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INVESTIGATION OF THERMOACOUSTIC PERFORMANCE OF

STANDING AND TRAVELING WAVE THERMOACOUSTIC ENGINES

Konstantin N. Tourkov, M.S.

University of Pittsburgh, 2013

A standing wave thermoacoustic engine was designed and constructed to examine the effect

of curvature on thermoacoustic performance. Sound pressure level at the pressure node of

the engine was recorded in conjuction with the temperature at the hot and ambient sides

of the stack. Curvature was varied using flexible tubing from 0◦ to 45◦. It was found

that the curvature had a negative effect on the thermoacoustic intensity, measured using

the sound pressure level and the temperature difference between the hot and ambient sides

of the stack. Additionally, a strong relationship between the sound pressure level and the

temperature behavior was identified. The findings of the investigation were applied to a

study of a traveling wave engine. A looped tube design was employed with a regenerator

mounted in a straight section of the tube. Thermocouples were mounted in the regenerator

to investigate the temperature behavior. Initial results of the thermoacoustic effect were

established by calculating the difference in behavior between operation with oscillation and

without. These were followed by an investigation of the relationship between the temperature

behavior and the positioning of the regenerator in the looped tube. An optimal spacing was

identified for positioning the stack in the straight portion of the tube.
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1.0 INTRODUCTION

Thermoacoustics is concerned with the study of the relationship between thermal gradients

and acoustic vibrations. As a general field, it has been around for some time, but has

only recently made great strides in developing devices employing this phenomenon. While

it covers a large host of applications, the most prominent that has been researched is the

use of thermoacoustics in heat pumping and refrigeration. Due to their simplicity and low

environmental impact, thermoacoustic refrigerators (TARs) are well suited to large scale

applications and currently can be found in the field of cryogenic cooling, where traditional

vapor compression systems experience difficulties.

1.1 BRIEF HISTORY

The study of the thermoacoustic effect began in 1777, when Byron Higgins experimented

with a hydrogen flame to produce sound in a large open pipe [1, 2]. Much later, in 1859,

Rijke recreated the Higgins experiment with a hot wire mesh replacing the hydrogen flame

[3]. Around the same time, in 1850, Sondhauss experimented with applying heat to a pipe

that had a closed end and an open end, producing sound, the frequency of which, Sondhauss

concluded, had a dependency on the length of the tube [4]. The first quantitative analysis

came from Kirchoff in 1868 with equations describing the effects of the thermal attenuation

of sound [5]. Kirchoff based his analysis on the use of the Navier-Stokes equations and the

Fourier Law of heat conduction to develop a model for the propagation of acoustic vibrations

through a fluid in a tube with a wall held at constant temperature. His theory was later

applied by Kramers in an attempt to describe the method by which a tube that is closed and
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hot at one end and cold and open at the other produces acoustic vibrations [6]. Both assumed

boundary layer behavior, implying that the tube is much wider than the wall frictional layer.

However, both Kramers’ and Kirchoff’s predictions proved to present results that did not

accurately match observations.

A more complete analysis came from Rott in 1969 with a general linear theory of thermoa-

coustics [7]. Rott’s theory was based on an assumption that the tube radius is significantly

smaller than its length. His theory, discussed in Chapter 2, proved successful in modeling

thermoacoustic behavior and became a tool for the design of thermoacoustic engines and re-

frigerators. A decade later, Ceperley was the next person to make a significant contribution

in his proposal of the traveling wave thermoacoustic engine [8]. Using a feedback inertance,

Ceperley was able to tune the pressure and velocity fields to operate in phase, creating an

acoustic Stirling engine. Ceperley’s concept was tested by Yazaki et al. [9] in 1998, and

later applied by Swift and Backhaus [10] in their design of a thermoacoustic Stirling heat

engine (TASHE). Simultaneously, starting in the 1980s, the Los Alamos National Labora-

tory (LANL) has conducted research on thermoacoustic engines and refrigerators, resulting

in significant contributions to improving the efficiency of thermoacoustic engines and COP

for thermoacoustic refrigerators.

1.2 THERMOACOUSTIC ENGINES: STANDING WAVE AND

TRAVELING WAVE

Standing wave and traveling wave engines operate under similar thermodynamic cycles. The

traveling wave cycle is identical to the Stirling cycle, leading traveling wave engines to often

be referred to as Stirling thermoacoustic engines. The standing wave cycle can best be

described as a modified version of the Stirling cycle, since it has many similarities with the

traveling wave cycle. The differences in the operation of the two cycles are further discussed

below, illustrating the fundamental reason why traveling wave engines are inherently more

efficient than their standing wave counterparts.
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1.2.1 Standing Wave Engines

Quarter wavelength standing wave devices, particularly engines, are the simplest thermoa-

coustic devices to build and operate. They consist of a resonator that, as the name suggests,

is the length of a quarter of the wavelength of the acoustic oscillation. The resonator is

closed on one end and open on the other, as shown in Figure 1. A stack is placed near the

closed end with two heat exchangers on each side, configured on the closed end to either

input heat for an engine, or draw heat away for a refrigerator. The length of the resonator

in relation to the wavelength causes the maximum pressure oscillation (antinode) to occur

at the closed end and no pressure oscillation (node) to occur at the open end. The velocity

behavior is shifted 90◦ from the pressure, with a node at the closed end, and an antinode at

the open end.

Figure 1: Quarter-wave standing wave TAE [11]

The standing wave cycle starts with the compression and movement of the gas towards

a hot heat exchanger. This part of the cycle is nearly adiabatic as the time it takes for the

gas to travel and the surface area of the pores facilitate very little movement of heat. In the

second step, the gas is heated by the stack walls, while simultaneously undergoing expansion.

It then moves toward the cold side heat exchanger, expanding along the way. This step of the

process, like the first, is adiabatic. The gas arrives at the cold heat exchanger at an elevated

temperature, and is thus cooled, while contracting, completing the cycle [12]. Figure 2

demonstrates the steps of the cycle while Figure 3 shows the steps on a pressure-volume

diagram.

The cycle described above operates on the requirement of adiabatic movement in the first

and third steps. This is due to the out of phase pressure and velocity behavior of the standing
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wave engine. It is necessary that the thermal expansion occurs at the highest pressure to

generate more work than is required to compress the gas for the extraction of heat at the

cold reservoir. Thus, if continuous heating and cooling occur, the net work pdV = 0. This

condition is achieved via the use of channels that are larger than the thermal penetration

depth of the gas. Thermal penetration depth, δk, is defined as the distance that heat can

travel through a gas at a certain frequency, as illustrated in Equation 1.1, where k is the

thermal conductivity, ρ is the density, cp is the coefficient of heat capacity, and ω is the

angular frequency of the sound wave. The thermal penetration depth is typically compared

to the hydraulic diameter, rh, of the channels used in the stack, calculated using Equation

1.2, where A is the area, and Π is the perimeter of the channel [13].

δk =

√
2k

ρcpω
(1.1)

rh =
A

Π
(1.2)

Standing wave engines, while simple, suffer a drawback in efficiency due to the irre-

versibility of the heat transfer process. The non-isothermal heating and cooling that are

isolated by the adiabatic movement impair the efficiency of the standing wave engine to

around 20% [14]. Theoretically, due to this irreversibility, standing wave engines also cannot

achieve the Carnot effeciency, while, as discussed below, traveling wave engines can.

1.2.2 Traveling Wave Engines

Traveling wave engines are, in general, slightly more complicated in design. Several designs

have been proposed and tested, with the more common ones shown in Figure 4. It can be

seen that each design employs a looped compliance, proposed and tested by first Ceperley

[8], then Backhaus et al. [15] and Ueda et al. [16], or a feedback inertance, first employed

by deBlok [17].

As aforementioned, the traveling wave thermodynamic cycle follows the same steps as

the Stirling cycle. The cycle begins with gas under high pressure moving toward the hot

reservoir, absorbing heat and slightly expanding along the way. Here, the gas abosrbs heat
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Figure 2: Standing wave TAE cycle
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Figure 3: Standing wave TAE P-V diagram corresponding to cycle shown in Figure 2.
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(a) Looped tube (b) Bypass loop

(c) Torus (d) Hybrid

Figure 4: Various traveling wave engine designs [18]
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from the regenerator that was stored from the previous cycle. Ideally, this step is assumed

to be isochoric. The gas then expands from falling pressure at the hot reservoir, dropping

in temperature and absorbing surrounding heat. In the ideal approximation of this step, it

would be assumed that the process is isothermal. The gas is then moved toward the cold

reservoir, releasing heat to the surroundings and undergoing some thermal contraction. This

step again would ideally be isochoric and is the compliment to the first step, allowing for

latent heat to subsequently be drawn from the regenerator. Finally, the gas is compressed,

simultaneously rejecting heat to the cold reservoir. Similar to the second step, it can be

assumed for the ideal case that this step is also isothermal. Figures 5 and 6 show the

individual steps and the pressure and volume relationship, respectively.

 

Qc 

Qc 

Qh 

Qh 

Qc 

Qc 

Qh 

Thot  

Qh 

Tcold  

Tcold  

Tcold  

Tcold 

Thot  Thot  

Thot 
Step 1 Step 2 

Step 3 Step 4 

Figure 5: Diagram of a traveling wave cycle

Traveling wave engines are designed to operate with the pressure and velocity oscillations

in phase, allowing for the maximum rate of compression or expansion to occur at the peak

left- or rightmost displacement. This behavior eliminates the need for adiabatic movement

of the gas, changing the function of the stack to that of a regenerator rather than a heat

7



Figure 6: Traveling wave TAE P-V diagram corresponding to cycle in Figure 5 [18].

storage surface. The design of a traveling wave engine then requires for the channels to be

significantly smaller than that of a standing wave engine, particularly small enough to where

δk >> rh. This allows for nearly isothermal heat transfer through the cycle, allowing for the

traveling wave engine to theoretically be capable of reaching the Carnot efficiency.

1.3 MOTIVATION FOR THERMOACOUSTIC REFRIGERATION

The widest application of thermoacoustics can be seen today in its use in refrigeration and

cryogenic cooling. Most cooling demands are currently met via the use of vapor compression

and absorption cooling. However, TARs have several advantages over these systems, as

discussed below, that can help them increase their share in the market in an environmentally

sustainable way.

1.3.1 Absorption Cycles

Absorption cycles employ the use of a chemical solution to drive mixture and separation

of typically two compounds, such as water and lithium bromide. The use of two solutions
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allows for evaporated water at low pressure to be absorbed into the solution, pressurized

using a low amount of energy, and again evaporated, recycling the lithium bromide solution.

The highly pressurized water can be again condensed at a higher temperature and after a

decrease in pressure, evaporated at a lower temperature to begin the cycle again. Figure 7

shows a simple diagram of an absorption cycle.

 

Generator 

Expansion 
 Valve 

Evaporator 

 Condenser 

Figure 7: Diagram of a typical absorption cycle

The major inputs of energy for absorption cycles are electric or shaft power into the pump

to bring the solution to a high pressure and heat at high pressure to evaporate the liquid.

Here, the absorption cycle has an advantage in the use of heat rather than mechanical energy,

as compared to the vapor compression cycle discussed below. Thus, a lower exergy source of

energy can be used to drive this cycle, such as waste heat from an industrial process, heat

given off by a combustion engine, or solar energy. Absorption cycles, however, suffer from

several drawbacks. They are much more complex than either vapor compression systems or

TARs and have a relatively low COP, typically around 0.68 for partially solar powered cycles

[19]. Additionally, when liquids such as ammonia are used in absorption cycles, extra care

must taken if the solution leaks since ammonia is an environmentally dangerous chemical.
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1.3.2 Vapor Compression

 

Expansion 
 Valve 

Compressor 

Evaporator 

 Condenser 

Figure 8: Diagram of a typical VC cycle

Vapor compression (VC) is currently the dominant form of refrigeration, found in a range

of applications, from household air conditioners to industrial ice makers and gas liquifica-

tion. The VC cycle is very simple in its design, employing four basic stages: evaporation,

compression, condensation, and expansion, shown in the diagram in Figure 8. Similar to ab-

soption cycles, the evaporation stage is used to achieve cooling and the condenser to release

high pressure heat to the ambient air. However, in a VC cycle, the compressor replaces the

absorption system, simplifying the process. VC technology, however, has several drawbacks

in that it is limited to approximately 230K in a single stage and requires high exergy energy

(i.e. mechanical or electrical) to operate. This causes a major increase in complexity when

temperatures like that of liquid nitrogen and helium are desired. TARs, on the other hand,

have been reported to be able to achieve much lower temperatures, with Jin et al. reporting

120K [20] and Vanapelli et al. reaching a temperature as low as 50K [21].
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1.3.3 Thermoacoustic Cooling

Thermoacoustic refrigerators can be assembled in several configurations, using either me-

chanical, or thermal energy to drive the thermoacoustic effect. TARs have several advan-

tages over the cycles discussed above. Both VC and absorption cycles require the use of

potentially dangerous refrigerants and are fairly complex systems, increasing the potential

for leaks. TARs benefit from use of inert gases like Helium and Argon, or can even be op-

erated with air, making them simple and safe. They also present a secondary advantage in

the use of cryogenic cooling. It is well-known that standard vapor compression refrigerators

(VCRs) have a limited lifespan due to the low temperatures the seals experience around the

moving parts. TARs bypass this need due to the lack of moving parts in the design. Thus,

when space is not limited, such as in cryocooling stations, or on large refrigeration trucks,

TARs have the potential to replace the current technology quite readily.

One of the main reasons why TARs have not been implemented on a large scale is based on

their inherently low coefficient of performance (COP), which is the ratio of cooling capacity

to input energy. Note that the COP is not an efficiency in the classical sense, and is thus not

bounded by 1. A benchmark of current cooling technology illustrates a spread of COPs of

traditional refrigeration between 2 and 6, varying with different working fluids, compressor

efficiencies, and operating temperatures [22]. On the other hand, TARs are still operating at

COPs of 1 to 1.2 [23, 24]. Limitations for the COP in TARs come from streaming, acoustic,

viscous, and thermal losses [23], which are discussed further in Ch. 2.

Fortunately, though, recent work has found that TARs and thermoacoustic engines

(TAEs) can be powered by waste heat, at input temperature levels that are not suitable

for powering VCRs [25]. This means that the practical level of the input energy is greatly

reduced, thus making waste heat-driven TARs/TAEs competitive with VCRs, since VCRs

require mechanical energy (often produced from electrical energy) to power the compressor.

However, beyond this COP comparison, another limiting factor for wide spread implemen-

tation of thermoacoustics is the physical size of TARs. If the resonator could be coiled as

opposed to being designed as a straight tube, the footprint of TAEs and TARs could be

reduced, and thus be advanced towards broader implementation. While theoretical models
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for curvature behavior in relation to the thermoacoustic effect have previously been pro-

posed [26], there is currently a lack of computational models that accurately predict the

phenomenon.

1.4 GOALS OF THIS WORK

In this work, two thermoacoustic devices are designed and evaluated for their performance

in relation to pressure and temperature. A standing wave thermoacoustic device is designed

to establish temperature behavior patterns for the hot and ambient sides and compare the

temperature difference across the stack to the magnitude of pressure oscillations in the engine.

A traveling wave engine is then designed and evaluated for temperature behavior through

the regenerator to establish the intensity of the thermoacoustic effect via the temperature

difference.
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2.0 THERMOACOUSTIC THEORY

2.1 LINEAR ACOUSTIC THEORY

First developed by Nikolaus Rott [27], linear acoustic theory is the first complete theory

that fairly accurately predicts behavior of thermoacoustic engines and refrigerators. While

Kramers [6] developed his theory before Rott, his derivation was based on the assumptions

of linearization of all equations and the boundary layer approximation. These were not able

to provide accurate predictions, leading Rott to further specify the problem by defining the

following assumptions:

(1) The gradient of the acoustic pressure in the radial direction is assumed to be zero,

(2) The average temperature and viscosity in the radial direction are negligible, and

(3) Axial heat conduction in the medium is negligible in comparison to the thermoacoustic

effect, and friction in the axial direction is neglected.

These assumptions are implied from the overall general assumption that the tube radius

is significantly smaller than the tube length, a crucial assumption that allowed for Rott to

achieve much more accurate predictions for the behavior of thermoacoustic devices. Be-

ginning with the continuity, momentum, and energy equations and assuming that u and

v undergo time variation given by the factor exp(iωt), the equations become, respectively:
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ωρ+ ρm
∂u

∂x
+ u

dρm
dx

+ ρm
∂(rjv)

rj∂r
= 0 (2.1)

iωu+
1

ρm

dp

dx
= ν

1

rj
∂

∂r

(
rj
∂u

∂r

)
(2.2)

ρmcp

(
iωT + u

dTm
dx

)
− iωp =

µcp
σ

1

rj
∂

∂r

(
rj
∂T

∂r

)
(2.3)

where ν is the kinematic viscosity, σ is the Prandtl number, and j can be either 0 or 1, de-

pending on if the solution is for the plane or axisymmetric case, repectively. By combining

the above three equations, applying the boundary conditions, and redefining some of the

variables, the equation for pressure is achieved:

[1 + (γ − 1)f ∗
j ]p+

d

dx

[
a2

ω2
(1− fj)

dp

dx

]
− a2

ω2

f ∗
j − fj
1− σ

θ
dp

dx
= 0 (2.4)

where θ describes the gradient of the mean temperature, fj and f ∗
j correspond to the wall

gradients, and a2 = γRTm.

Arnott et al. developed on these forms to create relations for the heat and work flow

[28]. He began with the average energy flow over time:

¯̇H2(z) = ¯̇Q2(z) + ¯̇W2(z)− ¯̇Qloss(z) (2.5)

where the heat flow due to the hydrodynamic contribution is:

¯̇Q2(z) =
ΩAres

2
Re

1

A

∫
A

[ρ0cpvz(x, y, z)T ∗
1 (x, y, z)− βT0vz(x, y, z);P ∗

1 (z)]dxdy (2.6)

The heat flow due to conduction is defined as:

¯̇Qloss(z) = ΩAreskgasT0z + (1− Ω)AreskstackT0z; (2.7)

and the averaged work flow over time (i.e. power) is:

¯̇W2(z) =
ΩAres

2
Re

1

A

∫
A

vz(x, y, z)P ∗
1 (z)dxdy. (2.8)
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Ares is defined as the cross-sectional area of the tube at a point z, A is the area of a single

pore, Ω is the porosity of the stack, kgas and kstack are the thermal conductivity values for

the the gas and stack, respectively, ∗ defines complex conjugation on the variable in question,

and Re indicates that the real part of the expression is being evaluated.

To develop the above relations to a functional form, the velocity in the z direction was

defined as:

vz(x, y, z) =
F (x, y;λ)

iωρ0

dP1(z)

dz
(2.9)

where λ = 21/2R/δv and F (x, y, ;λ) is a function that equals zero at the wall. The heat and

work flow then took the following form:

¯̇Q2(z) =
ΩAres

2
βT0

[
Im

(
P1z(z)P ∗

1 (z)

ρ0ω

F ∗(λT )− F (λ)

1 +Npr

)
−

T0z
βT0

cp
ρ0ω3

|P1z(z)|2 Im[F ∗(λT ) +NprF (λ)]

1−N2
pr

] (2.10)

¯̇W2(z) =
ΩAres

2
Im

(
P1z(z)P ∗

1 (z)

ρ0ω
F (λ)

)
(2.11)

Tijani et al. continued the development of the theory to provide heat and work flow

equations that are based on dimensionless parameters describing thermoacoustic devices

[29]:

Qcn = −δknD
2sin2xn

8γ(1 + σ)Λ

(
∆Tmntan(xn)

(γ − 1)BLsn

1 +
√
σ + σ

1 +
√
σ
− (1 +

√
σ −
√
σδkn)

)
(2.12)

Wn =
δknLsnD

2

4γ

[
(γ − 1)Bcos2xn

(
∆Tmntan(xn)

BLsn(γ − 1)(1 +
√
σ)Λ
− 1

)
−
√
σsin2(xn)

BΛ

]
(2.13)

In the above equations, xn is the center position of the stack, Lsn is the length of the stack,

A is the cross-sectional area, σ is the Prandtl number, δkn = δk/y0 is the normalized thermal

penetration depth, D is the drive ratio, γ is the ratio of isobaric to isochoric specific heats,

and B is the porosity of the stack. Additionally, Λ = 1 −
√
σδkn + 1

2
σδ2kn. Tijani et al.

used these equations to provide a framework for designing thermoacoustic refrigerators with

optimized parameters for the highest COP, acoustic power, or cooling rate [30].

15



While the general theory of thermoacoustics is well understood, there is still much re-

search being conducted in the study of the losses that occur in TAEs and TARs. Application

of Tijani’s derivations presents possible COP values as high 1.8 for optimized design spec-

ifications. However, due to various losses, these values are, in fact, much lower than is

theoretically predicted. Acoustic, streaming, and viscous losses have been extensively re-

searched in the past and have been shown to be major contributors to the energetic losses in

thermoacoustic devices. These losses will be explained as part of the influencing factors in

the behavior of the standing wave device examined in this work. Thermal losses are less un-

derstood, as it is harder to quantify their effects due to the parallel nature of their behavior

with the thermoacoustic effect. Zink et al. [31, 32] proposed methods for quantifying these

losses, showing significant effects due to convection and radiation.

2.2 STREAMING LOSSES

Streaming losses can be identfied as the energy losses that are caused by the movement of

the gas in the thermoacoustic device. While gas displacement in the stack or regenerator

of the thermoacoustic device is crucial to that device’s performance, other gas movements

have been identified and observed in various devices that are detrimental to the performance.

Gedeon and Rayleigh streaming mechanisms have been found to contribute signficantly to

the overall losses found in thermoacoustic engines and refrigerators, and have been noted to

have the largest effect on refrigerators and traveling wave engines.

2.2.1 Gedeon Streaming

Gedeon streaming is defined as the acoustic streaming around a torus. This streaming occurs

in traveling wave looped tube engines and pulse tube design refrigerators. The mechanism

of this streaming occurs as gas particles travel in the regenerator through a complete cycle.

While it would be expected for each particle to assume the original position at the end of

each cycle, it is found that the distance that a particle covers from the hot to the cold side
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is not the same as in the opposite direction. Thus, a net mass flow, as shown in Figure 9, is

experienced and is exacerbated by the fact that there is no hindering mechanism in a torus

or pulse tube design to prevent circulation of the particles. This results in a heat transport

mechanism that is parallel to the thermoacoustic mechanism, causing a heat load on the

cold side and thus decreasing efficiency.

Gedeon streaming has been evaluated by several groups, both experimentally and analyt-

ically. Olson et al. [33] have shown the effect of this mechanism in pulse tube refrigerators,

demonstrating that it’s suppression can increase performance. They established that the

oscillations approximately a penetration depth away from the pulse tube wall cause a drift,

establishing a parabolic mass flux profile, as shown in Figure 10, and causing convection of

heat. Using linear acoustic theory, presented above, they were able to establish an expression

for the streaming mass flux,

ṁ2,w =
|p1||u1|
a2

[(
3

4
+

(γ − 1)(1− bσ2)

2σ(1 + σ)

)
cosθ +

(
3

4
+

(γ − 1)(1− b)
√
σ

2(1 + σ)

)
sinθ

]
+

ρm|u1|2

ω

[
3

4

dA/dx

A
+

(1− b)(1−
√
σ)

4(1 + σ)(1 +
√
σ)

dTm/dx

Tm

]
(2.14)

An analytical approach was conducted by Gusev et al. [34], using the measure of en-

thalpy flux to demonstrate that the mechanism has a significant impact. Other groups, such

as Penelet et al. [35] have shown that streaming has a positive effect on thermoacoustic

performance, providing amplification of the thermoacoustic effect. Overall, however, there

have been numerous efforts to suppress Gedeon streaming.

One method that has been shown to increase performance in engines was proposed by

Swift et al. [36] . Their group demonstrated an increase in performance through the use

of a flexible membrane inside the torus. This membrane, of course, introduces an acoustic

impedance, causing an increase in acoustic losses in the engine. Olson et al. [33] proposed a

different method for suppressing streaming using a tapered pulse tube, producing significant

results.
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Figure 9: Illustration of

net mass flow occurence in

pulse tube [33].

Figure 10: Mass flux profile

in pulse tubes from central

axis to wall [33].

2.2.2 Rayleigh Streaming

While Gedeon streaming is specific to traveling wave designs, Rayleigh streaming is an

occurence that can be found in both standing and traveling wave engines, and has been

shown to be equally significant in refrigerators. This method of streaming stems from the

interaction of the oscillating flow and the the various surfaces inside the engine or refrigerator.

First proposed by Rayleigh in 1896, this method was investigated by several groups, and was

experimentally proven by Gaitan et al. [37]. Yazaki et al. [38] investigated this streaming

mechanism further using Doppler velocimetry to examine thermoacoustic work flow. They

were able to obtain results that agreed with theory and images, such as Figure 11, to show

that the streaming is, in fact, significant.

Thompson et al. [39] used Laser Doppler Anemometry (LDA) and burst spectrum anal-

ysis (BSA) to obtain velocity field measurements, such as the one in Figure 12, showing

streaming inside a standing wave device. Using these measurements, they were able to show

the relationship between the axial acoustic velocity and the axial streaming velocity shown

in Figure 13.
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Figure 11: Image of streaming taken us-

ing Doppler velocimetry [38].

Figure 12: Velocity filed observed using

LDA and BSA [39].

Figure 13: Relation between axial acoustic and axial streaming velocities [39].
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2.3 ACOUSTIC LOSSES

There are several mechanisms of acoustic losses that take place in thermoacoustic devices.

Resonator shape, uneven joints, and open end conditions can have a significant impact on

acoustic wave propagation. A signficant amount of research has been conducted on improving

the acoustic efficiency of engines. Several groups have identfied the use of tapered resonator

tubes to help increase performance.

As discussed above, there are several loss mechanisms that cause a decrease in perfor-

mance, and solutions to decrease the effects of some losses will cause other losses to increase.

This is particularly true in refrigeration, where it is beneficial to separate driving and refrig-

eration stacks to decrease/eliminate convective losses. In both traveling and standing wave

refrigerators, this increases the complexity of the design and can create a large increase in

impedance caused by the resonance body.

Figure 14: Real and imaginary parts of F (λ) for various pore geometries [28].

Stack design has also been examined. Arnott et al. [28] analytically examined work and

heat flows for various pore geometries using equations 2.10 and 2.11. They determined that

the primary influence on the work and heat flow is the function F (λ). Thus, they evaluated
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this function for both its real and imaginary parts for various values of λ. As shown in Figure

14, parallel plate stacks have the largest imaginary part at a value λc ≈ 3.2, demonstrating

that they will produce the strongest thermoacoustic effect.

2.4 VISCOUS LOSSES

It is well-known that movement of a fluid will experience viscous energy dissipation and,

in some cases, a significant amount of viscous heating. This form of energy dissipation

is clearly present in stacks/regenerators, as the large surface area to volume ratio causes

the presence of significant dissipation through both methods. Atchley et al. [40–42] have

shown that these two forms of energy dissipation are, in fact, the dominant mechanisms in

thermoacoustic devices. They presented the following form for calculating the losses in the

heat exchangers

dẆhx =
1

2
ShxRe

{
P 2
Aω

ρma2
i

[(
1 +

(γ − 1)

1 + εs
f̄k

)
cos2φ(x)− (1 + l/y0)

2

1− fv
sin2φ(x)

]}
dx (2.15)

Figure 15: Experimental results compared to analytical forms for heat compared to the

tempertaure difference [40].
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where Shx is the cross-sectional area of the heat exchanger, PA is the peak pressure amplitude,

a is the speed of sound, fk and fv are function of the thermal and viscous penetration depths,

and y0 is the plate half-spacing. The analytical forms were examined against experimental

results for a thermoacoustic prime mover below onset of self-oscillation, shown in Figure 15,

providing close agreement between the data and the predictions. In the next section, thermal

losses are examined more closely and compared to the viscous losses that were discussed here.

2.5 THERMAL LOSSES

Thermal losses in thermoacoustic devices are less understood than the other mechanisms

discussed above. Since, as discussed, thermoacoustic devices operate on the basis of temper-

ature gradients, there will be nontrivial losses due to conduction through the stack as well as

convection to the medium. Due to the parallel nature and interaction behavior of the mech-

anisms, however, it is more difficult to quantify the impact of these losses experimentally.

Losses via conduction have been mentioned in several studies. Organ et al. [43] referred

to these losses in their evaluation of mechanical Stirling engines. Referred to as “thermal

shorting,” their group discussed how heat flow paths are created in regenerators built from

stacked wire meshes. Chen et al. [44] investigated the COP of a thermoacoustic refrigerator

with regard to the temperature difference applied across the stack, arriving at a conclusion

that the thermal conductivity of the stack noticeably influences the performance. Holmberg

et al. [45] used software to determine the significance of several viscous and thermal losses

in stacks and on a system level. Their group evaluated a thermally driven thermoacoustic

refrigerator consisting of two stacks and three heat exchangers, assembled in a series config-

uration to achieve cooling at the surface facing the open end of the resonator, as shown in

Figure 16. A system level analysis, seen in Figure 17, shows that the cooling work is only a

small portion of the overall thermal input. Due to the design used in the analysis, the largest

portion was found to be in the viscous losses of the high temperature heat exchanger with

the viscous thermoacoustic losses becoming a close second at high heat input. An analysis

of the heat exchanger control volume, shown in Figure 18, showed a signficant amount of
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thermal loss due to the conduction in the stack, indicated as Qcond,1avg, despite the stack

being designed using ceramic material.

Figure 16: TAR design [45]

Figure 17: Thermoacoustic refrigerator ther-

mal and viscous losses [45].

Holmberg’s group presented an estimate for the magnitude of losses in the thermoacoustic

refrigerator, including conduction loss through the ceramic stack. A thorough investigation

in how this loss varies with stack materials was presented by Zink [32, 46] in his investi-

gation of conductive, convective, and radiative losses for aluminum, stainless steel, copper,

ceramic, and brass stacks. Using a quarter-wavelength thermoacoustic engine, he evaluated

the acoustic performance with respect to input power, as seen in Figure 19. Ceramic stacks

were found to perform significantly better than other materials. However, an evaluation of

convective and radiative losses, seen in Figures 20 and 21, presented a drawback of the lower

conduction material in the increase of the temperature at the hot side and increase in both

convection and radiation.
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Figure 18: TAR hot side exchanger thermal and viscous losses [45].

Figure 19: TAR hot side exchanger thermal and viscous losses [32].
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Figure 20: Convective losses [32] Figure 21: Radiation losses [32]
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3.0 STANDING WAVE INVESTIGATION

As discussed in the previous chapter, although recent research has increasingly focused on

thermal behavior of thermoacoustic devices, much more work needs to be done. Additionally,

as mentioned in Chapter 1, for thermoacoustic devices to be competitive in the marketplace,

their efficiency must be improved while increasing the flexibility of their operating footprint.

To that end, the goal of this work is to perform experimental investigations to determine:

(a) how curvature affects the total temperatures on the hot and cold side, and

(b) how curvature affects the oscillation behavior (i.e. does sound pressure level decrease as

curvature increases).

3.1 DESIGN AND CONSTRUCTION

3.1.1 Stack Length and Position

As mentioned above, the quarter-wavelength resonator design operates with a pressure node

at the open end of the resonator and an antinode at closed end. Simultaneously, the velocity

operates 90◦ out of phase with the pressure, resulting in a node at the closed end of the

resonator. As discussed above, both pressure and velocity oscillations are required for the

standing wave cycle to operate. Thus, stack positioning at either end of the resonator

does not facilitate effective acoustic generation. Studies on thermoacoustic refrigeration

optimization [25, 30] show that it is most efficient for the stack position to be close to

the pressure antinode. Tijani et al. [30] have also shown that as stack size increases, the

optimal center position of the stack moves further from the pressure antinode. Their group
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has also shown that the COP increases and the acoustic power decreases as stack length

decreases. Both groups derived optimization methods, Tijani’s group’s method based on

cooling and acoustic power and Babei and Siddiqui’s method [25] on cooling power and cold

side temperature. Babei and Siddiqui’s group has also shown that many similarities can

be drawn between TARs and TAEs, allowing for the above mentioned relationships to be

applied for TAEs.

These guidelines were implemented in the design of the stack and positioning, for creation

of a standing wave device for experimental testing. Due to the brittle nature of the ceramic,

a stack length of 2 inches was chosen, corresponding to a normalized length of 0.05. Due to

the thermal sensitivity of the microphone, the center positioning of the stack was chosen to

be approximately 5 inches, corresponding to a normalized distance of 0.125. For the goal of

this study, an optimal stack length and position were not identified, as the curvature of the

resonator would affect these parameters in ways not well understood.

3.1.2 Pore Geometry and Size

The stack was chosen from a readily available ceramic monolith with square channels. Several

sizes were available, and thus it was important to choose a stack that would meet the

requirements of a standing wave engine. To achieve the adiabatic requirement, there must

be poor thermal contact between the stack and the working fluid. Using air as the working

fluid, and the nominal frequency of 80Hz, it was determined that the thermal penetration

depth was 0.332mm. A stack with square channels of 1.45mm was chosen as an initial size.

The ratio of the hydraulic radius to the thermal penetration depth was found to be 1.09,

which agreed with the requirement for the operation of standing wave engines, allowing the

use of the stack in the engine design.

3.1.3 Resonator

The resonator was chosen for the engine to operate as a quarter-wavelength engine. For a

80Hz wavelength, this corresponded to a length of the 1000mm. The assembly was con-

structed using a stainless steel stack housing and flexible PVC tubing of 3.9mm thickness
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(the inner diameter of both was 52.5 mm). The two components were joined by a flange with

the stainless steel portion closed at the end and the flexible tubing left open. The flexible

PVC tubing was used to acquire the proper curvatures (0◦, 15◦, 30◦, and 45◦), precalculated

using simple geometry and mounted horizontally. To prevent deformation of the flexible tub-

ing while bending, the maximum curvature was limited to 45◦. The assembly was mounted

such that the open end would face an unimpeded volume of air at atmospheric conditions

of at least 1 meter in radius from the open end. The curved section was constructed to be

approximately 500mm in length, following the model shown in Figure 22.

 

Curvature:  0o 15o 30o 45o 
Microphone Stack 

Hot side  
T-couples 
and heating 
coil 

Ambient side 
T-couples 

 
  

Flexible 
tubing 

Figure 22: Diagram of standing wave device used in testing

3.1.4 Data Acquisition

The stack was heated with 22-WG nickel-chrome wire and an DC power source. It was

mounted in the pattern of a heating coil, shown in Figure 23. Its resistance was RH = 2.25Ω

(measured at room temperature). During testing a constant voltage input of 15V was passed

through the wire. To record temperatures, four K-type thermocouples were inserted and

cemented into each end of the stack. Hot side thermocouples were mounted equidistant

from the sides of the coil and approximately 1.5mm into the stack. Figure 23 shows the

position for the hot side thermocouple mounting. The ambient side thermocouples were

mounted in a pattern similar to the hot side. Sound output was recorded with a PCB

130D20 array microphone that was mounted in the center of the closed end of the tube.

The data acquisition was performed in LabView. The sound pressure level was recorded
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simultaneously with the temperature to observe any correlation that they would show. The

output of each curvature was recorded in three separate 300 second (5 minute) spans with a

sample rate of 0.1 seconds. Each curvature was tested three times to increase the confidence

in the temperature and sound pressure level readings. Each test was executed by starting

the engine from ambient conditions, allowing it to approach steady behavior, and running

the testing interval. A 5V initial run was examined for the transient response from ambient

temperature, shown in Figure 24. An exponential fit was applied to the data and a time

constant of τ5V = 85.4 seconds was identified for the transient response. The 5V test showed

a temperature increase of 102◦C, approximately 1/3 in magnitude of the 15V results, shown

in the next section. As the magnitude of temperature increase matched the magnitude of

voltage input, similar behavior was assumed, implying a time constant of approximately 3

times greater than the 5V test run time constant. With this information, a startup time

of 20 minutes was used for the 15V tests, corresponding to 4.7 time constants (τ15V ≈ 255

seconds). It was later observed that slower time constants appeared to additionally affect

the engine, causing small transient changes in each run. These are assumed to be due to the

heating of the housing.
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Figure 23: Diagram of hot side of stack assembly
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Figure 24: Initial response of SWTAE to 5V input

3.2 RESULTS: TEMPERATURE BEHAVIOR

In order to show the effect of resonator curvature on the thermoacoustic effect, we averaged

the recorded readings of the four hot and ambient thermocouples, first for the individual runs,

as seen in Figure 25 with the hot side temperature on the top, the ambient side temperature in

the middle, and the SPL on the bottom, then the three runs together, displayed in Figures 27

and 29, acquiring an overall average for each curvature. A frequency of occurence study was

conducted for each side, seen in Figures 26 and 28. Finally, a single value average hot

and ambient side temperature was calculated at 95% confidence and a regression analysis

was performed to quantify a relationship between temperature and curvature, as seen in

Figures 30 and 31. The temperature trends seen in these figures are discussed below.

3.2.1 Hot Side Behavior

The range of the individual hot side run averages spans approximately 18◦C. The individ-

ual runs also show a general trend of increase in temperature with curvature. While this

general trend is visible, there is obvious overlap in the averages of the individual runs, par-

ticularly between the 0◦ curvature and 15◦ curvature. Due to this diffuculty, the individual

run temperature values were evaluated in a histogram to observe the temperature occurence
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behavior, as seen in Figure 26. The histogram shows that individual runs clearly show peaks

in frequency with each curvature, with the 45◦ and the 15◦ curvatures showing single peak

behavior, and the 0◦ and 30◦ curvature showing two peak behavior. To better define the

relationship between curvature and hot side temperature, the individual runs were averaged

and displayed in Figure 27. The relationship of temperature with time appears relatively

horizontal, implying that the hot side achieves steady state. The spacing between the av-

erages stays fairly equal, and thus, a linear relationship can be predicted. The results of a

linear regression analysis are discussed below.
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Figure 25: Hot and ambient side temperature and SPL results for each of 3 runs for all

curvatures
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Figure 26: Hot side average histogram for each curvature.
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Figure 27: Hot side averages for each curvature
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3.2.2 Ambient Side Behavior

The ambient side individual runs fail to show any meaningful pattern, spanning a range of

approximately 7◦C. A general increase in temperature with time appears for several of the

individual runs. A histogram analysis of the temperatures, shown in Figure 28, shows that

there is significant overlap and multiple peak behavior for each curvature. An analysis of the

average ambient side behavior in Figure 29 shows that the 0◦ curvature shows the largest

increase in temperature with respect to time. The other curvatures also show a pattern of

increase with time, but appear to be more horizontal. From this, it can be concluded that

the ambient side did not achieve full steady state behavior during the runs as was originally

expected. A possible reason for this could be the gradual heating of the stack and the steel

housing, due to the leaching of heat from the hot side. A weak trend can be predicted based

on the 15◦, 30◦, and 45◦ curvatures of decreasing temperature with respect to an increase in

curvature. As discussed below, this trend is further evaluated using a regression analysis.
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Figure 28: Ambient side average histogram for each curvature.

33



0 50 100 150 200 250 300
50

51

52

53

54

Time (sec)

T
em

pe
ra

tu
re

 (
C

o )

 

 

0o 15o 30o 45o

Figure 29: Ambient side averages for each curvature

3.2.3 Trends Between Temperature and Curvature

To better quantify the relationship between average hot side temperature and curvature,

an analysis of the total averages for each curvature was performed and displayed with the

predicted error of each curvature at 95% confidence, as seen in Figures 30 and 31. The

analysis shows a very strong correlation between the curvature and the average hot side

temperature with an R-squared value for the relationship of 0.9959. The overall spread of

the error in the prediction stays at an acceptable level for each curvature and does not show

any major change between curvatures. A similar analysis was performed on the ambient

side average temperatures. However, unlike the hot side, the ambient side showed little

correlation between curvature and temperature. The average value for the 0◦ curvature

appears to be significantly lower than that of the other curvatures. An analysis of the values

for the remaining curvatures produces a relatively strong correlation, with an R-squared

value of 0.8129. However, this value does not account for the significantly large spread of

error in the values, thus reducing the validity of any relationship present in the ambient

data.
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Figure 30: Hot side overall averages with linear regression prediction.
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Figure 31: Ambient side overall averages.
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3.3 RESULTS: ACOUSTIC BEHAVIOR

Above, we discussed the effect of resonator curvature on the temperature throughout the

stack. Next we must discuss the effect of curvature on the pressure behavior of each TAE

design as the sound output is the primary metric in the characterization of thermoacoustic

devices.

3.3.1 General Oscillation Behavior

As mentioned above, the Sound Pressure Level (SPL) was recorded simultaneously with the

temperature behavior. Figure 25 shows the individual recorded levels for each run. While an

overall decrease in the pressure level is present, there is significant overlap between the 0◦ and

the 15◦ curvatures. The overlap between other curvatures is minimal. The SPL data spanned

a range of ≈ 2dB, with a minimum of approximately 156.4dB, corresponding to pressure

amplitudes between 1300 and 1600Pa. Averaging the runs for each curvature produces

a better defined pattern of decreasing SPL with curvature. While the relative spacings

between the 15◦ and 30◦ curvatures and 30◦ and 45◦ curvatures appear approximately equal,

the spacing between the 0◦ and 15◦ curvatures is significantly smaller. This behavior presents

a difficulty in predicting a relationship between SPL and curvature, which is discussed below.

3.3.2 Trends Between SPL and Curvature

The SPL was averaged to a single point for each curvature with error at 95% confidence.

No immediate linear relationship was clear, and thus both linear and quadratic predictions

were tested. The linear prediction showed a very good correlation of 0.958. However, the

quadratic prediction shown in Figure 34, showed a nearly perfect correlation of 0.998, thus

implying a quadratic relationship between curvature and SPL, at least for this limited data

set. This data has been collected only on a limited span of curvatures and so this relationship

cannot be extrapolated to increased curvatures, such as 90◦ or more. Also, the amount of

error present in the data suggests that the relationship, however well defined, may prove

unreliable, due to the large amount of overlap of the error.
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The sound and hot side temperature behavior both provided the expected relationships.

It was thus of importance to evaluate the interaction between temperature and acoustic

pressure. The difference in temperature between the hot and ambient sides was evaluated

against the acoustic pressure, as shown in Figure 35. A strong relationship can be seen

between the temperature difference and the acoustic pressure, showing a linear decrease of

acoustic pressure with increase in the temperature difference. This behavior is expected as

the temperature difference between the hot and ambient sides of the stack is inversely pro-

portional to the amount of energy transfer that is occuring. A large difference in temperature

implies low energy transfer and a lower presense of the thermoacoustic effect. Similarly, a

smaller temperature difference implies higher energy transfer. It can be concluded that the

relative intensity of the thermoacoustic effect, identified with pressure amplitude (and thus

acoustic power), can be measured using a temperature difference across the stack. These

findings are utilized in the investigation of the traveling wave engine described below.
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Figure 32: Sound Pressure Histogram
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Figure 33: Average SPL for each curvature.
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Figure 34: Average SPL with regression analysis.
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4.0 TRAVELING WAVE INVESTIGATION

The investigation of curvature on the thermoacoustic effect in standing wave engines pro-

vided insight into the relationship between the thermal behavior of the stack and the acoustic

behavior of the engine. We observed that curvature creates increased losses and quantified

the effect of the losses. A logical extension of these findings could then be to apply them to

traveling wave thermoacoustic devices. However, there is still a large gap in our understand-

ing of thermal effects in the more complicated geometry of traveling wave devices. Before

any sort of future study of the effect of curvature can occur, these thermal effects must first

be quantified.

Therefore, the goal of the next component of this study was to examine the thermal

behavior of the regenerator in a looped tube traveling wave thermoacoustic engine. The

established thermal patterns were then examined for various placements of the regenerator

inside the looped tube device to observe the effect of placement on the intensity of the

thermoacoustic effect.

4.1 DESIGN AND CONSTRUCTION

4.1.1 Resonator

A looped tube design was chosen for this investigation. Previous investigations have been

conducted on the looped tube design by Ceperley et al. [47] and Yazaki et al. [38], with

Yazaki’s group identifying large viscous losses, suggesting an increase in acoustic impedance.

Swift et al. [36] modified the design by adding a resonator to the loop, creating a torus
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type engine. This, however, created a secondary system for losses that were later shown by

Hu et al. [48] to significantly decrease the efficiency, compared to what had previously been

reported. Backhaus et al. [49] have demonstrated that a looped tube engine can be used

in tandem with an electric generator, achieving a thermal to electric effeciency of 18%. It

can thus be observed that looped tube engines have the potential for efficient conversion of

input heat to electric work as well as refrigeration.

A total length of 92in was implemented as a design parameter, leading to an operating

frequency of 146Hz in the first mode, with air as the working fluid at atmospheric pressure.

The loop-tube was designed using 2 inch nominal diameter schedule 40 PVC and steel pipe,

with the heating element positioned in the steel portion of the device, to prevent melting

of the PVC. The heating element was designed to have the same nominal resistance as the

element in the standing wave design. The straight portions of the pipe were approxmately

34 inches long, with the turns approximately 12 inches in length. Standard 90◦ elbows were

joined to the PVC pipe using PVC cement to create the 180◦ turns required for the loop.

The PVC portion of the loop-tube was joined to the steel portion using 4-bolt flanges, with

air tightness assured using full-face gaskets. A picture of the device can be seen in Figure

36 with a close up on the steel portion containing the stack shown in Figure 37.

4.1.2 Regenerator

As was discussed above, standing wave and traveling wave engines operate under similar

cycles. Several key differences, however, allow traveling wave engines to inherently operate

more efficiently than standing wave engines. One such difference lies in the design of the

regenerator. Stacks in standing wave engines require the hydraulic diameter to be larger

than the thermal penetration depth. Regenerators in traveling wave engines, on the other

hand, require a smaller hydraulic diameter to facilitate reversible heat transfer between the

medium and the regenerator. Stacked wire meshes have previously been implemented as

a regenerator design [36]. However, as discussed above, Zink et al. [32] have found that

higher conductivity materials cause secondary losses by carrying heat via conduction. A
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Figure 36: Picture of traveling wave TAE

Figure 37: Housing design used to insure

air tightness.

Figure 38: Regenerator used in the con-

struction of the TAE.
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square channel ceramic porous material was thus implemented. A pore size of 1.092mm was

chosen, providing a ratio of 0.89 between the hydraulic diameter and the thermal penetration

depth.

The regenerator, seen in Figure 38, was made using a porous ceramic material (found in

catalytic converters in automobile mufflers) with a hole density of approximately 20 holes

per inch. The stack was machined to fit into the pipe, and cut to approximately 3.5 inches

in length. It was then modified to include an electric heating coil on one side. The heating

portion of the coil was designed using 22AWG wire with the lead wires built using 18AWG

wire to minimize heat dissipation through wire not directly in contact with the stack.

4.2 EXPERIMENTAL SETUP

Eight K-type thermocouples were used to record the hot and ambient side behavior of the

stack. Four of the thermocouples were used to measure the hot side behavior and were

mounted in the same position as in the standing wave engine design (see Figure 23). Each

was embedded approximately 1/16 inch from the surface of the hot side and the coil to

help achieve a more uniform temperature reading. This would prevent major changes in

the recorded temperature if the heated coil changed position due to expansion from heating.

Ambient side thermocouples were positioned approximately 1/16 inch from the center of the

stack and mounted at 1/8, 1/4, 3/8, and 1/2 inches from the surface of the ambient side,

shown in Figure 39, to help better evaluate the temperature behavior of the stack.

Data was recorded using a several step voltage increase, starting with a base value at

room temperature recorded for 60 seconds to identify any irregularities present in either the

testing equipment or the experimental setup. For a four minute period, following the initial

baseline recording, a 5V voltage drop was applied across the heating coil. This was followed

by three sequencial five minute periods of heating at 10V, 15V, and 20V, respectively. After

twenty minutes of recording, the current was disconnected and a five minute cool down was

recorded. Preliminary data was collected with the ambient side of the stack mounted at

8.5 inches from the edge of the turn of the loop-tube. Following the initial data collection
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to validate the testing setup, the stack was moved to the 8.875, 7.25, 6.25, and 5.25 inch

positions, as shown in Figure 40. At each position, two separate trials were recorded, one of

the performance with oscillation present, the other without the presence of oscillation.

Figure 39: Ambient side thermocouple positioning
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Figure 40: Regenerator position diagram
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4.3 RESULTS: STACK POSITIONING EFFECTS ON

THERMOACOUSTIC BEHAVIOR

4.3.1 Patterns In Thermoacoustic Behavior

Preliminary data were collected to study the behavior of the individual thermocouples in

relation to the presence and the lack of oscillation. Figures 41 and 42 show the behavior

of the hot and ambient sides, respectively. The maximum temperature difference between

the oscillation and no oscillation runs on the hot side was approximately 154◦C, while the

maximum temperature difference for the ambient side was approximately 27◦C. Figures 43

and 44 show the same data, but are color coded to show the behavior of the individual

thermocouples on the hot and ambient sides, respectively. While the hot side showed no

meaningful trend between the runs, the ambient side produced significant patterns. Without

the presence of oscillations, a linear drop in temperature was expected as the distance from

the hot coil increased. As seen in Figure 44, the predicted behavior is displayed, proving the

validity of the measurement. The presence of oscillations, however, distorts this pattern and

it can be observed that the 3/8 inch position thermocouple displayed higher temperatures

than the 1/2 inch position. From this, it can be hypothesized that the highest intensity of

the thermoacoustic effect took place at this position. This behavior was also observed in the

tests that followed the initial data collection.

It was important to quantify any error that occured in the acquired measurements. Due

to the uneven heating of the coil, an analysis of the variation in the recordings of the hot

side thermocouples was crucial to identify the level of variation that was present. Figure

45 shows the temperature difference between runs with oscillations present and oscillatiions

inhibited for the individual thermocouples. Figure 46 shows the variation in the measured

temperature difference, reaching a maximum of 18◦C, which occurs at the instant the voltage

is set to zero from the maximum setting. This temperature variation is normalized against

the lower temperature hot side readings, and is shown in Figure 47. The accuracy of the

thermocouples was 2.2◦C or 0.75% [50], which through a simple uncertainty analysis provided

a level of error of ≈ 18.1◦C (3.09%) to be expected in the recorded measurements.
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Figure 41: Hot side individual runs.
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Figure 42: Ambient side individual runs.
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Figure 43: Hot side thermocouple read-

ings.
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Figure 44: Ambient side thermocouple

readings.
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Figure 45: Hot side temperature difference
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Figure 46: Variation in hot side calculation.
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Figure 48: Ambient side averaged oscilla-

tion and no oscillation runs.
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Figure 49: Ambient side temperature dif-

ference between run averages.

4.3.2 Ambient Side Behavior

The ambient side showed fairly uniform behavior across the different stack placements, as

seen in Figure 48. The runs with oscillations present show a similar pattern of a sharp

increase at the points of increase in voltage, that decreases in slope with time. One placement

position that shows deviation from the pattern is the 5.25 inch position where the slope seems

to decrease at a faster rate than that of the other positions. The no oscillation runs showed

slight deviation from a singular pattern, suggesting changing thermal conditions at each

stack placement. In order to account for these conditions, Figure 49 shows the temperature

differences for each placement between the oscillation and no oscillation runs. The 6.25 inch

position shows the largest difference, implying the highest intensity of the thermoacoustic

effect.

4.3.3 Hot Side Behavior

The behavior of the hot side showed a significant difference in temperature between runs with

oscillation present and runs without oscillation. As predicted, there was a significant drop in

temperature when oscillations were introduced. Figure 50 shows the averaged temperatures

of the oscillation and no oscillation runs. A tight grouping across the differing placements
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can be seen for the oscillation runs and the no oscillation runs. To quantify the effect of the

placement of the stack on the thermoacoustic effect on the hot side, the differences between

the oscillation and no oscillation readings were taken for each position and are displayed

in Figure 51. The 6.25 inch placement shows the largest average temperature difference, in

agreement with the ambient side behavior. The 5.25 inch position shows a similarly high

temperature difference. However, this high difference in temperature does not correspond to

a high temperature difference on the ambient side. It can also be seen in Figure 50 that the

oscillation run for that position appears to be outside of the general grouping of the other

positions, while the no oscillation run for that same position shows unusual behavior during

the 20V period. From this, it can be concluded that an unpredicted variable influenced the

hot side readings for that particular position. Increase in contact due to thermal expansion

is believed to have affected thermal resistance behavior, artificially reducing the temperature

readings.
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Figure 50: Hot side averaged oscillation

and no oscillation runs.
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Figure 51: Hot side temperature differ-

ence between run averages.

4.3.4 Stack Placement and Intensity of The Thermoacoustic Effect

To help evaluate the intensity of the thermoacoustic effect, the temperature differences for

both the ambient and the hot sides were normalized to the highest difference at the 6.25

inch position and are displayed in Figures 52 and 53, respectively. The hot side shows that
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Figure 52: Normalized ambient tempera-

ture difference.
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Figure 53: Normalized hot temperature

difference.

during the 15V and 20V periods, the ratio between the highest temperature difference and

each position stays relatively equal. Sharp decreases in the temperature ratio can also be

seen at the times when voltage changes occur, implying the more intense presence of the

thermoacoustic effect for the 6.25 inch position. The onset of the thermoacoustic effect can

also be observed at approximately 400 seconds, marked by sudden sharp changes in the ratio

behavior. The ambient side behavior does not show a linear ratio at each voltage, with only

the 7.25 inch position appearing relatively linear for the 15V and 20V time periods. The

intensity of the thermoacoustic effect can be observed to increase substantially for the 6.25

inch position with increases in voltage, when compared to other stack positions.

To better quantify the relationship between stack positioning and the intensity of the

thermoacoustic effect, surface plots were used to relate the positioning and time to the

observed temperature difference, as shown in Figures 54 and 55. For the hot side, a gradual

increase in the average temperature difference can be seen in the behavior across all voltages

as the stack is moved closer to the edge. A peak appears to occur close to the 0.18 distance

ratio to edge after which a mild decrease can be observed. The ambient side behavior shows

a substantially better defined pattern of gradual increase with the decrease of the distance

to the edge. The 20V averages show the clearest presense of a peak at the same position as
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Figure 54: Ambient side stack temperature vs.

stack positioning.
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Figure 55: Hot side stack temperature vs.

stack positioning.

the hot side. However, the subsequent drop is far more signficant for the ambient side than

the hot side. Both figures match on a peak close to the 0.18 distance ratio and show that

positioning has a significant impact on the intensity of the thermoacoustic effect, and thus

the efficiency of the TAE.

4.4 DISCUSSION

The investigation on the standing wave thermoacoustic engine has shown a strong correlation

between the temperature difference across the stack and the acoustic power. This concept

can be implemented in this investigation by combining the hot and ambient temperature

differences to demonstrate a total difference provided by the thermoacoustic effect. Figure

56 shows the total temperature difference across the regenerator with respect to time for

each position. Figure 57 shows a three-dimensional surface plot relating both the time

and position to the total temperature difference. A pronounced peak emerges for the 0.18

position of the regenerator, as previously observed in the individual temperature difference

evaluations.
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Figure 56: Temperature difference across re-

generator
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Figure 57: Hot side stack temperature vs.

stack positioning.

While it is yet unclear as to the cause of the effect of stack positioning, it is suggested

that an investigation in the loss mechanisms in a looped tube type engine be conducted. A

focus on Rayleigh streaming interaction with the curvature of the loop and acoustic losses

caused by the curvature may lead to new improvements of the looped tube engine.
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5.0 CONCLUSIONS AND FURTHER RECOMMENDATIONS

5.1 CONCLUSIONS

We have analyzed the temperature and acoustic behavior of a standing wave thermoacoustic

engine and the way that this behavior changes as the curvature of the resonator of the

engine is changed from an intial 0◦ to a final 45◦ position in four increments. By recording

the performance of the engine three times for a period of 5 minutes each, at each curvature,

we were able to acquire reliable average values for the hot and ambient side temperatures

of the engine as well as similarly reliable values for the sound pressure level. Using this

data, we were able to acquire overall average values that presented a very strong positive

linear relationship between hot side stack temperature and curvature. The SPL averages

produced a very strong negative quadratic relationship between curvature and SPL, with

the peak of the quadratic function close to the 0◦ position. The ambient side behavior did

not produce any meaningful relationship over all four curvatures. However, a fairly strong

negative relationship could be deduced, when the 0◦ curvature is excluded from the analysis.

The overall data agrees with the CFD predictions given in [31, 51]. The results described

above prove that it is feasible to design thermoacoustic devices with curved resonators. This

could allow for the footprint of the devices to be reduced without causing a significant drop in

performance, making their implementation easier when faced with limited space. A possible

use for these findings is for TARs on mobile platforms, such as vehicles that run on or

transport supercooled fluids.

The standing wave engine investigation was followed by an investigation of a traveling

wave engine. We investigated a looped tube design TAE and have shown the impact of

stack positioning inside the looped tube on its efficiency. Using the temperature difference

53



between oscillation and no oscillation runs for each stack position, the effect was measured

for the hot and ambient sides of the stack. A significant increase in efficiency can be seen

when the stack is moved to approximately 0.18 of the total straight length from the edge,

measured from the ambient side facing the edge. More effective conversion of thermal energy

to thermoacoustic energy increases the amount of cooling produced by a given amount of

heat and thus increases the COP. Increases in the COP of TAEs can help make it more

competitive with the traditional VCR, broadening the range of industries for its use.

5.2 FUTURE WORK

In the effort to continue improving the performance of TAEs and TARs, further investiga-

tion into loss mechanisms is required. As stated above, thermal losses have not received a

large amount of attention and have been shown to be a significant contributor to reducing

the overall efficiency of thermoacoustic devices. Viscous losses in the heat exchangers have

also been shown to significantly impact their performance. Thus, a deeper investigation into

decreasing viscous dissipation and increasing heat transfer to the regenerator has signifi-

cant potential. Possible methods for experimentally quantifying viscous dissipation could

include the comparison of SPL to the temperature variation across the stack for various

exchanger designs. Numerical simulations of traveling wave behavior around the stack could

additionally help identify regions of high viscous and thermal dissipation.
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