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ABSTRACT 

Objective: This thesis aims to apply and compare selected regression methods with a lung fiber 

analysis dataset. Final results based on 19 cases will be compared to 2011 Marsh et al.’s analysis 

based on the first 15 cases. 

Methods: Two research questions for the lung fiber dataset are: (1) is there a relationship 

between the lung fiber concentration of TAA and lung fiber concentration of AC? and (2) is 

there a relationship between the lung fiber concentration of TAA and duration of employment as 

a brake worker? Besides the substitution method, bivariate normal regression was used in the 

doubly left-censored situation in question 1, while the censored normal regression and regression 

modeling with count data were used in the situation with only the dependent variable subject to 

detection limits in question 2. 

Result: (1) The estimate of the slopes between the log-scale of two lung concentrations (TAA vs 

AC) were 0.59, 0.57, 0.59 and 0.54 in the simple linear regression with substitution (DL, 0.5DL, 

DL/√2 ) and the bivariate normal regression, respectively. All of the slope estimates were 

statistically significant different from zero (p-value = 0.001, 0.003, 0.002 and 0.003). (2) The 

estimate of the slopes between the log-scale of the TAA lung fiber concentrations and DOE were 
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0.001, 0.014, 0.008, 0.020 and 0.030 in the simple linear regression with substitution (DL, 

0.5DL, and DL/ √2 ), censored normal regression and the negative binomial regression, 

respectively. All of the slope estimates were not statistically significant different from zero (p-

value = 0.933, 0.486, 0.675, 0.390 and 0.439). 

Conclusions: The consistent results from the substitution and other methods provide support for 

both a positive relationship between the lung concentration of TAA and AC and for no 

relationship between the lung concentration of TAA and DOE among 19 brake workers with 

mesothelioma. These findings are consistent with Marsh et al.’s findings in 2011 based on the 

first 15 cases. The public health significance is that the study results provide additional support 

for the conclusion that exposure to non-commercial amphibole asbestos, and not chrysotile, is 

related to the observed mesothelioma in brake workers. However, these conclusions need to be 

verified with a larger sample size.  
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1.0  INTRODUCTION 

1.1 BACKGROUND & RATIONALE 

It is widely known that prior exposure to asbestos is an important risk factor of mesothelioma 1-4. 

Environmental and occupational exposures are the main sources of human exposure to asbestos. 

Several types of occupational populations including insulation and shipyard workers exposed to 

high-levels of asbestos dust were reported to have elevated risk of developing mesothelioma 5-12.  

A large number of workers who install and repair brakes in cars and trucks have some 

potential asbestos exposure (mainly chrysotile asbestos) although the nature of these exposures is 

thought to eliminate or greatly decrease the potential health risks involved 13-18. The 

epidemiology literature provides no support for increased mesothelioma risks among brake 

(automotive friction products) workers 18-19 and there is ongoing debate about whether chrysotile 

exposures in any setting can elevate mesothelioma risks 18-23.  

Among all types of asbestos fibers, commercial amphiboles (primarily crocidolite and 

amosite) are well known to cause the mesothelioma due to their greater bio-persistence 

compared to chrysotile 5,16,24-26. In his study of 10 brake repair workers with mesothelioma, 

Roggli et al. found that among all workers with an elevated level of the chrysotile or non-

commercial amphibole fiber concentration, there is also an elevated level of the commercial 

amphiboles fiber concentration 27. Because commercial amphiboles were not used in friction 
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products in the US, Roggli et al. believe there must be an unrecognized source of commercial 

amphibole fiber exposure for these brake workers that caused their mesothelioma 27-28.As a 

result, the question is whether there is a true linear or positive relationship between the chrysotile 

and the commercial amphiboles among these brake workers.  

To address this question, Finkelstein performed a linear regression analysis between the 

concentration of the tremolite fiber (as a reasonably good biomarker for the chrysotile) and the 

commercial amphiboles in these 10 workers and found a not statistically significant p-value for 

the beta coefficient.  He concluded that the there is no relationship between the chrysotile and 

commercial fibers 29.  

However, by applying the quantile regression analysis that accounted for the two 

influential points among these 10 workers, Marsh et al. found an alternative conclusion that the 

lung levels of commercial amphiboles was a statistically significant predictor to the lung levels 

of tremolite. Marsh et al. also found no evidence for the duration of employment as a brake 

worker as a significant predictor for the lung tremolite level. They also obtained the same result 

after adding to the dataset five more mesothelioma cases that were brake workers 30. 

Both Finkelstein and Marsh et al. used the substitution method for non-detect fiber 

concentrations in their analysis (observation labeled as less than some value).While Helsel has 

claimed that the substitution method in dealing with the non-detect problem is inadequate and 

inaccurate in estimating both of the summary statistics and regression coefficients in the 

environment setting 31-33, Antweiler et al. found that substitution with the 0.5DL will only give 

slight bias on summary statistics during some reasonable conditions using a simulated dataset 34. 
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Because of the suspected issues with the substitution methods, the goal of this thesis is to 

review and evaluate other available regression methods dealing with the non-detect problem that 

can be applied to the lung fiber dataset. Moreover, the results will be compared among different 

methods using the dataset. 

1.2 REVIEW OF DATA ANALYSIS WITH NON-DETECT OBSERVATIONS 

The primary question of the dataset is whether there is a linear or positive relationship between 

the lung tissue concentration of non-commercial amphiboles (TAA) and commercial amphiboles 

(AC). However, both of the two fiber concentration measurements have multiple detection limits 

(DLs). As a result, regular regression analysis cannot be applied while methods dealing with left-

censored observations with both independent and dependent variable are subject to non-detect 

are in need. 

In environmental and occupational studies, data with lower reporting limits (non-detect) 

are usually reported. Some examples of the non-detect problem included the water quality 

studies, industrial hygiene studies, HIV RNA measurement and astronomy research 34-39. Non-

detect data usually occur when the researchers in the laboratory cannot distinguish between a 

true zero and the false negative. The only known information about the data point is that the true 

value should be somewhere between zero and a positive value, which is known or estimated as 

the DL.  

Some non-detect problems refer to the measurement of chemicals with very low-level 

concentration (such as chemical contamination in the water). With the limitation of the 

instruments or methods, sample with a positive signal might not mean a true positive value of the 
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material concentration (false-positive). As a result, methods had been developed to calculate the 

DL according to the blank samples (samples known to be true zero) or samples with very low 

positive values. The ways to define the DL varies across different settings 37.   

Due to the DL, observations with value less than the DL will be reported as “ < DL ”, 

leading to a left-censored dataset in the future analysis by assuming the DL is known and fixed 

(although sometimes we need to estimate it). Hewett et al. divided datasets subject to non-detect 

into two types: (1) single censored and (2) complex censored 38. A single censored dataset is one 

with only one DL and all value less than this DL are reported as “< DL”. A complex censored 

dataset is one with multiple DLs, which means there could be observations with the value 

between two DLs (eg. <5, 7, <10).  

The non-detect problem complicates data analyses such as the estimation of the summary 

statistics, measurement of the association and regression coefficients. A common and rough way 

to treat non-detect data in many practical fields is to substitute a fraction of the DL for all left-

censored observations and apply the subsequent analysis, which is also known as fabrication 

31,34,35. Examples of the substituted value include 0.5DL (mid-point), DL/√2, DL or even zero 

31,35. 

However, Helsel has reported that substitution can give inaccurate estimate of the 

statistics and considered the poor estimation of the statistics can lead to the conclusion of a 

significant difference, correlations or regression relationship that do not exist 31-33. On the other 

hand, Antweiler et al. found that when the censored rate is less than 70%, substituting 0.5DL will 

only cause slight bias but substituting zero or DL will cause severe bias in estimating the 

summary statistics using the simulated dataset34. 
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Methods to estimate the summary statistics (mean, median & SD) for variables subject to 

non-detect have been developed. Most of the methods can be divided into four types: maximum 

likelihood estimation (MLE), regression on order statistics (ROS), Kaplan-Meier (K-M) or 

Turnbull estimation and multiple imputation 32, 34, 38, 39. 

The book “Statistics For Censored Environmental Data Using Minitab and R” report 

there were 15 papers published, that discussed the comparison between different methods in 

estimating the summary statistics 41. However, the results of the comparison are not consistent 

among all the papers and the reason could be due to the difference of the real and simulated 

dataset each author used to test the methods 42. Based on the 15 review papers, Helsel concluded 

in his book “Statistics For Censored Environmental Data Using Minitab and R” that two factors 

needed for choosing the appropriate method was the percent of censored observations and the 

total sample size 42. He recommended using the K-M method and imputation when less than half 

of the observations are censored. While MLE and multiple imputations can be applied when 

there are more censored cases (between 50% - 80%) and a larger sample size (> 50) 42.  

However, it is more appropriate to use the robust MLE and ROS when the sample size is small 

(< 50) after checking the distribution assumption (except for the log-normal) 42. He also 

recommended to only reporting the high sample percentiles or percent above a meaningful 

threshold when there are more than 80% of the observations censored 42. 

Regression analysis is the most commonly used method in explaining the relationship 

between a continuous response variable and several dependent variables. Regression methods 

dealing with the response Y subject to the right-censored are well developed such as the Cox 

proportional hazard model, estimating the coefficient of the covariates based on the semi-

parametric likelihood.  As for the regression analysis for data with non-detect observations, most 
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of the methods focused on the single DL with only the outcome Y subject to the non-detect 43-45. 

For multiple DLs, MLE methods can be applied to the dataset with Y subject to left-censoring 

(LC) and the covariate X is fully observed. By specifying some distribution function for the 

outcome variable and performing the ML estimation for the coefficients in the mean model. 

Instead of using the probability density function, the cumulative density function is used for all 

LC observations in constructing the likelihood.  

When both the outcome Y and the covariate X are subject to multiple DLs, the situation 

becomes more complicated. Methods dealing with a missing or censored independent variable 

include conditional mean imputation, MLE, multiple imputations from other variables, and 

Bayesian approaches, most of which are focused on singly-censored case 46-47. However, no 

standard method exists to deal with the doubly-censored case (both Y and X subject to DLs) 

directly. As a result, joint modeling has been used to solve the non-detect problem in both of the 

Y and X variables. Because we are interested in studying the potential linear or positive 

relationship between two concentrations, the bivariate normal distribution is the primary choice 

due to the property that there is a linear relationship between the conditional mean of Y given X 

and the X variable itself. Therefore, if we can find appropriate normal transformations for both 

of the concentrations, maximizing the likelihood function using the bivariate normal distribution 

can get the MLE estimates of the linear coefficients in the condition model. 

A non-parametric method mentioned in Helsel’s book that can also be applied to the 

doubly LC situation was the non-parametric Akritas-Theil-Sen (ATS) regression 48-49. The ATS 

slope in this regression model is an extension to the Theil-Sen slope which estimates the median 

of the slopes between all possible pairs of data. However, this method has not been verified using 

the doubly censored dataset and therefore was not considered in the thesis project.  

6 



2.0  MATERIALS 

2.1 DATASET 

The dataset contained 19 brake repair workers who developed mesothelioma. Table 1 showed the 

selected demographic characteristics and fiber analysis information of the 19 subjects. Cases 1-

10 were the original cases used in the analysis of Roggli and Finkelstein 27,29. Cases 11-15 were 

five more cases added in Marsh el al.’s 2011 study 30. In addition to the 15 cases, the dataset also 

included four more recently defined cases provided by Dr. Roggli (case 16-19).  

For all workers in the dataset, the only known or suspected occupational exposure to 

asbestos was the brake repair work. The data included basic demographic information (age, sex, 

smoking status), clinical information (tumor site), employment information (duration of 

employment DOE, tumor type, occupation type) and the lung tissue fiber analysis of each case. 

The detailed information and source of the variables can be found in Roggli et al.’ s paper 27.  

2.2 LUNG TISSUE FIBER ANALYSIS 

The lung tissue fiber analysis is the measurement of the individual lung concentration of three 

types of asbestos fibers -- non-commercial amphiboles (TAA) including tremolite, actinolite 
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and anthophyllite; commercial amphiboles (AC) including amosite and crocidolite and 

chrysotile. 

The lung tissue fiber analysis was performed on formalin-fixed or paraffin embedded 

lung tissue of every subject. Chemical solutions like sodium hypochlorite were used to digest the 

lung tissue. The residue of the digestion product was then collected on a 0.4-µm Nuclepore filter. 

Filter with the residue was scanned with a scanning electron microscopic (SEM) at a screen size 

of 22.7 X 17.3 cm. The type of the fibers was determined by the elemental composition with the 

energy dispersive x-ray analysis (EDXA) after scanned by the SEM. The result was reported as a 

density measurement (no. of fibers/g). 

2.3 DETECTION LIMIT 

In the process of scanning, the whole filter was divided into many small fields (cells). The 

scanning started at a field with a specific x designation but a randomly picked y coordinate on 

the filter. The scanning process stopped after continuously scanning to the 100th fields or 200 

fibers counted. The area of the 100 cells was measured and used in the calculation of the fiber 

concentration. The area of the filter is 10.5×10.5×π and the area of 100 cells was 2.3714 mm2 for 

most of the observations (14600 cells in total). 

Since not all of the fibers scanned will be analyzed for the fiber type, the estimated type 

specific count for every type of fiber in the 100 cells will be calculated as follows: 
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒 𝐴 𝑓𝑖𝑏𝑒𝑟𝑠

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒 𝐴 𝑓𝑖𝑏𝑒𝑟𝑠 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑠𝑐𝑎𝑛𝑛𝑒𝑑
 

 

For each type of fiber, the lung tissue concentration for a subject with at least one fiber 

observed in the 100 fields is calculated as follows: 

 

�𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑓𝑖𝑏𝑒𝑟𝑠
𝐴𝑟𝑒𝑎 𝑖𝑛 100 𝑓𝑖𝑒𝑙𝑑𝑠� � ∗  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒(𝑔𝑟𝑎𝑚)
 

 

If there are no this type of fiber observed in the 100 fields, the lung tissue concentration is 

recoded as < DL. The DL for the type A fiber is calculated as follows: 

 

�𝐸 𝐴𝑟𝑒𝑎 𝑖𝑛 100 𝑓𝑖𝑒𝑙𝑑𝑠� � ∗  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒(𝑔𝑟𝑎𝑚)
 

 

Where 

𝐸 =
1 𝑡𝑦𝑝𝑒 𝐴 𝑓𝑖𝑏𝑒𝑟 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑠𝑐𝑎𝑛𝑛𝑒𝑑
 

 

 

The DL of the fiber concentration could be different with respect to different weights of 

the lung tissue and the area in the 100 cells in each sample. However, different type of fibers in 
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same subject (same tissue) will have same DL so that the TAA and AC measurement in the 

dataset share a same DL in every subject.  
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3.0  METHODS 

The aim of this study is to apply available methods dealing with the non-detect problem to the 

lung fiber analysis dataset and compare the results and subsequent inference among different 

methods.   

The research question was to assess if the concentration of the non-commercial 

amphiboles fiber (TAA) is positive related to the concentration of commercial amphiboles fiber 

(AC) but no relationship with the duration of employment. The concentration of TAA and AC 

are two continuous variables with non-detect observations. As a result, only regression analysis 

dealing with doubly-censored situation can be applied to study the relationship between the two 

fiber concentrations (TAA & AC). However, methods dealing with only a response variable 

subject to non-detect can also be applied to the analysis between the concentration of TAA and 

the duration of employment (DOE). 

According to the two research questions, the methods section is organized as three parts: 

(1) general descriptive analysis of the dataset, (2) TAA vs AC (methods dealing with the doubly-

LC situation) and (3) TAA vs DOE (methods dealing with dependent variable subject to LC). 

 

11 



3.1 DESCRIPTIVE ANALYSIS 

The K-M method will be used to estimate the summary statistics (mean, median and SD) of two 

fiber concentrations subject to non-detect. In order to apply MLE methods in the subsequent 

analysis, it is necessary to evaluate the potential distribution (et. normal distribution) of the 

variables subject to non-detect. As a result, the K-M method will also be used to estimate the 

cumulative distribution function and quantiles of the lung fiber concentrations of TAA and AC. 

The estimated quantiles will be plotted versus quantiles in some specified distributions. A linear 

trend is expected to be observed in probability plot if the distribution selected is correct. Due to 

the continuous scale of the fiber concentration, normal and log-normal distributions will be used 

to draw the probability plot.  

3.2 TAA VS AC 

This part will describe the selected regression methods dealing with the doubly-LC situation 

applying them to answer the first research questions: Is there a positive relationship between 

TAA and AC? 

3.2.1 Substitution 

As the most common treatment of the non-detect in the practical field, regular analysis with 

substitution will also be included in the methods. As a result, after substituting all non-detect 

observations with DL, 0.5DL, DL/√2and zero in both of the two fiber concentrations (AC & 
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TAA), the simple linear regression will be applied to assess the relationship between the 

outcome variable TAA lung concentration and the independent variable AC lung concentration. 

3.2.2 Bivariate normal regression 

In the analysis of the relationship between the lung fiber concentration of TAA and AC, both the 

dependent and independent variables are subject to non-detect. In order to deal with the non-

detect observations, a common parametric approach is to find some bivariate distribution to 

jointly model the two random variables and use ML estimation to get the estimate of the 

relationship coefficient as a function of the parameters in the distribution. 

The bivariate normal distribution has a good property that there is a linear relationship 

between the conditional mean of one variable given the other variable E(Y|X) and the other 

variable itself  X. Therefore, our goal is to find the appropriate normal transformation for the two 

fiber concentrations.  

The MLE approach assumes the transformed TAA & AC jointly follow a bivariate 

normal distribution and both of the two variables are subject to LC. The censored value of the 

two variables follows a same unspecified distribution, which is independent with the bivariate 

normal distribution.  

The calculation of the DL (see 2.3) shows that the value of the DL is only determined by 

the area of the 100 cells scanned and the weight of the tissue. According to the data provider, the 

range of the lung tissue used in the fiber analysis is between 0.1 and 0.33 gram and the area of 

the 100 cells scanned for most of the subjects are 2.3714mm2. Therefore, it is reasonable to 

assume the weight of the tissue follows a certain distribution independent with the joint 
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distribution of the transformed TAA & AC. As a result, the censoring value of each observation 

also follows the same distribution 𝑐 ~ 𝐷(𝑐) that is independent of the bivariate normal.  

 

𝑥𝑖:𝑔(𝐴𝐶); 𝑦𝑖:𝑔(𝑇𝐴𝐴);  𝑐𝑖 ∶ 𝐷𝐿 

�𝑌𝑖𝑋𝑖
�~ 𝑁��

𝜇𝑦
𝜇𝑥�    �

𝜎𝑦2 𝜎𝑦,𝑥

𝜎𝑦,𝑥 𝜎𝑥2
��   &  𝐶𝑖 ~ 𝐷                                   ( 1 )  

 

Due to the existence of the DLs, we only observed the maximum value between the latent 

variables (𝑋𝑖, 𝑌𝑖) and the censoring variable (𝐶𝑖), representing as (𝑇𝑥𝑖, 𝑇𝑦𝑖) and the indicator of 

whether the observation is LC (𝜹𝒙𝒊 ,𝜹𝒚𝒊 ). We denote the observed data as Oi = (𝑡𝑥𝑖 , 𝑡𝑦𝑖, 𝛿𝑥𝑖 , 𝛿𝑦𝑖 ). 

 

𝑡𝑥𝑖 = 𝑀𝑎𝑥 (𝑥𝑖, 𝑐𝑖), 𝑡𝑦𝑖 = 𝑀𝑎𝑥 (𝑦𝑖, 𝑐𝑖) 

𝛿𝑥𝑖 =  � 1 𝑖𝑓 𝑥𝑖 ≤  𝑐𝑖
 0 𝑖𝑓 𝑥𝑖 >  𝑐𝑖  

&   𝛿𝑦𝑖 =  � 1 𝑖𝑓 𝑦𝑖 ≤  𝑐𝑖
 0 𝑖𝑓 𝑦𝑖 >  𝑐𝑖  

 

 

With the bivariate normal property, Y given X follows a normal distribution and the 

conditional expectation of Y given X has a linear relationship with the value of X. Only key 

equations are numbered  in sequence. 

 

𝑌|𝑋 ~ 𝑁 (𝜇𝑦|𝑥,𝜎𝑦|𝑥)          

𝜇𝑦|𝑥 = 𝐸(𝑌|𝑋) =  𝜇𝑦 +  𝜌 𝜎𝑦
𝜎𝑥

(𝑋 −  𝜇𝑥)                                 ( 2 ) 

𝜎𝑦|𝑥 =   (1 − 𝜌2)𝜎𝑦2         
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As a result, the slope and intercept in model 𝐸(𝑌|𝑋) =  𝛼 +  𝛽𝑋 can be calculated as: 

𝛽 = 𝜌 𝜎𝑦
𝜎𝑥

 ;𝛼 =  𝜇𝑦 −  𝛽𝜇𝑥                                             ( 3 ) 

 

𝜌  is the correlation coefficient between Y and X with a relationship of 𝜎𝑌  and 𝜎𝑥  as 

follows: 

𝜌 =  𝜎𝑥,𝑦

𝜎𝑥𝜎𝑦
= 𝜎𝑥𝛽

𝜎𝑦
          

The likelihood function of the five unknown parameters in the bivariate normal will be 

proportional to the likelihood part with only the bivariate normal distribution because the 

censoring is independent with the latent bivariate normal distribution. As a result, the likelihood 

function of 19 observations for the five unknown parameters in the bivariate normal distribution 

can be written as: 

 

𝐿 �𝜃 | 𝑂 = 𝑇𝑦,𝑇𝑥, 𝛿𝑦, 𝛿𝑥�  ∝� 𝑓𝑥,𝑦(𝑡𝑥𝑖, 𝑡𝑦𝑖)(1−𝛿𝑥𝑖)(1−𝛿𝑦𝑖)
19

1
�� 𝑓𝑥=𝑡𝑥𝑖,𝑦(𝑡𝑥𝑖,𝑦)

𝑡𝑦𝑖

−∞
𝑑𝑦�

(1−𝛿𝑥𝑖)𝛿𝑦𝑖

 

× �∫ 𝑓𝑥,𝑦=𝑡𝑦𝑖�𝑥, 𝑡𝑦𝑖�𝑑𝑥
𝑡𝑥𝑖
−∞ �

𝛿𝑥𝑖(1−𝛿𝑦𝑖)
𝐹𝑥,𝑦(𝑡𝑥𝑖, 𝑡𝑦𝑖)𝛿𝑥𝑖𝛿𝑦𝑖                                                   ( 4 ) 

 

Within the likelihood function, 𝜃 is a vector of the five unknown parameters. 

 

𝜃 = (𝜇𝑦,𝜇𝑥,𝜎𝑦,𝜎𝑥,𝛽)                                                          ( 5 ) 

 

𝑓𝑥,𝑦(𝑥,𝑦)  and 𝐹𝑥,𝑦(𝑥,𝑦)  is the probability density function and cumulative density 

function of the bivariate normal distribution.  Because we are interested in getting the estimate of 
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the slope 𝛽 rather than the correlation coefficient𝜌, we replace the 𝜌 in the likelihood function as 

𝜎𝑥𝛽
𝜎𝑦

 to get the direct estimate of the 𝛽 in the maximization. 

Using the ML estimation method, we can get the MLE estimate of the five unknown 

parameters by maximizing the likelihood function as follows: 

 

{𝜃�𝑚𝑙𝑒 = (𝜇̂𝑌, 𝜇̂𝑥,𝜎�𝑌,𝜎�𝑥, 𝛽̂) }  =   {𝑎𝑟𝑔 𝑚𝑎𝑥𝜃∈Θ 𝑙𝑛𝐿 (𝜃 | 𝑂) }                  ( 6 ) 

 

According to the large sample property of the MLE estimator, the MLE estimators 

asymptotically jointly follow a multivariate normal distribution with the mean vector equals to 

the true parameter vector and the covariance matrix of the MLE estimators equals to the inverse 

of the Fisher information matrix𝐼(𝜃)  (equation 7), known as the expectation of the second 

derivative of the log likelihood function (equation 9). Therefore, the covariance matrix of the 

MLE estimators is equal to the inverse of the Fisher information matrix [𝐼(𝜃)]−1.   

The observed Fisher information matrix evaluated at when 𝜃 =  𝜃�𝑚𝑙𝑒 (Ι�̅𝐷;𝜃�𝑚𝑙𝑒�) is a 

natural estimator of the Fisher information matrix 𝐼(𝜃) (equation 11). As a result, the asymptotic 

covariance matrix of the MLE estimators can be estimated using the inverse matrix of Ι�̅𝐷; 𝜃�𝑚𝑙𝑒� 

(equation 12). 𝑙( 𝑂;𝜃) is the log likelihood function (equation 8). 

 

𝜃�𝑚𝑙𝑒 ~ 𝐴𝑁(𝜃, [𝐼(𝜃)]−1)                                                            ( 7 ) 

𝑙( 𝑂;𝜃) = 𝐿𝑜𝑔 𝐿 (𝜃 | 𝑂)                                                           ( 8 ) 

𝐼(𝜃) = 𝐸 �− 𝜕2

𝜕𝜃𝜕𝜃𝑇
𝑙( 𝑂;𝜃)�                                                        ( 9 ) 

Ι(̅𝑂; 𝜃) = − 𝜕2

𝜕𝜃𝜕𝜃𝑇
𝑙( 𝑂;𝜃)                                                          ( 10 ) 
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Ι�̅𝑂;𝜃�𝑚𝑙𝑒� = − 𝜕2

𝜕𝜃𝜕𝜃𝑇
𝑙( 𝑂;𝜃)|𝜃= 𝜃�𝑚𝑙𝑒

                                              ( 11 ) 

𝐶𝑜𝑣�  �𝜃�𝑚𝑙𝑒� = �Ι�̅𝑂;𝜃�𝑚𝑙𝑒��
−1

                                                     ( 12 ) 

 

According to the functional invariance of the MLE estimator, we can get the MLE 

estimator of 𝛼 as follows: 

 

𝛼�𝑚𝑙𝑒 =  𝜇̂𝑦 −  𝛽̂𝑚𝑙𝑒𝜇̂𝑥                                                            ( 13 ) 

 

Moreover, the variance estimate of the slope and intercept can be calculated using the 

delta method. Using delta method, we can get the asymptotic normal distribution of a function of 

the MLE estimators as follows: 

 

g(𝜃�𝑚𝑙𝑒) ~ 𝐴𝑁(𝑔(𝜃), 𝑔′(𝜃)[𝐼(𝜃)]−1 𝑔′(𝜃)𝑇 )                                      ( 14 ) 

 

As a result, an estimate of the variance of the g(𝜃�𝑚𝑙𝑒) = 𝛼�𝑚𝑙𝑒 =  𝜇̂𝑦 −  𝛽̂𝑚𝑙𝑒𝜇̂𝑥 will be 

𝑔′�𝜃�𝑚𝑙𝑒�𝑉𝑎𝑟�  �𝜃�𝑚𝑙𝑒� 𝑔′�𝜃�𝑚𝑙𝑒�
𝑇
. 

 

𝑉𝑎𝑟 �g(𝜃�𝑚𝑙𝑒)� =  𝑔′(𝜃)[𝐼(𝜃)]−1 𝑔′(𝜃)𝑇                                        ( 15 ) 

𝑉𝑎𝑟�  �g(𝜃�𝑚𝑙𝑒)� =  𝑔′�𝜃�𝑚𝑙𝑒��Ι�̅𝑂;𝜃�𝑚𝑙𝑒��
−1
𝑔′�𝜃�𝑚𝑙𝑒�

𝑇
                            ( 16 ) 

 

𝑔′�𝜃�𝑚𝑙𝑒� is the vector of the first derivative of the function of 𝑔(𝜃) with respective to the 

parameter vector of 𝜃 evaluated at 𝜃 = 𝜃�𝑚𝑙𝑒. 
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3.3 TAA VS DOE 

This part describes the selected regression methods dealing with the situation where only the 

dependent variable is subject to the DL. These methods will be applied to address the second 

research question: Is there a positive relationship between TAA and DOE? 

3.3.1 Substitution 

As described previously, a simple linear regression model will be performed to assess the 

relationship between the outcome variable TAA lung concentration and the independent variable 

DOE after substituting all non-detect observations with DL, 0.5DL, DL/√2 and zero for the TAA 

fiber concentrations. 

3.3.2 Censored normal regression 

In order to solve the non-detect problem in the independent variables (TAA), assume a given 

distribution for the residual and use the generalized linear model form as follows: 

 

𝑔(𝑇𝐴𝐴 | 𝐷𝑂𝐸) =  𝛽0 + 𝛽1 ∗ 𝐷𝑂𝐸 +  𝜀 

 

Assume the residual 𝜀 follows a standard normal distribution. There are two choices for 

the link function 𝑔(𝑥) 

 

1. 𝑔(𝑥) = 𝑥 : Use the normal density to construct the likelihood function. 
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2. 𝑔(𝑥) = 𝑙𝑛𝑥: Use the log-normal density to construct the likelihood function. 

 

The link function will be chosen according to the potential distribution of the outcome 

TAA lung fiber concentration. 

Use the ML estimation to estimate the coefficient 𝛽1  and 𝛽0  in the model. For all 

observations reported as less than some value (LC) use the cumulative density function instead 

of the density function in the likelihood construction as follows: 

 

𝐿 =  �𝑓[𝜀𝑖]1−𝛿𝑖 𝐹[𝜀𝑖]𝛿𝑖 

 

Where 𝛿𝑖 is the indicator function of left-censored observation (1: LC, 0: fully observed). 

𝑓[𝜀𝑖]  and 𝐹[𝜀𝑖] are the probability density and cumulative density function for the normal 

distribution, respectively. 

3.3.3 Model with counts 

The fiber concentration level of TAA is calculated as the total number of fibers over the weight 

of lung tissue. Instead of modeling the fiber concentration density, we can also use the estimated 

total number of TAA fiber count in 100 cells as the response outcome. As a result, we can form 

the mean model as follows and put the corresponding weight of the lung tissue and the area ratio 

(area in counted cells/ area of the filter) as an offset in the model. 

 

ln[ 𝐸(𝐶𝑜𝑢𝑛𝑡𝑇𝐴𝐴|𝐷𝑂𝐸) ] = ln 𝑜𝑓𝑓𝑠𝑒𝑡 +  𝛽0 +  𝛽1 ∗ 𝐷𝑂𝐸  
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Where 𝐶𝑜𝑢𝑛𝑡𝑇𝐴𝐴|𝐷𝑂𝐸 ~ 𝑔; 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑟𝑒𝑎 𝑖𝑛 100 𝑐𝑒𝑙𝑙𝑠
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟

 

 

Within the mean model, it is assumed that the estimated conditional count in the 100 cells 

given the duration of employment follows some discrete distribution 𝑔. Over-dispersion and the 

percentage of the zero count will be checked before choosing an appropriate discrete distribution. 

The negative binominal distribution will be used to model the data if the over-dispersion exists 

(Pearson chi-square in regular Poisson model / degree of freedom > 1) and the zero-inflated 

Poisson model will be used if the percentage of zero count is large than 10%. If both of the 

situations occur, the zero-inflated negative binomial model will be used. ML estimation will be 

used to estimate the coefficient 𝛽0 𝑎𝑛𝑑 𝛽1 no matter which distribution is chosen. 

In the regression model, the estimated TAA count in 100 cells scanned is the outcome. 

However, for observations with only a part of the fibers analyzed, the estimated TAA count will 

be calculated as a proportion of the TAA count in the fibers analyzed multiplied by the total 

number of fiber count in 100 cells. As a result, the estimated TAA count will be rounded to 

integer for the count model. Therefore, to be consistent with the calculated concentration, the 

offset used in the count model is calculated as the rounded estimate number of TAA fiber count 

in 100 cells over the TAA concentration. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐴𝐴 𝑓𝑖𝑏𝑒𝑟𝑠 𝑖𝑛 100 𝑐𝑒𝑙𝑙𝑠

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐴𝐴 𝑓𝑖𝑏𝑒𝑟𝑠 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑖𝑛 100 𝑐𝑒𝑙𝑙𝑠
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4.0  RESULTS 

4.1 DESCRIPTIVE ANALYSIS 

Table 2 shows the censoring rate in the dataset. Among 19 observations, there are 42% (8/19) of 

subjects have complete data for both of the TAA and AC lung concentration. Sixteen percent 

(3/19) of the subjects had the TAA lung concentration observed but AC lung concentration LC 

while 10% (2/19) had the opposite situation. Thirty-two percent (6/19) of subjects had LC 

observations in both of the two lung concentrations. As a result, there are 58% of the subjects 

who had either one variable LC or all of the two variables LC, indicating a medium severe non-

detect situation (Table 2).  

Table 3 shows the summary statistics for the outcome and dependent variables. K-M 

method was used to estimate the mean, median and SD of variables subject to non-detect 

(AC&TAA). According to the K-M method, the mean lung concentrations of TAA and AC 

among 19 observations were 1055 and 1118 fiber/gram. The mean estimates were considered 

larger than the median estimates of the fiber concentrations (492, 489 fiber/gram for TAA and 

AC, respectively), indicating a right-skewed distribution for both of the two fiber concentrations. 

The log transformed mean estimate of the two fiber concentrations were 6.51 and 6.33 while the 

median estimate were 6.20 and 5.19, respectively (Table 3). The median estimates were very 

close to the mean estimates in the two log-scale concentrations. As a result, after transforming to 
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the log scale, the distributions of the two fiber concentrations were more symmetric than the 

original scale. 

Figure 1 shows the estimated CDF of two fiber concentrations and Figure 2 shows the 

probability plot of the original and log-scale concentrations. It seems that the two log-

transformed fiber concentrations are more reasonably normally distributed compared to the 

original scale with a clear linear trend between the estimated K-M quantile and the normal 

quantile. 

Due to the descriptive and probability plot result, the log-transformed fiber 

concentrations are potentially normally distributed. As a result, the log-scale concentration of 

TAA and AC will be used in the following parametric methods.  

4.2 TAA VS AC 

4.2.1 Substitution 

Figure 3 shows the histogram of the outcome variable lung fiber concentration of TAA in both 

the original and log scale with four different substituted values (DL, 0.5DL, DL/√2 and zero). 

The original scale of TAA with all four substitutions is a right-skewed distribution while with the 

log-transformation, the distribution becomes more symmetric (no log transformation for zero 

substitution).  

The scatter plots between TAA and AC showed an approximately linear trend in all four 

substitutions (Figure 4). However, the linear trend becomes clearer and stronger when plotting 

the log-transformed TAA and AC concentrations with three substituted values (DL, 0.5DL and 
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DL/√2 ) (Figure 4). Because the log scale TAA concentrations after substitution are more likely 

to be normally distributed, we only performed the simple linear regression between the two log 

transformed concentrations. 

The slopes between the two log-transformed fiber concentrations in a simple linear model 

ranged between 0.57-0.59 with three different substituted values. Moreover, all of the slopes in 

the three models were statistically significant different form zero (p-value = 0.001, 0.003 and 

0.002) (Table 4), all indicating a significant positive linear relationship between the log-

transformed TAA and the log-transformed AC. 

 

4.2.2 Bivariate normal regression 

4.2.2.1 Data analysis 

The result of the ML estimation for the four parameters in the bivariate normal distribution 

(𝜇𝑥, 𝜇𝑦,𝜎𝑌,𝜎𝑥) and the linear coefficient (𝛽,𝛼) in the conditional linear model are shown in Table 

5. The mean estimate of the log scale TAA and AC concentration are 6.23 and 6.41, respectively 

and the SD estimates are 1.24 and 1.04, respectively. The estimated slope in the conditional 

model (ln TAA given ln AC) was 0.54 and was significant different from zero (p-value = 0.003).  

4.2.2.2 Simulation 

We ran a simulation study to evaluate the performance of the MLE estimator in estimating the 

slope and the observation information matrix in estimating the variance of the MLE estimator 

when both of the sampled x & y are subject to LC. We choose the true parameters close to the 
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estimated value in the real dataset (19 brake workers) in order to make the simulated results 

meaningful to our analysis. 

The samples were randomly generated from a bivariate normal distribution with 𝜇𝑥 =

𝜇𝑌 = 6,  𝜎𝑥 = 1.3,𝜎𝑌 = 1,𝛽 = 0.5 . Moreover, the DL for each observation was randomly 

generated from a uniform distribution UNIF (146/0.33, 146/0.1). If the DL was larger than the 

value of x(y), the observation value x(y) was left-censored at the DL. We then recorded the MLE 

estimate of each parameters and the standard error estimate of the MLE estimators in each 

random simulated sample and calculated the mean and SD. 

In the simulation samples, it was possible to get a singular observed information matrix 

with the MLE estimate especially when the sample size was very small. As a result, we removed 

all samples with this situation in calculating the mean and SD for the parameter and standard 

error estimate. When the sample size was equal to 19, approximately 15% of the 1000 

simulations did not have a non-singular observed information matrix and the percentage 

decreased as the sample size increased (15%, 9%, 4% and 0.1% for sample size = 19, 30, 50 and 

100 , respectively). 

The results based on 1000 simulations with four different sample sizes (sz=19, 30, 50, 

100) are shown in Table 6. Based on the 1000 simulations, the sample mean of  the MLE 

estimators were close to the true value for all six parameters even with a small sample size 

(n=19) (6.03, 5.04, 1.19, 0.98, 0.53 and 2.73 for 𝜇𝑥, 𝜇𝑦,𝜎𝑌,𝜎𝑥,𝛽 and 𝛼 , respectively). The 

distributions of the beta MLE estimates in 1000 simulations were roughly symmetric (Figure 6) 

even for a small sample size (n=19). The distribution of the SE estimates for beta was rightly 

skewed when the sample size was comparatively small (19, 30). However, the 95% CI coverage 

rate for the slope 𝛽 ranged from 98% to 99%, indicating a slightly conservative estimate of the 
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confidence interval. The same situations were observed for the other parameters (data not 

shown).  

For smaller sample size, the distributions of the SE estimates were rightly skewed so that 

the median of the SE estimates was more reasonable to use to compare with the SDs of the MLE 

estimates (a rough estimate of the true variability of the MLE estimator). As a result, the SE 

estimates of the beta generally under estimated the true variability of the MLE beta estimate 

when the sample size was 19 (0.28 and 0.44, respectively). The mean and median of the SE 

estimate for beta were close to the SD of the beta MLE estimate when the sample size was at 

least 50 (0.18, 0.17 and 0.19,  respectively).  
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4.3 TAA VS DOE 

4.3.1 Substitution 

Figure 5 shows the scatter plots between the TAA and DOE in linear and log scales. Both of the 

scatter plots between two scales of the TAA concentration (original and log) and DOE shows no 

linear trend in all four substitutions. The dots in all scatter plots seem to be randomly distributed.  

Table 7 shows the estimates of the linear regression coefficients. After transforming into 

the log scale, the slopes between the log-scaled TAA fiber concentrations and DOE in a simple 

linear model ranged between 0.001-0.014 with three different substituted values. However, all of 

the slopes in the three models are not statistically significant different form zero (p-value = 

0.933, 0.486 and 0.675) (Table 7), indicating that there is no significant positive linear 

relationship between the log-transformed concentration of TAA and DOE. 

4.3.2 Censored normal regression 

The first row of Table 8 shows the estimated coefficients in the censored normal regression 

model with the log scale of TAA as the outcome variable and the DOE as the independent 

variable. The slope estimate of DOE was 0.022 which was not significant different from zero (p-

value=0.39), indicating that there is no statistically significant positive linear relationship 

between the log-transformed TAA lung fiber concentration and the duration of employment. 
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4.3.3 Model with counts 

Table 9 shows the distribution of the estimated TAA count in 100 cells scanned for all subjects. 

For every subject with no TAA fiber detected, the value of the count in 100 cells was zero. 

Among 19 subjects, there were 42% (8/19) with no TAA fiber detected in the 100 scanned cells. 

The mean count for all 19 workers was 2 while the variance of the count is 11. The histogram of 

the counts in 19 subjects revealed a right-skewed distribution. The variance of the count was 

much larger than the mean of the count and the estimated dispersion in the Poisson model was 

5.43, indicating a potential over-dispersion of the data. Moreover, nearly half of the counts in all 

subjects were zero (42%), which is larger than 10%.  

As a result, the regular Poisson model might not be appropriate to use due to the over 

dispersion and comparatively higher percentage of zero counts. Instead of using the Poisson 

distribution to model the count, we fit a regular negative binomial regression model and a zero-

inflated negative binomial regression model for the count data in 100 scanned cells.  

The results of the two models were very close and the likelihood test showed that there 

was no significant difference between the two models (p-value=0.091). As a result, only the 

negative binomial model results were reported. 

The second row of Table 8 shows the estimate of the coefficients in the linear 

combinations (𝛽,𝛼) and the parameter alpha for the negative binomial model. The estimated 

alpha was 1.306 which was significantly different from zero (p-value<0.001), indicating that the 

negative binomial model was significantly different from the Poisson model due to over-

dispersion of the data. The estimate of the slope in the negative binomial model for DOE is 

0.0298 (IRR=1.03). However, this estimate was not significantly different from zero (p-value = 
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0.439), indicating no significant positive relationship between DOE and the lung fiber TAA 

concentration (Table 8).  
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5.0  DISCUSSION 

This section includes three parts. The first and second part compares the results of questions 1 

and 2 using the different methods. The last part talks about the limitations of the thesis and 

recommendations for data analysis with non-detects.  

5.1 IS THERE A POSITIVE RELATIONSHIP BETWEEN TAA AND AC? 

Figure 7 shows the scatter plot between the two lung fiber concentration TAA and AC. and the 

fitted lines of all four models (substitution and the bivariate normal regression). Substitution 

methods and the bivariate normal approach gave consistent results in the linear relationship 

between the log scales of the two lung fiber concentrations. The estimate of the slope in the 

conditional mean model of the log scale TAA concentration given the log scale AC 

concentration were statistically significant in both of the three substitution and the bivariate 

normal models. The estimate of the slopes ranged from 0.54 – 0.59 in four models as follows: 

 

Substitution – Simple linear regression 

DL:          E (ln TAA | AC) =  2.79 + 0.59* ln AC 

0.5DL:     E (ln TAA | AC) =  2.83 + 0.57 *ln AC 
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DL/√2:     E (ln TAA | AC) =  2.79 + 0.59 *ln AC 

Bivariate normal regression 

E (ln TAA | AC) =  3.04 + 0.54* ln AC 

 

The interpretation of the double log linear model is different from the linear model. In the 

simple linear model with the original scale, the slope 𝛽̂ can be explained as the unit increase in 

outcome Y with one unit increase of the X.  

However, the slope 𝛽̂ in the double log linear model is the unit increase in log scale of Y 

with one unit increase of log scale of X. After several math transformations, we can get a 

relationship of percentage increase of Y and X. 

 

ln Y = 𝛼 + 𝛽 ln X 

Y = exp (𝛼 + 𝛽 ln X) = exp(𝛼) 𝑋𝛽 

If X* = 𝑋(1 + 𝑝%) 

Then Y* = exp(𝛼) [𝑋(1 + 𝑝%)]𝛽 = exp(𝛼) 𝑋𝛽(1 + 𝑝%)𝛽 = Y (1 + 𝑝%)𝛽 

 

As a result, the slope estimate 𝛽̂ in the double log scale model can be interpreted as a 𝑝% 

increase in the AC lung fiber concentration, the TAA lung fiber concentration will be multiplied 

with a proportion of(1 + 𝑝%)𝛽� . 

Therefore, with the estimate in the substitution and bivariate normal approach, 

respectively, a 10% increase of the AC lung fiber concentration, the TAA lung fiber 

concentration will increase by 5% (calculated as (1 + 10%)0.54 − 1) to 6% (calculated as (1 +

10%)0.59 − 1).  
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The final model between the two lung fiber concentrations in the 2011 Marsh’s analysis 

is a median regression model with the estimated slope equal to 0.52. The interpretation of the 

slope estimate in the quantile regression model is different from the linear regression model since 

it models the conditional quantile rather than the conditional mean. Therefore, the 0.52 slope 

estimate in the quantile (median) regression model indicates that with every unit increase in the 

lung fiber concentration of AC, there is a 0.52 marginal increase in the conditional median of the 

lung fiber concentration of the TAA. As a result, Marsh et al.’s study found a positive linear 

relationship between the two lung fiber concentrations based on the median model 30.  

The bivariate normal regression has a very strong assumption that both of the two 

variables should jointly follow a bivariate normal distribution, which requires that all of the 

linear combinations of these two variables also follow a normal distribution.  

ML estimation and the Fisher information matrix were considered as the classical 

approach to get an estimate of the parameter and the variance of the estimator under the large 

sample assumption. As a result, it is interesting to look at the performance of the MLE methods 

when the sample is subject to LC.  

Simulation results based on 1000 simulations with parameters close to the brake worker 

dataset showed that the MLE estimates are stable and accurate even when the sample size is as 

small as 19. However, the SE estimators for the MLE estimators (beta, alpha, mean and sigma) 

tend to underestimate the true variability of the estimators based on smaller sample sizes. Due to 

the simulation result, 50 is a recommended sample size to get a more accurate and stable 

variance estimate of the MLE estimator for a double LC dataset.  

A rough estimate of the true variability of the MLE slope estimators is 0.43, which is the 

standard deviation of the MLE slope estimates based on the 1000 simulations. This value gives a 
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Z statistics equal to 1.16 (0.5/0.43) less than 1.98. From the simulated results with the true 

parameters similar to the lung fiber dataset, it will be difficult to statistically significant detect a 

true 0.5 slope when the sample size is as small as 19.  

Although the SE estimates might be under or over-estimated in the bivariate normal 

regression and the analysis in this thesis did not address the two influential points in the 19 

subjects but focused on the non-detect problem, the simple linear regression with substitution 

and the bivariate normal approach still gave very close estimates of the slope and consistently 

statistical significant results. Thus, it is reasonable to conclude that an important positive 

relationship exists between the lung fiber concentration of TAA and AC. This result is also 

consistent with the findings of Marsh et al based on a median regression model applied to the 

first 15 cases 30.  

5.2 IS THERE A POSITIVE RELATIONSHIP BETWEEN TAA AND DOE? 

Figure 8 shows the scatter plot between TAA and DOE and the fitted lines of three models based 

on the concentrations (substitution and censored normal regression).  When modeling the 

concentrations, the substitution methods and the censored normal regression gave consistent 

result of the linear relationship between the log scale TAA concentration and the duration of 

employment. The estimate of the slopes in the condition mean model of the log scale TAA given 

DOE are not statistically significant in both of the two approaches. 

 

Substitution – simple linear regression model 

DL:          E (ln TAA | AC) =  6.79 + 0.001*DOE 
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0.5DL:     E (ln TAA | AC) =  6.25 + 0.014*DOE 

DL/√2:     E (ln TAA | AC) =  6.52 + 0.008*DOE 

Censored normal regression model 

E (ln TAA | AC) = 5.96 + 0.022*DOE 

 

Because the original outcome data are the estimated counts of the TAA fibers in 100 

cells, it is reasonable to model the counts directly. Due to the over-dispersion and a nearly 50% 

data being zero, zero-inflated Poisson and negative binomial regression model were used in the 

analysis of the count data.  

The negative binomial mode gave a consistent result by indicating a not statistically 

significant positive relationship between the lung concentration of TAA and the DOE comparing 

to the simple linear regression with substitution and the censored normal regression.  

 

Negative binomial model: 

E [ ln(TAA Count in 100 cells / offset) | DOE] = 6.16 + 0.030DOE 

E [ ln(TAA concentration) | DOE] = 6.16 + 0.030DOE 

 

In summary, the inference drawn from either the model of the concentration or the model 

of the count in 100 cells consistently reveals that there is no statistically significant positive 

relationship between the TAA lung fiber concentration and the duration of employment as brake 

workers, which is also consistent with Marsh et al.’s findings based on the first 15 cases 30. 
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5.3 LIMITIONS AND RECOMMENDATIONS 

There are several limitations of this study. (1) The sample size of the lung fiber analysis dataset 

is very small with only 19 brake workers and the censoring percentage is almost 50% for both of 

the dependent and independent variable. Moreover, there are not many useful covariates that can 

be used in the multiple imputations for the censored observations. Because of the small sample 

size and limited covariates, all of the methods used in the analysis require some level of 

distributional assumptions. Because the MLE approach is based on the principle of the large 

sample theory, it might not perform well when the sample size is small. (2) Due to the limited 

time and scale of a master’s thesis, only the simulation study for the bivariate normal regression 

was performed to verify the performance of the bivariate normal approach in the doubly-LC 

situation. As a result, the comparison among different methods was only based on the lung fiber 

data analysis rather than the simulation study. Readers should therefore be cautious interpreting 

the model results.  (3)  The analysis in this thesis focused on the non-detect problem of the lung 

fiber dataset and did not consider the influential points mentioned in Marsh et al.’s paper 30. 

Future studies should focus on methods addressing both of the non-detect and influential points 

problems.  

Comparing to the MLE methods, the substitution methods with three different substituted 

values (DL, 0.5DL, DL/√2) seem to perform well by giving the close estimates and consistent 

test results of the slopes for both of the two research questions using the real dataset. As a result, 

the substitution methods might be still useful when there are no other methods available. 

However, the performance of the substitution method still needs to be verified via a simulation 

study.  
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As for the regression methods in the doubly-LC case, the bivariate normal approach is 

recommended when there exists appropriate normal transformation of the data and the sample 

size of the dataset is larger than 50. However, caution should be taken when interpreting the 

model coefficients after transformation.  
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6.0  CONCLUSION 

Results from this study show that simple linear regression with substituting of non-detect 

observations with DL, 0.5DL and DL/ √2 gives consistent results (close estimate of the 

coefficients and same result of the test of the statistical significance) with the censored regression 

methods with ML estimation that account for non-detect as left-censored observations. These 

consistent results provide additional support for a positive relationship between the lung 

concentration of the TAA and AC fiber among the 19 brake workers with mesothelioma, which 

is consistent with Marsh et al.’s finding in 2011 based on the first 15 cases 30.  

 Moreover, the consistent results of the substitution approach, the censored normal 

regression model and the negative binomial model between TAA and DOE indicates no 

statistically significant positive relationship between the lung concentration of the TAA 

fiber and the duration of employment. The public health significance of this study is that the 

results provide additional support for the conclusion that exposure to non-commercial 

amphibole asbestos from some unrecognized source, and not chrysotile, is related to the 

observed mesothelioma in brake workers. However, these conclusions need to be verified with a 

larger sample size.  
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APPENDIX 

TABLES AND FIGURES 
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Table 1: Lung fiber analyais dataset of 19 brake workers with mesothelioma 

Case Age 
(yr) 

Tumor 
type/site Occupation Smoking DOEa 

(yr) 

Est. TAA 
count in 
100 cells 

Tissue 
weight 
(gram) 

Area of 
100 
cells 

Adjusted 
offsetb ACc TAAd 

Original 10 cases in Roggli 
1 61 E/PL Auto machinist XS 37 1 0.067 2.3714 4.59E-04 3270 2180 
2 58 E/PL Brake mechanic C 27 1 0.334 2.3714 2.29E-03 3936 437 
3 55 E/PL Brake mechanic C 24 11 0.363 2.5254 2.67E-03 966 4115 
4 73 B/PL Auto mechanic C 40 1 0.203 2.3714 1.39E-03 <720 720 
5 51 E/PE Brake repair XS 11 2 0.253 2.3714 1.73E-03 <577 1155 
6 53 D/PL Auto mechanic ND 7 1 0.299 2.3714 2.05E-03 489 489 
7 ND ND/PL Brake repair ND 15 0 0.439 2.3714 3.00E-03 333 <333 
8 66 B/PL Brake repair XS 40 10 4.97 2.8 4.10E-02 122 244 
9 71 B/PL Auto repair C 17 5 0.194 2.3714 1.32E-03 6148 3794 
10 ND E/PL Brakeline repair ND 24 5 0.304 2.5254 2.31E-03 1444 2166 

5 cases added in Marsh 2011 

11 69 B/PI Brake & clutch 
repair XS 5 0 0.283 2.3714 1.94E-03 <516 <516 

12 70 E/PI Auto mechanic XS 7 0 0.18 2.3714 1.23E-03 812 <812 
13 58 E/PI Auto mechanic NS 25 0 0.302 2.3714 2.07E-03 <484 <484 
14 58 E/PI Auto mechanic C 32 0 0.069 2.3714 4.72E-04 2117 <2117 
15 40 E/PE QC parts inspector C 20 1 0.297 2.3714 2.03E-03 492 492 

4 cases added in 2013 
16 45 E/PI Auto mechanic NS 4 0 0.111 2.3714 7.60E-04 <1316 <1316 
17 47 E/PI Shadetree mech NS 17 2 0.294 2.3714 2.01E-03 <497 994 
18 53 B/PE Auto mechanic C 19 0 0.296 2.3714 1.84E-03 <543 <543 
19 60 D/PI Gen motors C 11 0 0.119 2.3714 8.14E-04 <1228 <1228 
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ND, not determined; B, biphasic; D, desmoplastic; E, epithelial; PE, peritoneal; PL, pleural; C, current smoker; XS, ex-smoker; DOE, duration of employment; 
AC, commercial amphiboles (amosite + crocidolite); TAA, non-commercial amphiboles (tremolite + anthophyllite + actinolite) 
a DOE is the years of employment as a brake worker 
b Adjusted offset is calculated as Est. TAA count/TAA 
c AC is the calculated concentration of the AC fiber count (fiber/gram) 
d TAA is the calculated concentration of the TAA fiber count (fiber/gram)  
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                               Table 2: Summary of the censoring rate 

Observation type No. 
(%) 

Both observed 8(42%) 
TAA observed, AC LC 3(16%) 
AC observed, TAA LC 2(10%) 

Both LC 6(32%) 
 

 

                                                 Table 3: Summary statistics 

Variable Mean* Median* SD*     % LC 
TAA 1055 492 1211.8 42% ln TAA 6.51 6.2 1.01 

 
AC 1118 489 1655.4 

47% 
ln AC 6.33 6.19 1.4 

     
DOE 20.11 19 11.5 - 

* Summary statistics are calculated using Kaplan-Meier method for variable with LC observations (TAA, 

AC) 

 

Table 4: Simple linear regression estimate by different substitution type - TAA vs AC 

Model Substituted 
value 𝜷�  P-value 𝜶�  P-value 

ln TAA | ln AC = α + β*ln AC +ε 
DL 0.59 0.001 2.79 0.016 

0.5DL 0.57 0.003 2.83 0.02 
DL/√2 0.59 0.002 2.79 0.018 
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                      Table 5: Results of the bivariate normal regression 

Parameter Est. SE 
|t| P-value 

Est. / SE H0: Est. = 0 
Bivariate normal 

𝝁𝒍𝒏𝑨𝑪 6.23 0.34 

-* 𝝁𝒍𝒏𝑻𝑨𝑨 6.41 0.28 
𝝈𝒍𝒏𝑨𝑪 1.24 0.27 
𝝈𝒍𝒏𝑻𝑨𝑨 1.04 0.22 
Linear model E (ln TAA| ln AC) = 𝜶 + 𝜷*ln AC 
𝜷 0.54 0.19 2.8 0.003 
𝜶 3.04 1.29 2.3 0.009 

* The test of significance for the mean and SD are not interested and therefore not reported in the table. 

 

Table 6: Simulation results for the MLE and the SE estimators* 

n 
𝜽� 𝑺𝑬�𝜽�� 𝜽� 𝑺𝑬�𝜽�� 

Mean SD 95%CI 
coverage# Mean Median SD Mean SD 95%CI 

coverage Mean Median SD 

𝝁�𝒙 𝝈�𝒚 
19 6.03 0.59 0.89 0.52 0.42 0.43 0.98 0.44 1.00 0.93 0.31 13.80 
30 6.02 0.42 0.91 0.41 0.36 0.19 0.99 0.32 1.00 0.30 0.27 0.15 
50 6.01 0.33 0.91 0.31 0.29 0.10 0.99 0.23 1.00 0.22 0.21 0.07 
100 5.99 0.22 0.95 0.22 0.21 0.05 0.99 0.16 1.00 0.15 0.15 0.03 

𝝁�𝒚 𝜷� 
19 5.94 0.79 0.89 0.51 0.38 0.51 0.53 0.43 0.98 0.87 0.28 13.89 
30 5.96 0.41 0.93 0.37 0.32 0.21 0.51 0.30 0.99 0.25 0.22 0.15 
50 5.99 0.28 0.93 0.27 0.25 0.10 0.51 0.19 0.98 0.18 0.17 0.06 
100 6.00 0.18 0.95 0.19 0.18 0.04 0.50 0.13 0.99 0.12 0.12 0.03 

𝝈�𝒙 𝜶� 
19 1.19 0.46 0.99 0.42 0.36 0.29 2.73 2.95 0.91 12.60 1.95 289.20 
30 1.23 0.33 1.00 0.34 0.31 0.14 2.86 2.05 0.92 1.75 1.55 0.98 
50 1.26 0.25 1.00 0.26 0.25 0.08 2.90 1.34 0.93 1.25 1.17 0.43 
100 1.29 0.19 1.00 0.19 0.18 0.04 2.98 0.94 0.92 0.84 0.82 0.20 

* Results are based on 1000 simulation removing the cases with a singular observed information matrix. The true 
𝜃 = {6,6,1.3,1,0.5}  α = 3 
# The 95% CI coverage rate is calculated as the percentage of the estimated 95% CI (𝜃� ± 1.96 ∗ 𝑆𝐸�𝜃��) including 
the true parameter value. 
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Table 7: Simple linear regression estimate by different substitution type - TAA vs DOE 

Model Substituted 
value 𝜷�  P-value 𝜶�  P-value 

ln TAA|DOE = α + β*DOE +ε 
DL 0.001 0.933 6.79 <0.001 

0.5DL 0.014 0.486 6.25 <0.001 
DL/√2 0.008 0.675 6.52 <0.001 

 

 

Table 8: Results of censored normal regression and negative binomial model 

Model 𝜷�  P-
value  𝜶�    P-

value 

Censored normal   ln TAA | DOE = α + β*DOE +ε 0.022 0.39 5.96 <0.001 

Negative binomial  
E (ln TAA count | DOE) = ln offset + α + β*DOE 0.03 0.439 6.16 <0.001 
alpha 1.306*  <0.001     

 

 

                                          Table 9: Summary of the TAA count data 

Count Freq. Percent 
0 8 42% 
1 5 26% 
2 2 11% 
5 2 11% 
10 1 5% 
11 1 5% 

42 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Estimated empirical CDF of TAA with two scales using K-M method 

43 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Normal Q-Q plots of TAA with two scales 
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Figure 3: Histograms of TAA by different scales with substitutions 
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Figure 5: Scatter plots between TAA and DOE by two scales with substitutions 
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Figure 6: Histograms of the MLE of Beta estimate and its SE estimate in 1000 simulations 
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Figure 7: Scatter plot between log-scale of TAA and AC lung fiber concentration and the fitted lines 

of the simple linear regression model with substitution and the bivariate normal regression model 
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Figure 8: Scatter plot between log-scale of TAA lung fiber concentration and DOE and 

the fitted lines of three concentration models 
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