the next stage we excluded either projects whose source code could not be 

read and parsed, or did not exist anymore, or were moved to different project hosting 

sites such as GitHub or SourceForge. In order to flag projects that had possibly migrated, 

we performed automated text analysis of project descriptions using keywords such as 

“migrate”, “move”, “GitHub”, and “SourceForge”. The project descriptions of projects 
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were then manually checked in order to make sure to exclude projects that had actually 

migrated to other hosting sites.   

 Filter 4: In the next step, we excluded projects that either were course or class related and 

hence potentially temporary (e.g. https://code.google.com/p/swe574-group2-

spring2013/), hosted only documents and not code, were test projects created by 

developers to test the Google code environment (e.g., 

https://code.google.com/p/211227358-testproject/), or were sponsored by a company 

such as Google. In order to flag projects that were possibly course related, we performed 

automated text analysis of project descriptions using keywords such as “course”, 

“assignment”, “student”, “university”, “school”, “college”. The project descriptions of 

projects were then manually checked in order to make sure to exclude projects that were 

actually course or assignment related and hence potentially temporary. This allowed us to 

retain projects that were the product of individual developers working under self-volition, 

and voluntary basis.   

 Filter 5: In the final step, we excluded projects that showed no activity in the 30 day 

period prior to data collection. This was done to ensure that only currently active projects 

were included in the sample. Stewart et. al. (2006) also used a similar exclusion criterion.  

          

The final sample consisted of 446 projects and 2949 unique developers. The project 

repositories of these 446 projects were parsed and stored in a MySQL database using the 

CVSAnalY software in order to analyze individual developer activities. The 2949 developers in 

this sample also worked on other 4445 “secondary” projects that did not overlap with the “focal” 

sample of 446 projects. Thus, all the 2949 unique developers work under 4891 projects.    

https://code.google.com/p/swe574-group2-spring2013/
https://code.google.com/p/swe574-group2-spring2013/
https://code.google.com/p/211227358-testproject/
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Figure 1. Sample Inclusion Process 

3.4.2 Developer Level Variables 

The following developer level variables, including the outcome variable, turnover, were 

collected – 

a) Dependent Variable (Turnover): Measuring turnover in a voluntary non-

contractual setting (such as OSS) is a non-trivial problem since the developers may go inactive 

for an elongated period of time, and then may return. The current research approach to measure 

turnover in such settings is to observe inactivity over an elongated, often arbitrary, period of time 

(e.g. Joyce and Kraut, 2006). However, this approach results in right-censored measurement of 
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turnover, since a developer may return after the observation period has ended. Since, to the best 

of author’s knowledge, there are no established methods to measure turnover in the OSS context, 

we use Schmittlein et. al’s (1987) Pareto/NBD approach to operationalize turnover. Originally 

proposed in the Marketing literature to track a customer’s lifetime value in a non-contractual 

setting, this approach assumes that customers buy at a steady (albeit stochastic) rate for a period 

of time and then become inactive. The time to dropout is modeled using the Pareto (exponential-

gamma mixture) timing model, and the repeat buying behavior is modeled using the NBD 

(Poisson-Gamma mixture) counting model. This approach has been shown to work quite well in 

modeling actual customer behavior based on their past buying behavior (Fader et. al. 2005). We 

argue that a similar approach can be used to track developer contributions and model their 

lifetime and dropout behaviors.   

In this approach a developer’s activity on the code (i.e. code commit) may be considered 

an “event” (analogous to a “purchase” event). A developer who is active is considered “Alive”, 

while a developer that is inactive for any reason is considered “Dead”. A developer who is active 

at time t = 0 is observed up to a suitable time “T”. During this observation period, the developer 

makes “X” number of code commits with the last commit coming at time “TX”, 0 < TX ≤ T. The 

value “X” is considered the “Frequency” of commit activity while “TX” is considered “Recency”. 

The Pareto/NBD approach then allows us to calculate the conditional probability that the 

developer is still alive after the observation period, P(Alive|(X, TX, T), subject to the following 

assumptions outlined by Schmittlein et al. (1987):     

 While alive, a developer makes commits to the code according to a Poisson 

process with a rate λ. The Poisson process implies exponentially distributed interpurchasing 

times with the resulting “lack of memory” property (Schmittlein et. al. 1987). This is a 
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reasonable assumption in the OSS context since the development of code is not bound by any 

regular schedule, and a developer may have a constant probability to contribute to the code.  

 Each developer remains alive for a lifetime which has an exponentially distributed 

duration with death rate μ. The events that could trigger “death” (such as a new career, lifestyle 

change, etc.) may arrive in a Poisson manner. The arrival of all possible death events is the 

superposition of the individual events, and is best approximated as a Poisson process (Karlin and 

Taylor, 1975). Thus, this assumption is also reasonable in the OSS context.  

 The activity rate λ and the death rate μ for different developers are distributed 

according to different gamma distributions in the population. Further, λ and μ are distributed 

independently of each other. It is reasonable to assume that different developers have different 

activity and death rates. Some developers are more active than others and other developers may 

become disenchanted with the project sooner than others. The gamma is a flexible distribution 

that can capture most reasonable distributions. Further, a frequent developer may become 

disenchanted with the project sooner and die. On the other hand, another developer may become 

more strongly attached to the project. Thus, there is no a-priori reason to favor a positive 

correlation between λ and μ over negative (Schmittlein et. al. 1987).         

Thus, given a developer’s Frequency and Recency profile we can construct a developer’s 

conditional probability of turnover, P(DEATH) as 1 – P(ALIVE|(X, TX, T)). Each OSS project 

maintains a code repository that contains the complete history of its development including each 

individual developer’s activity history. We downloaded the project SVN repositories and parsed 

them into a MySQL database using the CVSAnalY tool. To generate the conditional probability 

we chose to observe the developers for 3 different observation periods of 90, 180, and 270 days 

to capture their activities over a short, medium and long term respectively. Joyce and Kraut 
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(2006) also used a similar observation period of 180 days. We queried the MySQL database to 

generate each developer’s Frequency (X) and Recency (TX) profile over the 90, 180 and 270 day 

observation periods.   

We then calculated PDEATH90, PDEATH180 and PDEATH270 as three separate 

outcome variables for each developer in our sample using the “Buy-Till-You-Die”(BTYD) 

package in R (Dziurzynski, Wadsworth, Fader et. al. 2012)
16

. As we argue later in the paper, 

further analysis allowed us to select one of the most appropriate among the three outcome 

variables, which was then used for modeling the turnover behavior using developer and project 

level predictor variables. 

There are several advantages to using the Pareto/NBD approach over heuristic 

approaches that have been used in the past. One heuristic approach that has been applied is to 

deem a developer inactive if he/she has been inactive for at least a given period of time (Joyce 

and Kraut, 2006; Sharma et. al. 2012). Such a heuristic ignores a developer’s historic pattern of 

activity and does not allow us to generate a probability measure (Schmittlein et. al. 1987). It also 

leads to a loss in information by neglecting to differentiate between more frequently active 

developers from less active ones. Furthermore, once the developer has been deemed inactive it 

ignores their possibility of a comeback. Unlike the heuristic approaches, the Pareto/NBD 

approach not only takes into account “how many distinct days of activity” were shown by a 

developer but also the “recent most activity”. An added advantage of the Pareto/NBD approach 

                                                 

16
 Since the outcome variables are proportions, it is recommended that the arcsine transformations (i.e. sin

-1
 

(√PDEAD)) be performed in order to normalize the distribution (Hogg and Craig, 1995). Our results remained 

unchanged when using the transformed version of the DVs. Hence we report our results using the untransformed 

versions for ease of interpretation.      
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is the ability to predict future activity levels of developers (expected number of commits in the 

future). This can allow researchers and OSS managers to not only predict the available active 

workforce in the future and manage the project accordingly, but also to calculate the expected 

number of commits for the project in the future by summing over the expectations of the current 

developer base(Schmittlein et. al. 1987).                      

b) Ownership level of developer: As mentioned earlier, Google Code lists the 

ownership status of a developer as an owner, co-owner, committer or contributor. We used 3 

dummy variables, “Part Owner Dummy”, “Committer Dummy” and “Contributor Dummy”, to 

capture the different levels of ownership, with “Sole Owner” as the reference group.           

c) Number of Projects a developer is associated with: We collected the number of 

projects a developer is associated with, “Number of Projects”. This information is available on 

each developer’s profile page on Google code along with the corresponding ownership level. 

Further, to explore any possible curvilinear effects (i.e. H2), we also calculated (Number of 

Projects)
 2

.   

3.4.3 Project Level Variables 

The following project level variables were collected – 

Project Success: Project success in the OSS context can be measured using a variety of 

indicators, since it is a multidimensional construct (Stewart et. al. 2006). A simple and popular 

measure of a project’s “popularity” or its extent of “use” in OSS literature has been the number 

of times a project’s code has been downloaded (Crowston et. al. 2006). However, since older 
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projects have had more time to accumulate the number of downloads, we divided this variable by 

project age and log-transformed it to correct the skew, i.e. “Log (Downloads By Age)”.  

In addition, successful project development also involves interacting with the user and 

developer communities and fulfilling their bugs and feature requests. Google code allows users 

and developers to report “issues” with the project. The proportion of issues resolved by the 

developer team can be a helpful measure of the strength of a project’s processes and ultimately 

its success (Crowston et. al. 2006). Therefore, we calculated the ratio of issues closed by the 

developer team (i.e. resolved) to the number of issues reported, “Proportion of Issues Resolved”, 

as a second measure of project success.     

3.4.4 Project Level Control variables:  

The following variables were used as controls: 

a) Project Age: We controlled for “Project Age”, i.e. the time in years from the first 

code commit made on the project. Chengalur-Smith et al (2010) argued that a new project may 

suffer from the liability of newness which suggests that such a project might be perceived as less 

legitimate because it has had less time to establish clear governance procedures such as 

recruitment strategies, rules for peer review process and conflict resolution. In addition such a 

project has had less time to establish its credibility among the developers and the supporting 

social network structure, such as a helpful user community, that may submit bug reports and 

feature requests. Such projects may find it difficult to retain developers.  
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b) Project size: Butler (2001) has shown that a community’s size may impact the 

level of turnover in it. We controlled for the number of developers working on the project, 

“Number of Developers”. Each project lists the number of developers associated with it.   

c) Project License: License restrictiveness has been to shown to impact the level of 

developer interest in the project (Stewart et. al. 2006). The use of restrictive licenses, i.e. licenses 

with a viral clause (such as the GNU GPL), may affect developers’ and users’ perceptions of 

cost and benefits of developing and using the software by restricting compatibility of code with 

other software products and its commercialization potential. In accordance with Stewart et. al.’s 

(2006) work, we distinguish between projects with and without a license carrying a viral clause. 

In addition, there were a few projects (n=16) which did not clarify the license being used. We 

created 2 dummy variables “Permissive License” and “Other License” with restrictive licenses as 

the reference group.        

We present the descriptive statistics of level-1 and level-2 variables in Tables 5 and 6 

respectively. The correlations among developer Recency (X), Frequency (TX), PALIVE and the 

outcome variable PDEAD are presented in Table 7 for each of the three observation periods. We 

note that all the correlations in Table 7 were significant, and that the correlations are highest 

among the adjacent periods, as was to be expected. The pattern of correlations among X, TX and 

PALIVE/ PDEAD for any given period showed that both Frequency and Recency are correlated 

highly with PALIVE/PDEAD, however that Recency is more strongly correlated than 

Frequency. This suggests that a more recently active developer has more chances of being alive 

than a frequent developer whose last activity was further in the past. This leads to, at first glance 

somewhat counterintuitive, but reasonable suggestion that a developer who might have 

contributed heavily in past has lower probability of being alive than a less frequent developer 
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who contributed very recently. We present some typical examples of developer Recency, 

Frequency and PALIVE values in Table 8. Comparing the developers 5 and 6 we find that even 

though developer 6 did have one activity in the 90 day period, he has lower chances of being 

alive than developer 5 who made no commits during this period. Another interesting observation 

can be made when comparing developers 4 and 5. Even though developer 4 has been more and 

recently active than developer 5, his chances of being alive are slightly lower than developer 5. 

This is because the Pareto/NBD model assumes different activity and death rates among 

developers. A developer who has a history of frequent contributions will have to not only 

maintain the contribution level but will have to be more recently active as well in order to get 

higher PALIVE values. On the other hand, a developer who has been a historically lethargic 

contributor might still have higher chances of being alive because the model assumes a slower 

activity rate for him. This is where the Pareto/NBD crucially differs from the heuristic 

approaches that have been used.       
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Table 5.  Level-1 Descriptive Statistics (Developer Level).  N=2949 

Variable Mean S.D Minimum Maximum 

Frequency of Activity during 90 day period (X90) 1.72 6.42 0 62 

Recency of Activity during 90 day period (TX90) 10.40 25.56 0 90 

P(Alive) at the end of  90 day period (PALIVE90) 0.22 0.24 0 1 

P(Dead) at the end of  90 day period (PDEAD90) 0.78 0.24 0 1 

Frequency of Activity during 180 day period (X180) 3.12 11.86 0 124 

Recency of Activity during 180 day period (TX180) 24.11 54.87 0 180 

P(Alive) at the end of  180 day period (PALIVE180) 0.17 0.27 0 1 

P(Dead) at the end of  180 day period (PDEAD180) 0.83 0.27 0 1 

Frequency of Activity during 270 day period (X270) 4.35 16.85 0 199 

Recency of Activity during 270 day period (TX270) 36.45 80.85 0 270 

P(Alive) at the end of  270 day period (PALIVE90) 0.13 0.25 0 1 

P(Dead) at the end of  270 day period (PDEAD270) 0.87 0.25 0 1 

Part Owner Dummy  0.32 0.46 0 1 

Committer Dummy 0.55 0.50 0 1 

Contributor Dummy  0.07 0.26 0 1 

Number of Projects 3.26 5.09 1 144 

(Number of Projects)
2
 36.47 434.04 1 20736 

Part Owner Dummy × Number of Projects 1.37 4.39 0 144 

Committer Dummy × Number of Projects 1.51 3.21 0 99 

Contributor Dummy × Number of Projects 0.14 0.68 0 12 
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Table 6. Level-2 Descriptive Statistics (Project Level).  N=446 

Variable Mean S.D Minimum Maximum 

Project Age (in years) 2.97 1.98 0.03 15.51 

Number of Developers 6.79 7.39 2 51 

Permissive License Dummy 0.51 0.50 0 1 

Other License Dummy 0.04 0.19 0 1 

Proportion of Issues Resolved 0.53 0.34 0 1 

Log (Downloads By Age)  2.92 1.39 -0.66 6.15 
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Table 7. Correlations Among Developer Frequency, Recency, P(Alive) and P(Dead) 

 X90 TX9

0 

PAli

ve90 

PDea

d90 

X180 TX1

80 

PAliv

e180 

PDead

180 

X27

0 

TX2

70 

PAlive

270 

PDead

270 

X90 1 .99 .55 -.55 .92 .89 .34 -.34 .89 .85 .22 -.22 

TX90 .99 1 .60 -.60 .91 .89 .38 -.38 .88 .85 .25 -.25 

PAlive

90 

.55 .60 1 -1 .51 .53 .56 -.56 .50 .51 .44 -.44 

PDead9

0 

-.55 -.60 -1 1 -.51 -.53 -.56 .56 -.50 -.51 -.44 .44 

X180 .92 .91 .51 -.51 1 .99 .49 -.49 .96 .94 .34 -.34 

TX180 .89 .89 .53 -.53 .99 1 .55 -.55 .96 .94 .40 -.40 

PAlive

180 

.34 .38 .56 -.56 .49 .55 1 -1 .48 .51 .67 -.67 

PDead1

80 

-.34 -.38 -.56 .56 -.49 -.55 -1 1 -.48 -.51 -.67 .67 

X270 .89 .88 .50 -.50 .96 .96 .48 -.48 1 .99 .41 -.41 

TX270 .85 .85 .51 -.51 .94 .94 .51 -.51 .99 1 .49 -.49 

PAlive

270 

.22 .25 .44 -.44 .34 .40 .67 -.67 .41 .49 1 -1 

PDead2

70 

-.22 -.25 -.44 .44 -.34 -.40 -.67 .67 -.41 -.49 -1 1 

Note: All correlations are significant at .01 level (2-tailed).  
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Table 8. Typical examples of developer Recency, Frequency and PALIVE 

Developer X90 TX90 PALIVE90 X180 TX180 PALIVE180 X270 TX270 PALIVE270 

1 18 90 1 26 171 .94 41 270 1 

2 24 90 1 60 180 1 92 270 1 

3 1 87 .98 1 87 .52 1 87 .28 

4 0 0 .14 8 166 .93 9 242 .89 

5 0 0 .14 0 0 .06 1 237 .91 

6 1 1 .03 1 1 .00 1 1 .00 

7 1 1 .01 8 158 .87 23 267 .99 

3.5 METHODOLOGY 

Modeling the effects of developer level and project level variables turnover presents considerable 

conceptual and methodological challenges. Most studies in OSS literature focus on activity 

levels in project by considering either the developer level variables (Hertel et. al, 2003; Hars et 

al., 2002), or project level factors such as license choice and organizational sponsorship (Stewart, 

et al 2006). To the best of the authors’ knowledge, none of the studies have looked at turnover in 

open source projects by considering both levels of analysis (see Setia et al. 2010 for an 

exception). Including project level variables in a developer level model is likely to create 

aggregation bias, which can underestimate the effects of variables that are estimated at the 

inappropriate level. While including aggregated values of developer level variables in a project 

level model may fail to fully capture the effects of certain variables (Rumberger, 1995).  
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The Hierarchical Linear Modeling (HLM) technique allows researchers to model 

developer level outcomes within projects and model any between project differences that arise as 

a part of the nested design
17

 (Raudenbush and Bryk, 2002). Although we had hypothesized that a 

developer’s characteristics (ownership level, number of project associations) would impact 

turnover from project, there are reasons to believe that such effects may vary across projects. 

Thus, the effect of developer characteristics is nested within the effect of project level 

characteristics. A nested structure of the data also means that the independence of observations 

can no longer be assumed – developers working in one project may be more similar to each other 

than developers working on another project.  HLM relaxes the independence assumption and 

allows information to be analyzed across multiple levels and hence is more robust for multilevel 

data than OLS (Luke, 2004). Finally, our theoretical framework proposes hypotheses that are 

composed of constructs operating and interacting at two levels, thereby suggesting a need for a 

multilevel model.    

There is no single best way to build multilevel models and individual steps that a 

researcher should take in building the models depends on the research questions (Luke, 2004). A 

typical approach requires first testing an unconditional model and incrementally building 

conditional models (Setia et. al. 2010). An unconditional or a “Null” model is a simple one-way 

ANOVA model with random effects. It involves no predictors at any level and is useful to judge 

                                                 

17
 A nested design assumes that a developer works on only one among the 446 “focal” projects. If this 

assumption is not valid then a cross-classified should be considered (Raudenbush and Bryk, 2002). However, in our 

data set there were only 80 developers, i.e. 2.71% of total 2949, who worked on multiple focal projects. Since there 

is practically no variation for a cross-classified design, we instead chose to randomly delete “extra” developer 

associations within the focal projects. This way each developer worked on only one focal project in our sample as 

required by the nested design.     
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the proportion of variability in the DV (turnover) across the developer and project level 

predictors (i.e. within and between projects). The Null model can be useful tool to judge if a 

multilevel model is warranted in the first place. Once the need for multilevel modeling has been 

established, the researcher then proceeds to build a series of conditional models (i.e. models with 

predictors) in order to explain the variability in the DV. Typically, the models are built bottoms-

up by constructing the level-1 model first to explain within-group (i.e. within-project) variability 

and then explaining between-group variability using level-2 predictors (Snijders and Bosker, 

2012; Raudenbush and Bryk, 2002).  

While entering the variables in the model, it is recommended that they should be 

centered. We also centered all our variables, except the dummies, before the analysis. Centering 

the variable allows for ease of interpretation, reduces multicollinearity concerns and enhances 

the quality of the results (Setia et. al. 2010). All the developer level variables were group-mean 

centered while the project level variables were grand-mean centered (Raudenbush and Bryk, 

2002). Next, in order to test for any multicollinearity among predictor variables, we checked for 

correlations among variables and the corresponding VIF values. As can be seen in Tables 9 and 

10, none of the correlation values were abnormally high. In addition, none of the VIF values 

were greater than 5. This suggested that multicollinearity was unlikely to be an issue. In the next 

section, we present the HLM models that were run and the accompanying results. We utilized 

full-maximum likelihood procedure to test our models in the HLM7.0 software (Bryk et. al. 

1996). 
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Table 9. Correlations among Level-1 Predictors and VIF values 

 Part Owner 

Dummy 

Committer 

Dummy 

Contributor 

Dummy 

Number of 

Projects 

VIF 

Part Owner 

Dummy 

1 -.75 -.19 .16 4.34 

Committer 

Dummy 

-.75 1 -.31 -.13 4.65 

Contributor 

Dummy 

-.19 -.31 1 -.10 2.09 

Number of 

Projects 

.16 -.13 -.10 1 1.02 

Note: All correlations are significant at .01 level (2-tailed). None of the VIF values are above 10.   
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Table 10. Correlations among Level-2 Predictors and VIF values 

 Project 

Age 

Number of 

Developers 

Permissive 

License 

Dummy 

Other 

License 

Dummy 

Proportio

n of 

Issues 

Resolved 

Log 

(Downloa

ds By 

Age) 

VIF 

Project Age 1 .21** .03 -.13** .21** .19** 1.14 

Number of 

Developers 

.21** 1 .02 .08 .19** -.06 1.10 

Permissive License 

Dummy 

.03 .02 1 -.19** .04 .11* 1.06 

Other License 

Dummy 

-.13** .08 -.19** 1 -.03 -.11* 1.08 

Proportion of 

Issues Resolved 

.21** .19** .04 -.03 1 .14** 1.09 

Log (Downloads 

By Age)  

.19** -.06 -.11* -.11* .14** 1 1.09 

Note: All correlations are significant at .01 level (2-tailed). None of the VIF values are above 10.   
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3.6 MODELS AND RESULTS 

3.6.1 Unconditional (Null) Models 

As mentioned earlier, an unconditional model does not allow any predictor variables and is only 

used to estimate the level of variance that resides within and between projects. We ran three 

different Null models for the three DVs, namely PDEAD90, PDEAD180 and PDEAD270. This 

allowed us to select the best DV for further analysis with conditional models. Figure 2 shows the 

3 unconditional models.  

Dependent Variable PDEAD90 PDEAD180 PDEAD270 

Null Model PDead90ij = β0j + rij 

β0j = γ00 + u0j 

PDead180ij = β0j + rij 

β0j = γ00 + u0j 

PDead270ij = β0j + rij 

β0j = γ00 + u0j 

Figure 2. Unconditional (Null) Models 

Where, PDead90ij represents the outcome probability for i
th

 developer in the j
th

 project, 

β0j is the mean outcome for the j
th

 project, rij is the unique effect of the i
th

 developer (error) with a 

variance σ2, γ00 is the grand mean of turnover in the population and u0j is the random effect of j
th

 

project with variance τ00.  Table 11 presents the results of the 3 null models.  
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Table 11. Unconditional (Null) Models with DV observed over 90, 180 and 270 day periods. 

Fixed Effects PDEAD90 PDEAD180 PDEAD270 

Intercept, γ00 .774*** .822** .857*** 

Random Effects    

Level-2 variance, τ00
 
= var(uoj)  

Level-1 variance, σ
2 
= var(rij) 

.00422*** 

.05163 

.00860*** 

.06614 

.00727*** 

.05776 

 

As can be seen in Table 11, the population mean of probability that a given developer is 

dead (PDEAD) increases from 77.4% to 85.7% with an increase in the observation length. Thus, 

projects tend to lose developers with time, a rather expected result. Note that our study was 

limited to tracking developers that were already associated with the projects and ignores new 

developers that may have joined the projects during the observation period. Thus it seems 

essential for projects to keep on attracting new members in order to survive. The level-2 

variances, τ00, in all 3 models are highly significant suggesting the need for further exploration 

with conditional models. In order to select the best observation period (best outcome variable) 

we noted the following in table 11:  

 The total variance in the outcomes available for explanation (τ00 + σ
2
) increases 

from .05585 for the 90 day period to .07474 for the 180 day period, an increase of 33.82%. 

Surprisingly, the total variance for the 270 day period (.06503) is less than the 180 day period, a 

decrease of 12.99%.  
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 The Intraclass Correlation Coefficient (ICC)
18

 values for the 3 models suggest 

that the proportion of explainable level-2 (i.e. between project) variance increases from 7.55% 

(90 day) to 11.50% (180 days) but drops slightly to 11.18% (270 day period).   

These observations suggest that the 180 day period might be more suitable than 90 and 

270 day periods on the basis of amount of variation available for explanation. In addition, we 

found that there were 87 additional developers that contributed in the 180 day period that did not 

contribute at all in the 90 day period. These 87 developers represent a sizable addition to the 517 

developers who had made at least one commit during the 90 day period. The similar number for 

the 270 day period was 41, i.e. less than half. The 180 day observation period has also been used 

in previous research, although using the heuristic measures of turnover (Joyce and Kraut, 2006). 

Finally, the 180 day period, being half-way between the short-term and long-term periods, offers 

a reasonable compromise and is also practically feasible for researchers wishing to study 

turnover in non-contractual settings. The above arguments suggested to us that measuring the 

outcome over the 180 day period (i.e. PDEAD180) was preferable over others, given our data. 

Thus, we retained PDEAD180 as the outcome variable to be further analyzed using the 

conditional models.     

3.6.2 Conditional Models 

The conditional model allows predictors at both levels so that parts of sources of variability in 

the outcome may be accounted by the measured variables. However, the conditional models for 

                                                 

18
 The ICC is the proportion of level-2 variance to the total variance (Snijders and Bosker, 2012).  
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HLM allow for an extraordinarily rich class of modeling possibilities (Raudenbush and Bryk, 

2002). As mentioned earlier, a typical approach is to model within-project variability first using 

level-1 predictors, and then modeling the between-project variability using level-2 predictors. In 

order to test for the main effects of level-1 predictors (i.e. H1 and H2) we tested a main effect 

only one-way ANCOVA with random effects model (Model 2). Figure 3 presents Model 2.  

Level-1 Model:  

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor 

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + rij 

Level-2 Model:                                         β0j = γ00 + u0j 

β1j = γ10 

β2j = γ20 

β3j = γ30 

β4j = γ40 

β5j = γ50 

Figure 3. MODEL 2: One way ANCOVA with Random Effects (main effects) 

Where, γ00 is the mean probability of turnover for a typical sole owner (reference group) 

associated with 3.26 projects across all projects
19

; γ10, γ20 and γ30 represent the differences in 

probabilities of turnover among a typical part owner, committer and contributor as compared to a 

typical sole owner (reference group) respectively. Finally, γ50 and γ60 represent the main effects of 

                                                 

19
 Note that the variable Number of Projects was centered with a mean of 3.26.  
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Number of Projects and (Number of Projects)
 2

, i.e. linear and curvilinear effects, on probability 

of turnover. The third column of Table 12 presents the results of model 2
20

.  

 

                                                 

20
 For ease of reference, Table 12 also presents the results of the null model (Model 1).  
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Table 12. Results of HLM estimation 

Fixed Effects Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept, γ00 .774*** .651*** .628*** .616** .620*** 

For H1: Ownership (reference group: “Sole 

Owner”), 

Part Owner, γ10 

Committer, γ20 

Contributor, γ30 

  

 

.114*** 

.231*** 

.275*** 

 

 

.144*** 

.252*** 

.299*** 

 

 

.142*** 

.261*** 

.312*** 

 

 

.137*** 

.253*** 

.297*** 

For H2: Developer’s Project Associations, 

Number of Projects, γ40 

(Number of Projects)
2
, γ50 

  

-.002 

.00002* 

 

.004 

.00004** 

 

.005 

.00004** 

 

.004 

.00003* 

For H3: Ownership × Number of Projects, 

Part Owner × Number of Projects, γ60 

Committer × Number of Projects, γ70 

Contributor × Number of Projects, γ80 

   

-.010*** 

-.006* 

-.008 

 

-.010** 

-.007* 

-.011 

 

-.009* 

-.006 

-.008 

For Project Level Control Variables, 

Project Age, γ01 

Permissive License, γ02 

Other License, γ03 

Number of Developers, γ04 

    

.003 

.023 

-.007 

-.001 

 

.003 

.023 

-.008 

-.001 

For H4: Project Success Variables, 

Proportion of Issues Resolved, γ05 

Log (Downloads By Age), γ06 

    

-.061*** 

-.011** 

 

-.040 

-.032** 
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For H5: Ownership × Project Success, 

Part Owner  × Proportion of Issues Resolved, γ11 

Part Owner  × Log (Downloads By Age), γ12 

Committer  × Proportion of Issues Resolved, γ21 

Committer  × Log (Downloads By Age), γ22 

Contributor  × Proportion of Issues Resolved, γ31 

Contributor  × Log (Downloads By Age), γ32 

     

-.066 

.024 

.022 

.018 

.050 

.035* 

Random Effects      

Level-2 variance, τ0
2 

= var(uoj) 

 

Level-1 variance, σ
2 

= var(rij) 

.00860*** 

.06614 

.00998*** 

.06047 

.00978*** 

.06041 

.00884*** 

.06040 

.00919*** 

.06002 

Model Fit      

Deviance (-2 log likelihood) 

Deviation Difference (Δχ
2
) 

Estimated Parameters 

Level-1 R
2
 

599.467 

 

3 

379.029 

220.438*** 

8 

5.73% 

372.246 

6.783* 

11 

6.08% 

352.835 

19.411*** 

17 

7.35% 

342.342 

10.493 

23 

7.39% 

 

Notes: *p<.10, **p<.05, ***p<.01. Deviation differences are calculated as the absolute differences in 

deviance values between the current and the previous model, e.g., ΔD3=|D3-D2| etc. Significance of this 

difference is tested after accounting for the estimated parameters in the models.  

 

In HLM, the Deviance difference test allows comparison of two nested models on same 

data set. The difference in deviances of two models can be used as a chi-squared distributed test 

statistic with a degree of freedom that equals the difference in number of estimated parameters 

(Snijders and Bosker, 2012). The deviance test comparison between Model 1 and 2 suggested 
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that model 2 was a significantly better fit to the data than model 1, ΔD = 220.438, χ
2 

df = 5, p < 

.01.   

The coefficients γ10, γ20 and γ30 were all significant at the .01 level. The value γ10 = .114 

suggests that a typical part owner was 11.4% more likely to turnover than a typical sole owner. 

In addition, a typical committer and contributor were 23.1% and 27.5% more likely to turnover 

than sole owner in the 180 day period. These findings support H1, which suggested that higher 

levels of ownership in the project are associated with lower levels of turnover.   

The linear effect of Number of Projects, γ40, was not significant. However, the curvilinear 

effect, γ50, was significant. The positive value of γ50 suggested a convex or U-shaped effect 

supporting H2. Next, in order to test the interaction hypothesis between ownership and number 

of projects a developer is associated with (H3), we analyzed model 3 as an extension of model 2 

but with the interaction terms. Figure 4 presents model 3.  
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Level-1 Model: 

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor 

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy 

× Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor × 

Number of Projects) + rij 

Level-2 Model:                                         β0j = γ00 + u0j 

β1j = γ10 

β2j = γ20 

β3j = γ30 

β4j = γ40 

β5j = γ50 

β6j = γ60 

β7j = γ70 

β8j = γ80 

      Figure 4. MODEL 3: One way ANCOVA with Random Effects (interaction effects) 

  Where, γ60, γ70 and γ80 represent differences in slopes of part owners, committers and 

contributors with the slope for sole owners (γ40) for the relationship between turnover and 

Number of Projects, respectively.   

After including the 3 interaction terms (model 3) the model fit was significantly 

improved in comparison to model 2 as suggested by the deviance difference test
21

, ΔD = 6.783, 

χ
2 

df = 3, p < .10. The coefficients γ60 and γ70 were significant suggesting that the differences in 

                                                 

21
 Adding interaction terms of ownership with (Number of Projects)

 2 
did not lead to an 

improved model and thus were not included.    
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slopes among part owners and committers with sole owners were significant. However, this 

difference was not significant for contributors. That is, there were significant differences in the 

prediction of turnover probability by Number of Projects between part owners and sole owners, 

and between committers and sole owners. The negative sign on part owner slope (γ60 + γ40 = - 

0.60) and committer slope (γ60 + γ40 = - 0.20) suggested that part owners and committers were 

less likely to turnover than sole owners with an increase in Number of Projects, thereby 

supporting H3. The random effects for model 3 showed that, even though reduced in comparison 

to model 2, there was still significant residual variance remaining at level-2 (τ0 = 00978, p < .01). 

This suggested modeling this variance with level-2 predictors. 

In order to test for the effect of project success on turnover probability (H4) we included 

the variables Proportion of Issues Resolved and Log (Downloads By Age) as level-2 predictors, 

while controlling for developer characteristics. The project level variables that were controlled 

for were Project Age, Permissive License, Other License and Number of Developers. This 

intercepts-as-outcome (model 4) is presented in Figure 5, while the results are presented in the 

5
th

 column of Table 12.   
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Level-1 Model: 

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor 

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy × 

Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor × 

Number of Projects) + rij 

Level-2 Model: 

β0j = γ00 + γ01 (Project Age) + γ02 (Permissive License Dummy) + γ03 (Other License Dummy) 

+ γ04 (Number of Developers) + γ05 (Proportion of Issues Resolved) + γ06 (Log (Downloads by 

Age)) + u0j 

β1j = γ10 

β2j = γ20 

β3j = γ30 

β4j = γ40 

β5j = γ50 

β6j = γ60 

β7j = γ70 

β8j = γ80 

               Figure 5. MODEL 4: Intercepts-as-outcome 

Where, γ05 and γ06 represent the effects of Proportion of Issues Resolved and Log 

(Downloads By Age) on the mean probability of turnover, i.e. the main effect of project success; 

and γ01, γ02, γ03 and γ04 represent the effect of control variables.  

The deviance difference test in Table 12 showed that model 4 was a significant 

improvement over model 3, ΔD = 19.411, χ
2 

df = 6, p < .01. We also observed significant negative 

effects of Proportion of Issues Resolved (γ05 = -.061, p < .01) and Log (Downloads By Age) (γ05 = 



 

lxxiv 

 

-.011, p < .01) on probability of turnover thereby supporting H4. Interestingly, none of the 

control variables had a significant effect on the outcome. The variance component of level-2 

random effect was reduced compared to model 3, however it was still significant (τ0 = 00884, p < 

.01).  

Next, in order to test if there were cross-level interactions (i.e. interactions among level-1 

and level-2 predictors) as hypothesized in H5, we tested a slopes-as-outcome (model 5) as 

presented in Figure 5. The results are presented in the 6
th

 column of Table 12.  

The deviance difference test showed that model 5 was not better than model 4, ΔD = 

10.493, χ
2 

df = 6, p >.10, and hence was rejected in favor of the more parsimonious and better 

fitting model 4 (Raudenbush and Bryk, 2002). Thus, we did not find any support for H5.  
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Level-1 Model: 

PDEAD180ij = β0j + β1j (Part Owner Dummy) + β2j (Committer Dummy) + β3j (Contributor 

Dummy) + β4j (Number of Projects) + β5j (Number of Projects)
 2

 + β6j (Part Owner Dummy × 

Number of Projects) + β7j (Committer Dummy × Number of Projects) + β8j (Contributor × 

Number of Projects) + rij 

Level-2 Model: 

β0j = γ00 + γ01 (Project Age) + γ02 (Permissive License Dummy) + γ03 (Other License Dummy) 

+ γ04 (Number of Developers) + γ05 (Proportion of Issues Resolved) + γ06 (Log (Downloads by 

Age)) + u0j 

β1j = γ10 + γ11 (Proportion of Issues Resolved) + γ12 (Log (Downloads by Age)) 

β2j = γ20 + γ21 (Proportion of Issues Resolved) + γ22 (Log (Downloads by Age)) 

β3j = γ30 + γ31 (Proportion of Issues Resolved) + γ32 (Log (Downloads by Age)) 

β4j = γ40 

β5j = γ50 

β6j = γ60 

β7j = γ70 

β8j = γ80 

Figure 6. MODEL 5: Intercepts-as-outcome 
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3.7 LIMITATIONS AND FUTURE WORK  

This study is limited in several ways. First, we only chose to observe developer contributions as 

code commits. However, past research has shown the importance of other kinds of contributions, 

often by peripheral developers, such as code documentation, managing websites, wikis and 

mailing lists, popularizing projects through positive word-of-mouth etc. (Setia et. al 2010). 

However, since code commits are a necessary (but not sufficient) condition for the success of an 

open source project, understanding factors that may impact the actual code development are 

necessary.  

Second, we only chose to observe projects that used SVN as their code management 

system and neglected projects that used other increasingly popular systems such as GIT and 

Mercurial. While it is our conjecture that our results should be generalizable to projects using 

other SCM systems, it remains a work for the future.  

Third, our choice of project success measures is in no manner exhaustive. Past OSS 

literature has differentiated between the market success, technical success and team effectiveness 

of the project and why such a distinction is warranted (e.g. Grewal et. al. 2006, Stewart and 

Gosain 2006, Crowston et. al. 2004, Sagers 2004, Crowston and Scozzi 2002). It would be 

interesting to further explore what kind of project success matters more for which relationship. In 

addition, Shah (2006) argued that OSS developers are motivated for a variety of reasons and 

explored the differences between core and peripheral developers. Therefore, it would be 

interesting to see what kinds of project success or failure impacts the retention rates of which 

group.   
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. Fourth, we had excluded projects that did not show any activity in the 30 day period 

before data collection, an arbitrary cut-off. However, on revisiting some projects that were 

excluded it was found that the projects were still in-development. In fact there were some 

projects that were “resurrected” after long periods of inactivity. This has the potential to bias our 

results in favor of recently active projects.  

Fifth, we assumed that any developer whose name was listed on the project was still 

associated with it. While this is true in a formal sense, some developers may have “left” the 

project even though their names still appeared on the project list. There were many developers in 

our data set that never made any code commits in any observation period. In such a case, their 

Pareto/NBD PDEAD values kept decreasing with increasing observation periods. On the other 

hand, there were some developers that “resurrected” themselves and became more active as 

observation period increased. This suggests that future researchers might be able to uncover 

interesting findings using longitudinal or time-series analyses.  

Finally, we only analyzed projects that were not sponsored by an external agency. 

Increasingly, many for-profit companies are sponsoring open source projects and paying 

developers to work on them (West and O’Mahony, 2008). Our results cannot be generalized to 

such settings and more work is required to distinguish any differences in the phenomena 

analyzed in this study among sponsored projects.                  
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4.0 OVERALL CONTRIBUTIONS  

There are likely to be several contributions of this work. Table 13 presents a summary of the 

hypotheses and results of the empirical analyses. First, we merged the Ownership and Social 

Identity literatures to argue that the effect of ownership on member retention is moderated by the 

threat to the identity, i.e. project success. We showed that managing ownership structures are 

critical for projects to maintain an active developer base. Overall, sole owners were least likely 

to turnover followed by part owners, committers and contributors. However, as the number of 

project associations increased, lower ownership levels were associated with greater chances of 

retention. This presents a trade-off for project managers in terms of managing the ownership 

structures in the project. The implications are likely to be generalizable to other online 

community forms of production such as Wikis.  

Second, we argued that the correct way to model OSS developer participation level is to 

acknowledge the inherently nested nature of the data. Analyzing effects at multiple (i.e. at 

individual and group) levels and how they may interact allows for a deeper understanding of how 

developers are likely to continue working on projects. For example, is there a difference in 

turnover rates among sole-owners in a small project (with few other developers) and sole-owners 

in a large project? In the former case, the sole owner may feel lower levels of accountability 

while in the latter case he/she may feel more accountable and responsible for the well-being of 

the project. This opens up interesting avenues as to how the size and the presence and number of 
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other owners affect the performance of a developer. Since OSS developers work under multiple 

contexts, it is very likely that the extra-project context also matters. This will allow OSS 

researchers to begin exploring how developers regulate their commitment levels across multiple 

projects.  

Table 13. Summary for Hypothesized Relationships 

Hypothesis 1: An OSS participant’s level of ownership in the project will 

be negatively associated with turnover. Specifically, we hypothesized 

that sole owners will be least likely to turnover from a project followed 

by part owners, committers and contributors respectively.  

Supported 

Hypothesis 2: Overall, the number of projects a developer is associated 

with has a U-shaped relationship with turnover in a given project. 

Specifically, the probability of developer turnover will decrease up to a 

point as the number of projects the developer is associated with on 

increases, after which it will increase.  

Supported 

Hypothesis 3: The number of currently active projects a developer is 

associated with, will moderate the relationship between the level of 

ownership of the developer and turnover in that project. Specifically, as 

the number of associations increase, developers with higher levels of 

ownership in the focal project will be more likely to leave than 

developers with lower levels of ownership.  

Supported 

Hypothesis 4: Overall, the success of the OSS project is negatively 

related to turnover in that project. Specifically, as the project success 

increases the chances of a developer working in it leaving are reduced. 

Supported 

Hypothesis 5: The success of the OSS project will moderate the 

relationship between the level of ownership of developer and turnover in 

that project. Specifically, as the project success decreases, developers 

with higher level of ownership will be less likely to leave than 

developers with lower levels of ownership. 

Not Supported 

 

Third, we introduced a practical way of operationalizing turnover and are the first to 

show the application of the Pareto-NBD model in an online community context. We argued that 

this approach is preferable over the heuristic measures that have been used in the past, and can 

become an important tool for future researchers. In order to assess the adequate length of 



 

lxxx 

 

observation period, we compared 3 potential outcomes spread over short, medium and long term, 

and concluded that a medium term observation period appears suitable in the OSS context. In 

fact, the Pareto-NBD model may be strained if very long histories of developer activities are 

taken into account (Schmittlein et al. 1987). If the complete past of a developer that has worked 

for years is taken into account, the death rate μ will be close to zero, thus allowing the developer 

to stay alive for a very long time in the future. In the Marketing context, Schmittlein et al. (1987) 

recommended an observation period not greater than 2 years even in presence of more data. 

Since other online voluntary contexts such as Wikis may inherently different rates of 

development and life cycles, it opens the door for researchers to assess appropriate periods in 

these fresh contexts.      
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