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OPTIMAL REPLACEMENT STRATEGIES FOR WIND ENERGY SYSTEMS

John A. Flory, Ph.D.

University of Pittsburgh, 2013

Motivated by rising energy prices, global climate change, escalating demand for electricity and

global energy supply uncertainties, the U.S. government has established an ambitious goal of gen-

erating 80% of its electricity supply from clean, renewable sources by 2035. Wind energy is poised

to play a prominent role in achieving this goal as it is estimated that 20% of the total domestic elec-

tricity supply can be reliably generated by land-based and offshore wind turbines by 2030. However,

the cost of producing wind energy remains a significant barrier with operating and maintenance

(O&M) costs contributing 20 to 47.5% of the total cost of energy. Given the urgent need for clean,

renewable energy sources, and the widespread appeal of wind energy as a viable alternative, it is

imperative to develop effective techniques to reduce the O&M costs of wind energy.

This dissertation presents a framework within which real-time, condition-based data can be

exploited to optimally time the replacement of critical wind turbine components. First, hybrid

analytical-statistical tools are developed to estimate the current health of the component and

approximate the expected time at which it will fail by observing a surrogate signal of degradation.

The signal is assumed to evolve as a switching diffusion process, and its parameters are estimated

via a novel Markov chain Monte Carlo procedure. Next, the problem of optimally replacing a

critical component that resides in a partially-observable environment is addressed. Two models

are formulated using a partially-observed Markov decision process (POMDP) framework. The first

model ignores the cost of turbine downtime, while the second includes this cost explicitly. For both

models, it is shown that a threshold replacement policy is optimal with respect to the cumulative

level of component degradation. A third model is presented that considers cases in which the

environment is partially observed and degradation measurements are uncertain. A threshold policy

is shown to be optimal for a special case of this model. Several numerical examples will illustrate

the main results and the value of including environmental observations in the wind energy setting.
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1.0 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

A wind turbine is a device designed to convert wind (kinetic energy) into mechanical energy in order

to generate electricity. Although the concept of wind-generated electricity has a long history, only

recently have economic and political conditions emerged that foster widespread efforts to establish

competitive parity between wind energy and energy generated using fossil fuels. For example, the

United States (U.S.) government established an ambitious goal of generating 80% of its electricity

supply from clean, renewable sources (e.g., wind, solar, nuclear, geo-thermal, and others) by the

year 2035 to ameliorate the negative effects of rising energy prices, greenhouse gases, escalating

demand, and global energy supply uncertainty [5].

Wind energy is poised to play a prominent role in any future renewable energy portfolio due to

the relatively advanced state and scalability of wind-turbine technology. The U.S. Department of

Energy (DOE) estimates that 20% of the total domestic energy supply can be reliability generated

by land-based and offshore wind turbines [1], and some international organizations estimate that

wind energy can contribute as much as 12% of the targeted reductions in worldwide greenhouse

gas emissions by 2050 (cf. [2, 3]). Yet the overall cost of producing wind energy, as measured

in dollars per kilowatt-hour generated, is a critical issue that currently impedes the development

of new, large-scale wind energy systems. New land-based wind farm installations are very costly,

requiring large capital investments, supporting infrastructure, and connection services; and these

costs are substantially higher for offshore systems. Inefficiencies in manufacturing and in the wind

turbine supply chain also contribute substantially to the overall cost of operating and maintaining

wind turbine farms. Furthermore, it is estimated that operating and maintenance (O&M) costs

stemming from scheduled and unscheduled turbine maintenance activities may contribute at least

20%, and as much as 47.5%, of the cost of producing wind energy [112]. Given the urgent need
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for clean, renewable energy sources, and the widespread appeal of wind energy as a viable alter-

native, the search for more effective techniques to reduce the total cost of energy (COE) for wind

is of critical importance. While all efforts to reduce the COE are necessary, establishing the most

effective strategies for O&M activities is likely to confer the most immediate benefit. Wind farm

maintenance planners usually have real-time, condition-based data at their disposal when making

decisions regarding inspections, repairs, or replacements. However, they currently lack the nec-

essary techniques to effectively exploit these valuable data, since the information emitted from a

single component (or multiple components) does not include optimal maintenance decisions. The

objective of this dissertation is to fill this critical gap and reduce wind turbine O&M costs by devel-

oping a comprehensive wind turbine maintenance optimization framework that converts observed

condition- or environment-based data into cost-optimal replacement actions for individual wind

turbine components.

 

Figure 1: Components and subsystems of a horizontal axis wind turbine.

Any maintenance framework for wind turbine systems must consider the unique array of struc-

tural, mechanical, and electrical components that compose them, as well as the reliability issues

that can stem from their use in exposed and dynamic environments. Wind turbines are typically

categorized as either horizontal axis (the rotor shaft is perpendicular to the tower) or vertical

axis (the rotor shaft is parallel to the tower). Irrespective of type, wind turbines all consist of

a structural tower that supports a rotor blade and a nacelle that houses most of the mechanical

and electrical systems, including the generator (see Figure 1). The wind turbine tower and its

blades are designed to be structurally sound so as to withstand strong wind gusts and other harsh
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weather conditions. Towers can range in height from 50 feet to well over 400 feet (as measured

from ground level to the hub level). The rotational energy of the turbine blades is transferred via

a low-speed shaft into the nacelle, and the rotor blades are connected to the shaft via a rotor hub

which contains mechanisms to adjust blade pitch. A yaw system is mounted between the nacelle

and tower to orient the rotor blades into the prevailing wind. Traditionally, wind turbines use a

gearbox that transfers the rotation of the low-speed shaft at roughly 25 revolutions per minute

(rpm) to a high-speed shaft that rotates at roughly 1, 500 rpm and is used to power the generator

[113]. Some wind turbines do not use a gearbox but rather drive the generator directly with the

low-speed shaft; however, such turbines are not necessarily more reliable than those with gearboxes

[94, 111].

Wind turbines are prone to a variety of failure types. Recent field studies in Europe (cf.

[94, 111]) suggest that failure frequencies can be ordered (from high to low) as follows: electri-

cal systems, rotor blades and hub, converter, generator, hydraulics, and the gearbox. Corrosion,

vibration fatigue, and mechanical overload (or shocks) are the main contributors to component

and subassembly failures. Temporal and seasonal effects of varying wind patterns also have a

significant impact on wind turbine reliability and maintainability. In fact, there is now a sub-

stantial body of literature that suggests wind speed, wind turbulence, and location are good in-

dicators of wind turbine failure rates. Some of the studies corroborating this assertion include

[15, 16, 17, 18, 33, 35, 36, 74, 78, 85, 98, 97, 101]. Numerous studies on the reliability of both

land-based and offshore wind turbines in Europe have recently appeared, and a sampling of these

includes [26, 35, 36, 43, 93, 99, 105]. Particularly informative are the studies by Faulstich et al.

[35, 36] which show that minor failures (those requiring about four hours of downtime) comprise

roughly 75% of all failures but account for only 5% of the turbine’s downtime, whereas major

failures (those requiring 6 to 12.5 days of downtime) are far less frequent but comprise 95% of

downtime. For example, failures of the electrical system occur most frequently but are typically

repaired in less than a single work day. Gearbox failures are less frequent, but require days (or

even weeks) to repair or replace.

All wind turbine maintenance activities (e.g., inspections, repairs, or replacements) are very

costly and complicated because wind turbines are typically installed in difficult to access, remote

locations. These complications are magnified when repairs or replacements of larger critical com-

ponents or subsystems are needed, or when the wind farm is located offshore. Although their

failure rates are comparatively small, turbine blade, generator, and gearbox failures constitute

3



75% of O&M costs [84, 107] due to (1) component procurement costs; (2) transportation costs;

(3) specialized maintenance equipment, including a large crane to remove failed components and

lift new components, personnel, and other resources into the nacelle; and (4) specialized (possi-

bly third-party) work crews. Obviously, wind turbine availability is impacted significantly by the

availability of components and cranes, safety concerns for workers (due to harsh weather condi-

tions), and minimum staffing levels (at least two crew members are required for most tasks). It

goes without saying that maintenance costs for offshore turbines are nearly double those of their

land-based counterparts due to accessibility issues (e.g., distance from shore, weather conditions,

wave height) and availability of transportation and lifting equipment (e.g., sea vessels, cranes, and

personnel) [35, 103]. The risks of unanticipated wind turbine component failures are often miti-

gated by scheduled maintenance (SM). The SM regimen generally practiced by wind farm operators

involves biannual inspections of major components, assessing their functionality, and preforming

minor maintenance activities. Tasks include visually inspecting turbine blades, gearboxes and

shafts, replacing the gearbox oil and hydraulic system fluid, and testing major systems, such as

pitch control [48]. Despite the fact that some studies estimate that 20–70% of turbine parts by

cost must be replaced during the first 10 years of a wind turbine’s operation [48], operators are not

mandated to replace major components such as blades, generators, and gearboxes prior to failure.

In other words, SM for wind turbines effectively assumes that the components will operate without

failure for the 20–30 year design life of the turbine. Consequently, the current SM practice is clearly

not only based on unrealistic assumptions about the useful lifetimes of individual components but

also provides no allowance for preventively replacing major components.

Condition-based maintenance (CBM) techniques are currently the focus of many efforts to im-

prove wind turbine reliability and availability. CBM techniques can be off-line (those requiring a

turbine shutdown) or online (those not requiring a turbine shutdown). Basic online condition moni-

toring can track important indicators (e.g., temperatures, speeds, fluid levels, line-phase imbalance,

voltages, and tower vibration). However, sophisticated sensing systems can monitor vibrations in

bearing housings, detect discontinuities in gears or rolling surfaces, and monitor fluids for contam-

ination [28, 67, 100, 107, 113]. As noted by Walford [107], although CBM’s benefits are manifold,

it is rather costly (as compared to SM).

Nilsson and Bertling [75] analyzed a CBM policy via a life-cycle cost analysis in two case studies

using real turbine data in Sweden and the U.K. Using both land-based and offshore scenarios, they

showed that, despite the elevated costs of CBM, implementing CBM strategies will reduce total
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turbine life cycle costs (which include capital investment costs, O&M costs, and lost revenue due

to downtime). So there is ample evidence to suggest that scientifically grounded CBM strategies

will reduce O&M costs.

Many of the condition monitoring techniques proposed for wind turbines are experimental and

not used in practice by the wind industry. Those condition monitoring systems that are currently

utilized focus primarily on the timely detection of component faults. An example of such a system

is the Bently Nevada ADAPT Wind Condition Monitoring Solution developed by General Electric

(GE) [4]. This system monitors vibration frequencies to detect and trend particle contamination in

the planetary gearbox. By monitoring the signals for an extended time period, the system estab-

lishes a baseline of vibration frequencies for healthy gearbox operation. As the gearbox degrades

and the frequencies deviate from the baseline, the system indicates a gearbox fault to the wind farm

operator so that repair or replacement actions can be taken. Although the condition monitoring

systems used by GE and other manufacturers detect early-stage component faults and provide wind

farm operators with a forewarning of component failures, they do not provide information about

the component’s residual lifetime distribution, nor do they provide a comprehensive optimal policy

for replacing components.

1.2 RELEVANT LITERATURE

Attempts to characterize and model the reliability of wind energy systems have burgeoned during

the last decade. Most relevant to this dissertation are simulation and analytical models of CBM

for wind energy systems. As noted by Byon et al. [18], modeling wind turbine reliability is difficult

due to cascading failures and the complexity of multiple failure modes within a single turbine

(or across turbines in a single wind farm); therefore, many researchers have proposed simulation

models of reliability and/or maintenance activities. Rademakers et al. [84] developed a Monte Carlo

simulation model (with an analytical stochastic model) describing the long-run average O&M costs

for an offshore wind farm and concluded that 55% of total costs stem from lost revenues due to

downtime. McMillan and Ault [72] developed a discrete-time Markov chain (DTMC)-based Monte

Carlo simulation to analyze the cost efficiency of condition monitoring systems with perfect sensor

information. They compared a periodic SM policy to a CBM policy and found that CBM dominates

with respect to maximizing availability and minimizing costs. Using a sequential Monte Carlo
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simulation model, Kim and Singh [59] considered the impact of aging components (i.e., those with

increasing hazard rate functions) and concluded that aging effects are significant when estimating

performance losses (e.g., expected energy not supplied). Byon et al. [18] developed a discrete-event

simulation model that considers wind turbine state changes as a result of stochastic events. They

developed a power generation model, a wind speed model, a DTMC degradation model, and a

maintenance model. A hidden Markov model (HMM) was used to account for a partially observed

degradation state of the component. They found that CBM dominates periodic SM with respect

to performance and cost metrics. In fact, using a CBM strategy, the maintenance costs per turbine

were reduced by 24%.

Of particular importance to this dissertation are those studies using stochastic (namely Markov)

models of maintenance strategies for wind turbine systems. Among these, most assume a Markov

degradation model (i.e., one in which the component’s level of degradation transitions between a

finite set of discrete states). McMillan and Ault [72] assume that generator, gearbox, and turbine

blades can assume one of three states (functioning fully, degraded, or failed) while the electrical

system’s status is binary (functioning or failed). The transition probability matrix was parameter-

ized using historical data and used as the basis of a Monte Carlo simulation model. Arabian et

al. [7] used a two-state continuous-time Markov chain (CTMC) model to compare the reliability of

geared generators and direct-drive wind turbines. Dobakhshari and Fotuhi-Firuzabad [31] devel-

oped a CTMC model for power output from a single turbine and from an entire wind farm. They

included time-varying patterns of wind speed and seasonal effects to show that these have a signif-

icant impact on reliability indices. Leite et al. [64] developed a probabilistic model of wind farm

power generation that includes both a wind model and a turbine model. The status of the wind

turbine is modeled by a two-state CTMC, and the mean time to repair the turbine is assumed to be

a function of the weather conditions, the type of the failed component, the maintenance strategy,

and wind speed at the time of failure. A finite-state Markov process was used to characterize the

wind speed. Their results suggest that the fidelity of the wind speed model contributes significantly

to the prediction accuracy when compared with real data obtained at three Brazilian wind energy

centers.

An especially useful stochastic maintenance model for capturing complex features in wind tur-

bine systems and prescribing optimal maintenance strategies is a partially observable Markov de-

cision process (POMDP) model. In these models, a decision maker does not have the benefit of

perfect state information (e.g., the exact degradation status of a wind turbine component) and
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must make maintenance decisions based on partial information. The information might be incom-

plete due to imperfect models linking condition monitoring signals to specific faults and/or noise

in the sensor signal itself (cf. [72]). POMDP models have found wide applicability in multi-state

maintenance optimization problems (cf. [49, 69, 70, 114] and references therein). Of particular

relevance to this dissertation is a model by Byon et al. [16] of wind turbine maintenance subject to

stochastic weather conditions. The authors developed a POMDP model that includes such factors

as adverse weather conditions, repair interruptions and delays, and the lead time required to pro-

cure replacement parts and assemble ground crews. The objective is to minimize the expected per

period cost, where costs are tied to both maintenance activities and downtime. The wind turbine’s

degradation level is assumed to evolve as a finite-state DTMC, and in each period, three actions

are available: no action, preventive maintenance (PM), or exactly observing the degradation level.

If adverse weather conditions occur during either preventive or corrective maintenance, the activ-

ity must be suspended until the weather is favorable, resulting in downtime costs. The authors

obtained closed-form expressions for the optimal policy, including control limits for PM.

Byon et al. [15] extend the model in [16] to include multiple components and season-dependent

(or temporally-nonhomogeneous) weather conditions. Their model is a discounted POMDP whose

objective is to minimize the total expected discounted cost, and the degradation process is a finite-

state DTMC with multiple failure states. A PM action can restore the wind turbine component

to any improved degradation level with cost dictated by the type of PM. Corrective maintenance

actions have costs, lead times, repair times, and weather requirements that are dependent on

the type of failure that occurs. As in [16], maintenance activities are suspended during adverse

weather conditions; however, the revenue loss in each period is dynamic. Using a backward dynamic

programming algorithm, they solve the POMDP model and numerically illustrate optimal policies

for a wind turbine gearbox application.

Maintenance models using a POMDP framework need not only consider discrete degradation

processes. Though not focused on wind turbine maintenance applications, one study considers a

partially-degraded machine whose degradation status assumes values on a continuous state space.

Zhou et al. [117] developed a partially observable semi-Markov process (POSMDP) model which

is continuous in both time and state. Suppose Λ(t) is the true health status of the machine at

time t, and let X(t) be the observed status which is assumed to be noise-corrupted. The model

assumes that {Λ(t) : t ≥ 0} is a Gamma-based state space model, i.e., Λ(t + ∆t) − Λ(t) has a

Gamma(a∆t, ξ) distribution where a∆t and ξ are the shape and scale parameters, respectively. The

7



model also assumes that X(t) is normally distributed with mean Λ(t) and standard deviation σξ.

Three actions are permissible: inspections, replacements (preventive or corrective), and imperfect

maintenance. Because the state space of Λ(t) is continuous, the belief space, or set of all probability

distributions over the uncertain states, is infinite dimensional. To reduce the dimensionality of the

belief space, Monte Carlo-based density projection (see Zhou et al. [116]) is used to project the

set of possible health distributions onto a (smaller) space of parametric distributions. Using three

different maintenance strategies, they consider two objectives: minimizing the long-run cost rate

and maximizing the long-run availability of the machine. The models are solved numerically using

a policy iteration algorithm.

The simulation and analytical models described in this section are extremely useful for eluci-

dating the benefits of a sound CBM strategy. However, nearly all the CBM approaches are ad hoc;

that is, they assume a stochastic model for the degradation process that cannot incorporate new

information acquired about the operating environment. Although some models, such as those by

Byon et al. [16, 15], incorporate the impact of weather conditions on maintenance activities, they

do not allow for weather conditions to affect degradation. In addition, nearly all of the CBM mod-

els assume that degradation evolves as a discrete-state process when in reality degradation is often

continuous. The approach taken in this dissertation is distinguished from all existing approaches

in that it will explicitly account for the impact of the specific operating environment on a wind

turbine component’s degradation and prescribe optimal replacement strategies for the component

in that operating environment.

1.3 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

This dissertation addresses three important problems related to reducing the operating and mainte-

nance costs of a single wind turbine. The primary objectives of this research include the development

of analytical and statistical tools to assess the current and future health of critical components,

and to prescribe optimal policies for replacing them. The specific objectives are as follows:

1. To develop a hybrid analytical-statistical framework for transforming observed condition- or

environment-based data into cost-optimal replacement actions for a single wind turbine com-

ponent;
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2. To develop statistical procedures, based on Markov chain Monte Carlo methods, for estimating

the parameters of the operating environment and the environment’s relationship to degradation

by observing component degradation or a surrogate signal;

3. To create and solve stochastic optimization models that prescribe optimal replacement actions

based on partially observable environment conditions and/or imperfectly observable degradation

observations.

1.4 DISSERTATION OUTLINE AND CONTRIBUTIONS

Chapter 2 presents a general framework to approximate the stochastic, environment-driven degra-

dation process of a wind turbine component by observing a signal of the component’s degradation.

The degradation signal is assumed to evolve as a switching diffusion process, and a Markov chain

Monte Carlo (MCMC) statistical procedure is adapted to estimate the process parameters. The

results of numerical experiments are presented to evaluate the framework’s ability to characterize

both simulated and real degradation processes. Performance is evaluated by comparing component

lifetime estimates obtained using the estimated parameters to the actual component lifetime, and

by comparing a mean signal computed via a forward-filtering-backward-smoothing algorithm to the

observed signal. The results indicate that the framework can be used to estimate a diverse set of

degradation processes and is effective even in cases where the signal deviates significantly from a

switching diffusion model. The major research contributions of Chapter 2 are the following:

1. A general framework, based on a switching diffusion process model, to approximate the stochas-

tic, environment-driven degradation process of a wind turbine component by observing a signal

of component degradation;

2. The development of performance measures to assess the quality of the approximation based on

component lifetime and mean signal estimates.

Chapter 3 introduces two models for optimally replacing a single wind turbine component using

a partially-observed Markov decision process (POMDP) model with the objective of minimizing

the long-run average replacement cost per unit time. Both models assume that the component’s

degradation is observed perfectly at each decision epoch but that the environment is only partially

observable. The two models differ in that the first assumes replacements occur instantaneously
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with fixed, deterministic costs, whereas the second model assumes replacements require a fixed,

deterministic time period for completion during which downtime costs are accrued as a function

of the prevailing environment conditions. For each model, we prove the existence and optimality

of a threshold-type replacement policy with respect to the cumulative degradation level whose

thresholds depend on some assessment of the environment’s state. Numerical solution techniques are

introduced to compute optimal policies using the estimated environment parameters, and numerical

examples are presented to illustrate the optimal policies. The main contributions of Chapter 3 are

as follows:

1. The formulation of realistic, POMDP replacement models for a wind turbine component that

assumes degradation is a function of a randomly-evolving, partially-observed environment;

2. The development of an optimal replacement model that explicitly incorporates the environment-

dependent downtime costs accrued during wind turbine component replacements;

3. Structural results that characterize the optimal replacement policy in each model (including

the existence of optimal replacement thresholds with respect to the component’s cumulative

degradation level).

Chapter 4 considers an optimal replacement model for a single wind turbine component whose

cumulative degradation is imperfectly observed according to a parameterized probability density

function (p.d.f.). Similar to the models in Chapter 3, the replacement problem is formulated using

a POMDP model with the objective of minimizing the long-run average replacement cost per unit

time. Optimal replacement thresholds, with respect to the observed degradation level, are shown

to exist under special conditions. The problem is solved numerically using a projection-filtering

algorithm that employs belief projection and particle filtering techniques. A modification of the

algorithm is developed for the case when the environment state is known with certainty. The main

contributions of Chapter 4 are as follows:

1. The formulation of a realistic, POMDP replacement model for a wind turbine component whose

degradation is a function of a randomly-evolving, partially-observed environment and is imper-

fectly observed;

2. The derivation of conditions under which optimal replacement thresholds exist with respect to

the degradation observation;

3. An extension of the particle-filtering algorithm for the case of a mixed state-space that is induced

by both partially-observable and observable random environments.
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In the next chapter, we begin by addressing the problem of modeling the environment-driven

degradation of a wind turbine component. It is assumed that the environment evolves as a

continuous-time Markov chain (CTMC) on a finite state space, and an observed, surrogate signal

of component degradation is modeled as a switching diffusion process. The model parameters are

estimated from the signal by adapting a MCMC-based statistical procedure. Though the assump-

tions may seem restrictive, the flexibility of this approach will become apparent in the numerical

illustrations.
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2.0 DEGRADATION IN A RANDOM ENVIRONMENT

In this chapter, a mathematical model for the environment-driven degradation of a wind turbine

component is presented, as well as a model to characterize a signal of the component’s degradation.

A Markov chain Monte Carlo (MCMC) inference procedure is introduced to estimate the environ-

ment parameters from observations of the degradation signal. The effectiveness of the degradation

model and inference procedure for estimating the lifetimes of components is illustrated by way of

several numerical examples.

2.1 MODEL OF DEGRADATION IN A RANDOM ENVIRONMENT

For this discussion, all random variables are defined on a common, complete probability space

(Ω,F ,P). Let Ft = σ((X(t), Z(t)) : 0 ≤ u ≤ t) be the filtration at time t, where Ft ⊆ F and

Ft ⊆ Fu if t < u. For any t ≥ 0, Ft can be thought to contain all of the available information up

to time t. For an event A ∈ F , denote by I(A) the indicator function, where I(A) = 1 if A occurs

and I(A) = 0 otherwise, and for a, b ∈ R let a ∧ b ≡ min(a, b) and a ∨ b ≡ max(a, b). Consider

a wind turbine component that is placed into service at time zero with no degradation. Over

time, the component degrades due to normal usage and the influence of its operating environment.

Once the component’s cumulative degradation level exceeds a (deterministic) critical threshold, xc

(xc > 0), it is declared to be failed. Let X(t) be an Ft-measurable random variable that denotes

the cumulative degradation at time t and T (xc) ≡ inf{t ≥ 0 : X(t) ≥ xc} be the random time

for cumulative degradation to exceed the critical threshold. It is assumed that X(t) is a function

of the state of the operating environment. Let S ⊆ N be the state space of the environment, and

denote the stochastic environment process by Z ≡ {Z(t) : t ≥ 0}, where Z(t) ∈ S is the state of

the environment at time t.
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If r : S → R is a one-to-one mapping of the degradation rate associated with each environment

state, then X(t) is given by

X(t) = X(0) +

∫ t

0
rZ(u)du, (2.1)

where X(0) = 0 with probability 1 (w.p. 1). Degradation models, such as the one in equation

(2.1), have been analyzed using many different approaches. One class of approaches consists of

statistically-based techniques. For example, regression models are used to characterize the random

effects of degradation in [68, 88] but assume a static environment. In time-varying environments,

proportional hazard models (PHM) have been used to estimate the residual lifetime distributions

(RLD) of systems in [73, 50, 38, 80, 10, 62, 106, 95, 65, 66, 115]. Other statistical approaches

attempt to estimate the RLD by modeling degradation using Weiner processes, gamma proceses,

or random coefficients models [32, 110, 40, 39, 41, 109]. These statistical approaches have been

employed with great success to model various degradation processes; however, the resulting models

are typically limited by restrictive assumptions (e.g. normality) and are often difficult to generalize

beyond the specific system considered.

Another approach is to develop stochastic failure models based on various assumptions of Z and

r. Foundational efforts include the results of Esary [34], who examined failure distributions for a

component subject to a general degradation process and random shocks. Çinlar [22, 23] considered

{(X(t), Z(t)) : t ≥ 0} as a more general Markov additive process (MAP) and also examined two

models in which Z is a finite Markov process. In the first model, degradation corresponds to a Lévy

process, and the component is subject to random shocks at environment transitions, whereas in the

second model, degradation is a continuous additive functional of Z. Results when the degradation of

multiple components is influenced by a common environment are presented by Çinlar, et al. [24, 25]

including conditions under which the component lifetimes are associated. In [52, 53] Kharoufeh

considers a single component and assumes Z is a continuous-time Markov chain (CTMC) on a

finite state space and that component degradation increases at a constant, positive rate in each

environment state. Under identical degradation dynamics, Kiessler [58] computes the limiting

average availability of a periodically inspected component. In [55] Kharoufeh et al. extend the

model of [58] by including random shocks and derive the component’s lifetime distribution, mean

time to failure, and limiting availability. In the case when Z is a semi-Markov process, Kharoufeh

et al. [57] provide an approximation of the component’s lifetime using phase-type distributions

and in [54] derive results for the lifetime distribution when Z is a nonhomogeneous CTMC or

a semi-Markov process. Strictly discrete processes modulated by an environment have also been
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considered. Özeckici and Soyer [76] study a Markov modulated Bernoulli process where the success

probability, the probability that a periodically inspected component survives a given inspection

period, is determined by a Markov process Z. They apply Bayesian inference techniques to obtain

the model parameters depending on the observability of Z. A network reliability application of

this model is presented by Özekici and Soyer in [77], as well as a software reliability application of

the models in [24, 25].

In this research, assumptions are imposed on Z and r that result in a tractable stochastic

model for the degradation of a wind turbine component. It is assumed that component degra-

dation is influenced by (i) the actual ambient environment in which it resides and operates (e.g.,

wind speed, ambient air temperature or humidity can induce degradation); and/or (ii) the various

operational settings of the equipment. Potential interactions between environmental conditions

and operational settings are not precluded from influencing degradation; therefore, the set of gov-

erning environment states, denoted by S, is a finite set consisting of all unique combinations of

the environmental conditions and operational settings. Denote the total number of environment

states by ` ≡ |S|. For example, if a unit is subject to two different temperature regimes, de-

noted t− and t+, and two different operating speeds, denoted v− and v+, the state space of the

governing environment is the Cartesian product of S1 = {t−, t+} and S2 = {v−, v+}; that is,

S ≡ S1 × S2 = {(t−, v−), (t−, v+), (t+, v−), (t+, v+)}, and ` = 4. In reality, it is often the case that

the environmental conditions, or even the operational settings experienced by a unit, are unknown

or unobservable. Therefore, ` must be inferred from real data.

The present model assumes that Z is a finite irreducible, temporally-homogeneous CTMC with

infinitesimal generator matrix Q = [qij ], i, j ∈ S. Advantages of this assumption are that under

various forms of r, the Laplace-Stieltjes transform (LST) of the lifetime distribution is known,

and CTMCs can be constructed to approximate the stochastic behavior of many different forms

of degradation processes. It is important to note that the CTMC assumption can be relaxed to

analyze non-Markovian environments [57]; however, the simplest case is presented here to elucidate

the main concepts. Let {Zn : n ≥ 0} be the discrete-time Markov chain (DTMC) embedded at

transition epochs of Z, i.e., Zn is the state of Z just after the nth transition, n ≥ 1, and let P = [pij ]

be the transition probability matrix. Assume the existence of a measurable, one-to-one function

r : S → R+ such that whenever Z(t) = i ∈ S, the component degrades at a unique constant rate

ri > 0. Because the degradation rates are distinguishable, the states of S can be ordered such that

i < j if ri < rj , i, j ∈ S.
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Let the row vector r = [r1, r2, . . . , r`] contain these ` ordered rates, and set Rd = diag(r). So

that X(t) is well defined for each t ≥ 0, assume that

∫ t

0
|rZ(u)|du < ∞ w.p. 1.

The strict positivity of the degradation rates ri, i ∈ S, ensures that the sample paths of {X(t) :

t ≥ 0} are almost surely piecewise linear and monotone increasing; therefore, for xc > 0 and t ≥ 0,

the events {X(t) ≤ xc} and {T (xc) > t} are equivalent.

Let F (xc, t) ≡ P(T (xc) ≤ t) = 1 − P(X(t) > xc) denote the cumulative distribution function

(c.d.f.) of the component’s lifetime. As proved in [55, 56], the Laplace-Stieltjes transform (LST) of

F (xc, t), with respect to the spatial variable xc, is

F̃ (u, t) ≡
∫ ∞

0
e−uxcF (dxc, t) = 1−α exp [(Q− uRd)t] e, u > 0, (2.2)

where α = [P(Z(0) = i)], i ∈ S, is the environment’s initial distribution, exp(A) denotes matrix

exponentiation of the square matrix A, and e is an `× 1 vector of ones. Furthermore, if mn(xc) ≡
E(Tn(xc)) denotes the nth moment of the lifetime distribution, n ≥ 1, then m̃n(u), the LST of

mn(xc) with respect to the spatial variable xc, is given by

m̃n(u) ≡
∫ ∞

0
e−uxcdmn(xc) = n!α(uRd −Q)−ne. (2.3)

Now, if α, r, and Q are known, or if they can be estimated from observed data, the lifetime

distribution and its moments can be obtained by inverting the Laplace transforms of (2.2) and

(2.3), respectively. That is,

F (x, t) = L−1{u−1F̃ (u, t)}, (2.4)

mn(x) = L−1{u−1m̃n(u)}, (2.5)

where L−1 denotes the inverse Laplace transform operator. Often the inversion operations (2.4)

and (2.5) are not tractable analytically, in which case the inversion can be done numerically using

stable techniques (see for example [6]). In the asymptotic regime (as xc → ∞), the expected lifetime

can be approximated using a relatively simple expression due to Kharoufeh et al. [56] as follows:

Theorem 2.1. As xc → ∞,
E[T (xc)]

xc
→ 1

πsr′
, (2.6)

where πs is the stationary distribution of Q.
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Ultimately, for the degradation model to be useful, it must be possible to estimate its parameters

by observing the degradation process. Kharoufeh and Cox [53] proposed a clustering technique for

estimating (Q, r, `) from degradation observations. However, this approach tends to overestimate

the number of environment states, leading to over-specified models. Instead, an alternative Markov

chain Monte Carlo (MCMC) inference procedure is proposed to estimate (Q, r, `).

2.2 REVIEW OF MARKOV CHAIN MONTE CARLO (MCMC) ESTIMATION

Markov chain Monte Carlo (MCMC) refers to a class of techniques that approximate sampling from

an arbitrary distribution function G. The fundamental concept underlying these techniques is that

random samples of G are realizations of a Markov chain X = {Xn ∈ SX : n ≥ 0} that converges

in distribution to G. In this section only, it is assumed that SX ⊆ R and that G is absolutely

continuous, possessing probability density function (p.d.f.) g.

An early MCMC-based technique is theMetropolis-Hastings (MH) algorithm [47], which obtains

a sequence of random sample X1, X2, . . . for g by randomly accepting or rejecting samples from

a candidate density q(y|x), where x is the most-recently accepted candidate. The algorithm is as

follows:

1. Given Xn, randomly sample Y ∼ q(y|Xn).

2. Randomly sample U ∼ U(0, 1) and set

Xn+1 =




Y, if U ≤ α(Xn, Y ),

Xn, otherwise,

where

α(x, y) = 1 ∧ g(y)q(x|y)
g(x)q(y|x)

is the probability of accepting the proposed sample.

Special cases of the MH algorithm include the independence sampler, where q(y|x) is indepen-

dent of x, the random walk sampler, where q(x|y) = q(y|x), and the Gibbs sampler [21]. The

Gibbs sampler generates a sequence of m-dimensional random vectors X1,X2, . . ., where Xn =

[X
(n)
1 , X

(n)
2 , . . . , X

(n)
m ] ∈ Rm, using a sequence of conditional distributions from the distribution G

with support K ⊆ B(Rm), where B(Rm) denotes the Borel sets of Rm.

16



Let g(zi|z1, . . . , zi−1, zi+1, . . . , zm) be the conditional density of the ith component of X, given

components (z1, . . . , zi−1, zi+1, . . . , zm). The Gibbs sampler generates random samples from G as

follows:

1. Given Xn,

Randomly sample X1 ∼ g(x1|X2, . . . , Xm)

Randomly sample X2 ∼ g(x2|Y1, X2, . . . , Xm)
...

Randomly sample Xm ∼ g(xm|X1, . . . , Xm−1)

2. Set Xn+1 = [X1, X2, . . . , Xm].

There are many other specialized MCMC sampling techniques such asMetropolis-Gibbs hybrids, the

multiple-try Metropolis-Hastings method, the hit-and-run sampler, and auxiliary variable samplers

[61].

Another application of MCMC-based techniques is for Bayesian parameter inference, where the

objective is to estimate the parameters of a stochastic process by assuming each parameter has

a prior distribution. The parameters are sampled in an iterative fashion, and each sample of the

entire parameter set corresponds to a realization of an underlying Markov chain that converges to

a stationary distribution [42]. In principle, these procedures resemble a Gibbs sampler, where each

parameter is sampled iteratively from its prior distribution, conditioned on the estimates of the

other parameters. However, generating each parameter may require one or more additional MCMC

procedures of varying complexity. Often MCMC-based inference is an attractive alternative to

maximum-likelihood or psuedo-likelihood approaches that may not be analytically tractable or are

excessively cumbersome computationally. Applications of MCMC-based interference include those

for hidden-Markov models [86, 9], diffusion processes [82, 63, 87, 13, 30, 45, 44], and finite mixtures

[37].

Of particular interest to this research are the MCMC inference procedures developed for a

special class of diffusion models known as switching diffusion processes [63, 13, 45, 44]. A switching

diffusion process satisfies the general stochastic differential equation (SDE)

dY (t) = µ(Y (t), Z(t), t) + σ(Y (t), Z(t), t) dB(t), (2.7)

where Y (t) = [Y1(t), Y2(t), . . . , Yn(t)] ∈ Rn, µ(Y (t), Z(t), t) is a n-dimensional drift function,

σ(Y (t), Z(t), t) is a n × n diffusion matrix with strictly positive elements, B(t) is standard n-

dimensional Brownian motion, and {Z(t) : t ≥ 0} is CTMC on finite SX . Although (2.7) can admit
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many different classes of functions for µ(Y (t), Z(t), t) and σ(Y (t), Z(t), t), the MCMC-based in-

ference procedures presented here restrict these functions to be constants for each state in S; that
is,

µ(Y (t), Z(t), t) ≡ [µi(Z(t))], i = 1, 2, . . . , n,

σ(Y (t), Z(t), t) ≡ [σij(Z(t))], i, j = 1, 2, . . . , n.

The objective is to estimate Q, µi(k), and σij(k) by observing {Y (t) : 0 ≤ t ≤ T} for i, j =

1, 2, . . . , n, k ∈ S, and 0 < T < ∞.

In the next section, a special case of (2.7) is considered where n = 1 and the diffusion coefficient

is independent of (Y (t), Z(t), t). The relevance of this case to modeling the degradation signal is

elucidated, and an MCMC-based inference procedure is described to estimate (Q, r, `) from the

degradation signal.

2.3 MCMC INFERENCE PROCEDURE FOR THE DEGRADATION SIGNAL

In this section, a special case of the switching diffusion model is considered to characterize an

observed degradation signal from the model in Section 2.1. Then a MCMC-based inference proce-

dure is presented, originally developed by Leichty and Roberts [63], to estimate the environment

parameters by observing the signal. Consider a special case of the SDE (2.7) when n = 1 and the

diffusion coefficient is independent of (Y (t), Z(t), t). Stating (2.7) in the notation of Section 2.1,

where µ(Z(t)) ≡ rZ(t), gives

dY (t) = rZ(t)dt+ σdB(t), σ > 0. (2.8)

To illuminate the relevance of (2.8) to the degradation model, consider the fact that a wind turbine’s

degradation, and even its environment conditions, are often not directly or precisely observed. For

example, measuring gear degradation requires a costly shutdown of the wind turbine and an invasive

inspection of the gearbox.

To avoid costly inspections, wind farm operators instead use sensors that measure proxies of

gear degradation, such as lubricant contamination and vibrations. Even measurements of basic

environmental conditions, such as wind speed by anemometers placed on a turbine nacelle, can

be corrupted by disruption of local air currents caused by the turbine blades. The fact that
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degradation and the environment are seldom fully, or even directly, observed in practice motivates

an approach to estimate the environment parameters using a signal that serves as a proxy for the

true degradation.

Let the random variable Y (t) be the signal level at time t and call {Y (t) : t ≥ 0} the degradation

signal process. Simply using Y (t) in place of X(t) in the degradation model of (2.1) is problematic

since the sample paths of {Y (t) : t ≥ 0} are not monotone increasing w.p. 1. Instead, note that a

solution to (2.8), with initial condition Y (0) = 0 w.p. 1, satisfies

Y (t) =

∫ t

0
rZ(u)du+ σ

∫ t

0
dB(t) = X(t) + σB(t),

so that sample paths of {Y (t) : t ≥ 0} correspond to a superposition of the true degradation

process {X(t) : t ≥ 0} with a Brownian process having diffusion coefficient σ. Recalling that the

degradation model defines failure when X(t) ≥ xc, the first-passage time T (xc) cannot be directly

ascertained since X(t) is not observable. Instead, the first passage time T ′(xc), defined as

T ′(xc) = inf{t > 0 : Y (t) ≥ xc},

will be observed.

In practice degradation signals are observed at discrete times, not continuously. Let T =

{t0, t1, t2, . . . , tN} denote a set of N discrete signal observation times, where t0 ≡ 0 and tN ≡ T <

T (xc), and define Y = {Y (0), Y (t1), Y (t2), . . . , Y (T )} as the set of signal observations at times

in T , where Y (0) = 0 w.p. 1. Define a piecewise-linear function Yc(t) to approximate Y (t) on

[0, T ] such that: (i) Yc(tj) = Y (tj), j = 0, 1, . . . , N , and (ii) dYc(t)/dt is defined for all t except

tj ∈ T , j = 1, 2, . . . , N , and is constant within each interval (tj−1, tj ], j = 1, 2, . . . , N . The

objective is to estimate the environment parameters (Q, r, `) from Yc(t) and obtain an estimate

of the component’s expected lifetime. Achieving this objective requires first obtaining parameter

estimates using a MCMC inference procedure and then using the approximations of (2.3) and (2.5)

to obtain an estimate of the expected lifetime.

Now a detailed description of the MCMC-based procedure originally developed by Leichty and

Roberts [63] is provided. Initially, it is assumed that Z has ` states. Let Ẑ(t) be the estimated state

of Z(t) at time t, t ∈ [0, T ], and ẑ = {Ẑ(t) : t ∈ [0, T ]} be the estimated sample path of Z. The

MCMC procedure consists of sequentially sampling from and updating the conditional densities

of r|Q, ẑ,Y, Q|ẑ, r,Y, and ẑ|r,Q,Y denoted by fr(r|Q, ẑ,Y), fQ(Q|ẑ, r,Y), and fẑ(ẑ|r,Q,Y),

respectively. A single iteration of the algorithm consists of the following:
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1. Randomly sample r̂v+1 ∼ fr(r|Q̂v, ẑv,Y),
2. Randomly sample Q̂v+1 ∼ fQ(Q|ẑv, r̂v+1,Y),

3. Randomly sample ẑv+1 ∼ fẑ(ẑ|r̂v+1, Q̂v+1,Y),

where r̂v, Q̂v, and ẑv denote the values of Q̂, r̂, and ẑ respectively, at the vth iteration, v =

0, 1, 2, . . .. The estimate of the diffusion coefficient σ2, denoted by σ̂2, is computed prior to initial-

izing the procedure using the following estimator for the quadratic variation of a diffusion process:

σ̂2 =
1

N

N∑

j=1

(Yc(tj)− Yc(tj−1))
2

tj − tj−1
.

Prior densities and hyperparameters for r0, Q0, and ẑ0, the initial values of r, Q, and ẑ, respectively,

must be specified. Assume the prior density for r0 is a constrained, multivariate normal density

and obtain r̂0 = [r̂
(0)
1 , r̂

(0)
2 , . . . , r̂

(0)
` ] by randomly sampling

r̂0 ∼ N (0, δ) s.t. r̂
(0)
1 < r̂

(0)
2 < · · · < r̂

(0)
` ,

where 0 is an `×1 matrix of zeros and hyperparameter δ ≡ diag(δ1, δ2, . . . , δ`). Typically δi = 3σ̂2,

i ∈ S, so that the prior distribution of r̂0 is relatively diffuse. The prior distribution of Q0 assumes

that the off-diagonal elements are independent and exponentially distributed with a rate determined

by a hyperparameter β. To initialize Q̂0 = [q̂
(0)
ij ], sample q̂

(0)
ij ∼ Exp(β), j 6= i, and compute q

(0)
ii

by normalizing the ith row of Q̂0, i, j ∈ S, where β = T/3. The estimated sample path ẑ is

initialized by generating ẑ0 via simulation using Q̂0, where the initial state Ẑ(0) is sampled from a

uniform-discrete distribution with support S.
Now the conditional densities fr(r|Q, ẑ,Y), fQ(Q|ẑ, r,Y), and fẑ(ẑ|r,Q,Y) are described.

Define for each i ∈ S the constants

ai =
1

σ̂2

∫ T

0
I(Z(u) = i)dYc(u),

bi =
1

σ̂2

∫ T

0
I(Z(u) = i)du+

1

δ2i
.

Intuitively, ai is a proxy for the cumulative change of Y (t) while the environment is in state i,

whereas, bi is a proxy for the cumulative amount of time the environment is in state i during [0,T].

Define an `×1 vector µ = [a1b
−1
1 , a2b

−1
2 , . . . , a`b

−1
` ] and an `×` matrix Σ = diag(b−1

1 , b−1
2 , . . . , b−1

` ).

The conditional density fr(r|Q, ẑ,Y) is a constrained bivariate normal, where

fr(r|Q, ẑ,Y) ∼ N(µ,Σ) s.t. r1 < r2 < · · · < r`. (2.9)
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Note that the elements of µ, ai/bi, are statistical estimates of the degradation rate in each state

i. For the conditional density of Q, it is assumed that the off-diagonal elements are independent,

Gamma-distributed random variables. Denoting ϑij , i, j ∈ S, as the number of transitions that

occur from state i to j in ẑ, define αij = ϑij + 1 and

γ−1
i ≡

∫ T

0
I(Z(u) = i)du+ β, i, j ∈ S.

Let

fQ(Q|ẑ, r,Y) ∼
∏

j 6=i

Gamma(αij , γ
−1
i ) (2.10)

subject to qii = −
∑

j 6=i

qij w.p. 1, i, j ∈ S.

Intuitively, αij is a proxy for the total number of transitions from state i to j, and γ−1
i is a proxy

for the total cumulative time spent in state i. For j 6= i, the mean of qij is αijγ
−1
i , which is

approximately equal to the maximum likelihood estimate (MLE) of qij given by (αij − 1)/(γi − β)

(see [12]). Lastly, fẑ(ẑ|r,Q,Y) is the nonstandard density

fẑ(ẑ|r,Q,Y) ∝
∏

j 6=i

ϑij × exp

[
1

σ̂2

∫ T

0

∑̀

i=1

I(Z(u) = i)dYc(u)

]

× exp

[∫ T

0

∑̀

i=1

[
I(Z(u) = i)

(
−qii +

r2i
2σ̂2

)]
du

]
. (2.11)

In a given iteration, proposed values r̂′ and Q̂
′
for r̂ and Q̂ are generated from (2.9) and (2.10),

respectively. The candidate r̂′ is always accepted with probability 1, but Q̂
′
is accepted with

probability

α(Q̂, Q̂
′
) = 1 ∧

π
Q̂

′(Ẑ(0))

π
Q̂
(Ẑ(0))

,

where π
Q̂

′(i) and π
Q̂
(i), i ∈ S, are the ith elements of the stationary distributions of CTMCs

with respective generator matrices Q̂
′
and Q̂. While obtaining r̂ and Q̂ from (2.9) and (2.10) is

relatively straightforward, obtaining ẑ from (2.11) is not. Instead ẑ is modified using one of three

procedures. The procedures are dubbed “the independence sampler”, “the refinement sampler”,

and “the birth-death sampler”, where pis, prs, and pbd denote the samplers’ respective selection

probabilities and pis + prs + pbd = 1. The process of updating ẑ is a Metropolis-Hastings (MH)

step. In particular, a sampler is randomly selected to propose a realization of the estimated CTMC
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sample path, denoted ẑ′, and accept ẑ′ with probability αis(ẑ, ẑ
′), αrs(ẑ, ẑ

′), or αbd(ẑ, ẑ
′) for the

independence, refinement, and birth-death samplers, respectively. If ẑ′ is accepted, ẑv+1 = ẑ′;

otherwise, ẑv+1 = ẑ. In what follows, a description of each sampler is provided.

The independence sampler generates ẑ′ independently of ẑ via simulation using Q̂, where Ẑ ′(0)

is drawn from a uniform-discrete distribution with support S. The acceptance probability is simply

a ratio of the likelihoods of ẑ and ẑ′, where for a given ẑ, the likelihood, denoted L(Y |r,Q, ẑ), is

L(Y|r,Q, ẑ) = exp

[
1

σ̂2

∫ T

0

∑̀

i=1

riI(Z(u) = i)dYc(u)− 1

2σ̂2

∫ T

0

∑̀

i=1

r2i I(Z(u) = i)du

]
,

so that

αis(ẑ, ẑ
′) = 1 ∧ L(Y|r,Q, ẑ′)

L(Y|r,Q, ẑ)
.

Before describing the refinement sampler, let M denote the total number of transitions in ẑ, and

ordered sets I = {i0,i1,. . .,iM} and τ = {s1, s2, . . . , sM} denote the state sequence and transition

epochs, respectively, of ẑ, where i0, i1, . . . , iM ∈ S and s1, s2, . . . sM ∈ (0, T ). The refinement

sampler begins by randomly selecting a time t′ ∼ U[0, T ]. Assume that t′ ∈ [sm−1, sm] so that

Ẑ(t′) = im. If the time interval is internal, that is t′ ∈ (s1, sM ), the refinement sampler sets

sm−1 → t′ or sm → t′ with probability (w.p.) 1/2. If t′ ∈ [0, s1] or t
′ ∈ [sM , T ], that is the interval

is external, the sampler sets s1 → t′ or sM → t′ w.p. 1, respectively. Letting I ′ and τ ′ denote

the state sequence and transition times of ẑ′, the refinement sampler obtains ẑ′ from ẑ by setting

I ′ = I and

τ ′ =




τ \ {sm−1} ∪ {t′}, if sm−1 → t′,

τ \ {sm} ∪ {t′}, if sm → t′.

The refinement sampler changes the lengths of two adjacent sojourn intervals leaving all other

intervals unchanged. Define a constant c, where

c =





1
2 , if t′ ∈ [0, s1] ∪ [sM , T ] and M > 1,

2, if t′ ∈ (s1, sM ), and either s1 → t′ or sM → t′,

1, otherwise.

The acceptance probability of the refinement sampler is

αrs(ẑ, ẑ
′) = 1 ∧ c

fẑ(ẑ
′|r,Q,Y)

fẑ(ẑ|r,Q,Y) ,

where fẑ(.|r,Q,Y) is given in (2.11). The birth-death sampler constructs ẑ′ by randomly choosing

to add or delete an element of I along with the elements corresponding its transition times in τ .
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If M > 0, a birth or death event occurs w.p. 1/2; otherwise, a death event occurs w.p. 1. For

both birth and death events, select a random time t′ ∼ U[0, T ]. Assume that t′ ∈ [sm−1, sm], so

Ẑ(t′) = im. For death events, set I ′ = I \ {im} and

τ ′ =





τ \ {sm−1}, w.p. 1/2, if m 6= 0 and m 6= M,

τ \ {sm}, w.p. 1/2, if m 6= 0 and m 6= M,

τ \ {sM−1}, w.p. 1, if m = M,

τ \ {s1}, w.p. 1, if m = 0,

If im−1 6= im+1, then operations t \ {sm−1} and t \ {sm} correspond to “left” and “right” deaths,

respectively, otherwise they correspond to a “middle” death. In the case of a birth, both the new

state and its sojourn time must be randomly selected. Births consist of “left”, “middle”, and

“right” types, and each birth type is selected with equal probability. Let t′′ ∼ U[sm−1, sm], and i′

denote the new birth state (for now not specified). For left or right births, τ ′ = τ ∪{t′}; otherwise,
τ ′ = τ ∪ {t′} ∪ {t′′} for middle births. Insert i′ into I such that its position corresponds to the

interval [sm−1, t
′], [t′ ∧ t′′, t′ ∨ t′′], or [t′, sm], for left, middle, or right births, respectively. Letting

S∗ ⊂ S denote the subset of all states that if assigned to i′ would result in the equivalence of the

birth to a refinement sampler update, i′ is randomly selected from the set S \ (S∗ ∪ {im}). The

acceptance probability for the birth-death sampler is

αbd(ẑ, ẑ
′) = 1 ∧ qp(ẑ

′, ẑ)
qp(ẑ, ẑ′)

× p(ẑ′|ẑ)
p(ẑ|ẑ′) ×

L(Y|r,Q, ẑ′)
L(Y|r,Q, ẑ)

, (2.12)

where for ẑ1 and ẑ2, qp(ẑ1, ẑ2) is the joint proposal density of ẑ1 and ẑ2 and p(ẑ1|ẑ2) is the prior

density of ẑ1, given ẑ2. The expressions for the ratios in (2.12) are complicated and depend on M ,

the birth/death type, and whether the birth/death interval is internal or external. Full details are

given in [63].

To obtain the final estimates of r and Q, recall the MCMC convergence result [42] that

(r̂v, Q̂v, ẑv) ⇒ π(r,Q, ẑ) as v → ∞, where π(r,Q, ẑ) is the stationary distribution of X . There-

fore, to obtain r̂ and Q̂, the sampled vectors r̂v and off-diagonal Q̂v elements are averaged after a

“burn in” period. Although implementing the MCMC procedure requires that the order of Z, or

unknown number of environment states `, be known, it is possible to estimate the order by using

the MCMC procedure in concert with the Bayesian information criterion (BIC) statistic [90]. Let

̂̀ denote the BIC estimate of the order `, and define r̂(`), Q̂
(`)
, and ẑ(`) as the estimates of r, Q,

and ẑ, respectively, obtained using the MCMC procedure assuming Z is order `.

23



The BIC is a penalized maximum likelihood estimator statistic [19], and the estimated order is

computed as follows:

̂̀= argmin
`∈N

{
−2 lnL(Y|r̂(`), Q̂(`)

, ẑ(`)) + `2 ln(N + 1)
}
. (2.13)

The `2 in the second term of (2.13) corresponds to the total number of parameters estimated by

the MCMC procedure (` elements of r and `2 − ` off-diagonal elements of Q), and N + 1 is the

total number of signal observations.

Finally, a procedure for estimating Ŷ (t) ≡ E[Y (t)], the expected value of Y (t), using r̂, Q̂,

and ẑ is described. This estimate is useful as an additional way to assess the quality of parameter

estimates by comparing Ŷ (t) with the actual signal path. Let ∆Ŷm ≡ E[Y (sm)− Y (sm−1)] be the

expected change in Y on [sm−1, sm], where

∆Ŷm =

̂̀∑

i=1

ri(sm − sm−1)P(Zm−1 = i|Y, r̂, Q̂), m = 1, 2, . . . ,M.

Assuming ∆Ŷm for m = 1, 2, . . . ,M can be obtained, then it is possible to compute

Ŷ (t) = (t− sκ)∆Ŷκ+1 +
κ∑

i=1

∆Ŷm, t ∈ [0, T ],

where κ ≡ max{m : sm ≤ t}. Computing ∆Ŷm requires that P(Zm = i|Y, r̂, Q̂) be determined for

all i = 1, 2, . . . , ̂̀and m = 0, 1, . . . ,M . These conditional probabilities are estimated by applying a

forward-filtering-backward-smoothing (FFBS) algorithm to ẑ using Q̂ and r̂. Let Y(m) ≡ {Y (tj) :

tj ≤ sm} be the set of data observed up to time sm, m = 1, 2, . . . ,M , and define a piecewise-linear

function Y
(m)
c (t) on [0, sm] such that Y

(m)
c (t) = Yc(t) for t ∈ [0, sm] and is zero otherwise. Lastly,

for m = 1, 2, . . . ,M , let

f(Yc(sm)|Zm = i,Y(m−1), r̂, Q̂) = exp

[
r̂i
σ̂2

∫ sm

sm−1

dY (m)
c (u)− r̂2i

2σ̂2

∫ sm

sm−1

du

]

= exp

[
r̂i
σ̂2

(
Y (m)
c (sm)− Y (m)

c (sm−1)
)
− r̂2i

2σ̂2
(sm − sm−1)

]

be the conditional density of the observation Yc(sm) at time sm, given observations Y(m−1), Z(m) =

i, and estimated parameters r̂ and Q̂. Next the filtering and smoothing procedures are described.

The objective of the filtering procedure, originally developed in [11], is to compute P(Zm =

i|Y(m), r̂, Q̂), for i = 1, 2, . . . , ̂̀ and m = 1, 2, . . . ,M . This probability is computed recursively for

m = 1, 2, . . . ,M as follows:
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1. For i = 1, 2, . . . , ̂̀, compute P(Zm = i|Y(m−1), r̂, Q̂), the one-step ahead prediction probabilities

for Zm, where

P(Zm = i|Y(m−1), r̂, Q̂) =

̂̀∑

j=1

p̂jiP(Zm−1 = j|Y(m−1), r̂, Q̂), (2.14)

p̂ji =




−q̂ji/q̂jj , j 6= i,

0, j = i,

and P(Z0 = i|Y(0), r̂, Q̂) = 1/̂̀.
2. Compute the filtered probabilities P(Zm = i|Y(m), r̂, Q̂) for i = 1, 2, . . . , ̂̀, using (2.14), where

P(Zm = i|Y(m), r̂, Q̂) =
f(Y (sm)|Zm = i,Y(m−1), r̂, Q̂)P(Zm = i|Y(m−1), r̂, Q̂)
̂̀∑

j=1

f(Y (sm)|Zm = j,Y(m−1), r̂, Q̂)P(Zm = j|Y(m−1), r̂, Q̂)

. (2.15)

The filtered probabilities P(Zm = i|Y(m), r̂, Q̂) from (2.15) are then used in the smoothing proce-

dure, to compute P(Zm = i|Y, r̂, Q̂), i ∈ S, iteratively backward in time form = M−1,M−2, . . . , 1

as follows:

P(Zm = i|Y, r̂, Q̂) =

̂̀∑

j=1

p̂ij P(Zm = i|Y(m), r̂, Q̂)P(Zm+1 = j|Y, r̂, Q̂)
̂̀∑

k=1

p̂kjP(Zm = k|Y(m), r̂, Q̂)

, (2.16)

where P(ZM = i|Y, r̂, Q̂) is obtained from (2.15) with m = M (see [27]). The initial distribution,

P(Z0 = i|Y, r̂, Q̂) can be obtained by continuing computation of (2.16) to m = 0, and set α̂ =

P(Z0 = i|Y, r̂, Q̂).

In the next section, numerical examples that illustrate the performance of the MCMC procedure

are presented for both simulated and real degradation processes. These examples show that the

proposed signal estimation procedure is viable for wind turbine components operating in time-

varying environments.

2.4 EXAMPLES OF COMPONENT LIFETIME ESTIMATION

In this section, the degradation model and inference procedure for estimating component lifetimes

are illustrated on data obtained from both simulated and real degradation processes. To evaluate
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performance, estimated environment parameters are obtained by sampling signals up to various

percentages of their threshold crossing-times, and the parameters are used to compute expected

lifetime estimates. These lifetime estimates are then compared to the actual component failure

times (first passage times to the critical threshold, xc).

First the effectiveness of the BIC statistic is illustrated in estimating ` when the environment

experiences a large number of transitions prior to a component’s failure. Consider a CTMC envi-

ronment with ` = 3 states and the following generator matrix and degradation rates:

Q =




−1.0 0.5 0.5

0.75 −1.5 0.75

1.0 1.0 −2.0


 , r =

[
1 5 10

]
. (2.17)

Degradation signals are generated according to equation (2.8) using a diffusion coefficient σ = 0.316

and observed at equidistant times tj − tj−1 = 0.01, j = 1, 2, . . . , N , where N is the random number

of signal observations obtained prior to the first-passage time. Consider a simulated signal path for

a component with threshold xc = 4000. At t = 963.67 the signal reached the threshold at which

time the real environment had transitioned N = 1, 337 times. Computed values of the BIC statistic

for ` = 2, ` = 3, and ` = 4 are shown in Table 1. The BIC estimated order ̂̀= 3 corresponds to

the actual environment order.

Table 1: BIC values.

` BIC value (×104)

2 -6.0940

3 -6.4869

4 -6.4418

Example 1: Now consider a component in the environment defined by (2.17) but for which

failure is assumed to occur at threshold xc = 1000. Although the environment does not evolve

for sufficient time to reliably estimate the order, the component’s expected lifetime can still be

reasonably estimated. For what follows, the BIC estimated order ˆ̀ = 3 is used from Table 1.

Figure 2 shows a randomly generated path with xc = 1000. The path was observed at N = 23, 466

discrete times, and the estimates of the environment parameters are

Q̂ =




−0.8190 0.4784 0.3406

0.7550 −1.5112 0.7561

0.7037 0.8709 −1.5745


 , r̂ =

[
1.1046 4.8863 9.6783

]
.
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Figure 2: Observed and mean signal paths (CTMC environment).
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Figure 3: Box-and-whisker plot of percent absolute error (CTMC environment).

To validate the estimates, the mean signal path was computed using the FFBS algorithm and is

also shown in Figure 2. The close correspondence of the observed and mean signal paths suggests

that the estimates (r̂, Q̂, ẑ) characterize the signal process well.

Next 100 random signal paths were generated for xc = 1000 up to times T (n)(xc), where

T (n)(xc) denotes the crossing time of the nth path, n = 1, 2, . . . , 100. Each path was observed

up to p-percent of its crossing time, where p ∈ {25, 50, 75, 90}. Let t
(n)
p ≡ p × T (n)(xc)/100
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denote the time corresponding to p percent of the nth component’s lifetime. For each (n, p),

set T (n)
p = {tj : tj ≤ t

(n)
p } and Y(n)

p = {Y (tj) : tj ∈ T (n)
p } to obtain (r̂, Q̂, ẑ) using the MCMC

procedure. The expected lifetime is then computed using (2.3) and (2.5). The quality of the

estimates is assessed by computing the percent absolute error, denoted ε
(n)
p , where

ε(n)p =
|τ (n)p − T (n)(xc)|

T (n)(xc)
× 100.

Figure 3 shows box-and-whisker plots of the percent absolute error of estimated lifetimes for each

p. The plots indicate that both the median and variance of absolute error tend to decrease as p

increases. Although the absolute error can be large (as evidenced by an outlier above 25%), the

fact that the median absolute error is well below 10% indicates the procedure provides reasonable

estimates of expected lifetime when the environment process is a CTMC.

Example 2: Next, a semi-Markov environment, whose inter-transition times are not exponen-

tially distributed, is assumed to affect degradation. Signal paths are generated for three different

semi-Markov environments with ` = 5, ` = 10, and ` = 20 states, respectively. The transition prob-

abilities, as well as the holding time distribution and degradation rates for each environment state,

are randomly generated according to Table 2, where, [ν1, ν2, ν3] ∼ U(0, 1)3 such that ν1 < ν2 < ν3,

ν4 = 0.1 + 3.0η4, ν5 = 0.1 + 3.0η5, and η4, η5 ∼ U(0, 1).

Table 2: Summary of holding-time distributions and degradation rates.

State index Holding Time Distribution Degradation Rate

1,4,7,9,12,15,19,20 Uniform(0, 1) Uniform(0, 2)

2,10,13,16 Triangle(ν1, ν2, ν3) Uniform(0, 2)

3,6,14,17 Gamma(0.5, 0.5) 20

5,8,11,19 Beta(ν4, ν5) Uniform(0, 2)

A key feature of the environments is that signal paths tend to have sudden increases in growth

due to the relatively high degradation rate and potentially long holding times associated with the

Gamma-distributed states. Each signal path is simulated with a diffusion coefficient of σ = 0.707

and observed at equidistant times tj − tj−1 = 0.01, j = 1, 2, . . . , N . Failure is assumed when the

signal reaches a threshold xc = 3000. The values of the BIC statistic obtained from each path are

shown in Table 3.
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Table 3: BIC values (×103) (semi-Markov environments).

` 5-state 10-state 20-state

2 −3.6097 −3.7346 −3.5176

3 −0.6504 −2.6752 −0.9471

4 0.0221 −1.5648 −0.8553

Figures 4, 6, and 8 show simulated signal paths observed at N = 62, 389, N = 88, 050 and

N = 99, 863 discrete times for ` = 5, ` = 10, and ` = 20, respectively.
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Figure 4: Observed and mean signal paths (` = 5 semi-Markov environment).
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Figure 5: Box-and-whisker plot of percent absolute error (` = 5 semi-Markov environment).

For each environment, ˆ̀ = 2 is the BIC-estimated order. However, ˆ̀ = 3 will be used for the

10-state environment to provide more modeling fidelity since the BIC-values for ` = 2 and ` = 3

are relatively close. Estimates of the environment parameters obtained from the respective signal

paths are as follows:

Q̂5 =


 −0.1846 0.1846

0.6280 −0.6280


 , r̂5 =

[
3.0489 10.8933

]
,

Q̂10 =




−0.0795 0.0511 0.0284

0.1585 −0.2661 0.1076

0.2322 0.1906 −0.4229


 , r̂10 =

[
2.1408 4.8024 9.4680

]
,

Q̂20 =


 −0.0841 0.0841

0.4275 −0.4275


 , r̂20 =

[
1.9587 8.4067

]
.

Comparing the mean signal paths with the observed paths in Figures 4, 6, and 8 indicates that the

parameters obtained based on the relatively small BIC-estimated orders adequately characterize

the signal processes. One hundred simulated signal paths were generated for each environment

and observed up to p percent of their respective failure times, p ∈ {25, 50, 75, 90}. Figures 5,

7, and 9 show box-and-whisker plots of percent absolute error for each p in the ` = 5, ` = 10,

and ` = 20 environments, respectively. In contrast to the CTMC example, the box-and-whisker

plots show a strong propensity for large outlying errors. Such large errors are consistent with the
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Figure 6: Observed and mean signal paths (` = 10 semi-Markov environment).
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Figure 7: Box-and-whisker plot of percent absolute error (` = 10 semi-Markov environment).

irregularity induced by the Gamma-distributed states. However, despite these large outliers, the

median absolute error and variance decrease rapidly with increasing p. As the median absolute

error is below 5% for each environment by p = 50, the procedure seems quite suitable at estimating

expected lifetimes in certain types of non-Markovian environments.
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Figure 8: Observed and mean signal paths (` = 20 semi-Markov environment).
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Figure 9: Box-and-whisker plot of percent absolute error (` = 20 semi-Markov environment).

Example 3: Now the performance of the inference procedure is illustrated on real degradation

data originally obtained by Virkler et al. [104]. The data contain measurements of fatigue crack

length over time (as measured by the number of load cycles) for 68 specimens for 2024-T3 aluminum

alloy. Representative sample paths are shown in Figure 10, and specimen failure is assumed when

the crack length exceeds 45 mm.
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The curvature of the sample paths suggests crack length increases exponentially with time and

is not consistent with the assumption that sample paths evolve according to (2.8). The MCMC
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Figure 10: Sample paths of fatigue-crack propagation.

procedure will be applied to paths of log-transformed crack lengths which exhibit a milder curvature

than the original paths. Since the MCMC procedure often performs poorly, or even completely fails,

for signals that deviate strongly from the behavior of a switching diffusion model when σ2 ≤ 10, the

transformed crack-lengths (and the associated transformed threshold) are multiplied by a factor

of 100 before applying the MCMC procedure to increase σ2 to an appropriate magnitude. All

transformed paths are translated to begin at the origin.

To evaluate performance, path observations are restricted to p ∈ {75, 90, 100} as the curvature

is not strongly apparent until p > 50. Furthermore, it is often the case that elements of r̂ obtained

from the MCMC procedure are negative due to the relatively long regime of near-zero crack growth.

When r̂ /∈ R`
+, approximating the expected lifetimes via equations (2.3) and (2.5) is not possible.

Instead, expected lifetimes are computed using the limiting result (2.6). The BIC values for a single

sample path of log-transformed crack length are shown in Table 4, and the estimated number

of environment states is ˆ̀ = 2. Figure 11 shows one of the transformed sample paths and its

corresponding mean path. Although the evolution of the true degradation sample path deviates

significantly from that of a switching diffusion model, it can still be well characterized using the

estimated model parameters. A box-and-whisker plot of the percent absolute error is shown in

Figure 12 for all 68 sample paths observed up to each respective p. The exponential curvature
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Table 4: BIC values (crack-length data).

` BIC value

2 -486.0313

3 15.5098

4 15.5098
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Figure 11: Observed and mean signal paths (crack-length data).

of the paths leads the procedure to consistently underestimate the expected lifetime. For p = 75,

p = 90 and p = 100, the median absolute error is 24.4%, 12.1%, and 4.2% respectively, while

the error variance tends to decrease slightly as p increases. The plots indicate that the MCMC

procedure can provide reasonable estimates of lifetime in a fatigue-crack application provided a

sufficiently large percentage of total lifetime is observed.
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Figure 12: Box-and-whisker plot of percent absolute error (crack-length data).

Example 4: In this example, the procedure is shown to be useful at predicting bearing lifetimes

from vibration data. The vibration data were collected by Gebraeel and Pan [41] for 25 bearings

tested until failure under constant loading and rotational conditions. Figure 13 shows the vibration

signal for a single bearing. The vibration signals are collected at 2 minute intervals and represent
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Figure 13: A vibration signal path.

the average amplitude over time of the defective bearing frequency and its first six harmonics. The

threshold for bearing failure is based on the root means square (rms) of the vibration amplitude,
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defined here as 0.025 Vrms. This vibration level corresponds to 2.2 Gs of acceleration and is consis-

tent with the “danger-level” specification of 2.0− 2.2 Gs in the industrial standards for machinery

vibration ISO 2372. Of the 25 bearings tested, one signal did not reach the threshold and will not

be considered.

The vibration signals are characterized by an initial period at which they remain at a relatively

constant level with only small oscillations due to random noise. After some time, the signals

have a sudden, upward jump after which they undergo large oscillations and exhibit a general

increasing trend until failure. The vibration signals clearly do not satisfy the assumption of (2.8),

which requires a time-homogeneous diffusion coefficient. For applicability to our model, the bearing

lifetimes are only predicted from the instant at which a given vibration signal exhibits its first large

jump. Therefore, the entire bearing lifetimes are not predicted but rather the remaining lifetimes

from the instant they first enter their failure regimes. The vibration signals are transformed in a

similar manner to the Virker data. To “dampen” the signal oscillations, inference is performed on

log-transformed amplitudes. The transformed amplitudes are also multiplied by a factor of 103 to

increase σ̂ to an appropriate magnitude for adequate performance of the MCMC procedure. All

paths are translated to begin at the origin. For each path, at least one element of r̂ is negative, so

remaining lifetimes are again estimated using the limiting result (2.6).

The BIC values for a single transformed vibration signal are shown in Table 5, and the esti-

mated order is ˆ̀= 3. Figure 14 shows a plot of one of the vibration paths (untransformed) and the

Table 5: BIC values (vibration data).

` BIC value (×103)

2 -0.2687

3 -1.4136

4 -1.3906

corresponding mean signal path. The close correspondence of the paths indicates that parameter

estimates are obtained that characterize the vibration process well. Box-and-whisker plots of per-

cent absolute error for all 24 paths observed at p ∈ {25, 50, 75, 90} are shown in Figure 15. While

the error variance remains relatively constant as p increases, the median absolute error decreases

as p increases; however, it is not below 10% until p = 90. That the error variance is relatively

constant and the absolute error is relatively large is likely attributable to the large oscillations of

the vibration signal which make extremely precise lifetime prediction difficult.
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Figure 14: Observed and mean signal paths (vibration data).
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Figure 15: Box-and-whisker plot of percent absolute error (vibration data).

Example 5: The procedure is now used to predict the lifetime of a gear that operates in a

wind turbine’s drivetrain. The signal for gear wear corresponds to the effective number of load

cycles and is computed from measurements of shaft torque and rotor speed. The measurements

are from a dataset collected for a single wind turbine over a 19-month period that consists of

10-minute summary statistics. That is, for each 10-minute interval, a set of descriptive statistics

(including the mean, minimum, maximum, standard deviation, etc.) is obtained for each turbine
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parameter. After discarding intervals where data is missing due to downtime and other causes,

summary statistics of turbine torque and rotor speed are available for 12,067 time periods. The

failure threshold is defined here as the effective number of load cycles at which a gear tooth will

fail. Let ζi and ωi denote the mean torque (foot-pounds) and rotor speed (revolutions per minute)

of the wind turbine over the ith time period, i = 1, 2, . . . , N = 12, 067.

To relate these parameters to the effective number of load cycles imposed on the gear tooth,

first note that the relationship between torque and gear stress, denoted by ξ, can be approximated

as

ξ = hζ,

where h > 0 is a constant [96]. Let ξw denote the stress amplitude corresponding to w cycles on a

stress-life (S-N) curve of the gear material, and (w′, ξw′) denote another known point on the S-N

curve. The function n(ξ), defined as the number of cycles to failure under stress amplitude ξ, is

approximated by a power law as follows [89]:

n(ξ) = w(ξ/ξw)
1/b,

b = − ln(ξw/ξw′)

ln(w′/w)
.

For stress amplitude ξ, define ñ(ξ) ≡ w/n(ξ) as the effective number of load cycles imposed on a

gear tooth during one cycle of amplitude ξ. Assuming a gear tooth experiences c load cycles per

revolution, the total effective number of load cycles during the ith 10-minute period, denoted ηi, is

approximately

ηi = 10 cωi ñ(ξi).

The signal value at ti is computed in a straight-forward way as

Y (ti) =
i∑

j=1

ηj , i = 0, 1, 2, . . . , N, (2.18)

where Y (0) ≡ 0.

In this example, h = c = 1, w = 107, and ξw = 63.0 (a value close to the overall mean torque

observed in the dataset). Three S-N curves are considered based on different values of (w′, ξw′):

Case (i) (100.0, 0.3× 107), Case (ii) (100.0, 0.5× 106), and Case (iii) (100.0, 0.1× 106). Note that

in progressing from Case (i) to Case (iii) the total effective number of load cycles imposed on

material increases for each fixed ξ > ξw. Signal paths are simulated to a failure threshold xc = 107

using a bootstrap technique; whereby, the torque and rotor speed values are generated by randomly
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sampling four-hour, continuous blocks of torque and rotor speed data. The BIC statistic values

computed using a simulated path for each case are shown in Table 6, and the estimated orders are

ˆ̀ = 2, ˆ̀ = 2, and ˆ̀= 3 for Cases (i), (ii), and (iii), respectively. Figures 16, 18, and 20 show the

Table 6: BIC values (drivetrain gear example).

` Case (i) (×103) Case (ii) Case (iii)

2 −3.5863 −381.9225 2.0317

3 −2.1527 −134.1971 −16.9701

4 −0.8514 −27.2337 15.4704

observed signals used to compute the BIC statistic for Cases (i), (ii), and (iii), respectively, along

with the mean signal paths obtained from the estimated parameters corresponding to each path.

That the mean and observed signal paths correspond relatively closely for all three cases indicates

that the degradation process for the gear tooth is well characterized by the estimated parameters.
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Figure 16: Observed and mean signal paths (gear tooth degradation Case (i)).

Figures 17, 19, and 21 show box-and-whisker plots of the percent absolute error for Cases (i),

(ii), and (iii), respectively with 100 randomly generated signal paths observed up to p percent of

their respective failure times, p ∈ {25, 50, 75, 90}. For fixed p, the median and variance of the

absolute error increases from Case (i) to Case (iii)—an intuitive result as Cases (ii) and (iii) can

have relatively large degradation rates leading to more irregular sample paths. For Case (i), the
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Figure 17: Box-and-whisker plot of percent absolute error (gear tooth degradation Case (i)).
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Figure 18: Observed and mean signal paths (gear tooth degradation Case (ii)).

most realistic case in a practical application, the median absolute error is less than 5% for all p,

and for Cases (ii) and (iii), the median absolute error is below 10% and 20%, respectively, for all p.

That the inference procedure also performs well in the more extreme Cases (ii) and (iii) suggests

that the procedure is well-suited to estimate the lifetimes of gears that operate in relatively extreme

degradation environments.
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Figure 19: Box-and-whisker plot of percent absolute error (gear tooth degradation Case (ii)).
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Figure 20: Observed and mean signal paths (gear tooth degradation Case (iii)).

Example 6: Using the same dataset as in Example 5, consider a wind turbine shaft bearing. The

degradation is again defined as the effective number of load cycles but is computed based on rotor

speed and bearing temperature measurements. For this example, it is assumed that the primary

determinant of the degradation rate at a given time is the viscosity of the bearing lubricant. Let

ρ = ν0/ν1 be the relative lubricant viscosity, where ν0 and ν1 denote the specified and actual

lubricant viscosity, and a(ρ) be a life adjustment factor that is a function of ρ. If Tb denotes the
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Figure 21: Box-and-whisker plot of percent absolute error (gear tooth degradation Case (iii)).

bearing’s specified lifetime, defined as the time at which the bearing is expected to survive with

90% probability given operational loading conditions, then it is known [46] that

Tb ∝ a(ρ).

The relationship between lubricant viscosity (in centistokes (cSt)) and bearing temperature (in

Celsius (C)), denoted θ, can be characterized using the Ubbelohde-Walther equation [8] as follows:

ln [ln(ν1 + 0.7)] = u+ v ln(θ + 273.15), (2.19)

where u and v are constants that depend on the lubricant type.

Summary data for rotor speed and bearing temperature are available for 25,421 10-minute

periods after disregarding periods with spurious or missing data. To generate degradation signals,

rotor speed and bearing temperature data are bootstrapped by randomly sampling from four-hour,

contiguous blocks of wind turbine data. For the ith 10-minute interval, ρi is computed as a function

of the bearing temperature using (2.19) and assuming v0 = 150 cSt. To obtain the constants u

and v in (2.19), it is assumed that a commercially available wind turbine lubricant is used with

viscosities of 150 cSt at 40◦ C and 20.7 cSt at 100◦ C, so that u = 17.77 and v = 2.81. Two

different cases are considered for the function a(ρ). In the first case, the life adjustment factor,

denoted a1(ρ), is estimated based on data for standard steel bearings [29]. In the second case, the

life adjustment factor, denoted a2(ρ), is selected to be significantly larger and smaller than a1(ρ)
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for relatively small and large values of ρ, respectively, and is intended to represent a material with

more exaggerated degradation characteristics. Plots of a1(ρ) and a2(ρ) are shown in Figure 22(a)

and Figure 22(b), respectively. The total number of effective load cycles in the ith period for Case
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(a) Plot of a1(ρ) for a steel bearing (Case (i)).
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(b) Plot of a2(ρ) (Case (ii)).

Figure 22: Assessing degradation signal estimation (Case (i)).

j ∈ {1, 2} is denoted η′ij , where

η′ij = 10 aj(ρi)ωi, i = 1, 2, . . . ,

and the cumulative degradation signal at a given time is computed as in equation (2.18) but with

η′ij in place of η.

In this example, xc = 107. Simulated degradation paths are shown in Figures 23 and 25 for

Cases (i) and (ii), respectively, and the BIC values computed by observing each degradation path

are shown in Table 7. For both cases, ˆ̀= 2. The estimated parameters appear to characterize the

Table 7: BIC values (shaft bearing example).

` Case (i) (×103) Case (ii) (×103)

2 −3.8946 −1.7135

3 −2.4338 −1.2094

4 −1.3038 0.0182

environments well as the mean signal paths for each case closely correspond with the observed signal

paths. Figures 24 and 26 show box-and-whisker plots of the percent absolute error of estimated

lifetime for 100 randomly generated sample paths in Cases (i) and (ii), respectively, observed up
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Figure 23: Observed and mean signal paths (shaft bearing degradation Case (i)).
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Figure 24: Box-and-whisker plot of percent absolute error (shaft bearing degradation Case (i)).

to p-percent of lifetime, p ∈ {25, 50, 75, 90}. The absolute error in each case is well below 10%,

and both the median and variance of absolute error decrease as p increases. It is intuitive that for

identical p-values both the median and variance of the error in Case (i) is smaller than in Case

(ii) due to Case (i) having a more limited range of possible degradation rates. The relatively small

absolute errors indicates that the procedure provides an effective way to estimate the lifetimes of

wind turbine shaft bearings.
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Figure 25: Observed and mean signal paths (shaft bearing degradation Case (ii)).
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Figure 26: Box-and-whisker plot of percent absolute error (shaft bearing degradation Case (ii)).

In this chapter, a mathematical model for the environment-driven degradation of a wind turbine

component was presented. An MCMC-based statistical procedure was adapted to estimate the

environment parameters from an observed signal of component degradation. In the next chapter,

two models are presented for optimally replacing a wind turbine component based on the estimated

environment parameters.
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3.0 REPLACEMENT FOR OBSERVABLE DEGRADATION

In this chapter, two models for optimally replacing a single wind turbine component are presented

using a partially observed Markov decision process (POMDP) framework. Both models assume

that the environment is partially-observable and degradation is observable, but only one model

explicitly accounts for stochastic downtime costs incurred during component replacements. The

POMDP models are formulated on a continuous belief space, and structural results are derived

for the optimal policies. Subsequently, a numerical solution procedure and numerical examples are

presented to illustrate the optimal policies of both models.

3.1 SUMMARY OF RELEVANT LITERATURE

The optimal replacement or repair of a stochastically-degrading system is a classical operations

research problem that has been considered by many researchers. Some important surveys are given

in [79, 92, 108]. A number of recent efforts have focused on replacement models where degradation is

partially or imperfectly observed. For instance, Maillart [69] considers the optimal maintenance of

a component whose partially-observed degradation process evolves as a discrete-time Markov chain

(DTMC). Structural policy results are proven for a model that minimizes the long-run average cost

of maintenance and then modified for the case of imperfect observations using a heuristic. Maillart

[70] considers a similar model in an adaptive maintenance scheduling application with silent failures.

Ivy [49] considers a component that degrades in a stepwise manner through increasing degradation

levels until a silent failure occurs. The component’s degradation state is observed indirectly by a

continuous random variable having a probability distribution conditioned on the actual degradation

state. Byon et al. [16] present a wind turbine maintenance application that uses a DTMC-based

degradation model and includes such factors as adverse weather conditions, repair interruptions and
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delays, and maintenance lead times. Other replacement models incorporate degradation processes

that are continuous in time. Makis and Jiang [71] consider optimally replacing a component whose

degradation evolves as a CTMC on a finite state space and is observed imperfectly at discrete

times. Associated with each observation is a probability mass function conditioned on the true

degradation state. The replacement model is formulated as an optimal stopping problem, and the

long-run expected replacement cost per unit time is minimized. This work is extended in [60] to

include multivariate observations that are normally distributed with mean and covariance matrices

determined by the degradation state. A similar model is used by Jiang, et al. [51] to maximize the

component’s long-run expected availability per unit time.

Typically replacement models assume that the component can attain only a finite number of

degradation levels; however, some researchers have considered cases where the underlying degra-

dation is continuous. In [117], Zhou et al. develop a partially observable semi-Markov process

(POSMDP) model which is continuous in both time and state, where component degradation

evolves according to a Gamma-based state space model. A Monte Carlo-based density projection

procedure (see [116]) is used to reduce the infinite-dimensional belief space to a finite dimension

so that the problem can be formulated as a Markov decision process (MDP) model on the lower-

dimensional belief space. The MDP is solved numerically using policy iteration for both long-run

average cost and availability objectives.

Most existing replacement models view the component’s degradation state as the only relevant

observational variable for making replacement decisions. Often, degradation can be affected by

other factors such as the component’s external operating environment. Despite its importance,

relatively few replacement models consider replacement decisions based on knowledge of the en-

vironment state, in addition to knowledge of the cumulative degradation. In [102], Ulukus et al.

consider optimally replacing a component whose operating environment evolves as a CTMC with

state space S. When the environment is in state i, the component accumulates degradation at a

constant rate ri > 0, where i ∈ S. At fixed times, both the environment state and cumulative

degradation are observed, and a decision is made whether to preventively replace the component.

The model is formulated as an infinite-horizon MDP with the objective of minimizing the total

expected discounted replacement cost, and for each environment state, an associated threshold of

cumulative degradation is shown to exist such that preventive replacement is optimal in the given

environment state when degradation exceeds the threshold.
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The replacement models that currently exist in the literature omit one or more important

features required when considering the replacement of a wind turbine component. Realistic re-

placement models require incorporating not only the notion that a component’s degradation is

determined largely by the exogenous, operating environment but also the potential uncertainty in

discerning the exact environment state. Models that seek to minimize the long-run average replace-

ment cost per unit time, as opposed to the total discounted cost, are more suitable for wind turbine

components, as replacement decisions can potentially be made frequently in response to electronic

sensor readings. In addition, a realistic model must consider the potential revenue losses incurred

during replacement operations when the turbine cannot produce electricity. These revenue losses

are stochastic and depend on the prevailing weather conditions (i.e. the environment state) during

the replacement period. In the remainder of this chapter, two replacement models are presented

that utilize the same degradation dynamics as considered by Ulukus et al. [102] but assume the

environment is partially observable. Moreover, while one model assumes the replacement costs

are deterministic, the other model incorporates stochastic downtime costs. Both models seek to

minimize the long-run average replacement cost per unit time.

3.2 REPLACEMENT WITH DETERMINISTIC COSTS

In this section, we present a replacement model that assumes deterministic costs for preventive

and reactive replacements and minimizes the long-run average cost of replacements per unit time.

To account for an uncertain environment state, the replacement problem will be formulated using

a partially-observed Markov decision process (POMDP) model. Let I = {1, 2, . . .} be the set

of decision epochs, and define a period as the time between two successive epochs, where each

period is of length δ > 0. The component’s cumulative degradation at decision epoch n, Xn, is

perfectly observed (i.e. known with certainty) for each n ≥ 1. After each observation, a decision is

immediately made whether to preventively replace the component, and the set of feasible actions

at each epoch is A ≡ {0, 1}, where actions 0 and 1 signify “do nothing” and “preventively replace,”

respectively. By contrast, the environment is assumed to be unobservable; that is, the environment

state is inferred from an observed degradation increment and represented using the concept of a

“belief state.” The belief state of the environment at the nth decision epoch is the probability

distribution πn = [π
(1)
n , π

(2)
n , . . . , π

(`)
n ], where π

(i)
n ≡ P(Zn = i|∆Xn, πn−1) and ∆Xn ≡ Xn−Xn−1 is
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the random degradation increment during the nth period. The belief space of the environment is

then the `-dimensional probability simplex Π ≡
{
[π(1), π(2), . . . , π(`)] :

∑`
i=1 π

(i) = 1
}
. Immediately

following the observation of a degradation increment, the belief state is recursively updated. Let

Wij(x, t) = P(X(t) ≤ x,Z(t) = j|Z(0) = i) for i, j ∈ S and t ≥ 0, and define the density

p(u, j|i) ≡ ∂Wij(x, δ)

∂x

∣∣∣∣
x=u

,

where p(u, j|i) is defined for all u ∈ (r1 δ, r` δ) such that u 6= rk δ, k ∈ S. For j ∈ S, define

Tj(u, π) ≡ P(Zn+1 = j|∆Xn = u, πn = π) =
∑

i∈S
P(Zn+1 = j|∆Xn = u,Zn = i)π(i),

where

P(Zn+1 = j|∆Xn = u, Zn = i) =





p(u, j|i)∑

k∈S
p(u, k|i)

, u ∈ (r1 δ, r` δ) s.t. u 6= rl δ, l ∈ S,

I(j = k), u = rk δ, k ∈ S.

The quantity Tj(u, π) is the probability that the environment is in state j at the next decision

epoch given an initial belief state π and an observed increase in degradation over the period of u.

Given πn = π, and a realized degradation increment u = xn+1−xn, it follows that πn+1 = T (u, π),

where T (u, π) ≡ [T1(u, π), T2(u, π), . . . , T`(u, π)].

The replacement problem is now formulated as a POMDP model on the belief spaceB ≡ [0, xc]×
Π. Let the belief state of the POMDP at the nth decision epoch be denoted denoted by b(n) =

(xn, πn). For (x, π) ∈ B and (x′, π′) ∈ B, define the conditional probability K((x, π), (x′, π′)) ≡
P(∆Xn+1 ≤ x′ − x, πn+1 = π′|πn = π). Note that K((x, π), (x′, π′)) = K((0, π), (x′ − x, π′)), where

for u ≥ 0,

K((0, π), (u, π′)) =





∫ u

0

∑

i∈S
q(v|i)π(i)dv +

∑

i∈S
I(u ≥ riδ)π

(i) exp(qii δ), if π′ = T (u, π),

0, if π′ 6= T (u, π),

and q(v|i) ≡ ∑
j∈S p(v, j|i). Denote the transition kernel density between (x, π) ∈ B and (x′, π′) ∈

B as

k(x′ − x, π) ≡ ∂

∂u

[
K((0, π), (u, π′))

]∣∣∣∣
u=x′−x

,
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where for u ≥ 0,

k(u, π) =





π(i) exp(qii δ), u = ri δ, i ∈ S,
∑

j∈S
q(u|j)π(j), u 6= ri δ, i ∈ S.

Degradation is assumed to be observed instantaneously at the beginning of each period with a

cost c0 > 0. Preventive replacements (if chosen) occur immediately following the degradation

observation with a cost c1 (0 < c0 < c1 < ∞) and are assumed to be instantaneous. If the

component fails between two decision epochs, a reactive replacement is instantly performed with

costs c1 + c2, where c2 > 0 is a penalty. All components are assumed to begin operation in belief

state (0, πs), where πs is the stationary distribution of the environment. Define a policy as a

function a : B → A, where a(Xn, πn) is the action taken in (Xn, πn) ∈ B, and let P denote the set

of all possible policies. The objective is to find the policy that minimizes the long-run average cost

of replacements per unit time, denoted by γ, where

γ = inf
a∈P

Ea

{
lim

N→∞
1

N

N∑

n=1

c0 + c1 I{a(Xn, πn) = 1}+ (c1 + c2) I{a(Xn, πn) = 0, Ĥ(Xn, πn) = 1}
}

and Ĥ(Xn, πn) is the event that the component fails between decision epochs n and n + 1, given

(Xn, πn) ∈ B.

The optimality equations are now provided. Let V (x, π) be the minimum relative cost per unit

time, given that a component starts operation in (x, π) ∈ B, and define V0(x, π) and V1(x, π) as the

relative costs if either no action or preventive replacement, respectively, are taken in (x, π) ∈ B.

The expected survival time of the component in the next period given (x, π) ∈ B is denoted τ(x, π),

where

τ(x, π) =
∑

i∈S


∑

j∈S

∫ δ

0
Wij(xc − x, t) dt


π(i). (3.1)

The optimality equations are as follows:

V (x, π) = min{V1(x, π), V0(x, π)}, (x, π) ∈ B (3.2)

where for I+(x, u) ≡ I(x+ u ≥ xc), I−(x, u) ≡ I(x+ u < xc), and Vπ(x, u) ≡ V (x+ u,T (u, π)),

V1(x, π) = c0 + c1 + V (0, πs)

V0(x, π) = c0 +

∫ ∞

0
I+(x, u) [c1 + c2 + V (0, πs)] k(u, π)du

+

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γτ(x, π).

50



3.2.1 Structural Results

An exact analytical solution for the optimality equations (3.2) is not known except in trivial cases.

Nonetheless, it is possible to prove some basic structural properties of the resulting optimal policy.

To begin, a nonnegative lower bound for γ is established.

Definition 3.1. For (x, π) ∈ B, let

H(x, π) ≡
∫ xc

0
I+(x, u)k(u, π) du, x ≥ 0, (3.3)

be the probability that the component fails in the next period, given (x, π) ∈ B.

The functionH(x, π) gives the probability that the component’s cumulative degradation exceeds

the critical threshold before the next decision epoch, given the current belief state is (x, π).

Lemma 3.1. The average cost of an optimal policy is bounded below as follows:

γ >
c0
δ
. (3.4)

Proof. The lower bound can be established by considering the average cost of a policy for the

case when c1 = c2 = 0. To establish this bound rigorously, note that immediately following

replacement it is optimal to do nothing; otherwise, γ = ∞. Set V (0, πs) = 0 and observe that

V (0, πs) = V0(0, πs) = 0. This implies that

c0 + (c1 + c2)H(0, πs) +

∫ ∞

0
I−(x, u)Vπ(0, u)k(u, π)du− γτ(0, πs) = 0. (3.5)

Solving (3.5) for γ gives

γ =

c0 + (c1 + c2)H(0, πs) +

∫ ∞

0
I−(0, u)Vπ(0, u)k(u, π)du

τ(0, πs)
>

c0
δ
. (3.6)

The lower bound (3.4) is quite loose; nonetheless, the existence of this bound is useful to

establish some basic properties of the optimal policy.

Lemma 3.2. Let C0 = c0 + c1 + V (0, πs). Then for all (x, π) ∈ B, V (x, π) ≤ C0.

Proof. For (x, π) ∈ B, V (x, π) = min{V0(x, π), V1(x, π)} ≤ V1(x, π) = C0.

Definition 3.2. Let the subset of the belief space where preventive replacement is optimal be denoted

by D = {(x, π) ∈ B : V1(x, π) ≤ V0(x, π)} and Dc denote the complement of D. Define the sets

Dπ ≡ {x : (x, π) ∈ D} and Dx ≡ {π : (x, π) ∈ D}.
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Characterizing the optimal policy is equivalent to providing a complete description of the region

D, which generally is difficult to obtain. In fact, it is not known whether D is convex or even

connected. Nonetheless, the next theorem and subsequent corollary place some bounds on the

region.

Theorem 3.1. If the component survives the next decision period w.p. 1 for (x, π) ∈ B, then

(x, π) ∈ Dc.

Proof. If the component survives in the next period w.p. 1 for (x, π) ∈ B, then

V0(x, π) = c0 +

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γδ

≤ c0 +

∫ ∞

0
I−(x, u)[c0 + c1 + V (0, πs)]k(u, π)du− γδ (Lemma 3.2)

= 2c0 + c1 + V (0, πs)− γδ

< c0 + c1 + V (0, πs)

= V1(x, π).

Therefore, (x, π) ∈ Dc.

Simply put, preventive replacement is never optimal if the probability of the component failing

before the next decision epoch is zero. Theorem 3.1 leads immediately to the following corollary:

Corollary 3.1. D ⊆ {(x, π) ∈ B : x ∈ (xc − r` δ, xc]}.

Proof. For all (x, π) ∈ B such that x ∈ [0, xc − r` δ], the component will survive the next period

w.p. 1 and {(x, π) ∈ B : x ∈ [0, xc − r` δ]} ⊆ Dc. Taking the complements of both sets yields the

result.

Corollary 3.1 places a significant boundary on D. Namely, D is confined to exist only in the

subset of B where x ≥ xc − r` δ so that the probability of failure before the next decision epoch

is nonzero. Figure 27 provides a schematic that depicts this bound in the case of a three-state

environment. (Note that the third component of the environment state is determined by the values

of the first two components.)
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Figure 27: Depiction of boundary for preventive replacement region D.

Theorem 3.2. If τ(x, π) = 0, then (x, π) ∈ D.

Proof. If τ(x, π) = 0, it follows that failure occurs in the next period w.p. 1, and

V0(x, π) = c0 +

∫ ∞

0
I+(x, u) [c1 + c2 + V (0, πs)] k(u, π)du

+

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γτ(x, π)

= c0 + c1 + c2 + V (0, πs)

> c0 + c1 + V (0, πs)

= V1(x, π).

Therefore, (x, π) ∈ D.

If τ(x, π) = 0, it is not possible to reduce the average cost by delaying preventive replacement

because a costlier, reactive replacement would be immediately required. So it is quite intuitive that

the optimal action is an immediate, preventive replacement.

Corollary 3.2. (xc, π) ∈ D for all π ∈ Π.

Proof. Since τ(xc, π) = 0 for π ∈ Π, the result follows from Theorem 3.2.
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It is tempting to conclude that a sufficient condition for the optimality of preventive replacement

in a given belief state is that component failure occurs in the next period w.p. 1; however, a

stronger condition is required to account for pathological instances of replacement problems where,

for example, the inspection interval is longer than the component lifetime. The sufficient condition

is based on the following lemma.

Lemma 3.3. An upper bound for γ is

γ ≤ c0 + (c1 + c2)
r`
xc

. (3.7)

Proof. It is known that T (xc) ≥ xc/r` w.p. 1 [55]. Therefore, an upper bound for the policy cost

can be obtained by considering the average cost of allowing a component to continuously operate

to failure at this rate, without preventive replacements.

γ ≤

⌊
xc
r`

⌋
c0 + c1 + c2

xc
r`

≤ c0 + (c1 + c2)
r`
xc

.

As for the lower bound (3.4), the upper bound (3.7) is not particularly tight; however, its

existence illuminates some additional properties of the optimal policy in the case of a particular

class of replacement instances.

Theorem 3.3. If the component fails w.p. 1 in the next period for (x, π) ∈ B, then it is optimal

to preventively replace if

τ(x, π) ≤ c2 xc
c0 + (c1 + c2)r`

. (3.8)

Proof. If the component fails w.p. 1 in the next period, then

V0(x, π) = c0 +

∫ ∞

0
I+(x, u) [c1 + c2 + V (0, πs)] k(u, π)du

+

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γτ(x, π)

= c0 + c1 + c2 + V (0, πs)− γτ(x, π).

For preventive replacement to be optimal, it must be the case that V0(x, π) ≥ V1(x, π). There-

fore, it follows that

c0 + c1 + c2 + V (0, πs)− γτ(x, π) ≥ c0 + c1 + V (0, πs),
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which implies c2 − γτ(x, π) ≥ 0. From Lemma 3.3, it follows that

c2 − γτ(x, π) ≥ c2 −
[
c0 + (c1 + c2)

r`
xc

]
τ(x, π).

So a sufficient condition for preventive replacement is

c2 −
[
c0 + (c1 + c2)

r`
xc

]
τ(x, π) ≥ 0,

or

τ(x, π) ≤ c2 xc
c0 + (c1 + c2)r`

.

The inequality (3.8) can now be used to define a class of replacement instances where preventive

replacement is always optimal when component failure is certain before the next decision epoch.

Corollary 3.3. Preventive replacement is always optimal in state (x, π) ∈ B when component

failure occurs in the next decision period w.p. 1 if

c2 − δ

[
c0 + (c1 + c2)

r`
xc

]
≥ 0. (3.9)

Proof. If failure occurs w.p. 1 in the next decision period for (x, π) ∈ B, then τ(x, π) ≤ δ. Therefore,

if the left-hand side of inequality (3.8) at least as large as δ, the condition will always be satisfied.

Rearranging terms yields condition (3.9).

It should be noted that condition (3.9) will typically be satisfied in “practical” replacement

problems where the degradation threshold is much larger than the degradation rates and the in-

spection interval is not too long. A practical replacement problem is assumed to have the following

properties:

(i) xc À r` δ,

(ii) δ ¿ c2 xc
(c1 + c2)r`

.

3.2.2 Threshold Policy with Respect to Degradation

In this subsection, it is proved that the optimal replacement policy has a threshold-type structure.

That is, for each environment belief state π ∈ Π, there exists a threshold cumulative degradation

level above which it is always optimal to preventively replace. To establish this result, the next

lemma bounds V0(x, π).
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Lemma 3.4. For each x ∈ [0, xc] and π ∈ Π, V0(x, π) is bounded as follows:

V
¯ 0(x, π) ≤ V0(x, π) ≤ V̄0(x, π), (3.10)

where,

V
¯ 0(x, π) = (C0 − c1) + (c1 + c2)H(x, π)− γτ(x, π), (3.11)

V̄0(x, π) = c0 + C0 + (c2 − c0)H(x, π)− γτ(x, π).

Proof. By Lemma 3.2, Vπ(x, u) ≤ C0 for all u ≥ 0. Let M ≡ c1 + c2 + V (0, πs), then

V0(x, π) = c0 +

∫ ∞

0
I+(x, u)[c1 + c2 + V (0, πs)]k(u, π)du

+

∫ ∞

0
I(x+ u < xc)Vπ(x, u)k(u, π)du− γτ(x, π)

= c0 +M

∫ ∞

0
I+(x, u)k(u, π)du

+

∫ ∞

0
I(x+ u < xc)Vπ(x, u)k(u, π)du− γτ(x, π)

≤ c0 +MH(x, π) + C0[1−H(x, π)]− γτ(x, π)

= c0 + C0 + (M − C0)H(x, π)− γτ(x, π)

= c0 + C0 + (c2 − c0)H(x, π)− γτ(x, π).

Likewise, V (x, π) ≥ V (0, πs) for all π ∈ Π. Therefore,

V0(x, π) = c0 +M

∫ ∞

0
I+(x, u)k(u, π)du

+

∫ ∞

0
I(x+ u < xc)Vπ(x, u)k(u, π)du− γτ(x, π)

≥ c0 +M

∫ ∞

0
I+(x, u)k(u, π)du

+V (0, πs)

∫ ∞

0
I(x+ u < xc)k(u, π)du− γτ(x, π)

= c0 +MH(x, π) + (C0 − c0 − c1)[1−H(x, π)]− γτ(x, π)

= (C0 − c1) + [M − V (0, πs)]H(x, π)− γτ(x, π)

= (C0 − c1) + (c1 + c2)H(x, π)− γτ(x, π).

Although the monotonicity of V0(x, π) in x, and by extension V (x, π), cannot be established,

both the lower and upper bounds in (3.10) are monotone increasing in x. As x increases, it can
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be shown that V
¯
(x, π) will eventually exceed V1(x, π), which is constant in x, so that there is a

threshold of cumulative degradation above which preventive replacement is optimal. A depiction

of the relationship between the value functions and the bounds of Theorem 3.4 is shown in Figure

28. The next lemma states that if preventive replacement is optimal for some degradation level in a
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Figure 28: Depiction of the value functions and their bounds.

fixed environment state, then preventive replacement is also also optimal for all higher degradation

levels. The lemma is particularly useful because it establishes that Dπ consists of only a single

interval of degradation levels.

Lemma 3.5. For each π ∈ Π, if (x, π) ∈ D, then (x′, π) ∈ D for all x′ ≥ x.

Proof. Assume that (x, π) ∈ D and there exists x∗ > x such that (x∗, π) ∈ Dc. Let BD
(x∗,π) as the

set of all (x, π) ∈ B that are reachable from (x∗, π) under policy D prior to a replacement event.

Consider a policy defined by D∗ that is obtained by modifying D as follows:

(i) Set D∗ = D \ {(x, π)}
(ii) For all (y, π′) ∈ BD

(x∗,π), set D∗ = D∗ ∪ {(y + x − x∗, π′)} if (y, π′) ∈ D; otherwise, set D∗ =

D∗ \ {(y + x− x∗, π′)}.

Note that prior to a replacement event the evolution of two sample paths starting from (x, π) and

(x∗, π) under policy D∗ differ only through a translation of degradation levels by x∗ − x. For any
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sample path starting at (x∗, π) that exceeds the threshold at some time t, the corresponding sample

path starting from (x, π) will be less than the threshold at time t. Therefore, γD′ < γD, and D

cannot be optimal. This implies that (x′, π) ∈ D for all x′ ≥ x.

Using the lower bound of (3.10) and Lemma 3.5, the following theorem establishes the existence

of a threshold policy with respect to x for fixed π.

Theorem 3.4 (Threshold policy for fixed π). There exists, for each π ∈ Π, a threshold xπ < xc at

which it is optimal to replace for all x ≥ xπ.

Proof. A sufficient condition to replace in (x, π) ∈ B is that V
¯ 0(x, π) ≥ V1(x, π). Therefore,

V
¯ 0(x, π) ≥ V1(x, π) implies that

(C0 − c1) + (c1 + c2)H(x, π)− γτ(x, π) ≥ C0,

which implies

(c1 + c2)H(x, π)− γτ(x, π) ≥ c1. (3.12)

Note that the left side of inequality (3.12) is increasing in x as H(x, π) is increasing in x and

γτ(x, π) is decreasing in x. Furthermore, the inequality is strict at the point (xc, π) for all π ∈ Π

since H(xc, π) = 1 and τ(xc, π) = 0. Let x′ = inf{x : (c1 + c2)H(x, π)− γτ(x, π) ≥ c1} < xc, then

x′ < xc and (3.12) is satisfied for all x ≥ x′. Therefore, {x : x ≥ x′} ⊆ Dπ. In addition, it follows

by Lemma 3.5 that Dπ = {x : x ≥ xπ} for some xπ ≤ xc. However, since {x : x ≥ x′} ⊆ Dπ, it

follows that xπ < xc.

Theorem 3.4 establishes that, for each environment belief state, there is an associated degrada-

tion threshold such that it is optimal to preventively replace the wind turbine component when its

cumulative degradation exceeds the threshold. The fact that replacement thresholds are dependent

on the environment state is critical because it allows information about the dynamic operating en-

vironment to affect replacement decisions. Such environment information is constantly monitored

at wind farms and is readily available for utilization in decision-making.

3.2.3 Threshold Policy with Respect to the Environment State

Ideally, it is desirable to obtain an analogous threshold policy to Theorem 3.4 with respect to the

belief state π for fixed x. However, such a result requires characterization of the set Dx, which
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is difficult in general. But the following corollary provides some insights into the properties of

Dx—namely that Dx is an increasing set in x.

Corollary 3.4. For all x and x′ such that x ≤ x′, Dx ⊆ Dx′.

Proof. Consider π ∈ Dx for x ≥ xπ. Then for x′ ≥ x, (x′, π) ∈ D by Theorem 3.4 so that π ∈ Dx′ ,

and Dx ⊆ Dx′ .

Therefore, the subset of Π in which preventive replacement is optimal for a given degradation

level x will tend to grow larger as x increases. A more specific characterization can only be

established for the case ` = 2 when Q and r satisfy certain conditions. Under those assumptions,

it is possible to show that the optimal policy has a threshold-type structure with respect to π.

Assume the environment has infinitesimal generator Q and degradation rates given by

Q =


 −α α

β −β


 , r =

[
r0 r1

]
, (3.13)

where α > β > 0 and r1 > r0 > 0. Define λ = β/α and P̂ = I +Q/α, where P̂ is the transition

probability matrix of the uniformized environment process given by

P̂ =


 0 1

λ 1− λ


 .

Sericola [91] derived a formula to compute the reward distribution, which can be written as follows

when ` = 2:

W (x, t) =
∞∑

n=0

e−αt (αt)
n

n!

n∑

k=0

(
n

k

)
xk(1− x)n−kC(n, k), (3.14)

where W (x, t) = [Wij(x, t)], i, j ∈ {1, 2}, and C(n, k) = [cij(n, k)] such that

cij(n, k) =





c2j(n− 1, k), i = 1, j ∈ {1, 2}, k ∈ {0, 1, . . . , n− 1},(
P̂

n
)
1j
, i = 1, j ∈ {1, 2}, k = n,

0, i = 2, j ∈ {1, 2}, k = 0,

λc1j(n− 1, k − 1) + (1− λ)c2j(n− 1, k − 1), i = 2, j ∈ {1, 2}, k ∈ {1, 2, . . . , n}.

For notational brevity, let ci.(n, k) ≡ ci1(n, k) + ci2(n, k), i ∈ {1, 2}. In what follows, it is shown

that a threshold policy exists with respect to π for fixed x if c1.(n, k) ≤ c2.(n, k) for all k ≤ n and

n ≥ 0. To prove this condition holds for C(n, k), an induction argument is used that relies on

several preliminary lemmas.
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Lemma 3.6. For j ∈ {1, 2},

c2j(n, k) =





λn−kc2j(2k − n, 2k − n)

+(1− λ)

[
n−k∑

s=1

λn−k−sc2j(2k − n+ 2s− 1, 2k − n+ s− 1)

]
, k ≥ n/2,

0, k < n/2.

Proof. When k ≥ n/2,

c2j(n, k) = λc21(n− 2, k − 1) + (1− λ)c2j(n− 1, k − 1)

= λ2c21(n− 4, k − 2) + λ(1− λ)c2j(n− 3, k − 2) + (1− λ)c2j(n− 1, k − 1)

...

= λn−kc2j(2k − n, 2k − n) + λn−k−1(1− λ)c21(2k − n+ 1, 2k − n)

+λn−k−2(1− λ)c2j(2k − n+ 3, 2k − n+ 1) + · · ·+ λ(1− λ)c2j(n− 3, k − 2)

+(1− λ)c21(n− 1, k − 1)

= λn−kc2j(2k − n, 2k − n) + (1− λ)

[
n−k∑

s=1

λn−k−sc2j(2k − n+ 2s− 1, 2k − n+ s− 1)

]
,
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and when k < n/2,

c2j(n, k) = λkc2j(n− 2k, 0) + λk−1(1− λ)c2j(n− 2k + 1, 0)

+λk−2(1− λ)c2j(n− 2k + 3, n− k + 1) + · · ·

· · ·+ λ(1− λ)c2j(n− 3, k − 2) + (1− λ)c2j(n− 1, k − 1)

= (1− λ)

[
k∑

s0=1

λk−s0c2j(n− 2k + 2s0 − 1, s0 − 1)

]

= (1− λ)2

[
k∑

s0=1

λk−s0

s0−1∑

s1=1

λs0−1−s1c2j(n− 2k + 2s1, s1 − 1)

]

= (1− λ)3

[
k∑

s0=1

λk−s0

s0−1∑

s1=1

λs0−1−s1

s1−1∑

s2=1

λs1−1−s2c2j(n− 2k + 2s2 + 1, s2 − 1)

]

=
...

= (1− λ)k

[
k∑

s0=1

λk−s0

s0−1∑

s1=1

λs0−1−s1 · · ·

· · ·
1∑

sk−1=1

λsk−2−1−sk−1 c2j(n− k + 2sk−1 − 1, 0)︸ ︷︷ ︸
=0


 = 0

since c2j(r, 0) = 0 for all r ≥ 0 and j ∈ {1, 2}.

Lemma 3.7. For n ≥ 1, the n-step transition probability matrix of the uniformized chain is

P̂
n
=




1−
n−1∑

k=0

(−1)kλk
n−1∑

k=0

(−1)kλk

1−
n∑

k=0

(−1)kλk
n∑

k=0

(−1)kλk



.

Proof. This result can be easily proved using an induction argument.

Lemma 3.8. For n ≥ 1, c2.(n, n) = λ
n−1∑

k=0

(1− λ)k.

Proof. By Lemmas 3.6 and 3.7, it is seen that

c21(n, n) = λ
(
P̂

n−1
)
11

+ λ(1− λ)
(
P̂

n−2
)
11

+ λ(1− λ)2
(
P̂

n−3
)
11

+ · · ·

· · ·+ λ(1− λ)n−2
(
P̂

1
)
11

+ λ(1− λ)n−1(I)11 + (1− λ)nc21(0, 0),

c22(n, n) = λ
(
P̂

n−1
)
12

+ λ(1− λ)
(
P̂

n−2
)
12

+ λ(1− λ)2
(
P̂

n−3
)
12

+ · · ·

· · ·+ λ(1− λ)n−2
(
P̂

1
)
12

+ λ(1− λ)n−1(I)12 + (1− λ)nc22(0, 0).
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Since C(0, 0) = 0 and
(
P̂

n−1
)
11

+
(
P̂

n−1
)
12

= 1 for all n ≥ 0,

c2.(n, n) = λ
[(

P̂
n−1

)
11

+
(
P̂

n−1
)
12

]
+ λ(1− λ)

[(
P̂

n−2
)
11

+
(
P̂

n−2
)
12

]

+λ(1− λ)2
[(

P̂
n−3

)
11

+
(
P̂

n−3
)
12

]
+ · · ·+ λ(1− λ)n−1 [(I)11 + (I)12]

+(1− λ)nc2.(0, 0)

= λ+ λ(1− λ) + λ(1− λ)2 + · · ·+ λ(1− λ)n−1

= λ

n−1∑

k=0

(1− λ)k.

Lemma 3.9. For all n ≥ 0, c2.(n, n) ≤ c1.(n, n).

Proof. By Lemma 3.9,

c2.(n, n) = λ
n−1∑

k=0

(1− λ)k ≤ 1 = c1.(n, n).

Lemma 3.10. For all n ≥ 1, c2.(n, n− 1) ≤ c1.(n, n− 1).

Proof. For n ≥ 1 and j ∈ {1, 2}, Lemma 3.6 gives the following:

c2j(n, n− 1) = λc11(n− 1, n− 2) + (1− λ)c2j(n− 1, n− 2)

= λc2j(n− 2, n− 2) + (1− λ)c2j(n− 1, n− 2)

= λc2j(n− 2, n− 2) + λ(1− λ)c2j(n− 3, n− 3)

+λ(1− λ)2c2j(n− 4, n− 4) + · · ·+ λ(1− λ)n−3c2j(1, 1)

+λ(1− λ)n−2c2j(0, 0) + (1− λ)n−1c2j(1, 0).
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The result is shown as follows:

c2.(n, n− 1) = λc2.(n− 2, n− 2) + (1− λ)c2.(n− 1, n− 2)

= λc2.(n− 2, n− 2) + λ(1− λ)c2.(n− 3, n− 3) + λ(1− λ)2c2.(n− 4, n− 4) + · · ·

· · ·+ λ(1− λ)n−3c2.(1, 1) + λ(1− λ)n−2c2.(0, 0) + (1− λ)n−1c2.(1, 0)

= λ

[
λ

n−3∑

k=0

(1− λ)k

]
+ λ(1− λ)

[
λ

n−4∑

k=0

(1− λ)k

]
+ λ(1− λ)2

[
λ

n−5∑

k=0

(1− λ)k

]
+ · · ·

· · ·+ λ(1− λ)n−3

= λ2

[
n−3∑

k=0

(1− λ)k + (1− λ)
n−4∑

k=0

(1− λ)k + (1− λ)2
n−5∑

k=0

(1− λ)k + · · ·+ (1− λ)n−3

]

≤ λ2

[
1

λ
+ (1− λ)

1

λ
+ (1− λ)2

1

λ
+ · · ·+ (1− λ)n−3 1

λ

]

= λ
[
1 + (1− λ) + (1− λ)2 + · · ·+ (1− λ)n−3

]

= λ
n−3∑

k=0

(1− λ)k

≤ λ

n−2∑

k=0

(1− λ)k

= c2.(n− 1, n− 1)

= c1.(n, n− 1).
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Lemma 3.11. For all n ≥ 0 and k ≤ n, c2.(n, k) ≤ c2.(n− 1, k).

Proof. By Lemma 3.6,

c2.(n, k) = λn−kc2.(2k − n, 2k − n)︸ ︷︷ ︸
1

+λn−k−1(1− λ)c2.(2k − n+ 1, 2k − n))︸ ︷︷ ︸
2

+λn−k−2(1− λ)c2.(2k − n+ 3, 2k − n+ 1)︸ ︷︷ ︸
3

+ · · ·+ λ2(1− λ)c2.(n− 5, k − 3)︸ ︷︷ ︸
n-k-1

+λ(1− λ)c2.(n− 3, k − 2) + (1− λ)c2.(n− 1, k − 1)︸ ︷︷ ︸
n-k

c2.(n− 1, k) = λn−k−1c2.(2k − n+ 1, 2k − n+ 1)︸ ︷︷ ︸
1

+λn−k−2(1− λ)c2.(2k − n+ 2, 2k − n+ 1)︸ ︷︷ ︸
2

+λn−k−3(1− λ)c2.(2k − n+ 4, 2k − n+ 2)︸ ︷︷ ︸
3

+ · · ·+ λ2(1− λ)c2.(n− 6, k − 3)︸ ︷︷ ︸
n-k-2

+λ(1− λ)c2.(n− 4, k − 2) + (1− λ)c2.(n− 2, k − 1)︸ ︷︷ ︸
n-k-1

A one-to-one comparison of the terms {3, 4, . . . , n − k} of c2.(n, k) with the corresponding terms

{2, 3, . . . , n−k−1} of c2.(n−1, k) indicates that each pair is of the form αc2.(w, v) and αc2.(w−1, v),

respectively, where w ≤ n, v ≥ w/2, and α ∈ R+. Therefore, the paired terms in each set have the

same relationship as the original expressions that generated them, for which (α,w, v) = (1, n, k). It

follows that if the recursion is true for (α,w, v) = (1, n, k), it holds for all the generated terms by

extension. Now proving the result is reduced to just showing that the sum of the first and second

terms of c2.(n, k) are less than or equal to the first term of c2.(n− 1, k). To prove this is true, first

note a result from [91] that states cij(n, k) ≤ cij(n, k+1) for all i, j ∈ {1, 2}, n ≥ 0, and k ≤ n. Now

observe that the sum of the first and second terms of c2.(n, k) can be bounded above as follows:

λn−k−1(1− λ)c2.(2k − n+ 1, 2k − n)

+λn−kc2.(2k − n, 2k − n) ≤ λn−k−1(1− λ)c2.(2k − n+ 1, 2k − n+ 1)

+λn−kc2.(2k − n, 2k − n)

= λn−k(1− λ)
2k−n∑

r=0

(1− λ)r + λn−k+1
2k−n−1∑

r=0

(1− λ)r

= λn−k − λn−k+1
2k−n∑

r=0

(1− λ)r + λn−k+1
2k−n−1∑

r=0

(1− λ)r

= λn−k − λn−k+1(1− λ)2k−n

≤ λn−k,
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and the first term of c2.(n− 1, k) is bounded below as follows:

λn−k−1c2.(2k − n+ 1, 2k − n+ 1) = λn−k
2k−n∑

r=0

(1− λ)r

= λn−k

(
1 +

2k−n∑

r=1

(1− λ)r

)

≥ λn−k.

Lemma 3.12. For all n ≥ 0 and k ≤ n, c2.(n, k) ≤ c1.(n, k).

Proof. In the case where k ≤ n/2, c2.(n, k) = 0 ≤ c1.(n, k) by Lemma 3.6. For k ≥ n/2, Lemmas

3.9 and 3.10 prove that the result holds for all n ≥ 0 and k ∈ {n − 1, n}. Now assume that

c2.(n, k) ≤ c1.(n, k) for all n ≥ 0 and k ∈ {n− (w−1), n− (w−2), . . . , n} for some integer w ≥ n/2.

Then by Lemma 3.6,

c2.(n, n− w) = λwc2.(n− 2w, n− 2w)︸ ︷︷ ︸
1

+λw−1(1− λ)c2.(n− 2w + 1, n− 2w)︸ ︷︷ ︸
2

+λw−2(1− λ)c2.(n− 2w + 3, n− 2w + 1)

+λw−3(1− λ)c2.(n− 2w + 5, n− 2w + 3)

+ · · ·+ (1− λ)c2.(n− 1, n− w − 1),

(3.15)

and

c1.(n, n− w) = c2.(n− 1, n− w)

= λw−1c2.(n− 2w + 1, n− 2w + 1)︸ ︷︷ ︸
1

+λw−2(1− λ)c2.(n− 2w + 2, n− 2w + 1)︸ ︷︷ ︸
2

+λw−3(1− λ)c2.(n− 2w + 4, n− 2w + 2)

+ · · ·+ (1− λ)c2.(n− 2, n− w − 1).

(3.16)

Equations (3.15) and (3.16) are compared on a term-by-term basis. For the first terms,

λwc2.(n− 2w, n− 2w) = λw+1
n−2w−1∑

k=0

(1− λ)k

≤ λw
n−2w∑

k=0

(1− λ)k

= λw−1c2.(n− 2w + 1, n− 2w + 1).
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Next the second term of (3.15) is shown to be less than the corresponding second term of

equation (3.16) as follows:

λw−2(1− λ)c2.(n− 2w + 1, n− 2w) = λw−2(1− λ)[λc2.(n− 2w + 1, n− 2w)

+(1− λ)c2.(n− 2w + 1, n− 2w)]

≤ λw−2(1− λ)[λc2.(n− 2w, n− 2w)

+(1− λ)c2.(n− 2w + 1, n− 2w)] (Lemma 3.11)

= λw−2(1− λ)[λc1.(n− 2w + 1, n− 2w)

+(1− λ)c2.(n− 2w + 1, n− 2w)]

= λw−2(1− λ)c2.(n− 2w + 2, n− 2w + 1).

The preceding argument can be made for the relationship between each corresponding pair of terms

in {3, 4, . . . , w − 1} so that

c1.(n, n− w) = K1 + (1− λ)c2.(n− 2, n− w − 1)

c2.(n, n− w) = K2 + (1− λ)c2.(n− 1, n− w − 1),

where K1 > K2 > 0. Now by Lemma 3.11, c2.(n − 1, n − w − 1) ≤ c2.(n − 2, n − 2 − 1) so that

c2.(n, n− w) ≤ c1.(n, n− w), and the induction holds for w.

Lemma 3.13. Let π(a) = [1−a, a] for a ∈ [0, 1]. Then for fixed x ∈ [0, xc], H(x, π(a)) is monotone

increasing in a, and τ(x, π(a)) is monotone decreasing in a.

Proof. For a ∈ [0, 1] and (x, π(a)) ∈ B,

H(x, π(a)) = 1−
∑

i∈S

∑

j∈S
Wij(x, δ)π

(i)(a)

= 1− (1− a)
∑

j∈S
W1j(x, δ)− a

∑

j∈S
W2j

= a


∑

j∈S
W1j(x, δ)−W2j(x, δ)


 .

Therefore, it is sufficient to show that

∑

j∈S
W1j(x, δ)−W2j(x, δ) ≥ 0 (3.17)
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for all x ∈ [0, xc] and δ ≥ 0. By Lemma 3.12, c1.(n, k) ≥ c2.(n, k) for all n ≥ 0 and k ≤ n.

Therefore, follows immediately from (3.14) that (3.17) holds, and H(x, π) is monotone increasing

in a. Likewise,

τ(x, π(a)) =
∑

i∈S


∑

j∈S

∫ δ

0
Wij(xc − x, δ) dδ


 π(i)(a)

=

∫ δ

0


(1− a)

∑

j∈S
W1j(x, δ) + a

∑

j∈S
W2j(x, δ)


 dδ

=

∫ δ

0



1− a

∑

j∈S
[W1j(x, δ)−W2j(x, δ)]



 dδ,

where it follows that the integrand and, therefore, τ(x, π(a)) are decreasing in a.

Using Lemmas 3.4 and 3.13, the existence and optimality of a threshold policy are shown with

respect to the parameterized belief state.

Theorem 3.5. If for fixed x ∈ [0, xc], it is optimal to replace for some π(a) ∈ Π, then it is optimal

to replace for all π(a′), a′ ∈ [a, 1].

Proof. By Lemma 3.4, V (x, π(a)) ≥ V
¯ 0(x, π(a)) = (C0−c1)+(c1+c2)H(x, π(a))−γτ(x, π(a)). Since

V
¯ 0(x, π(a)) is increasing in a by Lemma 3.13, it remains optimal to replace for all a′ ∈ [a, 1].

In the special case of a two-state environment, Theorem 3.5 proves the existence of a threshold-

type policy with respect to the environment state for a fixed level of degradation. The replacement

threshold is equivalent to the probability that the environment is in the highest-degradation state,

and as this probability increases, it remains optimal to preventively replace. This result is especially

useful in a wind turbine application where it may be the case that information for the environment

state is suddenly updated before another degradation observation can be acquired. In such an

instance, a wind farm operator may elect to conduct a preventive replacement if the probability

that the environment is in the highest-degradation state now exceeds the threshold associated with

the last observed degradation level.
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3.3 REPLACEMENT WITH STOCHASTIC DOWNTIME COSTS

In this section, an alternate replacement model is considered that incorporates stochastic downtime

costs during replacements. The observability assumptions for the environment and degradation,

as well as the underlying model dynamics, are unchanged from Section 3.2; however, preventive

and reactive replacements are no longer assumed to be completed instantaneously at a fixed cost.

Instead, the replacements require a fixed, deterministic time period for completion during which

downtime cost accrues as a function of the random environment state.

As before, degradation is observed instantaneously at each decision epoch with cost c0 (c0 >

0), and if a decision is made to replace the component or it fails, the respective preventive or

reactive replacement starts immediately at the beginning of the period or immediately upon failure.

However, now it is assumed that the preventive and reactive replacements require deterministic time

periods of δ1 > 0 and δ2 > 0, respectively, for completion. The total cost of a replacement now

consists of a fixed capital cost, denoted c1 (0 < c0 < c1 < ∞) and a downtime cost that is a function

of the random environment. Let di denote the downtime cost per unit time when the environment

is in state i, i ∈ S, and d = [d1, d2, . . . , d`]. Define the cumulative downtime cost accrued during a

replacement up to time t by Xd(t), where

Xd(t) =

∫ t

0
di I(Z(u) = i)du.

Let W
(d)
ij (t) ≡ P(Xd(t) ≤ x, Z(t) = j|Z(0) = i), for i, j ∈ S and ≥ 0, and

p
(t)
d (u, j|i) ≡ ∂W

(d)
ij (x, t)

∂x

∣∣∣∣∣
(u,t)

.

The expected total downtime cost accrued during a replacement of time t, given it starts with the

environment in state i is denoted C
(t)
i , where

C
(t)
i ≡ E[Xd(t)|Xd(0) = 0, Z(0) = i]

=
∑

j∈S

∫ d` t

d1 t
u p

(t)
d (u, j|i) du+ t di exp(qii t),

and it follows that the total expected downtime cost of a preventive replacement in (x, π) ∈ B,

denoted C(p)(π), is

C(p)(π) = E[Xd(δ1)|Xd(0) = 0, π]

=
∑

i∈S
C

(δ1)
i π(i).
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Let L(x, π) be the random remaining lifetime of the component given (x, π) ∈ B, and define

T ∗(u, π) ≡ [T ∗
1 (u, π), T

∗
2 (u, π), . . . , T

∗
` (u, π)], where

T ∗
i (u, π) ≡ P(Z(u) = i|L(x, π) = u, π)

=

∑

j∈S
p(u)(xc − x, i|j)π(j)

∑

j∈S

∑

k∈S
p(u)(xc − x, j|k)π(k)

.

Then the expected total downtime cost of a reactive failure in the next period given (x, π) ∈ B is

denoted C(r)(x, π), where

C(r)(x, π) = E[Xd(L+ δ2)|L ≤ δ,Xd(L) = 0, X(L)−X(0) = xc − x, π]

=
1

P(L(x, π) ≤ δ)

∫ (xc−x)/r1∧δ

(xc−x)/r`∧δ

∑

i∈S
C

(δ2)
i T ∗

i (u, π)dP(L(x, π) ≤ u).

All components are assumed to begin operation in (0, πs), and the objective is to minimize the

long-run average replacement cost per unit time, where

γ = inf
a∈P

Ea

{
lim

N→∞
1

N

N∑

n=1

c0 + c1 I{a(Xn, πn) = 1}

+ [c1 +Xd(L+ δ2)−Xd(L)] I{a(Xn, πn) = 0, L(x, π) ≤ δ}
}

Let V (x, π) be the minimum relative cost per unit time given a component starts operation

in (x, π) ∈ B, and V0(x, π) and V1(x, π) be the relative costs if either no action or preventive

replacement, respectively, are taken in (x, π) ∈ B. The optimality equations are as follows:

V (x, π) = min{V1(x, π), V0(x, π)}, (x, π) ∈ B, (3.18)

where

V1(x, π) = c0 + c1 + C(p)(π) + V (0, πs)− δ1γ,

V0(x, π) = c0 +
[
c1 + C(r)(x, π)− δ2γ + V (0, πs)

] ∫ ∞

0
I+(x, u)k(u, π)du

+

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γτ(x, π).

Obtaining structural results for (3.18) is considerably more difficult than for (3.2). Nonetheless,

some basic results for the optimal policies can be obtained under relatively restrictive conditions.

The following lemma establishes a lower bound for the optimal policy cost:
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Lemma 3.14. The average cost of an optimal policy can be bounded below as follows:

γ >
c0

δ + δ2
.

Proof. Set V (0, πs) = 0, and note that the optimal action immediately following replacement is to

do nothing so that V (0, πs) = V0(0, πs) = 0. Substituting equation (3.19) for V0(0, πs) and solving

for γ yields

γ =

c0 +
[
c1 + C(r)(0, πs)

]
H(0, πs) +

∫ ∞

0
I−(0, u)Vπ(0, u)k(u, π) du

τ(0, πs) + δ2H(0, πs)
,

which gives

γ >
c0 +

[
c1 + C(r)(0, πs)

]
H(0, πs)

τ(0, πs) + δ2H(0, πs)
>

c0
δ + δ2

.

Unlike the model of Section 3.2, it is not necessarily optimal to delay preventive replacement

when the component will survive the next period w.p. 1. In fact, one can consider situations where

initiating a preventive replacement immediately could take advantage of the current environment

state having a relatively low downtime cost rate. However, when failure is imminent in the next

period, preventive replacement is always optimal under certain conditions.

Lemma 3.15. If the component fails w.p. 1 in the next period for (x, π) ∈ B, then a sufficient

condition for the optimality of preventive replacement is

C(r)(x, π)− C(p)(π) ≥ c0

(
δ2 − δ1
δ2 + δ

)
.

Proof. For (x, π) ∈ B, preventive replacement is optimal if V1(x, π) ≤ V0(x, π). Assuming failure

in the next decision period w.p. 1, V1(x, π) ≤ V0(x, π), which implies

c0 + c1 + C(p)(π) + V (0, πs)− δ1γ ≤ c0 + c1 + C(r)(x, π)− δ2γ + V (0, πs)− γτ(x, π). (3.19)

Rearranging (3.19) and applying Lemma 3.14 gives

C(r)(x, π)− C(p)(π) ≥ γ[δ2 − δ1 + τ(x, π)] > c0

(
δ2 − δ1
δ2 + δ

)
.

The next three lemmas are required to prove the existence of a replacement threshold with

respect to x for fixed π. The first lemma establishes a lower bound for V0(x, π) and the two

following lemmas establish some properties of C(r)(x, π).
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Lemma 3.16. For each π ∈ Π,

V0(x, π) ≥ V
¯ 0(x, π) ≡ c0 +

[
c1 + C(r)(x, π)

]
H(x, π)

−γ [δ2H(x, π) + τ(x, π)] + V (0, πs). (3.20)

Proof. For (x, π) ∈ B and u ≥ 0, Vπ(x, u) ≥ V (0, πs). Therefore,

V0(x, π) = c0 +
[
c1 + C(r)(x, π)− δ2γ + V (0, πs)

] ∫ ∞

0
I+(x, u)k(u, π)du

+

∫ ∞

0
I−(x, u)Vπ(x, u)k(u, π)du− γτ(x, π)

≥ c0 +
[
c1 + C(r)(x, π)

]
H(x, π)− γδ2H(x, π)

+V (0, πs)H(x, π) + V (0, πs)[1−H(x, π)]− γτ(x, π)

= c0 +
[
c1 + C(r)(x, π)

]
H(x, π)− γ [δ2H(x, π) + τ(x, π)] + V (0, πs).

Lemma 3.16 establishes a lower bound for V0(x, π). The lower bound (3.20) includes a term

for the expected downtime cost of a reactive replacement, which is not necessarily monotone in

x. Therefore, in contrast to the simple properties of (3.11), the behavior of (3.20) is considerably

more difficult to characterize.

Lemma 3.17. For all π ∈ Π,

C(r)(xc, π) =
∑

i∈S
C

(δ2)
i π(i).

Proof. When x = xc, the remaining lifetime is zero w.p. 1, and dP(L(xc, π) ≤ u) = ω(u), where

ω(u) is the Dirac delta function. Therefore,

C(r)(xc, π) =

∫

R+

∑

i∈S
C

(ω2)
i T ∗

i (u, π)ω(u)

=
∑

i∈S
C

(ω2)
i T ∗

i (0, π)

=
∑

i∈S
C

(ω2)
i P(Z(u) = i|L(x, π) = 0, π)

=
∑

i∈S
C

(ω2)
i π(i).
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Lemma 3.18. For ε > 0 and (x, π) ∈ B such that xc − x < ε,

C(r)(x, π) ≥
∑

i∈S
C

(δ2)
i π(i) exp(−qiiε/ri).

Proof. Pick ε < δr1 and x such that xc − x < ε. Then the remaining lifetime of the component is

(xc − x)/r1 < ε/r1 < δ so that P(L(x, π) ≤ δ) = 1. Then

C(r)(x, π) =
1

P(L(x, π) ≤ δ)

∫ ε/r1

ε/r`

∑

j∈S
C

(δ2)
j T ∗

j (u, π)dP(L(x, π) ≤ u)

=

∫ ε/r1

ε/r`

∑

j∈S
C

(δ2)
j P(Z(u) = j|L(x, π) = u, π)dP(L(x, π) ≤ u)

=

∫ ε/r1

ε/r`

∑

j∈S
C

(δ2)
j dP(Z(u) = j, L(x, π) ≤ u|π)

≥
∫ ε/r1

ε/r`

I(u ∈ {ε/ri : i ∈ S})
∑

j∈S
C

(δ2)
j dP(Z(u) = j, L(x, π) ≤ u|π)

=
∑

i∈S

∑

j∈S
C

(δ2)
j dP(Z(u) = j, L(x, π) ≤ u|π)|u=ε/ri

≥
∑

i∈S
C

(δ2)
i dP(Z(u) = i, L(x, π) ≤ u|π)|u=ε/ri

=
∑

i∈S

∑

k∈S
C

(δ2)
i dP(Z(u) = i, L(x, π) ≤ u|Z(0) = k)|u=ε/ri π

(k)

=
∑

i∈S

∑

k∈S
C

(δ2)
i P(Z(ε/ri) = i,X(ε/ri) = ε|Z(0) = k)π(k)

≥
∑

i∈S
C

(δ2)
i P(Z(ε/ri) = i,X(ε/ri) = ε|Z(0) = i)π(i)

=
∑

i∈S
C

(δ2)
i π(i) exp(−qiiε/ri),

where the last equality follows from the fact that P(X(t) = ri t, Z(t) = j|Z(0) = i) = I(i =

j) exp(−qii t) for all t ≥ 0 and i ∈ S.

A structural result for the optimal policy can now be inferred from Lemmas 3.14-3.18. Unlike in

Theorem 3.4, a replacement threshold with respect to x is not guaranteed to exist for a given π ∈ Π

unless a necessary condition holds that involves the inspection and replacement times, as well as

the downtime costs. Furthermore, even provided this necessary condition holds, the optimality of

preventive replacement can only be shown for all x sufficiently close to the failure threshold.
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Theorem 3.6. If for some π ∈ Π,

c0

(
δ2 − δ1
δ + δ2

)
<

∑

i∈S

(
C

(δ2)
i − C

(δ1)
i

)
π(i), (3.21)

then there exists an ε > 0 such that it is optimal to preventively replace for all (x, π) such that

x ∈ (xc − ε, xc].

Proof. Using Lemma 3.16, a sufficient condition for the optimality of preventive replacement at

(x, π) ∈ B is V
¯ 0(x, π) ≥ V1(x, π), which implies

c0 + c1 + C(r)(x, π)− δ2γ + V (0, πs) ≥ c0 + c1 + C(p)(π) + V (0, πs)− δ1γ. (3.22)

Rearranging (3.22) and applying Lemma 3.16 gives that

C(r)(x, π)−
∑

i∈S
C

(δ1)
i π(i) ≥ γ(δ2 − δ1) > c0

(
δ2 − δ1
δ + δ2

)
,

and further rearrangement yeilds

C(r)(x, π) ≥
∑

i∈S
C

(δ1)
i π(i) + c0

(
δ2 − δ1
δ + δ2

)
≡ K. (3.23)

Evaluating (3.23) at (xc, π) by applying Lemma 3.17 and rearranging terms gives condition (3.21).

Now assuming (3.21) is satisfied at xc, then it can also be shown to be satisfied for x ∈ (xc − ε, xc]

for some ε > 0 as follows. Assume condition (3.21) is satisfied and rearrange terms so that

∑

i∈S
C

(δ2)
i πi >

∑

i∈S
C

(δ1)
i πi + c0

(
δ2 − δ1
δ + δ2

)
= K,

which implies

∑

i∈S
C

(δ2)
i πi −K ≡ K1 > 0. (3.24)

By Lemma 3.18, for ε > 0 and all x such that xc − x < ε > 0,

C(r)(x, π) ≥
∑

i∈S
C

(δ2)
i π(i) exp(−qiiε/ri).
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Picking ε such that 1− exp(−qiiε/ri) < K1/
∑

j∈S C
(δ2)
j for all i ∈ S gives

C(r)(x, π)−K ≥
∑

i∈S
C

(δ2)
i π(i) exp(−qiiε/ri)−K

>

(∑

i∈S
C

(δ2)
i π(i)

)

1− K1∑

i∈S
C

(δ2)
i


−K

=
∑

i∈S
C

(δ2)
i π(i) −




∑

i∈S
C

(δ2)
i π(i)

∑

i∈S
C

(δ2)
i


K1 −K

> 0,

where the last inequality holds by (3.24). Since C(r)(x, π)−K > 0 implies (3.23) holds, it is optimal

to replace for all x ∈ (xc − ε, xc].

That a replacement threshold does not necessarily exist for each environment belief state in The-

orem 3.6 indicates that environment information is especially critical to consider when stochastic

downtime costs are incurred during replacement operations. For example, a particular environment

state could represent ideal wind conditions for electricity production, during which significant rev-

enues are generated. In such an environment state, it may be optimal to continue operating the

wind turbine, regardless of the component’s degradation level, rather than shutting it down to per-

form a preventive replacement. Likewise, in an environment state that represents insufficient wind

conditions, it may be optimal to preventively replace a slightly-degraded component to minimize

the revenue lost during future periods of ideal wind conditions.

3.4 NUMERICAL SOLUTION TECHNIQUES

In this section, numerical solutions techniques are described for solving the optimality equations

of the models in Sections 3.2 and 3.3. These procedures require discretization of the belief space

and the use of either a policy iteration or linear programming (LP) approach. The key idea is to

approximate the integrals in the optimality equations as Riemann sums and formulate the problem

as a Markov decision process (MDP) model on a finite state space.

Let Π̇ = {π̇1, π̇2, . . . , π̇L1} be a discretization of Π, where π̇i ∈ Π and L1 ≥ 1. For L2 ≥
2, let the discretization interval between the realizable levels of degradation on X \ {0} be b ≡
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(xc + (ri − r1)δ)/L2 so that the ordered set Ẋ = {0, ẋ1, ẋ2, . . . , ẋL2+1} is the discretization of X ,

where ẋi = r1δ + (i − 1)b, i = 1, 2, . . . , L2 + 1. The complete discretized belief space is denoted

Ḃ ≡ (Π̇ × Ẋ ) ∪ {(0, πs)}, where L ≡ |Ḃ| − 1 = L1(L2 + 2), and denote the ith discretized belief

state in Ḃ by ḃi ≡ (ẋi, π̇i), where (ẋi, π̇i) ∈ Π̇ × Ẋ , i = 1, 2, . . . , L and ḃ0 ≡ (0, πs). The set of

discretized cumulative degradation levels attainable from a given ḃi is X̄i = {x̄i1, x̄i2, . . . , x̄i,C+1},
where x̄ij = xi + r1δ + (j − 1)b and C ≡ |X̄i| = δ(ri − r1)/b, l = 1, 2 . . . , L, j = 1, 2, . . . , C + 1.

Estimating the transition probabilities between discretized belief states consists of three steps. In

the first step for a given ḃi, compute Π̄i = {π̄i1, π̄i2, . . . , π̄i,C+1}, where π̄ij = T (x̄ij , π̇i) is the

updated belief state obtained from ḃi by observing an increase in degradation of x̄ij in the next

decision epoch, i = 1, 2, . . . , L, j = 1, 2, . . . , C + 1. Next approximate each π̄ij with a discretized

π∗
ij ∈ Π̇, where

π∗
ij = min

π̇∈Π̇
‖π̄ij − π̇‖, i = 1, 2, . . . , L, j = 1, 2, . . . , C + 1,

and let Π∗
i ≡ {π∗

i1, π
∗
i2, . . . , π

∗
i,C+1}. Finally, compute the row vector Ṗi ≡ {ṗi1, ṗi2, . . . , ṗi,C+1},

where ṗij is the transition probability between ḃi and updated belief state (ẋi + x̄ij , π
∗
ij). To

compute ṗij , first define R(x;πn, xn) ≡ P(Xn+1 ≤ x|xn, πn) as the probability that the cumulative

degradation in epoch n+ 1 does not exceed x, given b(n) = (xn, πn), where

R(x;πn, xn) = P(Xn+1 ≤ x|xn, πn)

=
∑

i∈S
P(Xn+1 ≤ x|xn, zn = i)π(i)

n

=
∑

i∈S
P(Xn+1 ≤ x− xn|0, zn = i)π(i)

n

=
∑

i∈S
P(X1 ≤ x− xn|0, z0 = j)π(i)

n

=
∑

i∈S

∑

j∈S
P(X1 ≤ x− xn, z1 = j|z0 = i)π(i)

n

=
∑

i∈S

∑

j∈S
Wij(x− xn, δ)π

(i)
n .

Then ṗij is computed as follows:

ṗij = Ri(x̄ij + b/2 ∧ xi,C+1)−Ri(xi1 ∨ xij − b/2), i = 0, 1, . . . , L, j = 1, 2, . . . , L,

where Ri(x) ≡ R(x; π̇i, ẋi), i = 0, 1, . . . , L. The function Ri(x) is approximated using numerical

results by Sericola [91] and Bladt, et al. [14]. Computing (Π∗
i , X̄i, Ṗi) for all ḃi ∈ Ḃ establishes the

transition probabilities between all pairs of discretized belief states.
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Now the optimality equations are stated on Ḃ for the model of Section 3.2. Let V̇ (i) ≡ V̇ (ḃi)

denote the relative cost, given that the component starts operation in ḃi, i = 0, 1, . . . , L. Then

V̇ (i) = min{V̇0(i), V̇1(i)}, i = 0, 1, . . . , L. (3.25)

where V̇0(i) ≡ V̇0(ḃi) and V̇1(i) ≡ V̇1(ḃi) denote the relative costs of doing nothing and preventive

replacement, respectively, in ḃi. The relative cost of preventive replacement in ḃi is

V̇1(i) = c0 + c1 + V̇ (0), i = 0, 1, . . . , L.

In the case of doing nothing, the relative cost is computed by conditioning on the event that the

component survives the current decision period. Denote the single period transition probabilities

between ḃi and ḃj , given the component survives or fails by qij , where

qij = P(b(n+1) = ḃj |b(n) = ḃi, ẋj ≤ xc)

= ṗij I(ẋj ≤ xc)/Ri(xc), i = 0, 1, . . . , L, j = 1, 2, . . . , L.

Let τi be the expected survival time in the decision period, given ḃi, where

τi =
∑

j∈S

∑

k∈S

∫ δ

0
Wjk(xc − ẋi, t)dt, i = 0, 1, . . . , L.

Then the relative cost of doing nothing in ḃi is then given as follows:

V̇0(i) = c0 +
[
c1 + c2 + V̇ (0)

]
[1−Ri(xc)] +Ri(xc)

L∑

j=1

V̇ (j)qij − γτi, i = 0, 1, . . . , L.

The optimality equations (3.25) can be solved using policy iteration; however, for large prob-

lems, a linear programming formulation (LP) can be advantageous in that it can be easily solved

using commercial optimization software. By convention, the solution of the LP primal formulation

corresponds to the optimal relative cost of each belief state; whereas, the solution of the LP dual

formulation corresponds to the optimal action for each belief state. The values of both the LP

primal and dual objective functions are equal to the long-run average cost per unit time under

the optimal replacement policy. Before presenting the primal formulation, observe that setting

V̇ (0) ≡ 0 leads to the following condition for each discretized belief state i = 0, 1, . . . , L:

V̇ (i) = min



c0 + c1, c0 + (c1 + c2) [1−Ri(xc)] +Ri(xc)

L∑

j=1

V̇ (j)qij − γτi



 . (3.26)
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However, condition (3.26) is equivalent to the following pair of linear constraints for states i =

0, 1, . . . , L:

V̇ (i) ≤ c0 + c1,

V̇ (i)−Ri(xc)

L∑

j=1

V̇ (j)qij + γτi+ ≤ c0 + (c1 + c2)[1−Ri(xc)]. (3.27)

Using the constraints (3.27), the primal LP formulation is as follows:

maximize γ (3.28a)

subject to V̇ (i) ≤ c0 + c1, ∀i = 0, 1, . . . , L

V̇ (i)−Ri(xc)
L∑

j=0

V̇ (j)qij + γτi+ ≤ c0 + (c1 + c2)[1−Ri(xc)], ∀i = 0, 1, . . . , L,

γ ∈ R.

The dual LP is formulated directly from the primal. Let xia denote the steady state probability of

being in belief state i and taking action a, i = 0, 1, . . . , L, a ∈ A. The dual formulation is

minimize
L∑

i=1

{
c0 + (c1 + c2)[1−Ri(xc)]

}
xi0 + (c0 + c1)

L∑

i=1

xi1

subject to xi0 + xi1 −
L∑

j=0

qjiRj(xc)xj0 = 0, ∀ i = 1, 2, . . . , L,

L∑

i=1

τi xi0 = 1,

xia ≥ 0, i = 0, 1, . . . , L, a ∈ {0, 1}.

In practice, obtaining the optimal policy by solving the dual formulation is problematic. The

problem arises because a large subset of the belief space for both POMDP models consists of

transient states, and the dual formulation can only assign optimal actions to recurrent states

[83]. This limitation combined with effects due to discretizing the belief space often causes the

dual solution to provide an ambiguous policy. As an alternative to solving the dual, the optimal

policy is obtained directly from the primal solution. Consider a component that begins operation

in ḃi ∈ Ḃ. Preventive replacement is only optimal in ḃi if the total expected bias incurred for

immediate preventive replacement followed by resumption of the optimal policy is less than the

total expected bias for doing nothing for a single period; that is, if

c0 + (c1 + c2)[1−Ri(xc)]− γτi +Ri(xc)
L∑

j=1

qijV̇ (j) ≥ c0 + c1,
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so that

c2 +Ri(xc)




L∑

j=1

qij V̇ (j)− (c1 + c2)


− γτi ≥ 0. (3.30)

Therefore, the optimal policy will be obtained by first solving the primal LP formulation (3.28a)

to obtain γ and V̇ (i), for i = 1, 2, . . . , L. Then condition (3.30) will be checked for each discretized

belief state to obtain the corresponding optimal action.

For the replacement model of Section 3.3, the optimality equations on Ḃ follow in a similar

manner. Let V̈ (i) ≡ V̈ (ḃi) denote the relative cost given that the component starts operation in i,

i = 1, 2, . . . , L, and let V̈0(i) ≡ V̈0(ḃi) and V̈1(i) ≡ V̈1(ḃi) denote the relative costs given no action

and replacement, respectively, in state i, i = 1, 2, . . . , L. Then

V̈ (i) = min{V̈0(i), V̈1(i)}, i = 0, 1, . . . , L, (3.31)

where

V̈0(i) = c0 +
[
c1 + C

(r)
i − δ2γ + V̈ (0)

]
R̄i(xc) +Ri(xc)

L∑

j=1

V̈ (j)qij − γτi,

V̈1(i) = c0 + c1 + C
(p)
i − δ1γ + V̈ (0).

To obtain the LP formulation of (3.31), observe that setting V̈ (0) ≡ 0 leads to the following

condition for each discretized belief state i = 0, 1, . . . , L:

V̈ (i) = min



c0 + c1 + C

(p)
i − δ1γ, c0 +

(
c1 + C

(r)
i − δ2γ

)
R̄i(xc) +Ri(xc)

L∑

j=1

V̈ (j)qij − γτi



 ,

which is equivalent to the following pair of linear constraints for states i = 0, 1, . . . , L:

V̈ (i) + δ1γ ≤ c0 + c1 + C
(p)
i ,

V̈ (i)−Ri(xc)
L∑

j=1

V̈ (j)qij + γ
[
τi + δ2R̄i(xc)

] ≤ c0 +
(
c1 + C

(r)
i

)
R̄i(xc). (3.32)

Using the constraints (3.32), the primal LP formulation is as follows:

maximize γ (3.33a)

subject to V̈ (i) + δ1γ ≤ c0 + c1 + C
(p)
i , ∀i = 0, 1, . . . , L

V̈ (i)−Ri(xc)
L∑

j=1

V̈ (j)qij + γ
[
τi + δ2R̄i(xc)

] ≤ c0 +
(
c1 + C

(r)
i

)
R̄i(xc), ∀i = 0, 1, . . . , L,

γ ∈ R.
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The dual LP, formulated directly from the primal, is as follows:

minimize
L∑

i=1

[
c0 +

(
c1 + C

(r)
i

)
R̄i(xc)

]
xi0 +

(
c0 + c1 + C

(p)
i

) L∑

i=1

xi1

subject to xi0 + xi1 −
L∑

j=0

qjiRj(xc)xj0 = 0, ∀ i = 1, 2, . . . , L,

L∑

i=1

[
τi + δ2R̄i(xc)

]
xi0 + δ1

L∑

i=1

xi1 = 1,

xia ≥ 0, i = 0, 1, . . . , L, a ∈ {0, 1}.

Analogous to (3.30), a condition that must hold in a given belief state for preventive replacement

to be optimal is

c0 +
(
c1 + C

(r)
i − δ2γ

)
R̄i(xc) +Ri(xc)

L∑

j=1

V̈ (j)qij − γτi ≥ c0 + c1 + C
(p)
i − δ1γ

or

γ (δ1 − τi) +
(
C

(r)
i − δ2γ

)
R̄i(xc) +Ri(xc)




L∑

j=1

V̈ (j)qij − c1


− C

(p)
i ≥ 0. (3.35)

Therefore, the optimal policy is obtained by solving the primal LP formulation (3.33a) to obtain

γ and V̈ (i), for i = 1, 2, . . . , L. Then condition (3.35) is checked for each discretized belief state to

assign optimal actions.

3.5 POLICIES FOR OBSERVABLE DEGRADATION

In this section, the results of numerical experiments are provided in which optimal policies of both

replacement models are obtained under various environment, cost, or replacement assumptions.

First considered are experiments for the replacement model of Section 3.2 in which replacement

policies are obtained for a single component that is subjected to different operating environments.

It is assumed that the observation interval is δ = 1.0, and the component fails when its cumulative

degradation reaches xc = 40.0. The operating environments are assumed to consist of ` = 3 states

with the following parameterized generator matrix and degradation rates:

Q(q) =




−1.0 0.9 0.1

0.9 −1.0 0.1

0.5 + q/2 0.5 + q/2 −1.0− q


 , r(w) =

[
1.0 2.0 w

]
,
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where q ∈ {−0.5, 0.0, 1.0} and w ∈ {3.0, 5.0, 7.0}. In what follows, optimal replacement policies are

obtained for each pair (q, w) when c0 = 1.0, c1 = 10.0, and c2 = 2.5.

To solve each example numerically, a discretization interval of 0.2 is used for both Π and X \{0},
which corresponds to fixing L1 = 21 and setting L2 = 210, L2 = 220 and L2 = 230 when w = 3.0,

w = 5.0, and w = 7.0, respectively. The respective total number of states when w = 3.0, w = 4.0,

and w = 5.0 are L = 4, 453, L = 4, 663, and L = 4, 875. The optimal policy costs associated with

each environment are shown in Table 8. The results show that γ increases as q decreases and w

Table 8: Policy cost (γ) for various (q, w).

@
@
@
@@

w

q

-0.5 0.0 1.0

3.0 1.4797 1.4557 1.4422

5.0 1.5664 1.5084 1.4709

7.0 1.6433 1.5599 1.5004

increases, which is quite intuitive. As q decreases, the environment spends a greater proportion

of time in ` = 3, and the component’s expected lifetime is reduced. The resulting increase in

replacement frequency leads to a higher policy cost. Likewise, as w increases, the component’s

expected lifetime is reduced as degradation proceeds more rapidly, and the resulting replacement

frequency increases.

For each (q, w) and π̇, Table 9 shows the corresponding replacement threshold xπ̇. For a fixed π̇,

the threshold xπ̇ tends to decrease as q decreases and w increases, which is opposite to the behavior

of γ. Although this trend is weak when the probability of being in a low-degradation state is

relatively high, the trend becomes markedly stronger as the probably of being in a high-degradation

state increases. The rationale is that when the components have shorter expected lifetimes, it is

advantageous to be more conservative by replacing at a lower cumulative degradation level in

order to avoid incurring costly reactive replacement penalties. For this same reason, preventive

replacement also tends to occur earlier for fixed (q, w) when π̇ indicates a higher likelihood that

the environment is in a state with a relatively high degradation rate.

The performance of the POMDP policies is evaluated by comparing their costs with the costs

of an age-replacement policy and a policy consisting of only reactive replacements. The age-

replacement policy is defined to be such that the component is replaced either at 90% of the

component’s expected lifetime or upon failure, whichever occurs first. Performance is evaluated for
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Table 9: Optimal replacement thresholds (xπ̇) for (q, w) and π̇.

w = 3.0 w = 5.0 w = 7.0
π̇ q = −0.5 q = 0.0 q = 1.0 q = −0.5 q = 0.0 q = 1.0 q = −0.5 q = 0.0 q = 1.0

[1.0 0.0 0.0] 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6
[0.8 0.2 0.0] 38.4 38.4 38.4 38.4 38.4 38.4 38.6 38.4 38.4
[0.8 0.0 0.2] 38.2 38.2 38.4 38.2 38.2 38.2 38.2 38.0 38.0
[0.6 0.4 0.0] 38.2 38.2 38.2 38.4 38.2 38.2 38.4 38.2 38.2
[0.6 0.2 0.2] 38.0 38.0 38.2 38.0 38.0 38.0 38.0 37.8 38.0
[0.6 0.0 0.4] 37.4 37.8 38.0 37.0 37.2 37.4 36.6 36.8 37.2
[0.4 0.6 0.0] 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2
[0.4 0.4 0.2] 38.0 38.0 38.0 38.0 38.0 38.0 38.0 37.8 38.0
[0.4 0.2 0.4] 37.4 37.8 38.0 36.8 37.0 37.4 36.6 36.6 37.0
[0.4 0.0 0.6] 37.2 37.4 37.8 36.2 36.4 37.0 35.4 35.8 36.4
[0.2 0.8 0.0] 38.0 38.0 38.0 38.0 38.0 38.0 38.2 38.0 38.0
[0.2 0.6 0.2] 38.0 38.0 38.0 38.0 38.0 38.0 38.0 37.8 38.0
[0.2 0.4 0.4] 37.4 37.8 38.0 36.8 37.0 37.4 36.4 36.6 37.0
[0.2 0.2 0.6] 37.2 37.4 37.8 36.0 36.4 37.0 35.4 35.8 36.4
[0.2 0.0 0.8] 37.2 37.2 37.6 35.2 36.0 36.6 34.2 34.8 36.0
[0.0 1.0 0.0] 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0
[0.0 0.8 0.2] 38.0 38.0 38.0 38.0 38.0 38.0 38.0 37.8 38.0
[0.0 0.6 0.4] 37.4 37.8 38.0 36.6 36.8 37.4 36.2 36.4 36.8
[0.0 0.4 0.6] 37.2 37.4 37.8 36.0 36.2 37.0 35.2 35.8 36.2
[0.0 0.2 0.8] 37.2 37.2 37.6 35.2 35.8 36.6 34.0 34.8 35.8
[0.0 0.0 1.0] 37.2 37.2 37.6 35.2 35.4 36.4 33.2 34.2 35.4

(q, w) ∈ {(0, 3.0), (−0.5, 7.0)}, c0 = 1.0, c1 = 10.0, and c2 ∈ {2.5, 5.0, 10.0, 20.0, 30.0, 40.0}. Define

cr ≡ c1 + c2
c1

as the ratio of the reactive replacement cost to the preventive replacement cost. Figures 29(a) and

29(b) show a comparison of the policy costs for environments (q, w) = (0, 3.0) and (q, w) = (−0.5, 7),

respectively, as a function of cr. In both environments, the performance of the POMDP policies

is superior to those of the age- and reactive-replacement policies. As cr increases and reactive

failures become more punitive, the cost of both the age- and reactive-replacement policies increases

at a much faster rate than the cost of the POMDP policy. The performance disparity is greater

in environment (q, w) = (−0.5, 7.0) which indicates that environment-state information is more

valuable in cases when the environment has a state with relatively high degradation rate and long

expected holding time.

In the next experiment, the replacement model of Section 3.3 is solved numerically under dif-

ferent assumptions for the operating environment, downtime costs, and replacement times. Here

it is assumed that xc = 40.0, δ = 1.0, δ1 = 0.5, c0 = 1.0, and c1 = 1.5. All degradation environ-
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(a) Policy costs for (q, w) = (0, 3.0).
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(b) Policy costs for (q, w) = (−0.5, 7.0).

Figure 29: Comparison of replacement policy performance.

ments consist of ` = 3 states with degradation rates r = [1.0 2.0 5.0]; however, the environments’

stochastic behavior corresponds to one of three generator matrices as follows:

Q1 =




−1.0 1.0 0

0 −1.0 1.0

1.0 0 −1.0


 , Q2 =




−1.0 0.5 0.5

0.5 −1.0 0.5

0.5 0.5 −1.0


 ,

Q3 =




−1.0 0 1.0

1.0 −1.0 0

0 1.0 −1.0


 .

Note that Q1 and Q3 are cyclic environments in which transitions occur in the order (1 →
2 → 3 → 1) and (3 → 2 → 1 → 3), respectively. Environments defined by Q2 are acyclic

and transition randomly to a higher or lower environment state index. To observe the effect of

different reactive replacement times and downtime cost vectors, optimal polices are derived for

δ2 ∈ ∆2 ≡ {0.75, 1.0, 1.5, 2.0, 5.0} and

d1 =
[
1.0 1.1 8.0

]
, d2 =

[
1.0 4.0 8.0

]
.

Let P(i, j, δ2) denote the optimal policy obtained by solving the optimality equations assuming Qi,

dj , and δ2, where i ∈ {1, 2, 3} and j ∈ {1, 2}. Let Dj ≡ {P(i, j, δ2) : i ∈ {1, 2, 3}, δ2 ∈ ∆2} denote

the set of optimal policies obtained under dj , j ∈ {1, 2}.
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The optimality equations are solved numerically by discretizing Π and X \ {0} over intervals

of length 0.2 so that L1 = 21, L2 = 220, and L = 4, 663. Figures 30(a) and 30(b), 31(a) and
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(a) Replacement thresholds policies in D1.
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(b) Replacement thresholds policies in D2.

Figure 30: Replacement thresholds for policies in D1 and D2 when π = [1 0 0].

31(b), and 32(a) and 32(b) show the cumulative degradation thresholds that correspond to being

in environment states 1, 2, and 3, respectively, w.p. 1 for D1- and D2-policies. (Note that for

cases in which no degradation threshold exists for a given environment belief state, the threshold

is assigned the value xc = 40.0.) The relatively high threshold values for the optimal policies when

π = [0 0 1] as compared to when π ∈ {[1 0 0], [0 1 0]} indicate that policies tend to avoid initiating

replacements in state 3, due to the state’s relatively high downtime cost rate. In fact, when π =

[0 0 1] and δ2 ≤ 1.5, preventive replacement is never optimal. For D1-policies, there is a markedly

different preference for the optimal environment state to initiate a preventive replacement between

Q1 and Q3 environments. For π = [1 0 0], the replacement thresholds for the Q1 environment in

D1 are less than those of the corresponding thresholds for the Q3 environment. In other words,

D1-policies have a stronger preference to initiate a preventive replacement when the environment is

in state 1 for a Q1 environment than for a Q3 environment. That the opposite relationship exists

between the replacement thresholds in π = [0 1 0] indicates that D1-policies for Q3 tend to favor

initiating preventive replacements in state 2.
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(a) Replacement thresholds policies in D1.
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(b) Replacement thresholds policies in D2.

Figure 31: Replacement thresholds for policies in D1 and D2 when π = [0 1 0].

The difference of environment state preferences arises because the optimal policies seek to

provide the longest amount of time for a preventive replacement to complete before their respective

environments reach state 3. Since the downtime costs between states 1 and 2 in d1 are nearly

identical, a cost-minimizing strategy mainly consists of avoiding replacements during periods when

the environment is in state 3. For D2-policies, in which state 2 has a moderately high downtime

cost, this preference is relatively weak and does not hold for every value of δ2.
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(a) Replacement thresholds policies in D1.
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(b) Replacement thresholds policies in D2.

Figure 32: Replacement thresholds for policies in D1 and D2 when π = [0 0 1].
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Figures 33(a) and 33(b) show plots of the costs of D1- and D2-policies, respectively. The costs of

the D2-policies for Q3 are significantly higher than those of the respective D2-policies for Q1. That

the Q3 policies tend to have higher costs is due to the fact that their cost-minimizing strategy of

avoiding replacements while the environment is in state 3 requires initiating replacements in state

2, which has a moderately high downtime cost. In the case of Q2, the cost is almost always higher

than those of the corresponding Q1 and Q3 environment policies. This relatively high cost arises

because it is not possible to guarantee avoidance of state 3 for at least one period by initiating a

preventive replacement in state 1 or 2.
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(a) Average cost of policies in D1.
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(b) Average cost of policies in D2.

Figure 33: Average costs of policies in D1 and D2 as a function of δ2.

Two POMDP models for optimally replacing a single wind turbine component were presented

in this chapter that assumed perfect observations of the component’s degradation level. In the

next chapter, replacement of the wind turbine component is considered for imperfect observations,

where a surrogate signal of component degradation is observed.
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4.0 REPLACEMENT FOR IMPERFECTLY-OBSERVED DEGRADATION

In this chapter, the replacement model of Section 3.2 is extended to cases in which degradation

is observed imperfectly through readings from a noisy sensor. Structural results are presented to

characterize the optimal policy, and a projection-filtering algorithm that employs a belief-projection

technique to reduce the dimensionality of the belief space, is used to solve the optimality equations

numericaly. A modification of the algorithm is developed for the case when the environment state is

known with certainty. To illustrate the optimal policies of the replacement models, and to compare

their performance with the case where the environment is perfectly observed, the results of several

numerical experiments are presented.

4.1 PARTIALLY-OBSERVED MARKOV DECISION PROCESS MODEL

In this section, the model of Section 3.2 is extended to the case of imperfectly-observed degradation.

Here, it is assumed that the degradation level is assessed by observing a random signal Yn that has

a probability density function (p.d.f.) parameterized by Xn and θ ∈ Θ, where Θ ⊆ Rm. Let

ψn(x) ≡ ∂

∂u
P(Xn ≤ u|yn, yn−1, . . . , y0, an−1, an−2, . . . , a0)

∣∣∣∣
u=x

be defined as the belief state of degradation at the beginning of the nth epoch, and Ψ be the

belief space of degradation, where Ψ is an infinite-dimensional space of probability densities. To

formulate the replacement problem as a POMDP, denote the belief state in the nth decision epoch

by b(n) = (ψn, πn). Given all prior signal observations up to epoch n, {y0, y1, . . . , yn}, and actions

{a0, a1, . . . , an−1}, the density ψn(x) is expressed as a recursive function of a p.d.f. p as follows:

ψn(x) ≡ p(x|y0, . . . , yn, a0, . . . , an−1, πn−1)

∝ p(yn|xn = x, an−1, πn−1)

∫ xc

0
p(x|an−1, xn−1, πn−2)ψn−1(xn−1)dxn−1. (4.1)
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Computing the updated belief state using (4.1), which is conditioned on all past signal obser-

vations and actions, is not analytically tractable. Instead, a simplified POMDP model will first

be described in which the belief state is recursively updated using only the most recent signal

observation and action. Let f(yn, xn; θ) denote the joint p.d.f. of (Yn, Xn) under parameter θ,

where (xn, θ) ∈ [0, xc]×Θ, and let the conditional density of Xn, given observation yn be denoted

h(xn|yn; θ), where

h(xn|yn; θ) = f(yn, xn; θ)∫ xc

0
f(yn, u; θ) du

, (xn, yn) ∈ [0, xc]× R, θ ∈ Θ.

Given no replacement, the updated belief state element π
(i)
n is computed in this simplified model

as π
(i)
n = T ∗(yn, yn−1, πn−1), where for (y′, y, π) ∈ R2 ×Π and Ti(u, π) as defined in (3.1),

T ∗(y′, y, π) ≡ [T ∗
1 (y

′, y, π), T ∗
2 (y

′, y, π), . . . , T ∗
` (y

′, y, π)],

T ∗
i (y

′, y, π) ≡ P(Zn = j|y′, y, π)

=

∫ ∞

0
P(Zn+1 = j|∆Xn = u, π)g(u|y′, y) du

=

∫ ∞

0
Ti(u, π)g(u|y′, y) du,

and

g(u|y′, y) =
∂

∂u′
P(Xn −Xn−1 ≤ u′|y′, y)

∣∣∣∣
u′=u

=
∂

∂u′

∫ ∞

−∞

∫ u′+v

−∞
h(w|y′, θ)h(v|y, θ)dw dv

∣∣∣∣∣
u′=u

=

∫ ∞

−∞
h(u+ v|y′, θ)h(v|y, θ)dv.

Because the density h(x|y; θ) is determined by y, the belief state of the simplified POMDP is

denoted by b(n) = (yn, πn), and the belief space of the POMDP is H(Θ) × Π, where H(Θ) =

{h(x|y; θ) : θ ∈ Θ} is the set of all possible densities h(x|y; θ) for θ ∈ Θ. Letting k(u, π) be defined

as in (3.1), the transition kernel density between (y, π) ∈ B and (y′, π′) ∈ B conditioned on the

non-occurrence of a failure in the next period is denoted by k∗((y, π), (y′, π′)), where

k∗((y, π), (y′, π′)) =
∫ xc

0

∫ ∞

0
f(y′|x+ u, θ)k(u, π)h(x|y, θ)dudx (4.2)

when π′ = T ∗(y′, y, π) and is zero otherwise. It is important to note in (4.2) that the transition

kernel density is only non-zero at a single element π′ ∈ Π, which is obtained directly as a function

of (y′, y, π).
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As in Section 3.2, all degradation observations and preventive replacements (if chosen) occur

instantaneously at the beginning of a period and cost c0 and c1, respectively (0 < c0 < c1 < ∞). If

the component fails between two observation epochs, a reactive replacement is instantly performed

and costs c1 + c2, where c2 > 0 is a penalty. The components are assumed to begin operation in

belief state (0, πs), where πs is the stationary distribution of the environment. The objective is to

minimize the long-run average cost of replacements per unit time, denoted γ, where

γ = inf
a∈P

Ea

{
lim

N→∞
1

N

N∑

n=1

c0 + c1 I{a(Yn, πn) = 1}+ (c1 + c2) I{a(Yn, πn) = 0, Ĝ(Yn, πn) = 1}
}
,

and Ĝ(Yn, πn) is the event the component fails between decision epochs n and n+1 given (Yn, πn) ∈
B.

The optimality equations are now presented. Let V (y, π) be the minimum relative cost per

unit time given a component starts operation in (y, π) ∈ B, and define V0(y, π) and V1(y, π) as the

relative costs if either no action or preventive replacement, respectively, are taken in (y, π) ∈ B. For

a new component that enters operation, the relative cost is denoted V (0). The expected survival

time of the component in the next period given (y, π) ∈ B is denoted τ∗(y, π), where

τ∗(y, π) =
∫ xc

0
τ(x, π)h(x|y, θ) dx,

and τ(x, π) defined by (3.1). The optimality equations are as follows:

V (y, π) = min{V1(y, π), V0(y, π)}, (4.3)

where Vπ(y
′, y) ≡ V (y′,T ∗(y′, y, π)),

V1(y, π) = c0 + c1 + V (0)

V0(y, π) = c0 +

∫ xc

0

∫ ∞

0
I+(x, u)[c1 + c2 + V (0)]k(u, π)h(x|y, θ) du dx− γτ∗(y, π)

+

∫ xc

0

∫ ∞

0

∫ ∞

−∞
I−(x, u)Vπ(y

′, y)f(y′|x+ u, θ)k(u, π)h(x|y, θ) dy′ du dx.

An analytical solution for the optimality equations (4.3) is not known except in trivial cases.

Nonetheless, it is still possible to show some basic structural properties of the resulting optimal

policy. In what follows, it is proved that under certain conditions the optimal policy has a threshold

structure with respect to y for fixed π ∈ Π.
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Lemma 4.1. Let C0 ≡ c0 + c1 + V (0), then

V0(y, π) ≥ C0 − c1 + (c1 + c2)G(y, π)− γτ∗(y, π), (4.4)

where

G(y, π) ≡
∫ xc

0

∫ ∞

0
H(x, π)h(x|y, θ) dx

is the failure probability in the next period, given (y, π) ∈ B and H(x, π) is defined in (3.3).

Proof. To establish the lower bound, note that Vπ(y, π) ≥ V (0) for (y, π) ∈ B. Defining C1 ≡
c1 + c2 + V (0), it follows that

V0(y, π) = c0 +

∫ xc

0

∫ ∞

0
I+(x, u)[c1 + c2 + V (0)]k(u, π)h(x|y, θ) du dx− γτ∗(y, π)

+

∫ xc

0

∫ ∞

0

∫ ∞

−∞
I−(x, u)Vπ(y

′, y)f(y′|x+ u, θ)k(u, π)h(x|y, θ) dy′ dudx

≥ c0 + C1

∫ xc

0

∫ ∞

0
I+(x, u)k(u, π)h(x|y, θ) dudx− γτ∗(y, π)

+V (0)

∫ xc

0

∫ ∞

0
I−(x, u)

(∫ ∞

−∞
f(y′|x+ u, θ) dy′

)
k(u, π)h(x|y, θ) du dx

= c0 + C1G(y, π) + V (0)(1−G(y, π))− γτ∗(y, π)

= C0 − c1 + (c1 + c2)G(y, π)− γτ∗(y, π).

Establishing simple properties of V (y, π), such as monotonicity, is difficult and is strongly

dependent on the choice of f(x, y; θ). However, it is possible to utilize the lower bound (4.4), which

is a relatively simple function, to obtain some basic structural results for the optimal policy. In

order to establish these results, the conditional density h(y|x; θ) must satisfy some conditions which

are based on the following definitions:

Definition 4.1. For t ≥ 0 and (x, π) ∈ [0, xc]×Π, let

L(x, π, t) ≡
∑

i∈S
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)π(i).

That is, L(x, π, t) is the probability that the component fails during an observation interval of

length t, given belief state (x, π).
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Definition 4.2. For any real function φ(x, π) and (x, π) ∈ [0, xc]×Π, define

Ey[φ(x, π)] ≡
∫ xc

0
φ(x, π)h(x|y, θ) dx.

Based on Definitions 4.1 and 4.2, a lemma can be stated that characterizes the functions G(y, π)

and τ∗(y, π).

Lemma 4.2. If Ey[L(x, π, t)] is monotone increasing in y ∈ R, then G(y, π) is monotone increasing

in y ∈ R, and τ∗(y, π) is monotone decreasing in y ∈ R.

Proof. Observe that

H(x, π) = P(Xn+1 ≥ xc|Xn = x, πn = π)

=
∑

i∈S
P(X1 ≥ xc − x|X0 = 0, Z0 = i)π(i)

=
∑

i∈S
P(X(δ) ≥ xc − x|X(0) = 0, Z(0) = i)π(i)

= L(x, π, δ).

Therefore, it follows directly from the hypothesis that Ey[H(x, π)] = G(y, π) is monotone increasing

in y ∈ R. Also, note that

τ(x, π) =

∫ δ

0

∑

i∈S
P(X(t) ≤ xc|X(0) = x,Z(0) = i)π(i) dt

=
∑

i∈S

{∫ δ

0
[1− P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)] dt

}
π(i)

=
∑

i∈S

[
δ −

∫ δ

0
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i) dt

]
π(i)

= δ −
∑

i∈S

[∫ δ

0
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i) dt

]
π(i)

= δ −
∫ δ

0

[∑

i∈S
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)π(i)

]
dt,
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so

τ∗(y, π) = Ey[τ(x, π)]

= Ey

[
δ −

∫ δ

0

(∑

i∈S
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)π(i)

)
dt

]

= δ − Ey

[∫ δ

0

(∑

i∈S
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)π(i)

)
dt

]

= δ −
∫ xc

0

∫ δ

0

(∑

i∈S
P(X(t) ≥ xc − x|X(0) = 0, Z(0) = i)π(i)

)
h(x|y, θ) dtdx

= δ −
∫ δ

0

∫ xc

0
L(x, π, t)h(x|y, θ) dxdt (Fubini)

= δ −
∫ δ

0
Ey[L(x, π, t)] dt.

Then
∫ δ
0 Ey[L(x, π, t)] dt is monotone increasing in y under the hypothesis, and τ∗(y, π) is monotone

decreasing.

Lemma 4.2 is based on the rather technical condition that Ey[L(x, π, t)] is increasing in y.

However, this condition can be understood intuitively. The condition essentially requires that the

conditional density h(x|y; θ) shift more probability mass to larger values of x as y increases. Since

the probability L(x, π, t) is clearly increasing in x, the integral Ey[L(x, π, t)] will increase as more

probability mass is shifted to larger values of x. An illustration of this condition is shown in Figure

34.
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Figure 34: Depiction of monotonicity condition.
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Theorem 4.1. If Ey[L(x, π, t)] is monotone increasing in y ∈ R, limy→∞G(y, π) = 1, and

limy→∞ τ∗(y, π) = 0, then for each π ∈ Π, there exists a threshold yπ such that it is optimal

to replace for any y′ ≥ yπ.

Proof. By Lemma 4.1, a sufficient condition for the optimality of preventive replacement is

V1(y, π) ≤ C0 − c1 + (c1 + c2)G(y, π)− γτ∗(y, π),

which implies

0 ≤ −c1 + (c1 + c2)G(y, π)− γτ∗(y, π). (4.5)

Under the hypothesis, the right side of (4.5) is monotone increasing by Lemma 4.2, and the inequal-

ity is satisfied in the limit as y → ∞. Therefore, there exists yπ ∈ R such that V0(y, π) ≥ V1(yπ, π)

for all y ≥ yπ, and preventive replacement is optimal.

Theorem 4.1 establishes that it is possible to obtain replacement thresholds for each environment

state, not with respect to the cumulative degradation level, but with respect to a signal serving

as an indirect measure of the true degradation. The existence of such thresholds is significant

because the optimal policy can be easily implemented in wind turbine applications where the true

degradation is typically not directly observed. As replacement decisions are not only based on the

explicit value of the signal but also on the environment state, replacement decisions can take into

account all information known about the environment.

4.2 NUMERICAL SOLUTION TECHNIQUES

Solving for the optimal policy on the belief space B = Ψ × Π is not analytically tractable as

closed-form expressions for the updated belief state cannot be obtained in general. This section

describes a numerical solution technique that uses particle-filtering and belief-projection techniques

to approximate the optimal policy.

Standard approaches for solving POMDPs numerically often entail discretizing the belief space

and then applying value- or policy-iteration algorithms. Because B is infinite dimensional, these

standard solution approaches are not computationally tractable [116]. Instead a technique known

as belief (or density) projection is employed that projects Ψ onto a family of parameterized densities
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G = {g(.; θ) : θ ∈ Θ}, where Θ is the parameter space of the density family. The key idea is that

for any given belief state ψ ∈ Ψ, there exists a g∗ ∈ G with parameterization θ∗ ∈ Θ such that a

measure of distance between the densities ψ and g∗ (e.g., the Kullback-Leibler (KL) divergence)

is minimized. In this way, elements of Ψ can be approximated by distributions parameterized on

Θ, thereby, yielding a “parameterized” belief space BΘ ≡ Θ× Π. Assuming the dimensionality of

Θ is low, the POMDP can be approximately solved using a policy iteration algorithm on the set

ḂΘ ≡ Θ̇ × Π̇, where Π̇ and Θ̇ are discretizations of Π and Θ, respectively. Table 10 summarizes

the attributes and notation associated with each type of belief space.

Table 10: Summary of belief space attributes.

Type State space Belief state

True belief space B = Ψ×Π ψ × π; ψ ∈ Ψ, π ∈ Π

⇓ ⇓ ⇓
Parameterized belief space BΘ = Θ×Π g(·; θ)× π; g(·; θ) ∈ G, π ∈ Π

⇓ ⇓ ⇓
Discretized belief state ḂΘ = Θ̇× Π̇ (θ̇i, π̇i); θ̇i ∈ Θ̇, π̇i ∈ Π̇, i = 1, 2, . . . , L

Ψ: Infinite-dimensional space of probability densities

Π: Probability simplex

G ≡ {g(·; θ), θ ∈ Θ}: Family of densities parameterized on Θ ⊆ Rm

Θ̇, Π̇: Discretizations of Θ and Π, respectively, L ≡ |ḂΘ|

The numerical solution approach is now described in detail. Obtaining an approximate solution

to the MDP on ḂΘ requires estimating the transition probabilities between all pairs of discretized

belief states. Let ḃ(n) ∈ ḂΘ denote the discretized belief state at the nth decision epoch, and

L ≡ |ḂΘ| denote the total number of discretized states. For notational convenience, write (ḃ(n) =

i) ≡ (ḃ(n) = (θ̇i, π̇i)), where θ̇i ∈ Θ̇, π̇i ∈ Π̇, i = 1, 2, . . . , L. We seek to estimate the matrix

Ṗ = [ṗij ], where ṗij = P(ḃ(n+1) = j|ḃ(n) = i, xn+1 < xc) as the transition probability between

discretized belief states i and j in the nth decision epoch, given degradation has not exceeded xc,

i, j = 1, 2, . . . , L. Let υ = (x, i), where (x, i) ∈ Υ = [0, xc] × S. This estimate is obtained in three

major steps: (1) Estimating b(n) given (b(n−1), υn−1, an−1), (2) Projecting b(n) onto BΘ, and (3)

Approximating BΘ with ḂΘ. In what follows, each step is described in detail.

Computing b(n) using (4.1) requires filtering. With the exception of a few instances (e.g. linear

Gaussian systems), filtering cannot be solved analytically [20], so an approximate particle filtering
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technique is used instead. The notion of particle filtering is to approximate a density with a

probability mass function (p.m.f.) defined by a finite set of weighted particles [81]. Particle filtering

confers the advantage that potentially intractable computations can be avoided by simulating the

particles’ probabilistic evolutions. In what follows, it is assumed that Yn ∼ N(Xn, σ
2
ε ), where

σε > 0. Denote the total number of particles by N̂ , and let υ
(i)
n = (x

(i)
n , z

(i)
n ) ∈ Υ and w

(i)
n ∈ (0, 1] be

the core state and weight, respectively, of the ith particle at the nth decision epoch, i = 1, 2, . . . , N̂ ,

where
∑N̂

i=1w
(i)
n = 1. Denoting by υ

(i)
n|n−1 the state of particle i in decision epoch n, given it was in

state υ
(i)
n−1 in state n − 1, the set B̂(n) =

{
(υ

(i)
n|n−1, w

(i)
n ) : i = 1, 2, . . . , N̂

}
defines a p.m.f. b̂(n)(υ)

that approximates b(n) on the support Υ, where

b̂(n)(υ) =

N̂∑

i=1

w(i)
n I

(
υ = υ

(i)
n|n−1

)
,

w(i)
n ∝ p

(
yn|υ(i)n|n−1, an−1

)
.

The p.m.f. b̂(n) ∈ B must be projected onto an element b̄(n) ≡ (θ̄n, π̄n) ∈ BΘ. The vector π̄n is

obtained in a straightforward manner by averaging the environment states in B̂(n). That is

π̄n = N̂−1
N̂∑

i=1

∑̀

j=1

I
(
z
(i)
n|n−1 = j

)
· ej , (4.6)

where ej is the jth unit vector. Obtaining θ̄n requires minimizing some measure of distance between

b̂(n) and g(.; θ). Typically the KL-divergence, denoted DKL, is minimized where for distributions

F1 and F2 with respective densities f1 and f2,

DKL(F1||F2) ≡
∫ ∞

−∞
f1(x) ln

f1(x)

f2(x)
dx. (4.7)

However, minimizing (4.7) can be quite arduous computationally, so for practical reasons, the

maximum likelihood estimate (MLE) is used as a proxy for DKL. Given b̂(n) and G, we set θ̄n equal

to its MLE; that is,

θ̄n = argmin
θ∈Θ

N̂∑

i=1

w(i)
n g

(
x
(i)
n|n−1; θ

)
. (4.8)

The discretization ḂΘ of Θ is then obtained by mapping the projected belief state b̄(n) = (θ̄n, π̄n)

to a discrete state with index v̄ ∈ {1, 2, . . . , L} by minimizing the norms between the projected and

discretized parameters as follows:

v̄ = argmin
i=1,2,...,L

‖θ̇i − θ̄n‖+ ‖π̇i − π̄n‖. (4.9)
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A simulation-based projection particle filtering algorithm, based on the approach of Zhou, et al.

[117], is employed that computes each row of Ṗ by performing both particle filtering and density

projection. For i = 1, 2, . . . , L, the projection-filtering algorithm computes row [ṗl.] as follows:

1. Sample particles {υ(1)n−1, υ
(2)
n−1, . . . , υ

(2N̂)
n−1 }, where υ

(i)
n−1 ∼ g(·; θ̇l)× π̇l, i = 1, 2, . . . , 2N̂ .

2. Simulate {υ(1)n|n−1, υ
(2)
n|n−1, . . . , υ

(2N̂)
n|n−1} according to (2.1) for time δ.

3. Sample {υ′(1)
n|n−1, υ

′(2)
n|n−1, . . . , υ

′(2N̂)
n|n−1}, where υ

′(i)
n|n−1 is randomly drawn with replacement from

{υ(j)n|n−1 : υ
(j)
n|n−1 < xc, j = 1, 2, . . . , 2N̂}.

4. Simulate cumulative degradation observations {y1, y2, . . . , yN̂}, where yi ∼ N(x
′(i)
n|n−1, σ

2
ε ).

5. Compute w
(ij)
n , the weight of the jth particle, given the ith observation, where

w(ij)
n =

φ


yi − υ

′(N̂+j)
n|n−1

σε




N̂∑

k=1

φ


yi − υ

′(N̂+k)
n|n−1

σε



, i, j = 1, 2, . . . , N̂ ,

and

φ(x) =
1√
2π

exp

(
−1

2
x2

)

is the standard normal density.

6. For i = 1, 2, . . . , N̂ , set B̂
(n)
i = {υ(j)n|n−1, w

(ij)
n , j = 1, 2, . . . , N̂} and compute b̄(n) using (4.6) and

(4.8). Determine the closest discretized belief state v̄i to b̄
(n)
i using (4.9).

7. For m = 1, 2, . . . , L, compute

plm = N̂−1
N̂∑

i=1

I(v̄i = m)

Now the MDP formulation on ḂΘ is presented. Denote the relative cost of starting in ḃ(0) = i

by V (i) and the relative costs of doing nothing and replacing a component in ḃ(0) = i, respectively,

by V0(i) and V1(i). The optimality equation is

V (i) = min{V0(i), V1(i)}, i = 1, 2, . . . , L. (4.10)
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When a preventive replacement is performed in ḃ(n) = i, the total relative cost consists of the

inspection and replacement costs as well as the relative cost of starting in a “good-as-new” condition,

denoted V (0). It is assumed that after a replacement the cumulative degradation is zero w.p. 1,

and the environment is distributed as the stationary distribution πs; that is, (xn, zn) ∼ δ(u)× πs,

where δ(u) is the dirac delta function. Then

V1(i) = c0 + c1 + V (0), i = 1, 2, . . . , L.

If no replacement is made in a decision epoch, computing V0(i) requires conditioning on whether

a failure occurs in the subsequent period. Abusing notation slightly, let Ri(t) = P(X(s + t) <

xc|b(s) = i), s ∈ R+, be the probability of survival in time interval (s, s+ t), given b(s) = i, where

Ri(t) =

∫ xc

0
F (xc − u, δ; π̇i)g(u; θi)du

∫ xc

0
g(u; θi)du

(4.11)

and

F (x, t;π) =
∑

i∈S
P(X(t) ≤ x|X(0) = 0, Z(0) = i)π(i), (4.12)

is the c.d.f. of the degradation increment on [0, t], given the initial environment distribution π ∈ Π.

The expected survival time during the next period, given b(n) = i, denoted τi, is computed using

(4.11) as

τi =

∫ δ

0
Ri(u)du, i = 1, 2, . . . , L.

The value function for doing nothing in ḃ(n) = i is

V0(i) = c0 + [c1 + c2 + V (0)] [1−Ri(δ)] +
L∑

j=1

pijRi(δ)V (j)− γτi,

where γ is the minimum long-run expected cost per unit time. The optimal policy to minimize

long-run average cost can be obtained from the optimality equation (4.10) in a straightforward

manner using policy iteration or an LP-based approach.

The replacement model and projection-filtering algorithm can be easily modified for the case

where degradation is imperfectly observed, but the environment state is known with certainty.

The belief space of the modified POMDP is B− = Ψ × Π−, where Π− = {ei : i = 1, 2, . . . , `} is

simply the set of extreme vectors in the simplex Π. The POMDP is solved using the same general

approach by formulating it as an MDP on B−, which is then approximated using density projection

as BΘ− = Θ × Π−. However, the fact that the environment is observable actually complicates
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the particle filtering slightly as resampling must be performed in a way that captures the extra

information known about the environment. The transition probability matrix Ṗ is estimated using

a modification of the projection-filtering algorithm that partitions the particles by their environment

state before resampling to account for observability of the environment state at each decision epoch.

The modified projection-filtering algorithm to compute row [ṗl.] of Ṗ for l = 1, 2, . . . , L is as follows:

1. Sample particles {υ(1)n−1, υ
(2)
n−1, . . . , υ

(2N̂)
n−1 } from ḃu ∈ ḂΘ, where υ

(i)
n−1 ∼ g(·; θl)×πl, i = 1, 2, . . . , 2N̂ .

2. Simulate {υ(1)n|n−1, υ
(2)
n|n−1, . . . , υ

(2N̂)
n|n−1} according to (2.1) for time ∆I.

3. For k ∈ S, compute N̂ (k) the number of particles in environment state k, where

N̂ (k) =

2N̂∑

i=1

I
(
z
(i)
n|n−1 = k

)
,

and set

n(k) =




(N̂ (k) − 1)/2, if N̂ (k) is even,

N̂ (k)/2, if N̂ (k) is odd.

4. For k ∈ S,
a. Sample {υ′(1)

n|n−1, υ
′(2)
n|n−1, . . . , υ

′(n(k))
n|n−1 }, where υ

′(i)
n|n−1 is randomly sampled with replacement

from {υ(j)n|n−1 : υ
(j)
n|n−1 < xc, z

(j)
n|n−1 = k, j = 1, 2, . . . , n(k)}.

b. Simulate cumulative degradation observations {y1, y2, . . . , yn(k)}, where yi ∼ N
(
x

′(i)
n|n−1, σ

2
ε

)
.

c. Compute w
(ij)
n , the weight of the jth particle, given the ith observation, where

w(ij)
n =

φ


yi − υ

′(n(k)+j)
n|n−1

σε




N̂∑

l=1

φ


yi − υ

′(n(k)+l)
n|n−1

σε



, i, j = 1, 2, . . . , n(k).

97



d. For i = 1, 2, . . . , N̂ set B̂
(n)
i = {υ(j)n|n−1, w

(ij)
n , j = 1, 2, . . . , n(k)} and compute b̄

(n)
i using

(4.6) and (4.8). Determine the closest discretized belief state v̄i to b̄
(n)
i using (4.9).

e. For m = 1, 2, . . . , L, compute

plm = ηk

n(k)∑

i=1

I(v̄i = m),

where the correction factor ηk is

ηk =
N̂ (k)

2N̂n(k)
.

The optimality equations are identical to (4.10).

4.3 POLICIES FOR IMPERFECTLY-OBSERVED DEGRADATION

In this section, three numerical examples are presented that illustrate optimal policies obtained from

the two replacement models of Section 4.2 in which (i) the environment is partially-observable and

degradation is imperfectly observed (PEID) and (ii) the environment is observable and degradation

is imperfectly observed (OEID). To provide a basis for comparison in order to assess the cost of

uncertainty in degradation observations, the performance of PEID and OEID policies is compared

with policies obtained from the replacement model of Section 3.2 that assumes a partially-observed

environment and observable degradation (PEOD). The performance of all three models will also

be compared with those of the age- and reactive-replacement policies described in Section 3.5. The

first numerical example illustrates optimal policies for a relatively simple degradation environment;

whereas, the second and third examples consider replacement policies for wind turbine components

based on real data.

4.3.1 An Illustrative Example

Consider a component that operates in an ` = 3 state CTMC environment with the following

parameters:

Q =




−1.0 0.9 0.1

0.9 −1.0 0.1

0.5 0.5 −1.0


 , r =

[
1.0 2.0 5.0

]
.
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The component’s cumulative degradation is measured at a constant inspection interval δ = 1.0,

and failure is assumed to occur when the cumulative degradation exceeds the critical threshold

xc = 40.0. The inspection, preventive replacement, and reactive replacement penalty costs are

c0 = 1.0, c1 = 10.0 and c2 = 100.0, respectively. In what follows, optimal replacement policies

for the component are derived based on the observability of the environment states for values of

σε ∈ {0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. To solve each instance numerically, the number of particles

used is N̂ = 500, and we let G be the family of truncated normal densities on [0, xc], where Θ =

{(µ, σ) ∈ (−∞,∞)× (0,∞)}. (It is important to not confuse σ, a component in the parameterized

belief state of degradation, with σε, the degree of “noise” in degradation observations.) For θ ∈ Θ,

the p.d.f. is given by

g(x; θ) =

σ−1φ

(
x− µ

σ

)

φ

(
xc − µ

σ

)
− φ

(µ
σ

) , (4.13)

where φ is the standard normal density. In the case of the PEID model, policies are obtained on a

discretized belief space ḂΘ = Θ̇× Π̇, where

Θ̇ =





{(µ̇, σ̇) ∈ {0.2, 0.4, . . . , 38.6} × {0.04, 0.08, . . . , 0.4}}, σε = 0.25,

{(µ̇, σ̇) ∈ {0.2, 0.4, . . . , 38.6} × {0.1, 0.2, . . . , 1.0}}, σε = 0.5,

{(µ̇, σ̇) ∈ {0.2, 0.4, . . . , 38.6} × {0.1, 0.4, . . . , 2.8}}, σε ∈ {1.0, 2.0},

{(µ̇, σ̇) ∈ {0.2, 0.4, . . . , 38.6} × {1.0, 1.3, . . . , 3.7}}, σε ∈ {3.0, 4.0, 5.0},
Π̇ = {πs, [1/2 1/2 0], [0 1/2 1/2], [1/2 0 1/2]} ,

and L = 7, 720. The OEID model is solved numerically using the same parameters for σε and Θ̇ as

in the PEID case but with Π̇ ∈ Π− so that L = 5, 790.

Table 11: Policy cost per unit time.

σε → 0.25 0.5 1.0 2.0 3.0 4.0 5.0

γ (PEID) 1.5503 1.5586 1.5673 1.5844 1.5968 1.6058 1.6124

γ (OEID) 1.5328 1.5378 1.5434 1.5489 1.5570 1.5620 1.5677

The optimal policy costs of the PEID model for each value of σε are shown in Table 11, and

Figures 35, 36, and 37 display the optimal policies for σε ∈ {1.0, 3.0, 5.0}, respectively, where

each policy is partitioned into separate plots by π̇ ∈ Π̇. As σε increases, the PEID policy cost
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Figure 35: Optimal policy (PEID model, σε = 1.0)).
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Figure 36: Optimal policy (PEID model, σε = 3.0)).

increases as the true degradation level of the component becomes more difficult to discern, and

the policies react by favoring preventive replacement at smaller values of µ. In addition, when it

is likely the environment is in a high-degradation state, the policies tend to replace for smaller µ

due to the relatively high likelihood that cumulative degradation will exceed the critical threshold

in the next decision period. The policy structure with respect to σ is more complex due to the
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characteristics of the truncated normal distribution used in the density projection. In fact, for a

fixed µ, the component’s survival probability and expected survival time over the next period are

not necessarily monotone with respect to σ. Therefore, it is possible that the preventive replacement

boundary with respect to µ is not monotone in σ. This behavior is especially pronounced when the

probability of being in a state with a high degradation rate is large. Next we consider the case when
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Figure 37: Optimal policy (PEID model, σε = 5.0)).

the environment is observable (OEID). The cost of each optimal policy is shown in Table 11. The

fact that the average cost of each OEID policy for a given σε is less than that of the corresponding

PEID policy is consistent with the notion that having perfect information about the environment

leads to better replacement decisions. The optimal policies for σε ∈ {1.0, 3.0, 5.0} are shown in

Figures 38, 39, and 40, respectively. Each policy exhibits a strong structural similarity to those

of the PEID model. The trends to replace for smaller µ when σε is relatively large or when the

degradation rate of the current environment state is high are still present as well as the tendency

to preventively replace for a fixed µ only for large or small values of σ. Plots of the the average

policy costs of the PEID and OEID models as a function of σε are shown together in Figure 41.

For purposes of comparison, the optimal policy cost (γ = 1.5389) for a replacement model in a

PEOD environment is also shown on the plot. As σε approaches zero, the cost of the PEID policy

decreases toward that of the PEOD policy; whereas, the cost of the OEID policy is already less than

that of the PEOD policy for σε ≤ 0.5. Therefore, perfect knowledge of the operating environment

state does in fact confer a noticeable benefit to the resulting replacement policy. The age- and
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Figure 38: Optimal policy (OEID model, σε = 1.0)).
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Figure 39: Optimal policy (OEID model, σε = 3.0)).

reactive-replacement policies have costs of 2.8058 and 5.9225, respectively. The costs of these two

policies do not depend on σε as the component’s lifetime distribution is determined by (Q, r) only.

All three POMDP policies outperform the age- and reactive replacement policies by at least 42.5%

and 72.8%, respectively, over the range of σε.
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Figure 40: Optimal policy (OEID model, σε = 5.0)).
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Figure 41: Average policy costs (PEOD, PEID, and OEID models)).

4.3.2 A Wind Turbine Gear Replacement Example

This example considers the optimal replacement of a gear operating in a wind turbine’s drive train.

Gear tooth degradation is measured as the effective number of load cycles, which is computed

as a function of shaft torque and rotor speed. Failure is assumed when the effective number of
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load cycles exceeds xc = 107. To estimate the environment parameters, a degradation path is

simulated to failure using the approach outlined in Example 4 of Section 2.4, where the S-N curve

is parameterized by the values in Case (iii). The environment parameters r, Q, and ` are estimated

using the MCMC-based inference procedure of Section 2.3 to be as follows:

Q =




−0.0131 0.0081 0.0050

0.0443 −0.0836 0.0393

0.0276 0.0159 −0.0435


 , r = 104 ×

[
0.1327 1.1231 1.6746

]
.

Due to errors in both the observed data as well as deviations from the physics-based wear model,

it is assumed that there are various degrees of uncertainty in assessing the true number of effective

load cycles imposed on a gear tooth. To account for this uncertainty, the computed number of load

cycles is assumed to be normally distributed with a mean corresponding to the actual number of

cycles with variance σ2
ε . The normality of error is typically a valid assumption in practice where the

error can be considered as the sum of a large number of independent error terms which converge

in distribution to a normal random variable. The inspection interval is δ = 100.0 minutes, and

the inspection, preventive replacement, and reactive replacement penalty costs are assumed to be

c0 = 1.0, c1 = 100.0 and c2 = 200.0, respectively. The large penalty for reactive replacements is

chosen to reflect the extra expenses incurred in the logistics and lost production associated with a

sudden replacement.

Table 12: Policy cost per unit time (gear replacement example).

σε → 2.5× 104 7.5× 104 2.5× 105

γ (PEID) 0.07075 0.07885 0.08896

γ (OEID) 0.06894 0.07634 0.08235

Optimal policies are obtained for both the PEID and OEID models when σε ∈ {2.5× 104, 7.5×
104, 2.5×105} by projecting the belief space onto the truncated family of truncated normal densities

(4.13). For the PEID model, N̂ = 500 and the discretized belief space is ḂΘ = Θ̇× Π̇, where

Θ̇ =
{
(µ̇, σ̇) ∈ {1.0× 105, 6.0× 105, . . . , 98.6× 105} × {0.1σε, 0.2σε, . . . , σε}

}
,

Π̇ = {πs, [1/2 1/2 0], [0 1/2 1/2]} ,

and L = 5, 940. The costs for optimal policies of the PEID model are shown in Table 12 for each

value of σε. As in the previous example, the policy cost increases with σε as the true degradation
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Figure 42: Optimal policy (PEID model, σε = 2.5× 104)).

8 9 10

x 10
6

2

4

6

x 10
4

Replace

µ

π=[1/2 1/2 0]

Do nothing

σ

8 9 10

x 10
6

2

4

6

x 10
4

Replace

µ

π=[0 1/2 1/2]

Do nothing

σ

8 9 10

x 10
6

2

4

6

x 10
4

Replace

µ

π=π
s

Do nothing

σ

Figure 43: Optimal policy (PEID model, σε = 7.5× 104)).

level of the gear becomes less discernable. The associated optimal policies for σε ∈ {1.0, 3.0, 5.0} are

shown in Figures 42, 43, and 44, respectively. The figures indicate the same general characteristics

of policy structure observed in the previous example. The policies favor replacing for smaller µ when

it is likely the environment is in a high-degradation state due to the corresponding higher likelihood

that cumulative degradation will exceed the critical threshold in the next decision period. Also, as
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σε increases, the optimal policies tend to favor preventive replacement for smaller µ reflecting that

increased uncertainty leads to more conservative replacement decisions. Some of the same complex

behavior that results from effects of the truncated normal distribution are also observed as in the

last example, though the policies are relatively insensitive to σ.
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Figure 44: Optimal policy (PEID model, σε = 2.5× 105)).
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Figure 45: Optimal policy (OEID model, σε = 2.5× 104)).

106



The OEID model is solved numerically using N̂ = 750 particles on ḂΘ− = Θ̇ × Π̇−, where

L = 4, 455. Policy costs are shown in Table 12 and are lower than those of the PEID model for

corresponding σε. Figures 45, 46, and 47 show the optimal policies for σε ∈ {2.5 × 104, 7.5 ×
104, 2.5×105}, respectively. A comparison plot of the average costs of the PEID and OEID policies
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Figure 46: Optimal policy (OEID model, σε = 7.5× 104)).

for various σε are shown together in Figure 48 along with the cost of a policy under the PEOD

assumption (γ = 0.06649). As in the previous example, the PEID policy tends to outperform the

OEID policy, particularly for large values of σε. This result suggests that environment information

becomes more valuable as the uncertainty in the degradation level increases.

107



8 9 10

x 10
6

0.5

1

1.5

2

2.5

3
x 10

5

Replace

µ

π=[1 0 0]

Do nothing

σ

8 9 10

x 10
6

0.5

1

1.5

2

2.5

3
x 10

5

Replace

µ

π=[0 1 0]

Do nothing
σ

8 9 10

x 10
6

0.5

1

1.5

2

2.5

3
x 10

5

µ

Replace

π=[0 0 1]

Do nothing

σ

Figure 47: Optimal policy (OEID model, σε = 2.5× 105)).

The costs of the three POMDP models are much lower than the costs of the age- and reactive-

replacement policies, which are 0.1022 and 0.1589, respectively, for moderate values of σε. However,

when the degradation uncertainty is high, the age-replacement policy is more competitive with

the POMDP policies, though the POMDP policies still have lower costs. The POMDP policies

outperform the age- and reactive-replacement policies by at least 22.9% and 50.4%, respectively,

for σε = 7.5× 104 and by at least 13.0% and 44.0%, respectively, for σε = 2.5× 105.
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Figure 48: Average gear replacement policy costs (PEOD, PEID, and OEID models).

4.3.3 A Wind Turbine Shaft Bearing Replacement Example

Now replacement policies are obtained for a wind turbine’s shaft bearing where degradation is again

assessed as the effective number of load cycles. As in the previous example, it is assumed that there

is uncertainty in both assessing the state of the operating environment as well as computing the

actual number of cycles imposed on the bearing. This estimation error is similarly assumed to be

the sum of a large number of independent error terms and will be treated as unbiased and normally

distributed with variance σ2
ε . A degradation signal was simulated from temperature and rotor speed

data using the approach of Example 5 in Section 2.4 with the life adjustment factor a2(ρ). Using

the MCMC-based inference procedure of Section 2.3, the operating environment is estimated to

have ` = 2 states and the following parameters:

Q =


 −0.0089 0.0089

0.0304 −0.0304


 , r = 103 ×

[
0.7580 2.2585

]
.

Replacement policies are obtained assuming that xc = 107 cycles, δ = 300 minutes, c0 = 1.0,

c1 = 100.0, c2 = 200.0, and σε ∈ {5.0× 103, 1.75× 104, 7.5× 104}.
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The belief space is projected onto the truncated family of normal densities (4.13). To obtain

policies for the PEID instances, N̂ = 100 particles and ḂΘ = Θ̇× Π̇, where

Θ̇ =
{
(µ̇, σ̇) ∈ {5.0× 104, 10.0× 104, . . . , 9.75× 106} × {0.1σε, 0.2σε, . . . , σε}

}
,

Π̇ = {πs, [1 0], [0 1]} ,

and L = 5, 850. The OEID policies are obtained by setting N̂ = 150 particles and ḂΘ− = Θ̇× Π̇−,

where L = 3, 900.

Table 13: Policy cost per unit time (shaft bearing replacement example).

σε → 7.5× 103 1.75× 104 7.5× 104

γ (PEID) 0.01525 0.01579 0.01623

γ (OEID) 0.01525 0.01567 0.01600
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Figure 49: Optimal policy (PEID model, σε = 7.5× 103)).

Table 13 shows the optimal policy costs for the PEID and OEID models for each σε, and the

same relationships between the policy costs can be observed as in the previous examples. For

a given σε, the PEID policy cost is greater than that of the corresponding OEID policy, and

the cost of both models’ policies increase with σε. The optimal policies for the PEID models

for σε ∈ {7.5 × 103, 1.75 × 104, 7.5 × 104} are shown in Figures 49, 50, and 51, respectively. In

contrast to the gear replacement example, the boundary of the preventive replacement region clearly
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Figure 50: Optimal policy (PEID model, σε = 1.75× 104)).

has a strong dependence on both µ and σ within each environment belief state, which becomes

especially pronounced when σε is large. Specifically, when there is significant uncertainty in the

degradation level, the policies behave quite conservatively by preventively replacing for relatively

small µ. Similar structural behavior as in the previous examples, such as the tendency to replace for

smaller µ when the current degradation rate is relatively high, is also present. The OEID policies

shown in Figures 52, 53, and 54 for σε ∈ {7.5× 103, 1.75× 104, 7.5× 104}, respectively, are nearly

identical to the PEID policies for corresponding environment states.

Figure 55 is a plot of the average cost of the PEID and OEID policies for various σε as well

as the cost of the PEOD policy (γ = 0.014896). In contrast to the other examples, the average

cost of the PEID and OEID policies are approximately equal for small σε indicating that perfect

knowledge of the environment state does not improve replacement decisions markedly when the

uncertainty of the cumulative degradation level is small. The reduced value of environment infor-

mation is likely due to the relatively long inspection interval coupled with the fact that environment

consists of only two states. As a consequence, regardless of the initial environment state when a

decision is made, the environment process will be “well mixed” prior to the next decision, and the

degradation accrued during the period will be relatively insensitive to the initial environment state.

However, in cases where there is a large degree of uncertainty in the degradation level, perfect

knowledge of the exact environment state could lead to avoidance of a reactive failure or premature
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Figure 51: Optimal policy (PEID model, σε = 7.5× 104)).
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Figure 52: Optimal policy (OEID model, σε = 7.5× 103)).

preventive replacement. The costs of the age- and reactive-replacement policies are 0.0158 and

0.0362, respectively. All three POMDP policies greatly outperform the reactive policy; however,

for larger values of σε, the age-replacement policy slightly outperforms both the PEID and OEID

policies. The diminished value of environment information in this replacement example causes

the performance of the POMDP policy to be more dependent on accurate information about the

component’s degradation level. As σε increases and the degradation level becomes relatively un-
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Figure 53: Optimal policy (OEID model, σε = 1.75× 104)).
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Figure 54: Optimal policy (OEID model, σε = 7.5× 104)).

certain, the POMDP policies become less competitive with the age-replacement policy, and when

degradation is relatively certain, the POMDP policies are more competitive. For σε = 7.5 × 103,

the POMDP policies outperform the age- and reactive-replacement policies by at least 3.5% and

57.9%, respectively.
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Figure 55: Average shaft bearing replacement policy costs (PEOD, PEID, and OEID models).

In this chapter, a POMDP model to optimally replace a single wind turbine component was

described that incorporates the uncertainty in determining the component’s degradation level from

a surrogate signal. The replacement problem was solved numerically using particle filtering and

belief projection techniques to obtain approximate, optimal policies. In the next chapter, we

summarize the results of this dissertation and propose directions for future research.
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5.0 CONCLUSIONS AND FUTURE RESEARCH

Wind energy is poised to play a crucial role in the future energy portfolio of the United States and

the world at large. This dissertation has focused on reducing the operating and maintenance costs

of wind energy by developing a decision-framework for optimally replacing a wind turbine compo-

nent. This framework required development of a mathematical model of the environment-driven

degradation of a wind turbine component whose parameters can be estimated from a surrogate sig-

nal of the component’s degradation. The estimated parameters were then used in POMDP models

to optimally replace a single wind turbine component under different observability assumptions for

the environment and the component’s degradation level.

In Chapter 2, a hybrid analytical-statistical framework was presented to approximate the

stochastic, environment-driven, degradation process of a wind turbine component from an observed

signal of degradation. The signal was assumed to evolve as a switching diffusion process, and the

environment parameters were estimated using a Markov chain Monte Carlo (MCMC) statistical pro-

cedure. The framework’s performance was evaluated by comparing the expected component lifetime

and mean degradation signal computed from the estimated parameters with the actual component

lifetime and the observed degradation signal, respectively. Numerical results indicated that the

framework was robust against signals that departed significantly from the stochastic behavior of

a switching diffusion process. For degradation processes driven by non-Markovian environments,

non-constant degradation rates, or time-inhomogeneous variance, the framework was still able to

characterize the degradation environment well, provided the signal is observed for a sufficiently

long time period.

Although the framework in Chapter 2 provides a viable approach to approximate the stochastic

behavior of an arbitrary degradation process, it is limited by assumptions required for the switching

diffusion model. In particular, when the variance of the degradation signal varies significantly over

non-overlapping time intervals, substantial preprocessing of the signal is required to estimate the
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environment parameters. To more effectively handle such cases, the switching diffusion model must

incorporate a time-inhomogeneous diffusion coefficient, and an appropriate inference procedure is

required for the new model. Similarly, the estimation procedure does not perform as well in

applications such as crack propagation, where degradation signals evolve as nearly-deterministic,

nonlinear functions of time and violate the assumption that the environment process is time-

homogeneous. Although signal preprocessing can be helpful, a more realistic model should include

degradation rates that are functions of time and/or the cumulative degradation level. Lastly, the

MCMC statistical procedure is not ideal for real-time updating of the environment parameters as

the signal is observed. In fact, there are no known filtering- or simulation-based procedures that

are able to infer the parameters of a switching diffusion process in a real-time, iterative manner.

Developing such an inference procedure would significantly reduce the computational burden and

allow near-continuous updating of the model parameters as sensor data are collected.

Using the environment-driven degradation model of Chapter 2, two wind turbine component

replacement models were presented in Chapter 3 that assume the environment state is partially-

observable. The models were formulated using a POMDP framework with the objective of minimiz-

ing the long-run average replacement cost per unit time. Different assumptions for the replacement

of a component were considered in each model. The first model assumed instantaneous replace-

ments with fixed, deterministic costs; whereas, the second model assumed that replacements require

a fixed, deterministic time period for completion during which downtime costs accrue as a function

of the environment. The optimal policy of the first model was shown to have a threshold-type

structure with respect to the component’s cumulative degradation level and, in special cases, with

respect to the environment belief state. However, optimal replacement thresholds for the sec-

ond model only exist with respect to the component’s cumulative degradation level when special

conditions are satisfied. The results of numerical experiments indicated that in both models the

replacement thresholds can differ substantially between environment belief states. Therefore, con-

dition monitoring is critical so that the most informative belief state, and its associated degradation

threshold, can be discerned prior to a replacement decision. The value of this environment infor-

mation became evident when the optimal policy of the first model was shown to outperform both

age- and reactive-replacement policies.

The results obtained for the replacement models in Chapter 3 indicate several avenues for

future research. The first is obtaining more detailed analytical results for each model to include a

precise description of the optimal policy structure and tighter bounds on the optimal policy cost
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as well as determining whether the preventive replacement regions are convex and/or connected.

Other avenues include extensions of the replacement models that enhance realism. Although the

notion of stochastic downtime costs is explicitly considered in this research, the total time to

complete a replacement is assumed to be deterministic. In practice there are significant safety

limits on the wind speed and weather conditions that must be satisfied in order for work crews to

conduct replacement operations. These limits are particularly critical for offshore wind turbines,

which cannot be accessed during periods when the significant wave height of the surrounding water

exceeds a certain level. Therefore, including replacement interruptions and/or delays that depend

on the environment state would greatly enhance realism.

In Chapter 4, the replacement problem was extended to the case where cumulative degrada-

tion is imperfectly observed according to a parameterized probability density function (p.d.f.). It

was assumed that the environment is partially-observable and that component replacements are

instantaneous with fixed, deterministic costs. The problem was formulated using a POMDP model

to minimize the long-run average replacement cost per unit time. The POMDP was shown to be

analytically intractable, and a simplified instance of the model was formulated in which the belief

state is updated using only the previous signal observation. Optimal thresholds were shown to exist

with respect to the observed signal level in the simplified model if the p.d.f. of the observed signal

satisfies a technical condition. To solve the POMDP numerically, a known projection-filtering algo-

rithm was extended to the mixed state space induced by both partially-observable and observable

environments. Comprehensive numerical experiments illustrated optimal replacement policies for

both a wind turbine drivetrain gear and a shaft bearing. The results show that the policy cost de-

creases with the level of uncertainty in both the environment state and the cumulative degradation

level so that utilizing a condition-based information is clearly valuable. However, in environments

whose distributions are nearly stationary before each decision epoch, the environment information

becomes less valuable as the uncertainty in the degradation level is reduced. For such environments,

the POMDP policies outperform age-replacement policies when degradation is relatively certain.

However, as the uncertainty in degradation increases, the POMDP policies become less competitive

with age-replacement policies. In such instances, it may be advantageous for wind farm operators

to invest more heavily in sensors that discern the degradation level as opposed to the environment

state.

Despite realistically incorporating uncertainty in the degradation level of a wind turbine com-

ponent, the models of Chapter 4 must be extended in a similar manner to those of Chapter 3 to
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incorporate stochastic downtime costs and replacement times as well as replacement interruptions

and/or delays that depend on the environment. Obtaining structural results for those cases is

beneficial from a computational point of view and in practice, as the policies can be communicated

to wind farm operators as a set of elementary rules. Since the replacement models of Chapter 4

are based on sensor readings, which are obtained for multiple wind turbines and component types,

it will be useful to consider a group replacement policy, in which multiple components are simulta-

neously monitored and replaced. A group replacement policy is particularly advantageous for large

wind farms where there may be a substantial fixed cost associated with transporting the necessary

equipment and work crews to the turbine location.

The models proposed in this dissertation constitute a first step in developing a comprehensive

decision-making framework for replacing a wind turbine component. Although the assumptions

for the environment-driven degradation model seem restrictive, the dissertation results highlight

the flexibility of the model at estimating various degradation processes. For the framework to be

practicable, the computational burden of estimating the degradation model’s parameters must be

reduced. The POMDP replacement models incorporate some realistic features for the uncertainty

in discerning both the environment state and degradation level, as well as the opportunity cost of

lost energy production. However, in practice there are many other considerations for replacement

decisions that are not featured in the models (e.g. repair interruptions and/or delays, component

lead times, and group replacement strategies). By incorporating more realistic features into the

degradation and replacement models and reducing their computational burden, operators will have

a viable tool for making effective turbine maintenance decisions.
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and J. Quinn, editors, Reliability Theory and Models, pages 3–41, Orlando, FL, 1984. Aca-
demic Press.
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[44] M. Hahn, S. Frühwirth-Schnatter, and J. Sass. Markov chain Monte Carlo methods for
parameter estimation in multidimension continuous time switching diffusion models. Journal
of Financial Econometrics, 8(1):88–121, 2010.

[45] M. Hahn and J. Sass. Parameter estimation in continuous-time Markov switching models: A
semi-continuous Markov chain Monte Carlo approach. Bayesian Analysis, 4(1):63–84, 2009.

[46] T. Harris and R. Barnsby. Life rating for ball and roller bearings. Proceedings of the Institution
of Mechanical Engineers, Part J: Journal of Engineering Tribology, 215(6):577–595, 2001.

[47] W. Hastings. Monte Carlo sampling methods using Markov chains and their applicaitons.
Biometrika, 57(1):97–109, 1970.

[48] E. Hau. Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer,
New York, NY, 2013.

[49] J. Ivy and S. Pollock. Marginally monotonic maintenance policies for a multi-state dete-
riorating machine with probabilistic monitoring and silent failures. IEEE Transactions on
Reliability, 54(3):489–497, 2005.

[50] A. Jardine, P. Anderson, and D. Mann. Application of the Weibull proportional hazards model
to aircraft and marine engine failure data. Quality and Reliability Engineering International,
3(2):77–82, 1987.

[51] R. Jiang, M. Kim, and V. Makis. Availability maximization under partial observations. OR
Spectrum, DOI: 10.1007/s00291-012-0294-3, 2012.

[52] J. Kharoufeh. Explicit results for wear processes in a Markovian environment. Operations
Research Letters, 31(3):237–244, 2003.

[53] J. Kharoufeh and S. Cox. Stochastic models for degradation-based reliability. IIE Transac-
tions, 37(6):533–542, 2005.

[54] J. Kharoufeh, S. Cox, and M. Oxley. Reliability of manufacturing equipment in complex
environments. Annals of Operations Research, DOI 10.1007/s10479-011-0839-x.

[55] J. Kharoufeh, D. Finkelstein, and D. Mixon. Availability of periodically inspected systems
with Markovian wear and shocks. Journal of Applied Probability, 43(2):303–317, 2006.

[56] J. Kharoufeh and D. Mixon. On a Markov-modulated shock and wear process. Naval Research
Logistics, 56(6):563–576, 2009.

[57] J. Kharoufeh, C. Solo, and M. Ulukus. Semi-Markov models for degradation-based reliability.
IIE Transactions, 42(8):599–612, 2010.

[58] P. Kiessler, G. Klutke, and Y. Yang. Availability of periodically inspected systems subject to
Markovian degradation. Journal of Applied Probability, 39(1):700–711, 2012.

[59] H. Kim and C. Singh. Reliability modeling and simulation in power systems with aging
characteristics. IEEE Transactions on Power Systems, 25(1):21–28, 2010.

122



[60] M. Kim and V. Makis. Optimal control of a partially observable failing system with costly
multivariate observations. Stochastic Models, 28(4):584–608, 2012.

[61] D. Kroese, T. Taimre, and Z. Botev. Handbok of Monte Carlo Methods. John Wiley & Sons,
Inc., Hoboken, New Jersey, 2011.

[62] M. Lee, G. Whitmore, F. Laden, J. Hart, and E. Garshick. Assessing lung cancer risk in
railroad workers using a first hitting time regression model. Environmetrics, 15(5):501–512,
2004.

[63] J. Leichty and G. Roberts. Markov chain Monte Carlo methods for switcing diffusion models.
Biometrika, 88(2):299–315, 2001.

[64] A. Leite, C. Borges, and D. Falcao. Probabilistic wind farms generation model for reliability
studies applied to Brazilian sites. IEEE Transactions on Power Systems, 21(4):1493–1501,
2006.

[65] C. Liao and S. Tseng. Optimal design for step-stress accelerated degradation tests. IEEE
Transactions on Reliability, 55(1):59–66, 2006.

[66] H. Liao, W. Zhao, and H. Guo. Predicting remaining useful life of an individual unit using
proportional hazards model and logistic regression model. In Annual Reliability and Main-
tainability Symposium, pages 127–132, 2006.

[67] B. Lu, Y. Li, X. Wu, and Z. Yang. A review of recent advances in wind turbine condition
monitoring and fault diagnosis. In Power Electronics and Machines in Wind Applications
(PEMWA), pages 1–7. IEEE, 2009.

[68] C. Lu and W. Meeker. Using degradation measures to estimate a time-to-failure distribution.
Technometrics, 35(2):161–174, 1993.

[69] L. Maillart. Maintenance policies for systems with condition monitoring and obvious failures.
IIE Transactions, 38(6):463–475, 2006.

[70] L. Maillart and L. Zheltova. Structured maintenance policies on interior sample paths. Naval
Research Logistics, 54(6):645–655, 2007.

[71] V. Makis and X. Jiang. Optimal replacement under partial observations. Mathematics of
Operations Research, 28(2):382–394, 2003.

[72] D. McMillan and G. Ault. Condition monitoring benefit for onshore wind turbines: Sensitivity
to operational parameters. IET Renewable Power Generation, 2(1):60–72, 2008.

[73] L. Myers. Survival functions induced by stochastic covariate processes. Journal of Applied
Probability, 18(2):523–529, 1981.

[74] L. Nelson, L. Manuel, H. Sutherland, and P. Veers. Statistical analysis of wind turbine inflow
and structural response data from the LIST program. Journal of Solar Energy Engineering,
125(4):541–550, 2003.

123



[75] J. Nilsson and L. Bertling. Maintenance management of wind power systems using condition
monitoring systems-life cycle cost analysis for two case studies. IEEE Transactions on Energy
Conversion, 22(1):223–229, 2007.
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