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ABSTRACT 

The prevalence of poor peripheral nerve function increases with age from approximately 8% at 

ages 40-49 to 35% after age 80 and likely contributes to declines in muscle strength, power, and 

mobility limitations. However, longitudinal evidence for the association is lacking and the 

relationship between nerve function and muscle power has not been examined even at a cross-

sectional level. This dissertation investigates the role of sensory and motor peripheral nerve 

function in muscle function decline and incident mobility limitation in older adults using data 

from two longitudinal cohort studies. Data from the Osteoporotic Fractures in Men Study 

(MrOS) show that poor motor and sensory nerve function are independently associated with poor 

muscle power and that light monofilament insensitivity is associated with greater decline in 

muscle power. Findings from the Health Aging and Body Composition (Health ABC) Study 

indicate that sensory and motor nerve function are predictive of subsequent strength and 

concurrent change in strength, although improvement in nerve function may not always lead to 

improvements in strength. We also found that sex modified the relationship between nerve 

function and strength, with motor and sensory nerve function being associated with strength in 

women and only sensory nerve function being associated with strength in men. Additionally in 

the Health ABC Study, we found that poor initial motor and sensory nerve function and 

sustained poor motor nerve function over seven years independently predicted incident mobility 
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limitation. Understanding the role of neuromuscular parameters in the disablement process may 

help to identify multiple points of intervention. Our findings have important public health 

implications, suggesting a need for future work to examine early prevention of modifiable risk 

factors and secondary prevention to slow muscle function declines and prevent mobility 

limitation. Since our results persisted after adjustment for known risk factors for poor nerve 

function such as diabetes and vitamin B12 deficiency, novel risk factors should also be explored. 
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1.0  INTRODUCTION 

1.1 THE EPIDEMIOLOGY AND PUBLIC HEALTH CONSEQUENCES OF 

NEUROMUSCULAR IMPAIRMENT AND DISABILITY IN LATE LIFE  

The U.S. population is getting older, both the number of older adults and the percentage of the 

population that they make up are increasing at a rapid rate.3 Due to this population shift, it is 

imperative that we identify ways to decrease disability and increase independence in late-life. 

Late-life disability is a major public health issue with severe economic and social consequences. 

Approximately 20% of older adults suffer chronic disabilities4 and over one third of the elderly 

population has some limitation in functional mobility.5  The health care costs for older disabled 

persons are, on average, three times that of nondisabled elderly,6 with the medical expenditures 

for disabled elders reaching $135 billion in 2004.7 In addition, late-life disability has an 

important impact on mortality, morbidity, quality of life and caregiver burden.7,8 As the elderly 

population is expected to double by 2040, comprising one third of the population,7 understanding 

the disablement pathway, risk factors for disability, and potential interventions is a major 

priority.  

While a number of risk factors for disability in late-life have been identified, 

neuromuscular impairment is believed to play a key role. Figure 1.1 depicts a conceptual model 

for neuromuscular impairment’s role in the disablement pathway. This conceptual model has 

1 



drawn from and expanded upon previously proposed models,9-11 to include important disease and 

lifestyle risk factors such as diabetes, peripheral arterial disease, nutritional deficiencies, and 

decreased physical activity.  These preventable lifestyle and disease-related risk factors play a 

role in nerve dysfunction and/or sarcopenia, leading to diminished muscle function parameters 

such as strength and power, which can progress to functional limitations and ultimately lead to 

disability.  Nerve dysfunction may also act through other pathways, some unknown and some 

proposed, such as reduced proprioception or position sense,12,13 leading to poor physical function 

and disability. Some of these relationships have been investigated in the literature at least at a 

cross-sectional level, indicated by a solid line, while some have not, indicated with a dashed line.  

This model attempts to address a major limitation of previously proposed models by depicting 

the circular nature of functional decline, where decreased muscle function can lead to functional 

limitations, and disability, which can feed back into risk factors such as reduced physical 

activity.  The two way arrow between disability and functional limitations also illustrates the 

potential for transition into and out of disability that commonly occurs in late-life.14,15  It is 

crucial to recognize the potential for recovery from disability, particularly when considering 

possible interventions for older adults, since a major goal of disability research is to design 

effective interventions for prevention and recovery from disability.  This simplified model 

focuses on neuromuscular impairment and does not include other sources of disability, such as 

cognitive function, which also plays an important role in mobility disability.16-18  While this 

model recognizes the importance of the central nervous system,19 its main focus is on declines in 

the periphery, specifically nerve dysfunction, and decreased muscle function (strength and 

power), since the lower-extremity functional limitations strongly and independently predict 

disability.8  
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1.1.1 Incidence and prevalence of impaired peripheral nerve function with age 

An important risk factor within the causal pathway to disability is impaired nerve function, 

which is associated with diminished lower extremity function in older adults.20,21  The Italian 

Longitudinal Study on Aging (ILSA), which used a comprehensive two-phase screening process 

to identify individuals with distal symmetrical neuropathy (DSN), revealed that DSN is common 

for both diabetic and nondiabetic older adults.22  The first phase assessed self-reported 

symptoms, previous diagnosis, self-reported drugs, and performed a brief neurologic exam. 

Those who screened positive during the first phase underwent a clinical workup with an 

extensive neurologic exam, medical history, and a review of medical records to confirm the 

presence of DSN. Diabetes was similarly assessed with self-report, physician diagnosis, and a 

fasting glycaemia ≥ 140mg/dL. Participants with a fasting glycaemia ≥ 140mg/dL, without a 
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Figure 1.1. Neuromuscular impairment and the disablement pathway 
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positive history, were considered positive only if their glycaemia levels were confirmed with a 

second blood test. The incidence of DSN increased steadily in participants with diabetes, from 

13.7 to 48.4 new cases per 1,000 person years, and in those without diabetes, from 4.6 to 8.8 new 

cases per 1,000 person years, among those 65-79 and 80-84 years of age, respectively. The 

prevalence of DSN in individuals with diabetes increased with age until the 75-79 age group, 

whereas the prevalence in individuals without diabetes continued to increase throughout all the 

age groups. While some of this difference is likely due to a survival effect, it also may suggest 

that although diabetes is an important risk factors for these neuropathies, age or age-related 

factors may become increasingly important in all. 

Data from the National Health and Nutrition Survey (NHANES) also show a high 

prevalence of poor sensory nerve function in adults over 40 years of age in the United States 

among those with and without diabetes at 28.5% and 13.3%, respectively and an increase in 

prevalence with age from 8.1% at ages 40-49 to 34.7% after age 80.23 Diabetes was defined as 

history of physician diagnosis. Due to the use of less sensitive screening measures limited to 

sensory nerve function (10-g monofilament detection and self-reported symptoms) this is likely 

an underestimate of nerve dysfunction in the population.  Critically, the majority of these 

participants were asymptomatic, despite the 10-g monofilament’s high specificity for detecting 

neuropathy.24  Similarly, ILSA found that 85% of DSN cases were undiagnosed.25  Although not 

reported, the rate of undiagnosed cases is likely to be even higher in older adults without 

diabetes, since they are less likely to be screened. These studies demonstrate that poor peripheral 

nerve function is common in older adults, increases with age and that many may be unaware of 

their impaired status, even at a level of dysfunction detectable by clinical screening. 
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The prevalence and incidence of impaired nerve function among different subgroups in 

old age is understudied. While ILSA found that DSN prevalence did not differ among men and 

women, the study was limited to a homogenous population of white Italian elderly from one 

region.25  Data from NHANES shows that rates of poor nerve function were higher in men 

compared to women (18.2% vs. 12.6%, p<0.05) and in non-Hispanic blacks and Mexican 

Americans compared to non-Hispanic whites (21.9% and 19.4% vs. 14.4%, p<0.05); however, 

since these comparisons were not separated by age, little is known about demographic trends for 

poor nerve function in older adults.  Some of the differences in these groups are likely accounted 

for by differences in disease-related factors. This will be discussed further in section 1.6.8.  

1.1.2 Mobility-related consequences of reduced nerve function with age 

Poor peripheral nerve function is associated with key mobility-related outcomes in older adults 

such as physical function limitations and impairments26,27 and increased risk of falls.28-30  Using 

data from the Women’s Health and Aging Study (≥ 65 years of age at baseline), Resnick and 

colleagues used vibration perception threshold to categorize participants as having mild, 

moderate and severe peripheral nerve dysfunction.  They found that all levels of dysfunction 

were related to impaired balance and usual and fast-paced walking speeds and that severe 

dysfunction was related to inability to stand from a chair. They also found that impairments 

believed to mediate the relationship between nerve dysfunction and physical function, such as 

strength and position sense, only explained some of the association. Although motor nerve 

function, which was not measured in this study, may be more mediated by strength, rather than 

vibration perception threshold, which is a measure of sensory nerve function. In addition, side by 

side, semi tandem and tandem standing balance was used as a proxy for position sense and they 
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did not test muscle power as a mediator. The Women’s Health and Aging Study includes 

moderately to severely disabled women at baseline, therefore these findings may not be 

generalizable to individuals without impairments.  

Much of the literature on mobility-related consequences of nerve function has been cross-

sectional,20,27,28,31 with the exception of an analysis in a subsample of participants from the 

Italian Longitudinal Study of Aging.32 In 1052 participants (mean age = 71) with normal 

functioning at baseline, Inzitari and colleagues found that signs and symptoms of DSN predicted 

decline in performance. While the screening for DSN was quite comprehensive in this study (see 

section 1.1.1), the adoption of this method by other large epidemiologic studies is unlikely since 

it is time intensive and requires a physician. Because they limited cases to individuals who were 

diagnosed with DSN, they were unable to study the effects of subclinical impairments in 

peripheral nerve function. In addition, consistent with the majority of literature, findings were 

not presented for motor function. Sensory and motor nerves undoubtedly play distinct roles in 

mobility. Peripheral sensory nerves likely contribute through proprioceptive feedback,12  while 

motor nerves likely affect muscle tissue structure33,34 and function.21,35,36 This distinction is 

supported by findings from Strotmeyer and colleagues that show that motor and sensory nerve 

function are related to different physical performance measures in the Health ABC Study (ages 

70-79 at baseline).20  Using a gold-standard method of measurement, they were able to quantify 

impairment in motor nerve function. They also included a subclinical measure of touch sensation 

(1.4-g monofilament) in addition to a standard measure (10-g monofilament) and a continuous 

measure of average vibration detection threshold in order to capture various levels of 

impairment. They found that nerve function is associated with performance, independent of 

diabetes. This finding has clinical relevance, since older adults without diabetes may be less 

 6 



likely to be screened for neuropathy. It also has important implications for future research, 

indicating that studies should include older adults both with and without diabetes and that both 

traditional risk factors, such as diabetes, and novel risk factors should be studied in older adults.  

1.2 DENERVATION AND PATHOPHYSIOLOGY OF MUSCLE AGING 

The number of motor units (or units of single motor neurons and the muscle fibers they 

innervate) decrease with age.37  This linear decrease appears to begin around age 60, which is 

further evidence that neuromuscular impairments may begin to manifest in late-life and are 

driven by age-related changes.  However, the currently available evidence is based on cross-

sectional data; therefore while it suggests a decline with age, longitudinal data to confirm this is 

lacking. 

Older adults may exhibit muscle atrophy and fiber type grouping (identified by 

histochemical staining properties of myosin ATPase)38 resembling that which occurs in 

individuals with peripheral neuropathy, albeit to a varied degree.39,40  With age, a gradual decline 

in muscle mass is thought to result from a reduction in the size and number of muscle fibers. 

These reductions preferentially affect type II fast twitch fibers.41,42  Whereas healthy young 

muscle fibers are characterized by normal size and an even distribution of type I slow-twitch and 

type II fast-twitch muscle fibers (see Table 1.1 for fiber type characteristics), both neuropathic 

and aged muscle fibers are characterized by smaller atrophied fibers and a grouping of type I and 

type II fibers (see Figure 1.2).  This grouping is believed to be a consequence of motor nerve 

death.  When motor nerves die, muscle fibers are denervated, then reinnervated, often switching 

to the fiber type of adjacent living fibers.34,43-46  Since fewer motor neurons cannot innervate all 
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remaining muscle fibers, this denervation may also account for loss in muscle mass43 and decline 

in muscle-specific force.35,36  

A) Young Muscle2 C) Older Sarcopenic
Muscle2 

B) Neuropathic
Muscle1 

Type II 

Type I 

Figure 1.2. Neuropathic and aging muscle characteristics 
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Table 1.1. Muscle fiber type characteristics 

(for review see Houmard 2000) 

Characteristics Type I Fibers Type IIa Fibers Type IIb or IIx fibers 
Contractile 
properties38 

Slow-twitch - 
Produce low tension 
but have prolonged 
contraction and 
relaxation time 

Can produce more 
tension than type I fibers, 
but also somewhat prone 
to fatigue 

Fast-twitch – 
Fatigue prone but produce 
the highest amount of 
tension 

Energy 
production38 

Primarily rely on 
oxidative pathways 

Have almost as much 
oxidative ability as Type 
I fibers, but also produce 
substantial energy 
through the glycolytic 
pathway 

Mostly rely on non-
oxidative, glycolytic 
pathways 

Age related 
changes47 

Transition to a 
higher percentage of 
these with age 

Relative contribution to force and power believed to 
decline with age 

Distribution in 
the body38 

Account for 
approximately 50% 
of all fibers in the 
average person 

Endurance runners 
typically greater 
percentage38 

Account for approximately 50% of all fibers in the 
average person 

Can account for 80-90% in sprinters38 

Conditions such as hypothyroidism,48-50 chronic heart 
failure,51 and obesity with non-insulin dependent 
diabetes52-55 can lead to an increased expression 

Transition from these to 
type I fibers is 
controversial and may 
take many years of 
intense training56 

Predominant in those 
sedentary individuals due 
to inefficient contractile 
properties57 

Fewer percentage in 
trained athletes55 

Transition from these to IIa 
may take as little as 6-8 
weeks of training in 
healthy younger and older 
(ages 60-70) men and 
women49,55,56 
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To characterize and quantify the relationship between nerve function and declines in 

muscle with age, objective and reliable assessments of nerve function, such as nerve conduction 

(NC) studies,58-61  are needed.  NC studies are the most sensitive and specific method to detect 

peripheral neuropathy non-invasively.62  They are performed by electrically stimulating a nerve 

and measuring the response using surface electrodes.  NC study measures include compound 

muscle action potential (CMAP) and sensory nerve action potential (SNAP) amplitude, the size 

of an evoked response from electrical stimulation of the nerve, and nerve conduction velocity 

(NCV), the speed at which the response travels down the nerve.  Decreases in CMAP amplitude 

may be indicative of axonal damage, whereas decreases in NCV may indicate damage to the 

myelin sheath, which insulates the axon.63  Latency, or the travel time of the signal, is sometimes 

used in place of NCV. The value of NCV is dependent on the method used to calculate NCV.64 

Nerve conduction velocity is typically calculated by dividing the distance between two 

stimulation sites by the difference between latencies.65 Using the difference between two 

stimulation sites accounts for the variability of travel time that can occur within the 

neuromuscular junction. In the case that only one latency is available, it can be used on its own 

or to estimate nerve conduction velocity. Although, NCV takes into account the length of the 

limb, and thus the distance travelled by the signal, and has established clinical cut points for 

certain conditions, such as diabetic polyneuropathy,66 whereas latency does not. 

Decline in peroneal motor amplitude, but not NCV, with age has been independently 

associated with declines in calf muscle density,33 a measure of muscle-fat infiltration and 

intracellular fat content in muscle.67  Interestingly, these NC parameters were not associated with 

muscle cross-sectional area, suggesting that the effects of PN on muscle may not be detected as 

macroscopic changes in muscle mass, but as changes in muscle tissue structure.  Moreover, these 
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relationships may be independent of traditional risk factors, since associations remained when 

excluding participants with DM and PAD.  However, since these associations have only been 

studied cross-sectionally, longitudinal data is needed to identify temporal relationships and 

causation.  

1.3 MUSCLE FUNCTION CONSEQUENCES OF NEUROMUSCULAR AGING 

Age-related changes in muscle structure and nerve function are accompanied by declines in 

muscle function.  Two distinct measures of muscle function are muscle strength, or the 

maximum force that can be generated during muscle contraction, and muscle power, defined as 

the product of contractile force and the velocity of movement.  Both strength and power decline 

with age although decline in power is steeper,68-70 suggesting that power may be an earlier 

indicator of functional decline.  

Decline in muscle function with age is likely due to a number of neuromuscular changes. 

Loss of muscle mass is closely associated with declines in strength; although, longitudinal 

decline in strength has been shown to occur three times more steeply with age than mass.10,71,72 

Furthermore, maintaining or gaining muscle mass does not fully prevent the decline in strength 

that occurs with age.71  Similarly, training programs may increase strength prior to the 

occurrence of observable changes in muscle structure (See  Gabriel, 2006 for review).73  Some 

evidence from physical therapy research suggests that these early increases in strength may result 

from alterations within motor units and the central nervous system.73  Strength gains occurring 

during early phases of training prior to increases in muscle size have been associated with 

increased amplitude measured using surface electromyography (EMG).73 This increase in 
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amplitude has been commonly interpreted as an increase in neural drive, although this 

measurement technique does not provide an isolated measure of nerve function, but a more 

global measure of neuromuscular activity (see Table 1.2 comparing EMG and NC studies).  An 

increase in motor unit firing rate during maximal voluntary contraction (MVC) has also been 

observed in as early as the first 48 hours following training.73,74 

Table 1.2. Nerve conduction (NC) studies and electromyography (EMG)74 

Nerve Conduction Studies Electromyography 

Purpose Used to measure neurodegeneration. 

Used clinically as a sensitive and 
specific method to detect peripheral 
neuropathy,62 carpal tunnel, Guillain-
Barre syndorme, 
facioscapulohumeral muscular 
dystrophy, spinal disc herniation, 
Guyon Canal syndrome.  

Used in the kinesiologic analysis of muscle 
and in biofeedback studies. 

Used clinically to study anterior horn cell, 
nerve root, plexus, peripheral nerve, and 
primary muscle disorders. Can be used to 
estimate time since onset and severity of 
axonal injury.  Limited use in purely 
demyelinating neuropathies, since axons 
and connections with muscle fibers remain 
intact.75 

Methods Performed by electrically stimulating 
a nerve and recording the signal at 
the muscle supplied by that nerve 
with a surface electrode. 

Performed by recording the 
electrophysiological activity when the 
motor unit is at rest or during a muscle 
contraction using either a needle electrode 
inserted into the leg or a surface electrode. 

Measures 
obtained 

The amplitude and speed of an 
electrical signal transmitted across a 
stimulated nerve.  

Assesses nerve function separately 
from the muscle.  

Records the summated compound 
potential of many motor units. 

Electrical potential generated by muscle 
cells when the cells are activated by the 
nerve (either when the motor unit is at rest 
or during muscle contraction) or an applied 
electrical stimulation. 

Assesses the nerve and muscle fibers that it 
innervates at the same time (the entire motor 
unit). 

Spontaneous activity and activity from an 
individual motor unit can be measured 
within the muscle using needle electrodes. 

12 



Measures from NC studies have been associated with muscle strength in older adults. In a 

cross-sectional analysis of community dwelling older adults from the Health ABC study (ages 

70-79 at baseline), Strotmeyer and colleagues found that measures of poor sensorimotor nerve 

function, including low peroneal motor nerve amplitude, and impaired monofilament and 

vibration threshold detection, contributed to lower quadriceps and ankle strength.21 Peroneal 

motor nerve conduction velocity (NCV), however, was not related to strength.  One proposed 

explanation for this is that a proportion of axons may degenerate in late-life resulting in reduced 

motor amplitude, while NCV, driven by the axons that remain intact, may stay within normal 

limits; in this case, even though NCV is normal, decreased amplitude still results in a weaker 

muscle response.33,76 These associations were independent of diabetes and lean mass, although 

they were not adjusted for measures of muscle composition, such as muscle density or 

intermuscular adipose tissue (IMAT).  Previously, these authors found that poor nerve function 

was related to worse physical performance.20 Nerve function attenuated the relationship between 

quadriceps strength and performance battery scores by 13%, suggesting that it may play an 

important role in the relationship between decline in muscle function and mobility impairments.  

It is notable that sensory nerve measures (monofilament and vibration threshold detection) were 

also related to diminished strength.  This is not surprising, since the absence afferent (sensory) 

feedback is related to poor motor nerve performance in patients with severe sensory deficits.13,77  

Additionally, the importance of afferent proprioceptive input on physical function has been 

previously demonstrated.78,79  Longitudinal analyses are needed to investigate the role of nerve 

function in declining strength and physical function in late life. Moreover, similar research 

examining the connection between muscle power and NC measures are lacking, despite the 

hypothesized neural contribution to power.  
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Studies on the link between neuromuscular activation measured using EMG and muscle 

strength and power in older adults have produced somewhat conflicting findings. Early cross-

sectional studies comparing small groups of healthy older (ages 73-91) to healthy younger adults 

(ages 19-55) have found that older adults experience lower strength, despite being able to fully 

activate their muscles.80,81 Similarly, compared to young (ages 19-33)82 and middle aged (ages 

44-57)83 adults, healthy older adults (ages 59-7483 and 60-6982) had lower muscle power and 

explosive force without any differences in EMG nerve activity.82,83  However, mobility limited 

older adults (ages 70-85) exhibited lower muscle power accompanied by diminished EMG 

activity when compared to both healthy older (ages 70-85) and younger groups (ages 40-55).84  

This EMG activity was correlated with the velocity component of muscle power across all 

groups, suggesting that neuromuscular activation plays a key role in muscle contractile velocity.  

A potential explanation for the discrepancy in these findings is that the progressive loss of motor 

units with aging may not lead to functional impairments until a critical threshold is reached.85  

Until this threshold is reached, the function of muscle fibers may be maintained through 

collateral reinnervation in the early stages of motor unit loss. A critical threshold for the tibialis 

anterior may occur, between 70-80 years of age, when the number of motor units is 50% of that 

found in younger, healthy adults.  Decline in motor units is likely muscle-specific and age-

threshold dependent (e.g. increased rate of decline in motor units may occur at an older age for 

the soleus than for the anterior tibial muscle),86 which may be related to differences in fiber-type 

composition or adaptation of muscle activity patterns of movement with age.  Therefore, more 

research is needed to help identify potential critical thresholds in other muscles.  

Methodological limitations in these studies need to be addressed.  Firstly, they included 

small sample sizes (n=10-32 per group); therefore, the lack of associations observed could be 
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due to limited statistical power.  They only collected cross-sectional data, providing no evidence 

for any causal direction of association. Furthermore, a standardized protocol was not used for 

either power (discussed further in section 1.5.1) or EMG measurement. Different measurement 

protocols could lead to variation in outcomes and conflicting findings on whether an association 

exists.  In addition, EMG provides an overall measure of the whole motor unit rather than an 

isolated measure of nerve function (See Table 1.2 for EMG characteristics). 

To what extent neuromuscular structural changes and functional declines are inevitable 

with age is unclear.  While muscle atrophy with age is consistently observed across studies,38 

findings on fiber type conversion are conflicting.43,87-90  Structural changes in muscle with age 

may be somewhat sex specific. Whereas both type I and type II fiber area decline with age in 

women,91 a preservation of type I fiber area has been observed in men.43,87-89  Resistance training 

has been found to be effective for improving muscle function (see section 1.7 on training 

interventions) and structure in older adults,92-95 although evidence suggests that it cannot 

completely reverse the impact of the aging process.90  Small studies have found that physical 

activity may improve or reduce loss of peripheral nerve function in diabetic and peripheral 

neuropathy patients; however no clinical trials have been done to examine the effects on age-

related peripheral nerve declines.96-98  Potential mechanisms by which exercise training could 

prevent or treat peripheral nerve decline include improvements in glycemic control99 and 

vasculature (for review see Tasfaye et al., 2005100). It is also possible that exercise could have 

direct and local effects on peripheral nerves (e.g. improvements in Na/K ATPase activity).96 In 

addition, specificity of training could potentially lead to physical function improvements that 

allow those with peripheral nerve impairments to compensate through improved strength, power, 

and/or balance. More research is needed on the extent to which specificity, intensity, and volume 
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of training can prevent or mitigate structural and functional neuromuscular declines that occur 

with age. One important area to investigate is the relative benefits of short term specific training 

exercises vs. general sustained activity, since this could have important consequences for 

designing interventions to preserve physical function in older adults.  

1.3.1 Sex trends in neuromuscular parameters with age 

Compared to men, women have higher rates of disability101-103 and falls in old age.104,105  

Differences in neuromuscular parameters may play a key role in these late-life disparities.  

Although muscle strength and quality declines more steeply with age in men,106 they tend to have 

significantly more muscle mass, strength, power, and velocity70,107-109 than women throughout 

life.  During a maximal counter-movement jump, the difference in muscle power was most 

pronounced during the end of the concentric phase.108  The majority of this difference in power 

was attributed to the velocity component during this phase of the jump.  This discrepancy could 

contribute to women being more prone to falls in old age.  Recovery of balance from a potential 

fall requires rapid movement.  A small study of younger (ages 21-29) and older (ages 67-81) 

men and women showed that older women were less likely to recover balance from a fall by 

taking a single rapid step.110  In addition, power may explain more of the variance in 

performance measures, such as chair rises, stair climbing and walking in women than in men.109  

Reasons for these differences between men and women are not fully understood, 

although the additional muscle mass and preservation of type I fiber area with age in men43,87-89 

may play a role.  Differences in nerve parameters may also occur by sex.  Men tend to have 

slower nerve conduction velocity, which is primarily due to greater height;111  although estrogen 

may have some neuroprotective effects,112 at least at the level of the brain. Men also have 
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reduced neural activation,113  commonly defined as the recruitment and rate coding of motor 

units to generate force through muscle contraction and is measured using EMG.114  The direction 

of this difference in nerve parameters may seem counterintuitive, but reduced neural drive has 

been associated with lower eccentric/concentric ratios, which is a proposed mechanism for injury 

prevention during activities where muscle fiber tension is high (for review see Stauber et al., 

1989).115  Single muscle fiber quality measures, including fiber size, maximal isometric and 

specific force, maximal unloaded shortening velocity, power, and specific power, are likely not 

contributing factors since they have not been found to differ by sex.107  Research on these gender 

disparities in neuromuscular parameters, are not only crucial due to their potential consequences 

for function, disability, and maintaining independence in old age, but may also provide insight 

into potential kinematic and physiologic mechanisms for these key outcomes.  

1.4 SARCOPENIA AND DYNAPENIA 

Sarcopenia, defined as loss of muscle mass with age,116,117 is associated with functional 

impairment,118,119 disability,120,121 falls,122 and loss of independence.123    More recent definitions 

of sarcopenia have included loss of strength, 124-127  likely due to its association with poor 

outcomes, independent of lean mass.9  In 2001, it was estimated to contribute to $18.2 billion in 

healthcare costs.128  Potential risk factors for sarcopenia include nutritional deficiencies, chronic 

disease, insulin resistance, inflammation, change in endocrine function, and inactivity,125 

although age-related declines in muscle mass can even be observed in fit, athletic older adults.129 

One major proposed mechanism for this age-related decline in muscle mass is a withdrawal of 
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anabolic stimuli to skeletal muscle, such as the continuous activity of motor neurons, leaving 

catabolic processes unopposed.33  

The prevalence130 of sarcopenia increases with age, however, estimations depend on the 

definition and method of measurement used.  Loss of muscle mass is most precisely quantified 

using advanced imaging techniques such as dual-energy x-ray absorptiometry (DXA), computed 

tomography (CT), and magnetic resonance imaging (MRI).126,131-134  In the absence of advanced 

imaging technology, lower-tech substitutions such as calf and mid arm circumference135  and 

bioelectrical impedance136 can be used, albeit with less accurate and reliable results.  Once a 

measure of lean mass is obtained, it is used to produce an index, taking into account height, 

weight, BMI, or fat mass.137-139  The Health, Aging, and Body Composition (Health ABC) Study 

directly demonstrated the effects of using different methodologies for estimating the prevalence 

of sarcopenia in a single study population of adults ages 70 to 79 years.138,139  The first method 

used appendicular lean mass measured by DXA and divided it by height-squared (LM/ht2).  For 

the second method, they adjusted their measure of lean mass by height and fat mass (the residual 

method).  Using both the residual and the LM/ht2 methods, baseline rates for an age range of 70-

79 years were highest in white women (30.5% and 31.4%), followed by white men (27.1% and 

25.2%), then black men (8.2% and 11.8%) and finally black women (8.1% and 6.8%).  However, 

the residual method resulted in higher rates for obese men and women (11.5 and 21.0% vs. 0% 

for both using the LM/ht2 method)138 and was more strongly related to poor lower extremity 

function.138,139  

While some definitions of sarcopenia include declines in strength, Manini and Clark 

proposed using a separate term, dynapenia, to describe loss of muscle function, since factors 

other than muscle mass also contribute to this decline.9,10  Figure 1.3 shows their theoretical 
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model illustrating potential neuromuscular parameters as mechanisms for the occurrence of 

dynapenia with age.  The top of the model shows spinal characteristics and the neuropathic 

processes leading to changes in motor unit recruitment and discharge rate.  At the bottom, 

pathophysiologic parameters, such as excitation-contraction uncoupling, fiber type 

transformation and architectural changes, may lead to a decline in contractile quality.  It also 

includes lifestyle factors such as a decrease in protein intake and decline in physical activity that 

can lead to sarcopenia.  Factors that act on both the nervous system and muscular system sides, 

such as hormonal and immunologic changes, peripheral input, and neuropathic processes that can 

lead to structural changes in the muscle are also included.  Major limitations of this model 

include that it does not include disease-related risk factors or recognize the unique contributions 

of muscle power. 

 

Figure 1.3. Etiology of the age-associated loss of strength (dynapenia)* 

*Reproduced from Clark and Manini, 201210 
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1.5 MUSCLE POWER VS. MUSCLE STRENGTH 

The relationship between nerve function and muscle power may be distinct from the relationship 

between nerve function and muscle strength.  Table 1.3 outlines some important differences 

between strength and power.  Power declines more steeply with age than strength69,70 and is more 

strongly related to certain measures of physical function.140-143 The distinct relationship between 

physical function and declines in power is likely due to the diminishment of contractile velocity, 

the distinguishing component of power, which is also associated with physical function 

impairments.144  While it has been suggested that decline in power and its unique relationship 

with mobility may be in part due to loss of type II (fast twitch) muscle fibers and decline in 

peripheral nerve function,2,41,74,144-146 more work is needed to elucidate the mechanisms 

responsible for the decline in muscle contractile velocity with age.  Recruitment and discharge 

rate of motor neurons are also likely to play an important role. 

Strength and power distinctly contribute to poor physical function with age,140-142,147-150 

although few studies have been able to fully distinguish the independent roles that strength and 

power play in different measures of physical function. Table 1.3 integrates the findings from a 

number of studies in an attempt to summarize these relationships.  A major limitation of the 

literature is that few studies have statistically compared the relationship of strength vs. power 

with physical function measures. However, based on magnitude of R2 and correlation 

coefficients, power may be more strongly related to measures of physical function such as the 6-

minute walk,147,151 the 400m walk,142 time to stand from a chair 10 times,140,147-149 stair climb 

time,140,141,147-149 the tandem walk,140 balance scores,141 the Short Physical Performance Battery 

(SPPB) score,140,141 and timed up and go;147 whereas, strength may be equally or more influential 

on maximal gait speed,140,149 time to stand from a chair one time,147 and the one-leg stand.147 
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There have been conflicting findings in the literature on whether strength or power is more 

influential on habitual gait speed140,141,148,149 and time to stand from a chair five times.141,150 

Given the additional component of velocity of movement that is captured in measures of muscle 

power, it may be expected that power would be more related to performance measures that 

require speed. 

While much of this work has focused on women143,144,148,149 and those with mild to 

moderate functional limitations,140,143,148,149,151,152 few have looked at the oldest old,68 racially 

diverse populations,152,153 or populations of older adults with a wide range of functional abilities. 

Importantly, various methods of measuring muscle power were used in these studies and whether 

the method of power measurement has an effect on its relationship to physical function is 

unknown.  For instance, a pneumatic leg press machine such as the Keiser (Fresno, CA) allows 

power to be measured at varied percentages of the participant’s one repetition maximum (1 RM, 

or the maximum amount of resistance that they can push before failure).  As opposed to strength, 

which has a linear relationship with resistance, muscle power has a J-shaped relationship with 

resistance.154  At very low resistances, the force component of power is minimized, resulting in 

low power.  Conversely, very high resistances result in low velocity and therefore low power.  

Power peaks when resistance is high enough generate a large force, yet low enough to allow for 

fast velocity of movement. Different physical function tasks may be associated with muscle 

power production at varying force-velocity ratios.141  Moreover, task-based measures of muscle 

power, which use the participant’s own body weight as resistance, could potentially be more 

related to certain measures of physical function since they may mimic everyday tasks such as 

rising from a sitting position or climbing stairs, although this has not been assessed. 
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Strength and power cut points for mobility limitations have also been examined. Using 

data from the Health ABC study (ages 70-79), Manini and colleagues identified strength cut 

points by dividing strength into sex-specific deciles and using Cox proportional hazard 

regression to compare change in risk of developing severe persistent mobility limitations, 

defined as two consecutive reports of a lot of difficulty or inability to walk ¼ mile or climb 10 

steps.155  They found that strength < 1.13 Nm/kg (the first decile) for men and < 1.01 Nm/kg (the 

third decile) for women were associated with high risk of developing mobility limitation. Cut 

points for low, moderate, and high risk significantly predicted mobility limitation, gait speed 

<1.22 m/s, and death.  However, given that these cut points were identified in an initially healthy 

population with no mobility disability at baseline, they may not be generalizable to other 

populations of older adults.  In addition, they did not assess whether strength loss predicted 

disability. 

Similarly, using data from the InCHIANTI study (ages 65-102), Hicks and colleagues 

identified sex-specific cut points for strength and power for predicting mobility limitation.156  

Men with knee extension strength <19.2 kg and grip strength <39.0 kg had clinically meaningful 

decline in gait speed157 of 0.24 m/s over three years. While they did not present these results in 

quantiles to compare across different ranges of magnitude, these correspond to 3.2 and 3.8 

standard deviations (SD) of strength, respectively. Men with power <105 W (1.7 SD) 

(unilaterally on power rig) were nine times more likely to develop incident mobility disability, 

defined as being unable to walk 1 km or climb a flight of stairs. In women knee extension 

strength <18.0 kg (4.3 SD) was associated with minimal gait speed decline of 0.06 m/s, 

suggesting that strength may be a better predictor for mobility disability in men than in women.  

Women with leg power <64 W (1.8 SD) were three times more likely to develop incident 
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mobility disability.  Mobility and disability outcomes were not consistently defined for strength 

and power, since they used the classification and regression tree (CART) method, which 

identifies predictors and cutpoints that have the strongest relationship with outcomes; therefore, 

the authors were unable to compare the effects of strength vs. power directly. They also 

neglected to adjust for potentially important confounders such as body size and comorbid 

conditions. Three year change in strength and power did not predict incident mobility disability.  

However, they did not examine the role of baseline measures in the change model, which is 

important since some individuals may not have experienced much change in strength or power 

because they started out with low levels and had little room for decline.  More research is needed 

to investigate whether strength and power decline over a longer time period predict incident 

mobility disability.  It may also be possible that strength or power may decline concurrently with 

physical function; however this has not been examined. 

In a post-hoc analysis of data from a 16-week intervention designed to increase muscle 

function and improve mobility in older adults (mean age 75.2), changes in power predicted 

clinically meaningful changes in mobility (1 unit in SPPB score and 0.1 m/s in gait speed), while 

changes in strength did not.158  Power remained a significant predictor when strength was added 

into the same model, showing that the association with power was independent of strength. This 

suggests that power is distinctly important for mobility in older adults. 
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Table 1.3. Strength vs. power 

Muscle Strength Muscle Power 
Definitions Force 

Maximum capacity to generate 
force 

Force x Velocity 

Integration of force and velocity of movement 

Maximum rate of work production 
Age trend Declines with age beginning 

around age 40159 
 Declines with age beginning around age 40159 

Declines more steeply than strength (3.5% vs. 1-2% 
per year70)68-70,160  

Relationship with 
muscle mass 

Most of variance is explained by 
muscle mass, but yearly declines 
are 3x greater for strength 
(Goodpaster et al., 2006 JGMS) 

Relationship with 
resistance 

Linear J-shaped154 

Low power at very high resistances due to low 
velocity of movement 

Low power at very low resistances due to low force 

Relationship with 
physical function  

↓ Strength may result in: functional 
impairment, disability, falls and 
loss of independence 

Compared to power, strength may 
be more strongly related to max 
gait speed,140 chair stand 1x, and 
one leg stand 

↓ Power may result in: functional impairment, 
disability, falls and loss of independence 

Compared to strength, power may be more strongly 
related to 400m walk time,142 6-minute walk 
distance,151 SPPB score,140,141 chair stand 10x,140 
tandem walk,140 balance score,141 get up and go, and 
stair climb140,141,148 

Velocity component of power may be more strongly 
related to physical function measures than force 
component144 

Potential mechanism 
for peripheral nerve 
involvement  

Motor unit recruitment 

Muscle atrophy 

Motor unit recruitment and discharge rate 

Muscle atrophy 

Decreased contribution of type II ‘fast-twitch’ fibers 
to force and power generation 

Methods of 
measurement 

Isometric maximal voluntary 
contraction (MVC) – does not 
require movement 

 Dynamic 1 repetition maximum (1 
RM) – can be measured 
isotonically (constant resistance) or 
isokinetically (constant velocity) 

Isokinetic (constant velocity) dynamometer 

Fixed load power rig 

Pneumatic resistance equipment 

Task-based measures using a force plate or scale  

Rate of stair climbing (body weight and stair height 
can be used to estimate power)149,152,161 
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1.5.1 Measuring muscle power in older adults 

Currently, no gold standard method of measuring muscle power in older adults has been 

identified.  Methods vary by equipment, time, and intensity of activity.  Table 1.4 outlines some 

key advantages for certain measures. Each method likely has various strengths and limitations. 

However, few studies have systematically compared more than a few power measures in a single 

study population or assessed feasibility of different power measures for older adults. This has 

important implications characterizing the feasibility of methods in large epidemiologic studies of 

older adults, for designing and evaluating training interventions, and for better understanding 

muscle power’s role in the disablement pathway.  

Power can be measured using specialized equipment, in which the participant is generally 

seated and performs a leg press or knee extension.  An example of this is the Keiser pneumatic 

resistance machine, which uses air pressure to provide a constant resistance during the 

movement. The Keiser has been previously validated against various laboratory and field tests 

designed to assess power such as the leg extensor power rig, the Wingate anaerobic power test, 

and the vertical jump test,162 and is considered to be a reliable and reproducible (r = 0.90, ICC = 

0.85-0.88) measure of lower extremity muscle power.143,148,162-164 First, the participant’s one 

repetitions maximum (1 RM), or the maximum resistance a participant can displace before 

failure, must be established. Following a brief rest, power is then measured at different 

percentages of the 1 RM (generally 40-70%) to find peak power.  During the power test, the 

participant is instructed to press or extend one or both legs as fast as possible through full range 

of motion.  This method provides a separate measure of velocity.  Since this equipment allows 

power to be measured at varying resistances, it may more accurately capture peak power than 

equipment that uses a fixed resistance. Limitations may include relatively long test duration and 
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somewhat high participant burden, since a 1 RM must be establish before power can be 

measured.  This is disadvantageous for a large epidemiologic study of older adults that must 

collect multiple measures and may have limited time before the participant fatigues. 

A fixed load machine such as the Nottingham power rig can also measure leg press 

power and has high reproducibility (coefficient of variation = 9.4%) and validity when compared 

to power measured by an isokinetic dynamometer and two-legged jumps on a force plate 

(rho=0.73, p<0.001; rho=0.86, p<0.001, respectively).165  Similarly, the participant is instructed 

to push one or both pedals as quickly as possible through full range of motion. However, unlike 

pneumatic resistance equipment, a 1 RM does not need to be established. This may be 

advantages for time and participant burden; however, it does not allow power measurement at 

varying resistances. This could potentially cause to ceiling or floor effects. The participant is 

asked to perform until their power plateaus or up to 5-10 trial. Compared to other equipment 

used to measure muscle power, such as the Keiser, which provides additional components such 

as velocity and force, and force plates (discussed in the next paragraph), which provide these 

components as well as additional biomechanical components (e.g. center of mass displacement), 

power is the only measure provided. This allows for easy, yet limited data collection and 

management. This equipment uses a flywheel that is low to the ground and must be manually 

adjusted, which may be difficult for some clinic staff to operate, as experienced by the staff 

University of Pittsburgh (unpublished observation, Dr. Jane Cauley). 

One limitation for the above described measures is that they are not portable and only 

allow measures to be collected in a clinic setting. Novel task-based methods may overcome this 

limitation. In addition, task-based methods, which use the participant’s own body weight as 

resistance, may more closely mimic older adults’ ability to perform tasks essential to 
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independent daily living.  These measures often use a mat or a plate to collect the force 

component of power and calculate the velocity as the vertical acceleration of the center of mass 

over time. An example of a task-based method is rising from a chair as quickly as possible on top 

of a force plated. Jumping (counter movement or squat jumps) on top of a force plate may also 

be used.  Generally, the participant is instructed to jump as high as possible and power is 

measured from the “push off” phase of the jump.  It has been suggested that functional measures 

of leg power may be able to identify decline in muscle function earlier than physical 

performance measures166 and detect greater variability in a high functioning population of older 

adults,167 although this has not been investigated.  In addition, the force plate collects a number 

of data parameters in addition to force and velocity that can more fully characterize the task-

based movement. Some functionally-based measures of leg power have been validated in the 

elderly.  Chair rise and jumping power have shown high test-retest reliability (r = 0.95 and r = 

0.99, respectively) in older adults.152,166  Chair rise power has correlated moderately high with 

the Nottingham power rig (r = 0.6)167 in older adults.  Jumping power was highly correlated with 

the Nottingham power rig (r = 0.67168 and 0.86165) and moderately correlated with chair stand 

power (women: r = 0.58, men: r = 0.61169).  Jumping power declined consistently more with age 

than chair rise power.169  Stair climb power is another example of task-based power, which does 

not require a force plate.  The participant is asked to climb a flight of stairs as quickly as possible 

(using handrails if necessary).  Power is then calculated using the following equation: force times 

velocity, where force is calculated as body mass times the acceleration of gravity and velocity is 

calculated as the height of the stairs divided by the time to complete the stair climb.152  High test-

retest reliability in community dwelling older adults with mild-moderate mobility limitations has 

been found for this measure (R=0.99).152 This method requires little equipment, just a well-lit 
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stairwell and stopwatch.  However, since these are relatively new methods of measuring muscle 

power, the feasibility and safety in different populations of older adults must be evaluated and 

appropriate data management and analytic methods established. 

Table 1.4. Advantages of different muscle power methods 

1.6 CONTRIBUTING FACTORS TO DECLINING NEUROMUSCULAR FUNCTION 

WITH AGE 

Due to the potential effects of neuromuscular decline on mobility related outcomes, 

understanding established and novel risk factors for increased neuromuscular decline with age is 

crucial. A longitudinal cohort study using 22 years of follow up data from the Mini-Finland 

Health Examination Survey examined a number of potential lifestyle and disease-related risk 

factor for decline in hand grip strength.170  Both strenuous work-related physical activity in 

midlife and becoming sedentary were associated with longitudinal decline in grip strength. 
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Being overweight or obese and smoking were related to greater decline in grip strength as were 

incident chronic conditions such as coronary heart disease, other cardiovascular disease, diabetes 

mellitus, chronic bronchitis, and chronic back syndrome, and  persistent conditions including 

cardiovascular disease, hypertension, and asthma.  The greatest observed effect was weight loss 

that exceeded 10% of body weight.  A limitation of this is that they only assessed grip strength 

when lower extremity strength may be more important for mobility. Findings should be 

confirmed in more ethnically and culturally diverse populations.  Moreover, identifying risk 

factors for lower-extremity strength and power is crucial given their established relationships 

with function and disability.155,156,158 

1.6.1 Muscle mass and muscle quality 

Loss of muscle mass with age and its association with strength decline has been clearly 

demonstrated, although strength declines independent of muscle mass,71,72 indicating the 

presence of additional contributing factors.  Muscle contractile quality, which is also called 

muscle quality, specific torque, or specific force, is a measure of strength per unit of muscle 

mass71,72 or force per single fiber. As a measure of force per fiber, it can be adjusted by the cross-

sectional area of the fiber.171  Muscle quality, particularly strength per unit of mass, which also 

declines with age, may account for much of the component of strength decline that is not 

explained by loss of lean mass.71,172 Effects of nerve function on measures of muscle quality 

have yet to be explored.  
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1.6.2 Effects of muscle structural changes 

In addition to decreasing mass, a number of structural changes occur within the muscle with age 

and likely contribute decline in muscle quality and function.  Age-related changes in muscle 

fiber type composition41,42 (see section 1.2 on the pathophysiology on muscle aging) are thought 

to play a key role in declining muscle strength and power.  As mentioned previously, aging 

muscle is characterized by a grouping of type I (slow twitch) and type II (fast twitch) fibers and 

disproportionate reduction of type II. 41,42   Individually, type II fibers can generate four times the 

power output of type I fibers.43  Moreover, type II fiber area may be more strongly associated 

with strength than type I fiber area.41,173  However, limited evidence exists that changes in fiber 

type distribution in late-life directly contribute to declines in muscle function.  One study did 

find that while the percent of type II fibers measured in human muscle biopsy samples was not 

correlated with strength, a greater percent of type IIB fibers was correlated with greater speed of 

movement.41  The relationship between fiber type percentages and power were not studied. 

However, this finding suggests that type IIB fiber distribution could be related to power, since 

velocity is the component of power that distinguishes it from strength.  In addition, resistance 

training in older adults, resulting in increased strength (and likely power, although this was not 

assessed), may also lead to increases in the area and amount of type II fibers, while the area and 

amount of type I fibers remain unchanged.174,175  Although, whether fiber type distribution in a 

small biopsy sample adequately reflects overall distribution in vivo is unclear.  

Myosteatosis, defined as fat infiltration in skeletal muscle, increases with age72 and is 

associated with changes in muscle function in late-life.  Fat depots within skeletal muscle can be 

characterized as three types: 1) intermuscular adipose tissue; 2) intramyocellular fat; and 3) 

extramyocellular fat (for a review see Miljkovic and Zmuda, 201067).  Intermuscular adipose 
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tissue (IMAT) is located within the fascia surrounding muscle. Using computed tomography 

(CT) or magnetic resonance imaging (MRI), this fat depot can be seen as marbling between 

muscle tissue.  CT can also be used to quantify muscle density33 or muscle attenuation,133 for 

which low values reflect greater IMAT.  Using data from the Health ABC study, Goodpaster and 

colleagues computed skeletal muscle attenuation coefficients, where higher values indicated less 

fat content within the muscle.133 Higher attenuation coefficient was associated with greater 

muscle quality, or specific force production, independent of muscle mass.  Longitudinal analysis 

of data from the same study, showed that lower attenuation, reflecting greater fat infiltration, was 

associated with both decreased strength and increased risk of incident mobility limitations, 

assessed using self-reported difficulty walking a quarter or a mile and climbing 10 steps without 

resting.176 CT, however, cannot distinguish intramyocellular fat, which occurs within muscle 

fibers, or extramyocellular fat, which occurs as small quantities of lipid droplets surrounding the 

muscle fiber.  These muscle depots can be quantified using magnetic resonance spectroscopy 

(MRS) or by examining biopsied muscle tissue. Intramyocellular fat also increases with age.177  

Given its positive association with insulin resistance and diabetes, many early cross-sectional 

studies focused on the metabolic properties of intramyocellular fat.  However, this association is 

not present in endurance trained athletes who tend to have greater intramyocellular fat. This has 

been termed the “athlete’s paradox”,178 although later studies have found exercise-induced 

increases in intramyocellular fat in both inactive healthy and insulin-resistant older adults.179,180  

Moreover, these increases in intramyocellular fat were associated with improvements in insulin 

sensitivity in overweight and obese participants.180 Despite the demonstrated effects of exercise 

on intramyocellular fat, the relationship between intramyocellular fat and physical and muscle 

function has not been investigated. In addition, fat infiltration is known to occur in those with 
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severe clinical neuropathy.181 In a population-based study of European white older adults, low 

motor amplitude less than <4mV, suggesting axonal degeneration was associated with lower calf 

muscle density.33  Early work by Strotmeyer and colleagues shows that poor sensory and motor 

nerve function is associated with higher IMAT in older men.182 Future work should examine 

whether these structural changes could mediate the relationship between nerve and muscle 

function. 

1.6.3 Mitochondrial dysfunction 

Mitochondrial dysfunction, which is thought to be a consequence of damage to muscle 

mitochondrial DNA that accumulates with age,126 may result in decreased metabolic rate of 

protein synthesis, ATP synthesis, increased muscle cell apoptosis, and loss of muscle mass, as 

described in the mitochondrial theory of aging.183,184 However, whether this is primarily due to 

lower physical activity in older adults is somewhat controversial.  Some evidence suggests that 

age-related declines in mitochondrial function can be reversed through exercise training.185-187  

Others suggest that impairment in mitochondrial function with age is only partially attenuated 

with exercise.188  Additional research is needed to determine whether these improvements in 

mitochondrial function translate into improvements in muscle function. Research on the 

association between mitochondrial function and peripheral nerve function is lacking, although 

Lin and Beal hypothesize that mitochondrial dysfunction plays a major role in neurodegenerative 

disease through generation of reactive oxygen species and regulation of apoptosis.189 In addition, 

down regulation of mitochondrial function has been implicated in type II diabetes, a major risk 

factor for neuropathy, through genetic linkage and mouse model studies (for review see Wallace, 

2005).190
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1.6.4 Excitation contraction uncoupling 

Animal studies show evidence of excitation-contraction uncoupling with age. Excitation-

contraction coupling is the process whereby electrical signaling from the neuron (the action 

potential) is converted into a mechanical response (muscle contraction).  Age-related uncoupling 

is thought to result from a detaching (or uncoupling) of the ryanodine receptors, which are 

responsible for releasing the Ca2+ ion, from the voltage-sensing dihydropyridine receptor units. 

This results in a reduction in the release of the calcium ion and diminished contractile force.191  

Much of the research in this has been limited mice and rats;191-193 however, there has been some 

work confirming the presence of uncoupling in single in vitro human muscle fibers from a small 

sample of healthy older adults.194 To what extent this occurs in mobility-limited older adults is 

unknown and evidence is limited on the direct relationship between excitation contraction 

uncoupling and muscle function in humans (for review see Jimenez Moreno, et al., 2006195). 

1.6.5 Hormones 

Age-related changes in hormones also likely play a role in neuromuscular impairments in late 

life.  Declines Insulin-like growth factor-I (IGF-I) may contribute to sarcopenia and declines in 

nerve function.  IGF-I is important for growth, differentiation, and repair of both muscle196,197 

and nerve cells198,199 and for nerve cell apoptosis.  In animal models, overexpression of IGF-I can 

lead to increased reinnervation of skeletal muscle after injury,200 prevention of age-related loss of 

skeletal muscle mass201 and excitation-contraction uncoupling,202 and maintenance of muscle 

fiber-specific force.203  A recent study of older adult, showed that the IGF-I CA-repeat 

polymorphism does not influence changes in peak muscle power with strength training.204  
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Testosterone levels also decrease with age and have been shown to contribute to loss of muscle 

mass205  although evidence of its effects on muscle function is somewhat conflicting.205,206  

While some evidence suggests that testosterone administered to older adults with low levels may 

increase muscle mass, strength, and protein synthesis,207-211 findings are still inconclusive as to 

whether testosterone therapy improves muscle strength and function in community-dwelling 

elderly.212 

1.6.6 Inflammatory cytokines 

Aging is associated with an increase in pro-inflammatory cytokines that may be associated with 

catabolic effects on muscle; however, evidence is conflicting on whether these cytokines predict 

sarcopenia in older adults.  IL-6 has both pro- and anti-inflammatory effects in relation to 

skeletal muscle.  As a pro-inflammatory cytokine, it may mediate the catabolic effects of wasting 

diseases and sarcopenia in the elderly.  Yet, it has also been implicated in metabolic control 

pathways during exercise and some suggest that it may play an anti-inflammatory role as an 

inhibitor of the production of inflammatory mediator TNF-α.  In addition, IL-6 may interfere 

with growth hormone (GH) and insulin-like growth factor (IGF)-I, which are essential mediators 

of skeletal muscle growth.  Evidence from mice studies indicates that IL-6 may induce changes 

in growth factor-related signaling and catabolism and that downregulation of growth factor-

mediated intracellular signaling may act as a mechanism for IL-6 induced muscle atrophy.213   

Data from the Health ABC Study shows that high serum levels and soluble receptors of 

inflammation markers, such as IL-6 and TNF-α, are associated with a greater decline in muscle 

mass and strength over five years.214  Some of these associations were attenuated by adjustment 
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for change in weight, suggesting that that there may be a weight-associated pathway for 

inflammation in sarcopenia.  

1.6.7 Nutrition 

Various nutritional deficiencies, such as inadequate protein intake, vitamin D deficiency, and 

low vitamin B12 have been implicated in neuromuscular decline and particularly decline in lean 

mass with age (for reviews see Morley et al.,215 Forbes et al.216, and Robinson et al.217).  Not only 

do older adults tend to intake less than the recommended daily allowance (RDA) of dietary 

protein, but their muscles may also produce less protein due to metabolic changes that occur with 

age.218  The Health, Aging, and Body Composition Study found that older adults in the highest 

quintile of protein intake had 40% less decline in appendicular lean mass when compared to 

those in the lowest quintile.219  While it is generally accepted that adequate levels of protein are 

needed to maintain muscle mass in old age,215-217,220 evidence that increasing protein intake alone 

can prevent or even reduce the risk of sarcopenia is limited. Trials comparing the combination of 

strength training and protein supplementation to strength training alone have produced 

conflicting finding of its efficacy for promoting gains in muscle mass.221-224  The effect of protein 

intake on muscle function in the elderly is largely understudied.  Existing evidence suggests that 

protein intake may only be associated with change in muscle strength in older adults with high 

levels of inflammatory markers.225 The optimal amount of protein intake in late life is also 

unknown, however, it has been suggested that older adults may require more than the current 

RDA of 0.8 g/kg/day.215  Studies on the supplementation of amino acids necessary for protein 

synthesis, such as Leucine, have also yielded conflicting findings.226-228  Clearly, more research 

is needed in this area.  
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Vitamin D deficiency is common in the elderly229-232 and has been associated with low 

muscle strength233,234 and impaired nerve function.235-238  Very low levels of vitamin D can lead 

to osteomalacia, which is a clinical syndrome involving under-mineralization of bone and is 

associated with muscle weakness.239  A recent meta-analysis demonstrated that daily vitamin D 

supplementation between 800 and 1,000 IU had a beneficial effect on strength and balance in 

older adults.240  However, it is unknown to what extent this improvement in function is due to 

changes in nerve function, lean mass, or other mechanisms. In addition, the Institute of 

Medicine’s review of randomized controlled trials and observational studies indicates lack of 

sufficiently strong evidence supporting the effect of vitamin D supplementation on physical 

function and falls. This was due, in part to lack of high quality observational evidence and varied 

significance in randomized controlled trials.239 

Deficient levels of the vitamin B12 also have negative neuromuscular consequences.  

Deficiency can cause nerve demyelination and has been associated with neuropathy,241-243 lower 

extremity weakness,244 decline in physical performance,245 loss of position sense,246 bone loss, 

and fracture.247,248  Moreover, subclinically low levels of B12 have been related to low sensory 

(monofilament detection) and motor (nerve conduction velocity) peripheral nerve function in 

older adults.249,250 There have been no clinical trials in older adult assessing whether vitamin B12 

supplementation influenced muscle function or physical performance. 

1.6.8 Disease related risk factors 

One limitation of many studies of strength and power decline with age is that they do not address 

any disease related risk factors. Diabetes mellitus is a major risk factor for clinical neuropathy 

and has been implicated as an important risk factor for decline in neuromuscular function.  Older 
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adults with type 2 diabetes have worse muscle strength (4% lower) and quality (7-8% lower).251 

They also show greater declines in strength and quality (33% greater declines for both).252  While 

there has been little work on the effects of diabetes on muscle power, a small study found that 

older adults with concurrent diabetes, peripheral neuropathy, and obesity had lower muscle 

strength power.253 In this study, the independent effects of diabetes could not be assessed. In 

early work using data from the Health ABC study, we have shown that adjustment for diabetes 

attenuated associations between power and self-reported physical function, explaining a portion 

of the association.254 Associated neuropathy is likely an important mechanism in the relationship 

between diabetes and poor muscle function since the severity of neuropathy and the fiber density 

and amplitude of motor units was associated with strength.  However, in the Health ABC study 

(ages 70-79 at baseline), Strotmeyer and colleagues found that diabetes predicted lower 

extremity function independent of peripheral nerve function.20,21 Increased inflammatory 

cytokines , such as TNF-α and IL-6 may also play an important role, since they are associated 

with impaired muscle mass, strength and physical performance and partially attenuate the 

relationship between diabetes and loss of strength and muscle quality.  Insulin resistance also 

leads to impaired mitochondrial function which likely contributes to neuromuscular health. 

Those with diabetes also tend to experience a greater amount of intermuscular adipose tissue, 

termed myosteatosis,71,133  which has been linked to decreased strength and a higher incidence of 

mobility limitations.133,176 

Peripheral Arterial Disease (PAD) is also an important risk factor for neuromuscular 

decline.255,256 PAD is defined often subclinically in older adults as ankle brachial index (ABI) < 

0.9. PAD is associated with poor sensorimotor nerve conduction, lower calf muscle area and 

density and a higher percentage of calf muscle fat, which may lead to worse physical 
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performance.255,256  Muscle power may attenuate the relationship between PAD and poor 

physical performance in older adults.255,257  Both cross-sectional muscle area and nerve 

conduction velocity (NCV) did not attenuate this relationship; however, NCV was only 

measured in the right leg, even if the left leg had lower ABI. Muscle strength has not been 

examined as a mediator.  The role of PAD in neuromuscular decline is likely due to ischemia 

(decline in blood flow) to distal nerve and muscle tissue resulting in denervation, muscle 

atrophy, and reduced perception, diminished oxygen for muscle fibers to use.38  Occlusion of 

vessels leading to decreased blood flow and insufficient oxygen can result in an impaired 

capacity to replenish ATP and creatine phosphate.  This can inhibit cross-bridge interaction 

between actin and myosin, leading to fatigue.258-260  Ischemia prevents adequate oxygen delivery 

which can delay ATP and creatine phosphate resynthesis.38 This can contribute to fatigue during 

muscle contractions,259,260 potentially leading to decreased muscle strength and power.261  An 

additional mechanism between PAD and impaired physical function that has been proposed is 

that those with PAD may reduce their walking speed to avoid ischemic leg symptoms.257  Over 

time, this could result in detrimental changes to muscle, further contributing to worse lower 

extremity function.257  Alternatively, asymptomatic participants with PAD may experience 

primary insult to lower extremity nerves (maybe related to ischemia) potentially inducing 

denervation atrophy of muscles and reduced perception of lower extremity ischemic 

symptoms.257 

1.6.9 Central nervous system 

With older age, a reduced evoked potential of neurons within the motor cortex of the brain and 

the spinal cord have been observed using transcranial magnetic stimuli.262  These corticospinal 
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neurons and their increased activation (termed central activation) are linked to increased force of 

contraction, and therefore their decreased activation is believed to be linked to a decrease in 

force.  Imaging has also demonstrated age-related atrophy and changes in and around the motor 

cortex,263-266 however, if and how these changes are directly related to loss of muscle function is 

not known.  A higher intensity stimulus is required to achieve maximal motor evoked potentials 

with older age.267  This is suggestive of the role of the central nervous system in submaximal 

activation during maximal voluntary contractions (MVC) with age, necessary for strength and 

power output.19  However, some limitations to the methodology available exist for assessing the 

involvement of the central nervous system in MVC with age.  Involvement of the cortex, spinal 

cord, and neuromuscular junction is typically measured through voluntary activation of muscle 

fibers268 using the interpolated twitch technique.  The interpolated twitch technique entails 

supramaximally stimulating motor axons of contracting muscles during MVC.  This additional 

stimuli is thought to recruit muscle fibers that have not been activated through voluntary effort, 

allowing for their quantification.19  A notable limitation of this technique that has been suggested 

is that it may overestimate voluntary activation when using single or paired stimulation and has 

reduced sensitivity for detecting activation failure above 90% of MVC.188,189  Single or paired 

stimulation is more easily tolerated than repetitive “train” stimulation, although it does not allow 

for summation of forces, and may therefore only represent a small fraction of the torque 

production during MVC.  Moreover, findings on whether central voluntary activation decreases 

with age have been conflicting and dependent on the muscle studied19,269 and on the age of the 

participants.270  For instance, a decrease in central activation has been observed for the knee 

extensors and elbow flexors, particularly in older adults greater than 70 years of age, but this 
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decrease in activation has not been observed in the dorsiflexors.10,19  Moreover, longitudinal data 

to look at age-related changes is severely lacking.  

1.7 STRENGTH AND POWER TRAINING 

Until recently, exercise interventions for older adults designed to increase muscle function 

mostly focused on resistance training with only modest gains in muscle power.11,271  More 

recently, some focus has shifted to improving muscle power in older adults with specificity 

training. Many of these interventions have used some form of high velocity resistance training, in 

which the concentric phase is performed as quickly as possible, aimed at increasing muscle 

power and physical function. Table 1.5 summarizes findings from these studies.  A number of 

these studies tested comparative effectiveness with more traditional strength training.  Compared 

to traditional strength training, high velocity power training lead to greater improvements in 

power, but similar improvements in strength.  Both strength and power training generally lead to 

improvements in physical function, such as the short physical performance battery 

(SPPB),161,272,273 stair climb time,161,274 chair rise time,274,275 gait speed,161,274,276 the timed up and 

go,275 the Continuous Scale Physical Functional Performance,277 counter movement jump 

height,160  and self-reported function.272   In some cases power training lead to greater 

improvements in physical function than strength training, but in other cases, improvements in 

physical function were not significantly different between training groups. In all cases, strength 

and power training was well tolerated in older adults, even among those with self-reported 

disability.278  Explosive training with heavy loads (80% of 1RM) have been found to be more 

effective than lighter loads (50% and 20% of 1RM) at improving muscle strength, whereas both 
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heavy and light loads may be equally effective at improving power.279  While explosive training 

with heavy loads may be safe in healthy older adults,160 evidence is lacking in those with 

mobility limitations and in individuals susceptible to pain. These studies have been limited by 

small sample sizes and short-training durations (3-24 weeks). More research is needed diverse 

populations of older adults with varying physical abilities.  
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Table 1.5. Strength vs. power training 

Study Population Training 
Group 

↑ Power  ↑ Strength ↑ Physical 
function 

Fielding, 
2002278 

• N=30
• Mean age 73 ± 1
• Women with self-reported

disability

PT ↑↑ ↑ -- 

ST ↑ ↑ -- 

Miszko, 2003277 • N=39 
• Mean age  72.5 ± 6.3
• Leg extensor power <140W

(women), 210W (men)

PT ↑ ↑ ↑ 

ST ↑ ↑ 0 

Henwood, 
2008274 

• N=67
• Mean ages 70.7 ± 5.5, 70.2

± 5.0, 69.3 ± 4.1, 69.1 ± 3.6
• Community dwelling older

adults

PT -- ↑ ↑ 

ST -- ↑ 0 

Bottaro, 2007275 • N=24 
• Mean age 66.4 ± 5
• Healthy, inactive men

PT ↑↑ ↑ ↑↑ 

ST ↑ ↑ 0 

Caserotti, 
2008160 

• N=56
• Mean ages 62.7 ± 2.2 and

81.8 ± 2.7
• Community dwelling

women

PT ↑ ↑ ↑ 

ST -- -- -- 

Reid, 2008280 • N=57
• Mean age 74.2 ± 1.4
• Mobility limited (mean

SPPB 7.7±1.4)

PT ↑↑ ↑ -- 

ST ↑ ↑ -- 

Marsh, 2009281 • N=45 
• Mean age 75.8 ± 5.7
• ADL difficulty

PT ↑↑ ↑ -- 

ST ↑ -- 

Bean, 2009272 • N=138
• Mean age 75 ± 6.8
• Mobility limited (mean

SPPB 7.7±1.4)

PT ↑↑ ↑ ↑ 

ST ↑ ↑ ↑ 

Holsgaard-
Larsen, 2011282 

• N=19
• Mean age 69.7 ± 3.4
• Women

PT -- -- ↑ 

ST -- -- -- 

Drey, 2011273 • N=69
• Mean ages 76 (70-82), 78

(73-84), 77 (72-80)
• Prefrail (Freed definition)

PT 0 0 ↑ 

ST 0 0 ↑ 

↑ = Increased with training 
↑↑ = Increased significantly more than comparative training group 
0 = No effect 
-- = Not assessed 
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1.8 LIMITATIONS IN THE LITERATURE 

A number of important limitations in the literature need to be addressed.  First, many individuals 

with neuropathy may go undiagnosed22 and remain asymptomatic,23 particularly in those without 

diabetes, therefore subclinical measures of poor nerve function should be included in studies of 

older adults. The prevalence and incidence of poor nerve function in subgroups of older 

populations is unknown and should be assessed, particularly given the health disparities of 

disease related risk factors for neuropathy. The effects of diabetes on muscle power should be 

studied and mechanisms for its relationship with strength should continue to be uncovered. In 

addition, while diabetes remains an important risk factor for neuropathy, neuropathy remains 

quite prevalent in older adults without diabetes23 and diabetes does not fully account for the 

relationship between neuropathy and poor mobility outcomes,20,21 therefore other known and 

novel risk factors should continue to be explored, particularly using longitudinal data. There is 

limited longitudinal data on nerve function in older adults. Specifically, data from longitudinal 

cohort studies are needed to confirm age-related physiologic and functional declines and to 

assess relationships between nerve function, muscle structure and function, and physical 

function. The relationship between muscle power and clinical measures of nerve function, such 

as those from nerve conduction studies and monofilament testing should be investigated. Direct 

comparison of the relationship of strength vs. power with nerve function and physical function 

are lacking. Since there are a number of methods currently used to measure muscle function, and 

particularly muscle power, optimal methods of measurement in older adults need to be evaluated 

for feasibility and validity in relation to key outcomes and predictors, such as physical function 

outcomes, nerve function, and muscle characteristics like mass, quality, fiber type composition 

and mitochondrial function. More research is needed on interventions for neuromuscular decline. 
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This includes research on training interventions with longer durations, larger sample sizes, and 

more functionally diverse populations, investigating the specificity, intensity, and volume of 

training needed to prevent or slow declines in neuromuscular and physical function.  

1.9 OBJECTIVES AND SPECIFIC AIMS 

This dissertation will address limitations in the literature by using prospective data to investigate 

the relationships between peripheral nerve function and muscle power, strength, and mobility 

limitation in older adults. Our objectives include assessing whether cross-sectional and change in 

sensory and motor peripheral nerve function are associated with lower extremity muscle power 

in community dwelling older men from the Osteoporotic Fractures in Men Study (MrOS). We 

will investigate the relationship between motor and sensory peripheral nerve function and 

longitudinal quadriceps strength in a large cohort of community dwelling older men and women 

from the Health Aging and Body Composition (Health ABC) Study. Finally, using data from the 

Health ABC Study we will assess the relationship between sensory and motor nerve function 

over seven years and incident mobility limitation. The specific aims and hypothesis of this 

dissertation are listed below. With these objectives, this dissertation will help characterize the 

role of neuromuscular impairment in the disablement pathway. 

Aim 1. To assess the cross-sectional and longitudinal relationship between sensory and 

motor nerve function and lower extremity muscle power. 

Hypothesis 1a. Poorer nerve function will be associated with diminished lower extremity 

muscle power. 

Hypothesis 1b. Poorer nerve function will independently predict decline in muscle power. 
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Hypothesis 1c. Decline in nerve function will predict concurrent decline in muscle power. 

Aim 2. To assess the relationship between baseline and longitudinal change in sensory 

and motor nerve function to longitudinal change in lower extremity quadriceps strength. 

Hypothesis 2a. Poorer baseline nerve function will independently predict decline in 

quadriceps strength. 

Hypothesis 2b. Seven-year decline in nerve function will be associated with concurrent 

decline in quadriceps strength. 

Aim 3. To investigate whether poor baseline and longitudinal change in sensory and 

motor peripheral nerve function predict incident mobility limitation. 

Hypothesis 3a. Worse baseline sensory and motor nerve function will be associated 

shorter time to incident disability. 

Hypothesis 3b. Greater decline in nerve function will be associated with shorter time to 

incident disability. 
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2.1 ABSTRACT 

Objective: To assess whether cross-sectional and change in sensorimotor peripheral nerve 

function are associated with lower extremity muscle power in a cohort of community dwelling 

older men. 

Design: Longitudinal cohort study. 

Setting: One U.S. clinical site. 

Participants: Three hundred seventy-two participants from the Osteoporotic Fractures in Men 

(MrOS) Study (age = 77.2 ± 5.1 years, 99.5% white, BMI= 27.9 ± 3.7 kg/m2, power = 1.88 ± 0.6 

watts/kg). 

Measurements:  Measurements were collected during a nerve function ancillary study performed 

4.6 ± 0.4 years after baseline and a follow up visit that occurred 2.3 ± 0.3 years after the first visit. Muscle 

power was measured in each leg using the Nottingham Power Rig. Motor nerve conduction amplitude, 

distal motor latency, and mean f-wave latency were measured at the deep peroneal nerve.  Sensory nerve 

function was assessed using 10-g and 1.4-g monofilaments and sensory nerve conduction amplitude and 

distal sensory latency were measured at the sural nerve.  Symptoms at the leg and feet (numbness or 

tingling; sudden stabbing, burning, pain or aches; and open or persistent sores) were assessed by self-

report. Adjusted models include age, height, total body lean and fat mass or calf muscle volume and 

muscle density in place of lean and fat mass, Physical Activity Score for the Elderly (PASE), diabetes, 

ankle-brachial index, hypertension, hip pain, stroke, congestive heart failure, and Teng Modified Mini-

Mental State Exam (3MSE) score. 

Results:  After adjusting for age, height, total body lean and total body fat mass, one standard 

deviation lower motor and sensory amplitude (β = -0.07, β = -0.09, respectively;  both p < 0.05) and 1.4-g 

and 10-g monofilament insensitivity (β = -0.11 and β = -0.17, respectively; both p < 0.05) were associated 

with lower muscle power/kg in separate linear regression models.  Compared to the effect of age on 
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muscle power (β per year = -0.05 , p < 0.0001), this was equivalent to aging 1.4 years for motor 

amplitude, 1.8 years for sensory amplitude, 2.2 years for 1.4-g monofilament detection, and 3.4 years for 

10-g detection. Baseline 1.4-g monofilament detection predicted greater decline in power/kg. Short-term 

change in nerve function was not associated with concurrent short-term change in power/kg. 

Conclusion:  Motor and sensory nerve conduction amplitude and monofilament sensitivity were 

associated with lower power/kg. Sensory and motor nerve function may play an important role in 

impaired muscle function in older men.  Simple screening for monofilament detection may potentially 

identify muscle function decline in late-life, which has implications for disability in older adults. 

2.2 BACKGROUND 

Lower extremity muscle power is an important determinant of late-life physical function 

mobility.153,158 While muscle strength is a measure of the ability to produce force, muscle power 

is a measure of both force and contractile speed.  Loss of muscle power in older adults has been 

linked to risk of falls283 and loss of mobility as measured by physical performance tests such as 

walking, chair stands, or stair climbing70,140-142,149,151,152,166 and self-reported functional 

status.143,153 Studies suggest that, compared to strength, muscle power declines more steeply with 

age69,70 and may be more strongly associated with certain measures of mobility.140,141,142 ,143 

Moreover, training programs designed to improve muscle power and velocity of movement may 

be more effective at improving physical performance than those that solely incorporate basic 

resistance training.160,278,284  

Although the exact etiology remains somewhat unclear, poor muscle power in late-life 

and its unique relationship with mobility may be, at least in part, due to impairments in 

peripheral nerve (PN) function.2,41,74,144-146  Force and velocity production (the two components 
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of muscle power) are likely dependent on the number and firing rate of motor units, consisting of 

neurons and their associated muscle fibers.84  In addition, afferent input from impaired sensory 

nerves may play an important role in muscle and physical function through loss of 

proprioception.12,13  Like muscle power, PN function has been found to decline with age. 

22,23,26,285,286  The 1999-2000 National Health and Nutrition Examination Survey (NHANES) 

showed that 35% of adults aged 80 years and older had impaired nerve function measured using 

simple screening for reduced sensation at the foot.23  Decreased PN function in old age has 

similarly been linked with physical function limitations and impairments26,27 and increased risk 

of falls.28-30 Additionally, poor sensory and motor PN function has been related to reduced lower 

extremity quadriceps strength in the Health Aging and Body Composition Study.21   

Despite the importance of muscle power and nerve function for mobility-related 

outcomes and the assumed etiologic relationship between them, the relationship of power with 

motor and sensory PN measures commonly used in clinical evaluations and neurologic studies 

has not been quantified. In a longitudinal cohort study of older men, we evaluated the whether 

sensory and motor PN function is related to lower extremity muscle power cross-sectionally and 

longitudinally with the hypothesis that worse and declining nerve function is associated with 

poor and declining muscle power. 
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2.3 METHODS 

2.3.1 Study population 

We used data from a nerve function ancillary study in which 372 participants had nerve function 

and power measured during the first visit and 242 participants had these repeated during a 

second visit. The ancillary study was performed at the Monongahela Valley site and occurred 4.6 

± 0.4 years after baseline visits, which occurred between 2000 and 2002. The second visit to the 

ancillary study occurred 2.3 ± 0.3 years after the first. This ancillary study was part of the 

Osteoporotic Fractures in men study (MrOS), which is a cohort of community dwelling, 

ambulatory men (N = 5994) aged 65 years and older enrolled between March 2000 and April 

2002 at six U.S. clinic sites (Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Monongahela 

Valley near Pittsburgh, PA; Portland, OR; and San Diego, CA; n=1005 in Pittsburgh at baseline).  

Eligibility for the main study included ability to walk without assistance of another person or an 

aide, ability to provide self-reported data, ability to understand and sign an informed consent, 

absence of bilateral hip replacements, absence of a medical condition that would result in 

imminent death, and residence near a clinic site for the duration of the study period. The primary 

recruitment strategy was mailing invitations to men living in the surrounding communities of the 

clinic sites. Supplementary strategies included community and senior newspaper advertisements 

and presentations to community groups. The study protocol was approved the University of 

Pittsburgh institutional review board and written informed consent was obtained from all 

participants prior to testing. Out of the 662 men with nerve function measured during the first 

visit of the ancillary study, 372 had muscle power and were included in cross-sectional the 

analyses.  Reasons for missing muscle power included a temporary equipment failure (n = 205), 
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refusal (n = 11), and unable due to physical limitation (n = 74). Participants with missing cross-

sectional muscle power data did not differ by age, but had slightly higher BMI (28.6 vs. 27.9 

kg/m2, p = 0.03) and a higher prevalence of diabetes (27.9% vs. 17.0%, p < 0.001). Out of the 

participants included in the cross-sectional analysis, 297 returned for a second follow-up visit of 

the nerve function ancillary. The change analysis included data from 242 participants with 

complete nerve function and muscle power data from the first and second visits of the ancillary 

study. During the second visit, 1 participant refused muscle power testing and 53 participants 

were unable due to physical limitations. Participants with missing data for the change analysis 

were older (78.8 vs. 76.3 years, p < 0.0001), but had similar BMI and rates of diabetes.  

2.3.2 Lower extremity muscle power 

Muscle power was measured using an unloaded single leg extension (Nottingham Leg Extensor 

Power rig, Nottingham, U.K.).165  Participants were seated with their arms crossed over their 

chest and instructed to push down on a pedal with one foot as hard and as fast as possible 

through full range of motion.  Pushing the pedal transmits energy through a lever and chain to 

accelerate a flywheel.  The velocity of the flywheel is measured with an optoswitch and used to 

calculate the power output.  Peak power was measured in watts as the maximum power output 

from five trials.  Both sides were tested unless the participant had a hip replacement on one side. 

The ratio of power to body weight in kg was chosen as the outcome of interest since it may better 

reflect ability to move one’s body weight during normal daily functioning.  

To correspond with sensory nerve conduction measures, muscle power data on the non-

dominant side was used in the analysis unless prohibited by missing data because of inability due 

to physical limitation.  In the case that no sensory nerve conduction data were available, muscle 
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power data was matched to the side in which motor nerve conduction and/or monofilament 

testing were performed.  The number of participants with discordant sides analyzed due to 

missing data was minimal (n = 5 for motor nerve conduction and n = 1 for monofilament 

testing).  

2.3.3 Peripheral nerve measures 

Nerve conduction was measured bilaterally on the deep peroneal motor and sural sensory nerves 

using an automated nerve conduction study device (NC‐stat®, NeuroMetrix, Inc., Waltham, 

MA).287  This device has been previously validated in healthy older adults with gold standard 

nerve conduction studies (correlation coefficient > 95%).288  If participants’ feet were less than 

30° C, they were warmed to at least 30° C prior to testing. The parameters recorded from the 

peroneal motor nerve included the compound muscle action potential (CMAP) motor amplitude 

in millivolts (mV), measured from baseline to the negative peak of the CMAP waveform, the 

distal motor latency (DML) in milliseconds (ms), the time from the stimulus to the onset of 

motor activity, and mean F-wave latency (FWL) in ms, the mean value of the time from stimulus 

to the onset of F-wave activity.  Sural sensory nerve measures included the sural nerve action 

potential (SNAP) sensory amplitude in microvolts (µV), the difference between negative and 

positive peak of the SNAP waveform and the distal sensory latency (DSL) in ms, the time from 

the stimulus to the negative peak of the SNAP.  Light (1.4-g) and standard (10-g) monofilament 

sensitivity were defined as ability to detect three out of four touches at the dorsum of the both 

great toes. Insensitivity was defined as inability to detect three touches. The standard 

monofilament was performed only if the participant could not feel the light monofilament. 

Sensory nerve conduction was performed on the non-dominant side.  Motor nerve conduction 
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and monofilament testing were performed on both sides unless technical difficulty occurred. 

Participants were asked whether they experienced neuropathic symptoms within the past 12 

months.  These included having:  (1) numbness or tingling, (2) sudden stabbing, burning, pain or 

aches, and (3) an open or persistent sore, or gangrene on either feet or leg.  A count of symptoms 

was calculated from 0-3. All measures were repeated at the follow-up visit. 

2.3.4 Additional covariates 

All models were adjusted for age and height, measured using a stadiometer. Weight was 

measured with a calibrated balance beam scale but was not included as a covariate since 

power/kg of body weight was the outcome. Since one potential characteristic of overt neuropathy 

is atrophy of muscle fibers,34 lean mass was included as a potential mediator of the relationship 

between nerve function and power.  Fat mass, was included due to its important metabolic and 

functional consequences.289,290 Lean and fat mass were measured using dual-energy X-ray 

absorptiometry (DXA; Hologic 4500A, Hologic, Inc., Bedford, MA).  To ensure reproducibility 

of DXA measurements, standardized measurement and quality-control procedures were used and 

operators were certified. More localized measures of calf muscle density, which has been 

positively associated peroneal motor amplitude,33 and muscle volume, were added in place of 

lean and fat mass as potential mediators.  Muscle density in mg/cm3, a measure of intermuscular 

fat, and muscle volume (mm2) were measured at 66% of the calf length using peripheral 

quantitative computed tomography (pQCT - Stratec XCT-2000 scanner, Pforzheim, Germany) as 

previously described.291  Each of the following covariates was added to the model since they 

were significantly related to muscle power or one of the nerve function predictors at an alpha 

level of 0.1. Diabetes was defined by self-report, use of hypoglycemic medications or having a 
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baseline fasting glucose ≥ 126 mg/dl.292  Other chronic health conditions included self-reported 

hypertension, congestive heart failure, myocardial infarction, stroke, osteoarthritis, hip pain and 

Parkinson’s disease.  Participants self-reported if a doctor or other healthcare provider had ever 

told them that they had the condition.  Ankle-brachial index less than 0.9 was used to define 

peripheral vascular disease and greater than 1.3 was used to define arterial stiffening.  Cognitive 

function was assessed using the Teng Modified Mini-Mental State Exam (3MSE).293 Lifestyle 

factors included smoking status (both past and current), alcohol use (>1 drink/week) and physical 

activity measured using the Physical Activity Scale for the Elderly (PASE). 294 Variance inflation 

factors (VIF) were calculated to assess collinearity). No VIF exceeded 3.  

2.3.5 Statistical analysis 

Jonckheere-Terpstra tests and Analysis of Variance (ANOVA) were used to test for trends in 

participant characteristics across weight-adjusted muscle power tertiles.  Pairwise comparisons 

were made between muscle power tertiles using t-tests and chi-squared statistics.  Multivariable 

linear regression was used to compare: 1) each measure of baseline nerve function to baseline 

muscle power per kg of body weight; 2) each measure of baseline nerve function to change in 

muscle power/kg; 3) each measure of change in nerve function to change in muscle power/kg. 

Significant associations in the change analyses were then compared across tertiles and groups of 

baseline and nerve function change using least squared means adjusted for age, height, lean and 

fat mass for ease of interpretation.  Separate models for each measure of nerve function were 

built progressively in order starting with the measure of nerve function. Age and height were 

added to the first set of minimally adjusted models. Total body lean and fat mass were added to 

the second set of models. For the third set of models, lean and fat mass were replaced with more 
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localized measures of calf muscle density. And finally, models were adjusted for lifestyle factors, 

chronic health conditions and cognition to assess independent associations.   

2.4 RESULTS 

Participant characteristics were compared across muscle power tertiles (Table 2.1). Those in the 

lowest power tertile were older, shorter in height, and had a higher BMI, greater fat mass, lower 

lean mass, and were more likely to have a history of hypertension and myocardial infarction. 

Men in the lowest tertile also had lower motor and sensory amplitude and were less likely to 

have 1.4-g and 10-g monofilament sensitivity and more likely to report numbness symptoms in 

the leg or feet (Table 2.2).   

One standard deviation lower motor and sensory amplitude and standard touch 

monofilament insensitivity were associated with lower power/kg when adjusted for age and 

height (Table 2.3).  The associations between power and motor and sensory amplitude remained 

significant upon further adjustment for lean and fat mass, and confounders including lifestyle 

factors and chronic conditions (results not shown).  When we adjusted for calf muscle density 

and volume (results not shown) rather than lean and fat mass, the association between 

monofilament insensitivity and power was attenuated to nonsignificant by muscle density. 

Muscle density was positively associated with muscle power (β = 0.03, p < 0.001). The 

association of monofilament sensitivity with power was also attenuated to nonsignificant by low 

ankle arm index, which was borderline associated with muscle power (β = -0.11, p < 0.07).  

We then compared the effect sizes for significant nerve function variables from the 2nd 

Models to the effect size of age on muscle power in standard deviations of power/kg (Figure 
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2.1). One standard deviation lower motor and sensory amplitude had the effect of aging 1.4 and 

1.8 years, respectively and inability to detect 1.4-g and 10-g monofilament had the effect sizes of 

aging 2.2 and 3.4 years, respectively. Table 2.3 shows that inability to detect 1.4-g monofilament 

at baseline predicted a greater decline in muscle power/kg (least squared means = -0.08 vs. 0.07 

watts/kg, p = 0.02) when adjusted for age and height. Results were consistent when adjusted for 

lean and fat mass or muscle density and volume and additional covariates. Change in nerve 

function was not associated with a change in power. 

2.5 CONCLUSIONS 

Although muscle power is known to be dependent on both the nervous and musculoskeletal 

systems, previous research has not evaluated PN function measures commonly used in clinical 

practice and neurologic studies. Studies have indicated that muscle power declines at an even 

faster rate with age than strength,69,70 and our findings show that the potential effects of 

peripheral nerve function are 1.5 to 3.5 times the effect of age alone.  This finding has 

particularly important consequences, given that neuropathy is a preventable risk factor. 

Establishing the relationship between muscle power and clinically relevant measures of nerve 

function in late-life is crucial since older adults experience the highest burden of neuropathy and 

diminished muscle function and both likely play key roles in the disablement pathway.23,71 Our 

findings show that poor sensory and motor peripheral nerve function are independently 

associated with and may be important risk factors for poor muscle power in old age. Risk factors 

for poor muscle power are somewhat understudied in epidemiologic studies of older adults, yet 
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poor muscle power has important consequences in late-life such as impaired mobility,70,140-

143,149,151,152,166 disability,148,153 and increased risk of falls.283  

 We found that lower amplitude, but not latency, was associated with poor muscle power. 

Consistent with  our study findings, Strotmeyer and colleagues reported that peroneal motor 

nerve amplitude, but not conduction velocity, was related to lower extremity muscle strength.21 

Latency is the travel time of the response and is measured from the moment of stimulation to the 

appearance of the action potential.  Nerve conduction velocity is typically calculated by dividing 

the distance between two stimulation sites by the difference between latencies.65 Diminished 

amplitude may indicate axonal degeneration and motor nerve death, whereas latency or 

conduction velocity may be a measure of demyelination of the protective sheath surrounding the 

nerve.63  Amplitude may decline in some individuals, while velocity, driven by the motor units 

that remain intact, remains normal.33,76  In participants in the lowest muscle power tertile, we 

observed lower amplitude but no difference in latency, compared to those in higher muscle 

power tertiles (Table 2.2).  However, given that power is a measure of contractile velocity in 

addition to force, it is reasonable to hypothesize that the travel time, particularly for the motor 

nerve response, may be related to power. We, however, were not able to assess whether 

participants had low power due to low force or low velocity, since the power rig does not 

measure these two components separately. 

Sensory nerve function measured by monofilament detection and average vibration 

perception threshold was associated with muscle strength in the previous study as well.21  We 

found that sensory amplitude was also related to muscle power.  While motor nerves directly 

innervate muscle, it is less clear how the sensory nerves are involved.  Blocking afferent input in 

healthy individuals has led to impaired maximal voluntary contractions,13 which may occur 
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through loss of proprioceptive feedback.12  Furthermore, sensory neuropathy has been associated 

with significant loss of ankle movement perception.295,296  While an effort was made to collect 

multiple trials until a plateau in peak power was reached, it is possible that impaired sensory 

nerve function may have dampened participants’ ability to achieve proper foot placement and 

push at a maximum effort.  The fixed load single leg extension requires participants to push with 

their heel while maintaining contact between the pedal and the entire dorsum of the foot. 

Multiple trials may be needed for the participant to familiarize themselves with the movement 

and in some cases up to 9 trials may be need to produce a maximum effort.165  Assessing the 

relationship between nerve function and alternative methods of measuring muscle power may be 

an important future direction.  An additional explanation could be that large fiber neuropathies, 

which are the most common type of neuropathies in older adults,297 may affect both sensory and 

motor nerves, with most deficits first presenting as sensory loss. This can progress to reduced 

position sense, muscle weakness and wasting, and depressed tendon reflexes.297 Numbness and 

tingling were the most commonly reported neuropathic symptoms in this study with 30% of the 

total study population reporting them, supporting this hypothesis. There was also a significant 

trend across muscle power tertiles, with those in the lowest tertile being most likely to report 

numbness symptoms.  

Muscle density and low ankle arm index attenuated the relationship between 

monofilament sensitivity and muscle power to nonsignificant.  Interestingly, diminished nerve 

function in older adults has been previously associated with lower muscle density, a measure of 

intermuscular fat, but not with cross-sectional muscle area,33 which could suggest that age-

related changes in nerve function lead to changes in muscle tissue structure over macroscopic 

changes in muscle mass. Moreover, peripheral vascular disease measured using ankle arm index 

 58 



has been associated with reduced leg muscle power and lower motor nerve conduction velocity, 

although the previous study did not examine sensory monofilament detection.255 

A major strength of this study is the inclusion of both motor and sensory PN function 

measures. We also used reproducible sensitive and specific measure of nerve conduction for both 

motor and sensory nerves.287,298 Our measure of muscle power has been previously validated and 

is commonly used.165 Models were adjusted for a number of potential confounders, including 

body composition measures, lifestyle factors, and comorbidities. And finally, we were able to 

examine longitudinal relationships between nerve function and muscle power change, although 

some of our null finding are likely attributable to the short time period (2.3 years) between 

measures. 

One limitation of this study is that our results may not apply to other populations such as 

non-whites, women, the “young-old” and institutionalized individuals. Future studies should 

assess the relationship between muscle power and clinical measures of motor and sensory nerve 

function in a larger more diverse population with a broader range of function.   

We showed that sensory and motor nerve function are independently associated with 

muscle power, which is associated with poor outcomes in older adults such as falls,283 impaired 

mobility,70,140-143,149,151,152,166 and disability.148,153 Future work should investigate whether there is 

a direct relationship between poor nerve function and these poor health outcomes. Since 

monofilament insensitivity was predictive of greater muscle power decline, future studies should 

also test whether simple screening for monofilament detection may identify early impairments 

and predict declines in muscle power. Detecting poor or declining muscle power early on could 

lead to more effective disability prevention and treatment efforts, such as training programs 

targeted at increasing muscle power. 160,278,284 Importantly, understanding risk factors in the 
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disablement pathway such as poor nerve function and impaired muscle power can help identify 

multiple points of intervention. Future studies should characterize the effects of known and novel 

risk factors of poor nerve function on muscle power. 
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Table 2.1. Characteristics of study population by muscle power (watts/kg) tertiles 

 Lowest tertile 
≤1.60 watts/kg 

(N=122) 

Middle tertile 
>1.60 and ≤2.06 

watts/kg 
(N=129) 

Highest tertile 
>2.06 watts/kg 

(N=121) 

p-value Total 
(N=372) 

Muscle power (watts/kg),  

mean (SD) 

1.27 (0.2)a,b 1.84 (0.1)c 2.52 (0.4) <0.0001 1.88 (0.6) 

Age (years), mean (SD) 80.0 (5.1)a,b 76.7 (4.9)c 75.0 (4.1) <0.0001 77.2 (5.1) 

White race (%) 122 (100) 128 (99.2) 120 (99.2) 0.38 370 (99.5) 

Body composition      

   Height (m), mean (SD) 171.5 (6.8)b 172.0 (6.7)c 173.9 (6.3) 0.01 172.5 (6.7) 

   BMI (kg/m2), mean (SD) 28.1 (3.7) 28.2 (3.6) 27.3 (3.5) 0.13 27.9 (3.7) 

   Fat mass (kg), mean (SD) 23.2 (6.6)b 22.7 (7.1) 21.3 (6.5) 0.09 22.4 (6.8) 

   Lean mass (kg), mean (SD) 55.6 (6.7)b 56.9 (7.5) 57.5 (6.6) 0.09 56.6 (7.0) 

   Muscle density (mg/cm3) 67.9 (4.6)a,b 69.4 (3.7) 70.4 (3.8) <0.0001 69.2 (4.2) 

Chronic health conditions      

   Diabetes, n (%) 25 (20.5) 20 (15.5) 16 (13.2) 0.25 63 (17.0) 

   AAI <0.9, n (%) 46 (42.6) 41 (34.2) 36 (30.3) 0.05 123 (35.5) 

   History of hypertension, n (%) 74 (60.7)b 66 (51.2) 50 (41.3) 0.003 190 (51.1) 

   History of stroke, n (%) 8 (6.7) 6 (4.7) 3 (2.5) 0.13 17 (4.6) 

   History of MI, n (%) 17 (13.9)a 31 (24.0) 18 (14.9) 0.84 66 (17.7) 

   History of CHF, n (%) 10 (8.2) 9 (7.0) 8 (6.6) 0.63 27 (7.3) 

   Hip pain, n (%) 19 (15.6) 24 (18.6) 16 (13.2) 0.62 59 (15.9) 

Lifestyle characteristics      

   History of smoking, n (%) 3 (2.5) 2 (1.6) 5 (4.1) 0.42 10 (2.7) 

   Physical Activity Score 
(PASE),  
   mean (SD) 

147.4 (65.8) 146.8 (64.6) 162.4 (65.2) 0.11 152.1 (65.4) 

SD = standard deviation; m = meters;  kg = kilograms;  PASE = Physical Activity Scale for the 
Elderly; ap<0.05 for  Lowest tertile vs. Middle tertile, bp<0.05 for Lowest tertile vs. Highest 
tertile, cp<0.05 for Middle tertile vs. Highest tertile 
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Table 2.2 Nerve function by muscle power (watts/kg) tertiles 

Lowest tertile 
≤1.60 watts/kg 

(N=122) 

Middle tertile 
>1.60 and ≤2.06 

watts/kg  
(N=129) 

Highest tertile 
>2.06 watts/kg 

(N=121) 

p-value Total 
(N=372) 

Motor nerve conduction 
   Motor amplitude (mV), 

   mean (SD) 

2.15 (1.4)b 2.25 (1.4)c 2.84 (1.5) 0.0007 2.42 (1.5) 

   DML (ms), mean (SD) 4.33 (0.6) 4.42 (0.8) 4.49 (0.9) 0.34 4.41 (0.8) 

   Mean FWL (ms), mean (SD) 60.8 (6.6) 60.6 (5.8) 60.4 (5.5) 0.89 60.6 (5.9) 

Sensory nerve conduction 
   Sensory amplitude (μV), 

   mean (SD) 

3.07 (3.2)a,b 4.01 (3.4) 4.84 (3.7) 0.002 4.01 (3.4) 

   DSL (ms), mean (SD) 3.07 (2.9) 3.06 (0.2) 3.13 (0.3) 0.17 3.12 (0.4) 

Monofilament sensitivity, n (%) 

   1.4g sensitivity 51 (42.5)a,b 77 (60.2) 73 (60.3) 0.006 201 (54.5) 

   10g sensitivity 92 (76.7)a,b 110 (86.6) 104 (86.7) 0.04 306 (83.4) 

Neuropathic symptoms, n (%) 

   Numbness 45 (36.9)a 37 (28.9) 30 (24.8) <0.05 112 (30.2) 

   Pain 26 (21.5) 19 (14.8) 21 (17.5) 0.42 66 (17.9) 

   Open/persistent sore 4 (3.3) 2 (1.6) 2 (1.7) 0.39 8 (2.2) 

   One symptom 44 (36.4) 38 (29.9) 37 (31.2) 0.38 118 (32.4) 

   Two symptoms 15 (12.4) 8 (6.3) 7 (5.9) 0.06 30 (8.2) 

SD = standard deviation; m = meters;  kg = kilograms; mV = millivolts; DML = distal motor 
latency; ms = milliseconds; FWL = F-wave latency; DSL = Distal sensory latency; g = grams; 
ap<0.05 for  Lowest tertile vs. Middle tertile, bp<0.05 for Lowest tertile vs. Highest tertile, 
cp<0.05 for Middle tertile vs. Highest tertile 
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Table 2.3 Separate multivariate linear regression models for each measure of nerve function and muscle 

power (watts/kg) 

 1st Models 2nd Models 
 β (SE) R2 β (SE) R2 
Motor nerve function  
per SD lower 

    

   Motor amplitude -0.10‡ (0.03) 0.20 -0.07* (0.03) 0.29 
   Distal motor latency -0.05 (0.03) 0.17 -0.04 (0.03) 0.27 
   Mean F-wave latency 0.05 (0.03) 0.18 0.05 (0.03) 0.27 
Sensory nerve function  
per SD lower 

    

   Sensory amplitude  -0.10† (0.04) 0.20 -0.09* (0.04) 0.28 
   Distal sensory latency  -0.10 (0.34) 0.12 -0.06 (0.32) 0.21 
Monofilament insensitivity  
(yes/no) 

    

   1.4g -0.10 (0.06) 0.19 -0.11* (0.05) 0.28 
   10g -0.16* (0.07) 0.19 -0.17* (0.07) 0.29 
Neuropathic symptoms  
(yes/no) 

    

   Numbness -0.10 (0.06) 0.20 -0.09 (0.06) 0.28 
   Pain 0.01 (0.07)  0.04 (0.07)  
   Open sore -0.32 (0.18)  -0.36* (0.18)  

1st Models adjusted for age and height. 
2nd Models adjusted for variables in 1st Models plus total body lean and fat mass. 
SE = standard error; *P<0.05; †P<0.01; ‡P<0.001. 
 

Table 2.4 Separate multivariate linear regression models for each measure of nerve function and decline in 

muscle power (watts/kg) 

 Models 
 β (SE) R2 
Motor nerve function per SD lower   
   Motor amplitude 0.001 (0.04) 0.005 
   Distal motor latency -0.001 (0.03) 0.003 
   Mean F-wave latency 0.02 (0.04) 0.01 
Sensory nerve function per SD lower   
   Sensory amplitude  -0.05 (0.04) 0.01 
   Distal sensory latency  -0.06 (0.04) 0.03 
Monofilament insensitivity (yes/no)   
   1.4g 0.15* (0.07) 0.02 
   10g 0.11 (0.09) 0.01 
Neuropathic symptoms (yes/no)   
   Numbness 0.11 (0.07) 0.02 
   Pain -0.13 (0.09)  
   Open sore 0.15 (0.125)  

Models adjusted for age and height. 
SE = standard error; *P<0.05; †P<0.01; ‡P<0.001. 
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Figure 2.1 Effect size of nerve conduction amplitudes and monofilament insensitivity compared to age 

Motor and sensory amplitude per standard deviation (SD) lower; 1.4-g and 10-g monofilament 
insensitivity (yes/no); age per year older; separate models adjusted for age, height, total body 
lean and fat mass; age adjusted for height, total body lean and fat mass; SD = Standard 
Deviation. 
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3.1 ABSTRACT 

Objective: To investigate the relationship between motor and sensory peripheral nerve function 

and longitudinal quadriceps strength in a large cohort of community dwelling older men and 

women. 

Design: Longitudinal cohort study. 

Setting: Two U.S. clinical sites. 

Participants: Eighteen hundred and thirty participants from the Heath Aging and Body 

Composition (Health ABC) Study (age = 76.3 ± 2.8 years, 51.0% female, 34.8% black, BMI= 

27.2 ± 4.6 kg/m2, strength = 96.1 ± 36.6 Nm). 

Measurements:  Our outcome was quadriceps strength measured using an isokinetic 

dynamometer at Years 4, 6, 8, and 10 of the study. Our predictors were nerve function measured 

at Year 4 and concurrent change in nerve function from Years 4 to 11 categorized as maintained 

normal, normal to poor, poor to normal, or sustained poor nerve function. Motor nerve 

conduction amplitude (poor <1 mV) and velocity (poor < 40 m/s) were measured on the deep 

peroneal nerve.  Sensory nerve function was assessed using 10-g and 1.4-g monofilaments and 

average vibration perception threshold.  Symptoms at the leg and feet (numbness or tingling; 

sudden stabbing, burning, pain or aches; and open or persistent sores) were assessed by self-

report. Adjusted models include age, height, total body lean and fat mass, diabetes, ankle-

brachial index, cerebrovascular disease, cardiovascular disease, knee pain, cognition, depression, 

vitamin B12 status, smoking, alcohol consumption, physical activity, and renal function. 

Results:  Poor initial 10-g monofilament detection was associated with 10.48 Nm lower 

strength (p<0.001) and 1.02 Nm faster strength decline ( p < 0.05) in women and 7.81 Nm lower 

strength (p < 0.05) in men. In the concurrent change analysis, sustained poor 10-g monofilament 
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sensitivity over seven years was associated with 15.88 Nm lower strength (p < 0.001) and 1.52 

Nm faster strength decline (p < 0.01). Poor 10-g monofilament sensitivity was associated with 

12.41 Nm lower strength, despite improving to normal by the end of seven years (p < 0.01). One 

SD worse initial average vibration detection threshold was associated with 2.81 Nm lower 

strength in men (p <0.01). In the concurrent change analysis, sustained poor  and declining from 

normal to poor vibration detection threshold over seven years were associated with 16.20 (p 

<0.01) and 10.29 (p <0.001) Nm lower strength, respectively. One SD worse initial motor 

amplitude and reporting two peripheral neuropathy symptoms were associated with 1.87 (p < 

0.01) and 5.97 (p < 0.01) Nm lower strength in women. In the concurrent change analysis, poor 

motor amplitude and symptoms were associated with 14.11 (p < 0.05) and 7.45 (p < 0.05) Nm 

lower strength despite improving to normal by the end of seven years. 

Conclusion:  In this cohort of older adults, poor initial and seven-year peripheral nerve 

function were associated with lower strength and a faster rate of strength decline, suggesting an 

important mechanism for late-life disability. Poor initial motor amplitude and symptoms 

predicted lower strength regardless of improvements by the end of seven years, suggesting that 

future work should investigate early prevention of modifiable risk factors and timely 

intervention. 

3.2 BACKGROUND 

Poor strength in late-life contributes to poor physical function,299,300 mobility disability,121,176,301 

hospitalization,302,303 and mortality.303-305 Given its major role in late-life disablement, 

investigating common risk factors and potential mechanisms for strength decline and disability in 
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older adults is essential. 20 While sarcopenia, or muscle atrophy that occurs with age, plays a 

major role in declining strength, maintaining or gaining muscle mass does not guarantee 

prevention of strength loss with age,71 suggesting that other physiologic processes must be 

involved. One important mechanism for strength decline and incident disability that has been 

proposed is decline in peripheral nerve function.21 Impaired peripheral nerve function, which is 

highly prevalent23 in older adults both with and without diabetes mellitus, is associated with 

physical performance measures predictive of mobility disability8 in the Health, Aging and Body 

Composition (Health ABC) study.  

Cross-sectional evidence shows that peripheral nerve function is associated with 

diminished strength, independent of lean mass.21,159 Using data from the 2000-2001 (Year 4) 

visits in the Health ABC study, Strotmeyer and colleagues report that poor sensory and motor 

peripheral nerve function were related to lower quadriceps and ankle strength.21 However, the 

timing of the process is unclear. Using longitudinal data from this study cohort, we propose to 

further understand the importance of peripheral nerve function in longitudinal strength decline by 

examining: (1) the relationship between sensorimotor nerve function measured at one time point 

and subsequent longitudinal decline in lower extremity quadriceps strength over six years and; 

(2) the relationship between concurrent decline in sensorimotor nerve function and quadriceps 

strength.   
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3.3 METHODS 

3.3.1 Study participants 

The Health ABC Study is an ongoing prospective cohort study of well-functioning older adults 

(n = 3,075; 48.4% male; 41.6% black, ages 70-79 years at baseline) that was established in 1997-

1998 to investigate body composition and disability changes in older age.  Participants were 

recruited through mailings to a random sample of white Medicare beneficiaries and all black 

community residents eligible by age.  Eligibility, determined by phone interview, included 

having no difficulty walking a quarter of a mile, walking up 10 steps, or performing activities of 

mobility-related daily living, as well as having no life-threatening cancers with active treatment 

within the past 3 years, and planning to remain in the study area for at least 3 years.  Informed 

consent, provided prior to examination, was approved by the institutional review boards at the 

University of Pittsburgh and the University of Tennessee Health Science Center. Figure 3.1 

describes the number of participants that had nerve function and quadriceps strength measured at 

each visit. Compared to participants who returned for peripheral nerve exams seven years after 

the initial nerve exam, participants with missing data for the concurrent change in nerve function 

and strength analysis were older (76.8 vs. 76.1 years, p <0.0001), had lower BMI (26.7 vs. 27.5 

kg/m2, p = 0.0003), less fat mass (25.8 vs. 27.5 kg, p<0.0001), more peripheral arterial disease 

(18.6% vs. 11.2%, p < 0.0001), worse sensory nerve function (monofilament insensitivity: 10.1% 

vs. 6.8%, p = 0.01; vibration perception: 52.7 vs. 48.2 µ, p < 0.01), and lower strength (92.9 vs. 

98.0 Nm, p = 0.002). Other factors (sex, race, diabetes prevalence, smoking status, alcohol 

consumption, knee pain, blood pressure, motor nerve conduction, lean mass, physical activity) 

were not different.  
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3.3.2 Quadriceps strength 

Quadriceps strength was measured concentrically at 60° per second from 90° to 30° using a Kin-

Com isokinetic dynamometer (Harrison, TN) at Years 4, 6, 8, and 10 on the right leg, unless the 

participant had a knee replacement or knee pain. Following a warm up at submaximal effort, 

participants performed three to six trials, and the mean maximal torque from the three best trials 

was calculated. Contraindications for this test included history of brain aneurysm or stroke, 

bilateral knee replacement, severe bilateral knee pain, systolic blood pressure greater than 199 

mmHg and diastolic blood pressure greater than 109 mmHg. Individuals with contraindications 

are labeled as “excluded” in Figure 3.1. 

3.3.3 Sensory and motor peripheral nerve function 

Peripheral nerve function was measured at Years 4 and 11 of the Health ABC study as 

previously described.65 Each study site (Memphis and Pittsburgh) had a clinic staff examiner 

trained by a technician experienced in clinical trials using NC measures as outcomes and a board 

certified neurologist with additional certifications in electrodiagnostic medicine and 

neuromuscular medicine, qualifications in clinical neurophysiology, and specialization in 

neuromuscular disorders. After warming the feet to 30°C, measures were performed on the right 

leg unless contraindicated because of knee replacement, amputation, trauma, ulcer, or surgery. If 

the right leg was contraindicated, measures were performed on the left leg, unless it too was 

contraindicated. Peroneal motor nerve conduction amplitude and velocity were measured from 

the popliteal fossa to the ankle using the NeuroMax 8 (XLTEK, Oakville, Ontario, Canada). 

Sensory nerve function was measured using average vibration detection threshold on the bottom 
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of the large toe with a VSA-3000 Vibratory Sensory Analyzer (Medoc, Ramat Yishai, Israel). 

Monofilament insensitivity, defined as the inability to detect three out of four touches, was 

measured at the dorsum of the large toe with a 10-g standard monofilament and a 1.4-g light 

monofilament. Number of self-reported peripheral neuropathy symptoms were collected and 

coded from 0-3; these include having (1) numbness or tingling, (2) sudden stabbing, burning, 

pain or aches, and (3) an open or persistent sore, or gangrene on either feet or leg, all in the past 

12 months.  

For the concurrent change analysis, participants were divided into one of four categories: 

(1) maintained normal; (2) normal to poor; (3) poor to normal; and (4) sustained poor. Poor 

nerve function was categorized using clinical cut points of <1 mV for motor amplitude and <40 

m/s for motor nerve conduction velocity. Poor nerve function was also defined as 1.4-g and 10-g 

touch monofilament insensitivity, lack of detection of a maximum vibration perception threshold 

(>131 μ), and reporting 2 peripheral neuropathy symptoms. Participants who experienced <5% 

of continuous change for amplitude, velocity, or vibration perception threshold were not 

considered to have transitioned from normal to poor or from poor to normal. 

3.3.4 Additional covariates 

We considered severel factors known or hypothesized to be associated with nerve function and 

lower extremity strength and function. Height and weight were measured using a stadiometer and 

a calibrated balance beam scale. Whole body bone-free lean and fat mass were measured using 

dual-energy X-ray absorptiometry (DXA; Hologic 4500A, Hologic, Inc., Bedford, MA). 

Diabetes was defined as self-report of physician diagnosis, hypoglycemic medication use, or 

fasting glucose greater than 126 mg/dL (47.0 mmol/L) and impaired fasting glucose was defined 
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at 100 mg/dL to <126 mg/dL  after an 8-hour or longer fast.306 Hypertension was assessed by 

self-report, medication use, and diastolic blood pressure ≥ 90 mmHg or systolic blood pressure ≥ 

140 mmHg. A >1 drink/week cutpoint for alcohol consumption was used. Ankle brachial index 

cutpoints were used to indicate peripheral arterial disease (<0.9) and arterial stiffening (≥ 1.3). 

Depressive symptoms were measured using an interviewer-administered Center for 

Epidemiologic Studies Depression Scale.307 We measured cognitive function using the Modified 

Mini-Mental State Examination (3MSE), and attention, psychomotor speed, and executive 

function using the Digit Symbol Substitution Test (DSST).308 Insufficient renal function was 

defined as Cystatin-C > 1mg/dL.309 Self-reported knee pain on most days in the past 12 months 

was assessed. We defined poor vitamin B12 status as < 260 pmol/L.249 Prevalent cerebrovascular 

disease(transient ischemic attack or stroke), cardiovascular disease (bypass or coronary artery 

bypass graft, carotid endarterectomy, myocardial infarction, angina pectoris, congestive heart 

failure), knee pain, Cystatin-C, alcohol consumption, and DSST were measured at baseline 

(1997/1999). Smoking status and 3MSE were measured at Year 3 (1999/2000). All other 

covariates were measured during the Year 4 nerve exam (2000/2001). Body weight, total lean 

mass, total fat mass, and weekly physical activity spent walking and climbing stairs 

(kcal/kg/week) were included as a time varying covariates from Years 4, 6, 8, and 10. 

3.3.5 Statistics 

Since men and women differ greatly in muscle strength and body composition, means and 

frequencies of participant characteristics were compared between men and women using t-test 

and chi-squared statistics. Mixed linear models were used to assess the relationships between 

initial and concurrent change in nerve function and strength to maximize the use of all available 

72 



time points of strength data and to account for the correlation between repeated measures. We 

included participants that had at least two measures of strength with one measure occuring at 

Year 4. Most participants had all four strength measures (n=1110), although some only had two 

(n=349) or three (n=371). Strength was entered as a time varying outcome in the models. The 

beta value for the main effect of each predictor represents the magnitude of the effect on strength 

over all available timepoints. The beta value for the interaction between time and each predictor 

is the magnitude of the effect on rate of decline in strength. Separate models were built for each 

measure of nerve function since some were moderately correlated (motor amplitude and 

conduction velocity: r=0.33, p<0.0001) and each represents a different aspect of peripheral nerve 

function. The first set of models started with baseline nerve function then were minimally 

adjusted for age, race, height, weight, study site, and the interaction between each variable and 

time. Then models were additionally adjusted for lean and fat mass instead of weight, given their 

relationship with strength and physical function,71,310 and to assess whether lean mass mediated 

the relationship between nerve function and strength. Additional variables were added to the 

final models if they were related to the initial predictor or outcome at an alpha level <0.1. Fully 

adjusted models included diabetes, ankle brachial index, cerebrovascular disease, cardiovascular 

disease, knee pain, cognition, depression, vitamin B12 status, smoking, alcohol consumption, 

physical activity, and renal function, unless removed due to a p-value >0.1 to prevent 

collinearity.  We also tested interactions between sex and nerve function measures to assess 

whether sex modified the relationship between nerve function and strength.  In addition, due to 

the known effect of diabetes on peripheral nerve function and muscle strength,251,252 we ran a 

sensitivity analysis excluding all cases of diabetes. 
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3.4 RESULTS 

Table 3.1 compares characteristics between men and women. Men had greater quadriceps 

strength, height, lean mass, and fat mass. They were more likely to consume >1 drink/week and 

had higher physical activity levels. Men also had higher rates of diabetes, impaired fasting 

glucose, arterial stiffening, cardiovascular disease, and poor vitamin B12 status. Men had worse 

sensory and motor nerve function, but women reported more peripheral neuropathy symptoms 

(Table 3.2). Figure 3.1 shows the percentage and number of participants in each nerve change 

group.  Significant and borderline significant interactions between sex and initial average 

vibration detection threshold (p = 0.01) and motor amplitude (p = 0.09) were associated with 

strength; therefore analysis for initial nerve function and strength were performed separately in 

women (Table 3.3) and men (Table 3.4). The analysis assessing relationships between concurrent 

change in nerve function and strength were not stratified by sex since there were no significant 

interactions between nerve function change and sex. All beta values for continuous predictors are 

standardized. 

Initial 1.4-g and 10-g monofilament insensitivity were associated with 2.72 and 10.48 

Newton meters (Nm) lower strength in women and 4.94 and 7.81 Nm lower strength in men. In 

the concurrent change analysis (Table 3.5), maintaining poor 10-g and 1.4-g sensitivity over 

seven years were associated with 15.88 and 5.31 Nm lower strength, respectively, although the 

association with 1.4-g sensitivity was attenuated to nonsignificant after further adjustment for 

comorbid conditions, lifestyle factors, and cognition (results not shown). Poor 10-g 

monofilament sensitivity was associated with 12.42 Nm lower strength, despite improving to 

normal by the end of seven years. Initial 10-g monofilament insensitivity was related to 

increased strength decline in women, as was maintaining poor 10-g monofilament sensitivity in 
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the concurrent change analysis. In men, worse initial average vibration detection threshold was 

associated with 2.81 Nm lower strength, but not in women. Declining from normal to poor and 

sustaining poor average vibration detection threshold over seven years was also associate with 

10.29 and 16.20 Nm lower strength, respectively in the concurrent change analysis. In women, 

lower initial motor amplitude and reporting two peripheral neuropathy symptoms were 

associated with 1.87 and 5.97 Nm lower strength but not in men. Despite improving to normal 

over the seven year period, starting with poor motor amplitude and peripheral neuropathy 

symptoms remained associated with 14.11 and 7.45 Nm lower strength. In women, initially 

reporting one peripheral neuropathy symptom was associated with greater strength decline, as 

was transitioning from reporting two to reporting less than two symptoms over the seven year 

period, but both were attenuated to nonsignificant when adjusting for comorbid conditions, 

lifestyle factors, and cognition (results not shown).  When we excluded participants with 

diabetes, 1.4-g monofilament insensitivity was no longer a significant predictor of strength in 

men or in the concurrent change analysis. Also going from reporting less than two to reporting 

two peripheral neuropathy symptoms (normal to poor) was associated with lower strength, 

whereas the other symptom groups were not. All other associations remained consistent. 

3.5 DISCUSSION 

Using prospective data from this large cohort of older men and women, we were able to 

characterized neuromuscular decline in late-life using multiple clinical measures of peripheral 

neuropathy. We found that poor peripheral nerve function at one time point and over seven years 

were associated with low concurrent strength and strength decline. These findings are important 

75 



because they confirm key mechanisms for strength decline, which contribute to poor 

function,299,300 disability,121,301 and other major health outcomes302-305 in older adults. Clearly 

factors other than decline in lean mass contribute to strength loss,21,71 yet prior to this, the 

complex longitudinal relationship between strength and measures of motor and sensory nerve 

function had not been demonstrated in an aging cohort. 

In our study population, Strotmeyer and colleagues21 found that both sensory and motor 

nerve function measures were cross-sectionally associated with strength. The mechanisms for 

sensory and motor nerve involvement are undoubtedly different and our longitudinal data offers 

some insights.  Motor nerves carry signals to the muscles and are responsible for movement, 

while sensory nerves carry external stimuli to the brain or spinal cord. Afferent (sensory) input 

may be necessary to achieve proper placement, timing, and movement of the leg during testing, 

since severe sensory neuropathy has been associated with poor ankle proprioception.295,296 

Moreover, experimentally blocking afferent input in healthy individuals has led to reduced 

maximal voluntary contractions13 and suggests a direct relationship with strength. Consistent 

with findings from our previous work, motor amplitude, but not nerve conduction velocity was 

related to quadriceps strength. Low motor amplitude indicates axonal degeneration of the nerve, 

while low nerve conduction velocity indicates demyelination. Our findings implicate axonal 

degeneration in the pathology of neuromuscular weakness, particularly in women, but do not 

discount the important role of sensory afferents.  

Motor and sensory nerve function at the initial time point predicted six-year muscle 

strength in women, whereas only sensory nerve function predicted strength in men. In the 

concurrent change analysis, poor sensory nerve function over time was consistently associated 

with poor strength. While early poor function seemed critical for motor amplitude and peripheral 
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neuropathy symptoms, transitioning to poor function seemed to be the key for vibration 

perception threshold. Given that these measures of nerve function are not highly correlated and 

each capture distinct physiologic aspects of the peripheral nervous system and the neuropathic 

process, it is not surprising that these different relationships with muscle strength were observed. 

We also investigated the role of lean mass in these relationships. Peripheral neuropathy 

may include symptoms of weakness and muscle wasting in severe cases.311 In addition, muscle 

tissue from individuals with clinical neuropathy can be characterized by smaller atrophied fibers. 

34 Although, Lauretani and colleagues found that neither motor amplitude nor nerve conduction 

velocity were associated with lean mass cross-sectionally.33 In our study, although lean mass was 

associated with strength, it did not mediate the relationship between peripheral nerve function 

and strength. Previous work has found a cross-sectional relationship between muscle density (a 

measure of intermuscular fat) and motor amplitude; therefore future work should examine 

muscle density as a potential mediator. 

Consistent  with our previous findings, we found that, compared to women, men had 

worse peripheral nerve function for all measures.21 Slower nerve conduction velocity in men can 

be attributed to greater height.111 We also found that men in our study population had higher 

rates of known risk factors for peripheral neuropathy such as diabetes, impaired fasting glucose, 

and vitamin B12 deficiency.249 Additional disparity may be attributable to increased clinical and 

subclinical cardiovascular disease in men312 and its effects on peripheral nerve function.100,313 

Although we adjusted for cardiovascular disease, blood pressure, ankle brachial index, and 

smoking we may not have fully captured all of the subclinical cardiovascular effects on 

peripheral nerve function. It is somewhat counterintuitive that while women tend to have better 

nerve function, they experience more late-life disability.101-103 Since men tend to have 
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significantly more muscle mass and strength throughout life than women, 58 one hypothesis is 

that women, lacking this additional strength, are more susceptible to the negative effects of poor 

nerve function. Future studies are needed to investigate these neuromuscular sex differences, 

particularly given their likely connection to late-life disability.  

This study had a number of strengths. Both sensory and motor nerve function were 

assessed using clinical methodology. Our measures of motor nerve function are gold standard 

clinical measures of peripheral neuropathy that have been found to be highly reproducible in a 

subset of older adults from this study cohort with interclass correlation coefficients (ICCs) of 

0.90-0.99 and coefficients of variation of 2.15-4.24.65 We used multiple years of prospective data 

from a large, multiethnic, well-characterized cohort of older men and women. We assessed 

change in nerve function using clinical cutpoints.314 For categories created from continuous 

measures (motor amplitude, conduction velocity, and vibration perception) individuals with 

marginal change (<5%) were not considered to have transitioned from normal to poor or poor to 

normal, preventing those with minimal changes from biasing our results. 

Moreover, our nerve change categories allowed for all directions of change, including 

improvement. The number of participants with improved nerve function depended on the method 

of measurement and ranged from n = 13 for motor amplitude to n = 179 for 1.4-g monofilament 

sensitivity. One potential reason for nerve function improvement may be neuroplasticity of 

newly mildly impaired nerves, since nerves that experience early mild damage are more likely to 

regain some function.315,316 We found that the majority of participants improved on a more 

sensitive measure of nerve function, supporting this hypothesis. Another potential reason for 

improvement is better control of diabetes. Twenty percent of participants in this analysis had 

diabetes at the initial nerve exam of the study. Early intervention for diabetic and prediabetic 
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individuals can slow the progression of and may even improve peripheral neuropathy.317-320 An 

additional reason for improvement of nerve function could be treatment for vitamin B12 

deficiency.249,250 However, our data is limited in that we do not know when these improvements 

occurred. These findings may be evidence of neuroplasticity of peripheral nerves in older adults, 

and warrant further study. Our finding that individuals improving to normal motor amplitude and 

experiencing reduced symptoms had worse strength may be evidence of the negative and lasting 

effects of early nerve function impairments and suggest the importance of early prevention and 

intervention, such as better glycemic control or supplementation for a vitamin B12 

deficiency.249,250 

Diabetes may still have independent effects on muscle strength. We found that in men, 

diabetes remained a significant predictor of poor strength in models with sensory nerve function 

measured at the initial time point, while impaired fasting glucose remained a significant predictor 

of strength decline in models with motor amplitude and nerve conduction velocity. In women, 

diabetes remained a significant predictor of strength decline in models with symptoms and 

average vibration detection threshold. Our results, however, were mostly consistent when we 

excluded individuals with diabetes in our sensitivity analysis, suggesting that the relationships 

we found were not driven by diabetes alone.  This is consistent with what we found in our 

previous cross-sectional study21 and is likely explained by the high prevalence of impaired nerve 

function that has been found in older adults without diabetes.23  

One limitation is that we may have had insufficient statistical power to detect 

associations between strength and some nerve function change groups due to small numbers of 

observations in the groups. In addition, these small numbers may have prevented us from 

detecting sex as a modifier in the relationship between change in nerve function and strength. 
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Furthermore, participants who returned for follow up clinic visits were somewhat healthier than 

those without missing data, resulting in some inevitable retention bias.321  

In conclusion, poor motor and sensory nerve function contribute to poor and declining 

strength in older adults.  Given the high incidence and prevalence of subclinical and overt 

neuropathy in older adults,22,23 and the current and projected future diabetes epidemic,322 

identifying associated risks and outcomes of poor nerve function such as muscle weakness and 

declines in strength is essential. Poor nerve function is likely to play an important role in the 

pathway to disability and future work should focus on this area. Modifiable risk factors and 

interventions for neuromuscular decline in late-life and optimal timing for adminstering these 

intervention are understudied areas that need to be investigated. 

Figure 3.1 Participants with strength & nerve function 
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Figure 3.2 Percent of participants in each nerve change group 

Poor nerve function defined as <1 mV for motor amplitude, <40 m/s for velocity, lack of 
detection of 3 out of 4 touches with 1.4-g and 10-g monofilaments, lack of detection of >131 µ 
of vibration, reporting 2 or more peripheral neuropathy symptoms. 

Table 3.1 Participant characteristics by sex 

Characteristics Women 
n = 934 

Men 
n = 896 

p-value 

Age, years 76.2 (2.8) 76.5 (2.8) 0.005 
Black race, n (%) 367 (39.3) 270 (30.1) <0.0001 
Quadriceps strength, Nm 74.0 (21.0) 119.1 (30.8) <0.0001 
Body composition 
    Height, cm 158.1 (15.0) 172.8 (8.8) <0.0001 
    BMI, kg/m2 27.2 (5.3) 27.1 (3.8) 0.56 
    Lean mass, kg 40.8 (6.1) 56.3 (7.2) <0.0001 
    Fat mass, kg 28.7 (9.1) 25.1 (7.2) <0.0001 
Lifestyle characteristics 
    Current smoker, n (%) 58 (6.5) 56 (6.5) 0.99 
    Alcohol consumption > 1/week, n (%) 424 (46.1) 526 (59.7) <0.0001 
    Physical activity, kcal/kg/week 5.0 (15.5) 6.9 (13.6) 0.004 
Chronic health conditions 
    Diabetes, n (%) 161 (17.4) 211 (23.9) 0.0006 
    Impaired fasting glucose, n (%) 118 (12.8) 174 (19.7) <0.0001 
    Ankle-arm index <0.9, n (%) 126 (14.0) 120 (13.8) 0.90 
    Ankle-arm index >1.3, n (%) 30 (3.3) 63 (7.2) 0.0002 
    Hypertension, n (%) 745 (80.8) 695 (78.5) 0.23 
    Cardiovascular disease, n (%) 84 (9.7) 191 (23.0) <0.0001 
    Cerebrovascular disease, n (%) 53 (5.8) 45 (5.2) 0.54 
    Knee pain most days per month, n (%) 153 (16.6) 124 (14.0) 0.13 
    Poor vitamin B12, n (%) 128 (14.4) 177 (20.3) 0.001 

Data are means ± SD unless otherwise specified 
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Table 3.2 Initial peripheral nerve characteristics by sex 

Peripheral nerve characteristics at Year 4 Women  
n = 934 

Men  
n = 896 

p-value 

Motor nerve function    
   Amplitude, mV  3.7 (2.0) 3.1 (1.9) <0.0001 
   Conduction Velocity, m/s 45.3 (5.3) 41.9 (4.9) <0.0001 
Sensory nerve function    
   1.4g monofilament insensitivity, n (%) 348 (37.7) 446 (50.4) <0.0001 
   10g monofilament insensitivity, n (%) 49 (5.3) 95 (10.8) <0.0001 
   Vibration threshold, μ 42.7 (31.4) 57.4 (36.4) <0.0001 
Peripheral nerve symptoms    
   Numbness, n (%)  273 (29.5) 217 (24.3) 0.01 
   Pain, n (%) 173 (18.7) 106 (11.8) <0.0001 
   Two, n (%) 94 (10.1) 55 (6.14) 0.002 
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Table 3.3 Initial nerve function predicts longitudinal quadriceps strength in women 

 1st Models 2nd Models 3rd Models 
 Betas Betas Betas 
 Main effect Time 

interaction 
Main effect Time  

interaction 
Main effect Time  

interaction 
Motor nerve function       
   Amplitude, SD lower -2.31‡ -0.09 -2.35‡ -0.07 -1.87† 0.11 
   Velocity, SD lower -0.29 -0.07 -1.30 -0.04 0.24 -0.11 
Sensory nerve function       
   1.4-g monofilament  
   insensitivity 

-3.03* 0.14 -2.68* 0.05 -2.72* 0.12 

   10-g monofilament  
   insensitivity 

-10.65§ 1.14* -11.61§ 1.12* -10.48‡ 1.02* 

   Vibration perception  
   threshold 

-0.03 -0.04 -0.84 0.03 0.45 -0.01 

Symptoms       
   One -0.64 0.52* -0.64 0.46* 0.06 0.35 
   Two -6.54† 0.65 -7.05‡ 0.64 -5.97† 0.44 
SD = standard deviation 
*P<0.05; †P<0.01; ‡P<0.001; §P<0.0001. 
1st Models – adjusted for age, race, height, weight, site, time interactions 
2nd Models – 1st Models + lean & fat mass instead of weight 
3rd Models:  
Motor nerve function – 1st Models + low and stiffening AAI, knee pain, DSST, CES-D, 
smoking, physical activity, renal function 
Sensory nerve function – 1st Models + diabetes, low and stiffening AAI, knee pain, DSST, 
CES-D, smoking, physical activity, renal function 
Symptoms – 1st Models + low and stiffening AAI, knee pain, DSST, CES-D, smoking, physical 
activity, renal function 
 

Table 3.4 Initial nerve function predicts longitudinal quadriceps strength in men 

 1st Models 2nd Models 3rd Models 
 Betas Betas Betas 
 Main effect Time 

interaction 
Main effect Time  

interaction 
Main effect Time 

 interaction 
Motor nerve function       
   Amplitude, SD lower -1.96 0.28 -1.60 0.30 -1.24 0.26 
   Velocity, SD lower 0.01 0.27 0.33 0.16 0.69 0.33 
Sensory nerve function       
   1.4-g monofilament  
   insensitivity 

-5.24† -0.15 -4.73†  -0.35 -4.94† 0.05 

   10-g monofilament  
   insensitivity 

-9.23† 0.31 -8.95† 0.12 -7.81* 0.50 

   Vibration perception  
   threshold 

-3.75§ 0.08 -4.41§ 0.16 -2.81† 0.01 

Symptoms       
   One -1.29 -0.42 -0.26 -0.22 0.44 -0.58 
   Two -1.73 0.11 -2.28 0.63 1.48 0.02 
SD = standard deviation 

 83 



*P<0.05; †P<0.01; ‡P<0.001; §P<0.0001. 
1st Models – adjusted for age, race, height, weight, site, time interactions 
2nd Models – 1st Models + lean & fat mass instead of weight 
3rd Models:  
Motor nerve function – 1st Models + low and stiffening AAI, stiffening AAI, cerebrovascular 
disease, knee pain, poor vitamin B12, DSST, CES-D, renal function 
Sensory nerve function – 1st Models + diabetes, cerebrovascular disease, knee pain, DSST, 
CES-D, renal function 
Symptoms – 1st Models + diabetes, cerebrovascular disease, knee pain, DSST, CES-D, renal 
function 
 

 

Table 3.5 Seven-year change in nerve function predicts concurrent longitudinal quadriceps strength 

 Maintained 
normal 

Normal to poor Poor to normal Sustained poor 

  Betas Betas Betas 
Motor nerve function  Main  

effect 
Time 

interaction 
Main  
effect 

Time 
interaction 

Main  
effect 

Time 
interaction 

   Amplitude REF -0.11 -0.25 -14.11* 1.51 -5.46 0.64 
   NCV REF 2.59 -0.43 3.24 -0.51 2.84 0.01 
Sensory nerve function        
   1.4-g monofilament  
   sensitivity 

REF 1.34 -0.14 -3.12 -0.01 -5.31† -0.05 

   10-g monofilament  
   sensitivity 

REF -1.29 -0.11 -12.42† 0.64 -15.88‡ 1.52† 

   Vibration perception  
   threshold 

REF -10.29‡ 0.57 -6.18 0.95 -16.20† -0.19 

Two symptoms REF -2.31 0.07 -7.45* 1.04* -3.78 0.29 
Model adjusted for age, race, height, lean and fat mass, site, time interactions; 
Poor nerve function defined as <1 mV for motor amplitude, <40 m/s for velocity, lack of 
detection of 3 out of 4 touches with 1.4-g and 10-g monofilaments, lack of detection of >131 µ 
of vibration, reporting 2 or more peripheral neuropathy symptoms. 
*P<0.05; †P<0.01; ‡P<0.001; §P<0.0001. 
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4.1 ABSTRACT 

Importance: Poor peripheral nerve function, which is highly prevalent in older adults, is 

associated worse lower extremity function and limitation. Although, longitudinal evidence is 

needed to elucidate sensory and motor nerve function’s role in mobility disability. 

Objective: To assess the relationship between sensory and motor nerve function over 7 

years and incident mobility limitation over of 8.5 years (IQR: 4.5-9.6). 

Design: Longitudinal analysis in the Health, Aging, and Body Composition (Health 

ABC) Study, a prospective cohort study designed to assess body composition and its effects on 

mobility limitation. 

Setting: Two U.S. clinical sites. 

Participants: Population-based sample of community-dwelling men and women with no 

mobility limitation at baseline (N=1680, age=76.5±2.9, BMI=27.1±4.6, 50.2% women, 36.6% 

black, 10.7% with diabetes; 30% developed limitation).  

Exposures: Our predictors were nerve function measured at Year 4 and change in nerve 

function from Years 4 to 11 categorized as maintained normal, normal to poor, poor to normal, 

or sustained poor nerve function. Motor nerve conduction amplitude (poor <1 mV) and velocity 

(poor < 40 m/s) were measured on the deep peroneal nerve.  Sensory nerve function was 

measured using 10-g and 1.4-g monofilaments and vibration detection threshold.  Self-reported 

symptoms were assessed at the leg and feet and included numbness or tingling, sudden stabbing, 

burning, pain or aches, and open or persistent sores.  

Main Outcomes and Measures: Incident mobility limitation was measured 

semiannually over 10 years after the initial nerve function exam and was defined as two 

consecutive self-reports of a lot of difficulty or inability to walk a ¼ of a mile or climb 10 steps. 
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Models were adjusted for age, sex, race, study site, body composition, diabetes, ankle arm index, 

cerebrovascular disease, knee and hip pain, osteoporosis, depression, smoking, alcohol 

consumption, vitamin B12 status, physical activity, and renal function. 

Results: Initial (HR = 1.26 per SD, 95% CI: 1.12-1.41) and sustained poor motor 

amplitude over seven years (HR = 3.56, 95% CI: 1.63-7.76) were independently associated with 

incident mobility limitation. Worse initial sensory nerve function measured using vibration 

detection threshold (HR = 1.11, 95% CI: 1.01-1.22) and self-reported symptoms (HR = 1.47, 

95% CI: 1.09-1.99) also predicted mobility limitation. 

Conclusions and Relevance: In this cohort of older adults, poor motor and sensory nerve 

function were independently associated with incident mobility limitation, with the strongest 

hazard ratio for sustained poor motor amplitude over time. These findings suggest a role in the 

causal pathway towards mobility disability. 

4.2 BACKGROUND   

Poor motor and sensory peripheral nerve function are associated with measures of lower 

extremity function,20,27,28  including gait speed, balance, chair stands, and muscle strength in 

older adults both with and without diabetes. These measures of physical function are predictive 

of activities of daily living (ADL) and mobility disability,8 suggesting that poor nerve function 

may play a role in the late-life disablement process. Moreover, evidence shows that sensory 

measures and neurological signs are associated with mobility limitations.28,31 These findings 

have critical implications for older adults, since they experience the highest burden of both poor 

nerve function and disability.4,22,23 
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While the cross-sectional evidence suggests that motor and sensory nerve function may 

be an important risk factor for disability, quantification of their relationship with incident 

mobility limitation is lacking. This longitudinal investigation will help elucidate the potential 

etiologic role of nerve function in the disablement process. We assessed whether initial and 

change in sensory and motor peripheral nerve function measured at two time points, seven years 

apart, predicted incident mobility limitation in a cohort of community dwelling older adults.  

4.3 METHODS 

4.3.1 Study participants 

The Health, Aging, and Body Composition (Health ABC) Study is an ongoing prospective 

cohort study established in 1997-1998 to study the long-term effects of body composition on 

disability changes in older adults (n = 3,075; 48.4% male; 41.6% black, ages 70-79 years at 

baseline). Participants were recruited by mail to a random sample of white Medicare 

beneficiaries and all black community residents eligible by age. Eligibility was determined by 

phone interview and included having no difficulty walking a quarter of a mile or walking up 10 

steps, having no difficulty performing mobility-related activities of daily living, having no life-

threatening cancers with active treatment within the past 3 years, and planning to remain in the 

study area for the next 3 years. Participants included in the initial nerve (Figure 4.1) had at least 

one nerve function measure performed at Year 4 (2000/01) of the study and no mobility 

limitation prior to Year 4 (n = 2148). Participants in the nerve change analysis had nerve 

function measured at Year 4 and Year 11 and no mobility limitation prior to Year 11 (n = 977). 
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4.3.2 Mobility limitation 

Mobility limitation was assessed semiannually during clinic visits or over the phone by either the 

participant or an identified proxy.  Persistent mobility limitation was defined as two consecutive 

self-reports of a lot of difficulty or inability to walk a ¼ of a mile or climb 10 steps and will be 

referred to as mobility limitation for simplicity. For the initial nerve analysis, time to event was 

calculated as the time from the Year 4 (2000/01) nerve function exam to the first self-report of 

mobility limitation out of the two consecutive reports. For the nerve change analysis, time to 

event was calculated as time from the Year 11 (2008/09) nerve function exam to the first report 

out of two consecutive. Participants who did not experience mobility limitation were censored at 

their last date of contact or at death. If death was preceded by one or more missed contacts, 

information from the decedent proxy interview was used to determine any incident mobility 

limitation. The proxy’s estimated date of onset was compared to the visit window for the missed 

contact and if the reported onset occurred before the end of the visit window, the incident 

limitation was assigned to that contact. 

4.3.3 Peripheral nerve function 

Peripheral nerve function was measured at Years 4 (2000/01) and 11 (2008/09) of the Health 

ABC study by a trained and certified clinic examiner as described previously.65 After the feet 

were warmed to 30°C, measures were performed on the right leg unless contraindicated because 

of knee replacement, amputation, trauma, ulcer, or surgery. If the right leg was contraindicated, 

measures were performed on the left leg, unless it too was contraindicated. Peroneal motor nerve 

conduction velocity and amplitude were measured after nerve stimulation at the popliteal fossa, 
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fibular head and the ankle using the NeuroMax 8 (XLTEK, Oakville, Ontario, Canada). Sensory 

nerve function was measured using vibration detection threshold on the bottom of the large toe 

with a VSA-3000 Vibratory Sensory Analyzer (Medoc, Ramat Yishai, Israel). Monofilament 

insensitivity, defined as the inability to feel three to four touches, was measured at the dorsum of 

the large toe with a 10-g standard monofilament and a 1.4-g light monofilament. Number of self-

reported peripheral neuropathy symptoms were collected and coded from 0-3; these include 

having (1) numbness or tingling, (2) sudden stabbing, burning, pain or aches, and (3) an open or 

persistent sore, or gangrene on either feet or leg, all in the past 12 months. For the nerve change 

analysis participants were divided into one of four categories: (1) maintained normal; (2) normal 

to poor; (3) poor to normal; and (4) sustained poor. We used clinically meaningful cut points of 

<1 mV for motor amplitude and <40 m/s for motor nerve conduction velocity (NCV) to define 

poor nerve function. Poor nerve function was also defined as 1.4-g and 10-g touch monofilament 

insensitivity, lack of detection of a vibration threshold >131 μ, and reporting 2 or more 

peripheral neuropathy symptoms. Participants were only classified as normal to poor or poor to 

normal if they had >5% for continuous nerve function measures of amplitude, velocity, or 

vibration detection. For example a participant with a poor Year 11 motor amplitude that was 

<5% lower that his normal Year 4 motor amplitude would be categorized as maintained normal 

rather than normal to poor. 

4.3.4 Additional covariates 

We considered several factors known or hypothesized to be associated with both poor nerve 

function and incident mobility disability. All covariates were measured at the initial Year 4 nerve 

exam (2000/01), unless otherwise noted. We included demographics characteristics of age, sex, 
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race, and study site. Standing height was measured using a stadiometer and weight was measured 

using a calibrated balance beam scale at the initial nerve exam. Dual-energy X-ray 

absorptiometry (DXA; Hologic 4500A, Hologic, Inc., Bedford, MA) was used to measure total 

body bone-free lean and fat mass. Diabetes was defined as self-reported physician diagnosis, 

hypoglycemic medication use, or fasting glucose greater than 126 mg/dL [47.0 mmol/L] after an 

8-hour or longer fast.306 Ankle arm index (AAI) <0.9 was used to indicate peripheral arterial 

disease and >1.3 was used to indicate arterial stiffening. Hypertension was determined by self-

report, medication use, and diastolic blood pressure ≥ 90 mmHg or systolic blood pressure ≥ 140 

mmHg. Prevalent cardiovascular disease (bypass/coronary artery bypass graft, carotid 

endarterectomy, myocardial infarction, angina, or congestive heart failure), cerebrovascular 

disease (transient ischemic attack or stroke), and osteoporosis were assessed at the 1997/98 visit. 

Participants were also asked whether they experienced knee or hip pain on most days or for at 

least one month in the past 12 months (1997/98). The Center for Epidemiolgic Studies 

Depression Scale Depression (CES-D), which was interviewer administer, was used to assess 

depressive symptoms. Poor vitamin B12 status was defined as < 260 pmol/L.249 Smoking status 

(current/past) was measured during the 1999/00 visit and alcohol consumption (<1 drink/week) 

was measured during the 1997/98 visit. Physical activity was estimated as kcal/kg/week spent 

walking and stair climbing using a questionnaire. Poor renal function was defined as Cystatin-C 

> 1mg/dL (1997/98). Cognitive function was measured with the Modified Mini-Mental State 

Examination (3MSE) (1999/00), and attention, psychomotor speed, and executive function was 

measured with the Digit Symbol Substitution Test (DSST) (1997/98).308  

For the nerve function change analysis, time varying covariates were entered into the 

models. Based on their relationship with mobility, these included weight or lean and fat mass 
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entered in place of weight,176,290 weight change,323 calculated using weight from the previous 

clinic visit, knee and hip pain,324 physical activity,325,326 and psychometric measures such as 

CES-D,327 3MSE,327,328 and DSST scores.329 Diabetes, impaired fasting glucose,330 and AAI,255 

were also entered as time varying, since these variables are closely related to nerve function. 

4.3.5 Statistics 

Means and frequencies of baseline characteristics were calculated and assessed as potential risk 

factors for incident mobility limitation using bivariate Cox proportional hazards regression. 

Multivariable Cox proportional hazards regression was used to model the relationships between 

time to mobility limitation and initial and change in nerve function predictors. We will built four 

sets of models: (1) nerve function predictor adjusting for age, sex, race, study site, height, and 

weight; (2) Model 1 plus diabetes; (3) Model 2 substituting lean and fat mass for total body 

weight; (4) Model 3 plus other additional confounders related to either the outcome or the 

predictors using an alpha level of 0.1. These additional covariates were then removed from 

Model 4 if they had a p-value >0.1 to prevent collinearity. We also tested the interactions 

between nerve function variables and sex, which were nonsignificant. As a sensitivity analysis, 

we excluded participants with diabetes to test its influence on the associations between nerve 

function and mobility limitation. 
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4.4 RESULTS 

After a median follow-up time of 8.5 (Interquartile Range [IQR]: 4.5-9.6) years from the initial 

nerve exam, 655 (30%) participants developed mobility limitation. Table 4.1 shows the 

characteristics of our study population. Characteristics that bivariately predicted mobility 

limitation included older age, female sex, black race, higher BMI and fat mass, current smoking 

status, diabetes mellitus, cardiovascular disease, cerebrovascular disease, hypertension, low AAI, 

depressive symptoms, and knee and hip pain. Characteristics that were protective for mobility 

limitation included participation at the Pittsburgh study site, alcohol consumption >1/week, 

higher physical activity and better 3MSE and DSST scores. Table 4.2 presents descriptive means 

and frequencies for initial peripheral nerve measures and their bivariate HR predicting mobility 

limitation. Figure 4.2 shows bivariate associations between change in nerve function and incident 

mobility limitation and the number of participants in each nerve change group. 

Tables 4.3 and 4.4 show hazard ratios (HR) and 95% confidence intervals (CI) for initial 

and change in nerve function measures predicting incident mobility limitation. One standard 

deviation lower initial motor amplitude and sustained poor motor amplitude over seven years 

were associated incident mobility limitation when adjusting for all covariates. Declining from 

normal to poor motor amplitude predicted mobility limitation, although was attenuated to 

nonsignificant by lean and fat mass. One standard deviation worse average vibration detection 

threshold was also associated with incident limitation. Both sustained poor and declining to poor 

vibration detection threshold predicted mobility limitation, although they were attenuated to 

nonsignificant when adjusted for diabetes and lean and fat mass, respectively. Initially reporting 

one and two symptoms were associated with mobility limitation. Improving from reporting 2 

peripheral neuropathy symptoms to reporting < 2 also predicted mobility limitation in the 
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minimally adjusted model, but was attenuated to nonsignificant by diabetes. Initially poor 1.4-g 

monofilament sensitivity (10-g sensitivity with 1.4-g insensitivity) was associated with mobility 

limitation, although the association was borderline significant and attenuated to nonsignificant 

when adjusted for diabetes. 

When we excluded individuals with diabetes in the sensitivity analysis, initial lack of 1.4-

g monofilament sensitivity no longer predicted mobility limitation. Initial vibration detection 

threshold was no longer a significant predictor of mobility limitation in the fully adjusted model. 

Transitioning from normal to poor motor amplitude and vibration detection threshold were 

nonsignificant in the minimally adjusted model. All other associations remained consistent with 

the original analysis. 

4.5 DISCUSSION 

Using longitudinal data from a large cohort of older men and women, we quantified the 

relationship between sensory and motor nerve function and incident mobility limitation. Sensory 

and motor nerve function measured at one time point and motor nerve function measured over 

seven years were independent predictors of mobility limitation. Peripheral nerve function is 

understudied in older adults, particularly in those without diabetes, yet our sensitivity analysis 

shows that it is an important predictor of mobility limitation independent of diabetes status. 

These findings have important implications for preventing and delaying mobility disability in 

older adults. More research is needed on developing interventions to target modifiable risk 

factors related to peripheral nerve function and their effect on reducing disability. Secondary 
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prevention of disability in those who have already developed poor nerve function should also be 

investigated. 

One limitation of previous studies is that they have often relied on only one measure of 

peripheral nerve function, usually a sensory measure.27,31 Sensory and motor nerves undoubtedly 

play distinct roles in mobility limitation. Since overt peripheral neuropathy is partially 

characterized through symptoms of weakness and in extreme cases muscle wasting,311 one 

potential mechanism for the relationship between motor nerve function and disability is the 

denervation of muscle fibers. Microscopic examination of muscle tissue in cases of overt 

neuropathy shows smaller atrophied muscle fibers and a shifting from type I slow twitch to type 

II fast twitch fibers due to denervation and reinnervation of muscle fibers.34 These changes 

potentially could lead to decreased muscle strength and power.41 Sensory nerve function 

measures such as monofilament detection and vibration detection threshold, which are also 

cross-sectionally associated with impaired balance, gait, and lower extremity performance,20,331 

may contribute to mobility limitation through loss of proprioceptive feedback.12   

Initial and sustained poor motor amplitude over seven years predicted mobility limitation, 

while motor nerve conduction velocity did not. Previously, we showed that motor amplitude but 

not nerve conduction velocity was cross-sectionally related to poor physical performance and 

quadriceps muscle strength in this same cohort of older adults.21 Low motor amplitude is 

indicative of axonal degeneration and impaired synchronicity of nerve firing, while low nerve 

conduction velocity signifies nerve demyelination.63 These two measures of nerve function may 

not decline simultaneously, since low amplitude may results from axonal damage to a proportion 

of nerves, while normal nerve conduction velocity may persist, driven by the nerves that remain 

intact.33,76 Moreover, the association between mobility limitation and motor nerve amplitude 
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remained the most consistent finding following adjustment for potential confounders. This 

finding suggests that degeneration of the motor axon likely plays a key role in the development 

of mobility limitation. 

Sensory deficits also predicted mobility limitation even though the associations were not 

as robust as those seen with motor function. Associations between mobility limitation and two 

sensory measures, 10-g monofilament sensitivity and vibration detection threshold, were 

attenuated when adjusting for diabetes and nonsignificant in our sensitivity analysis that 

excluded participants with diabetes. This could indicate that poor sensory nerve function is 

particularly important for mobility limitation in individuals with diabetes. Post-hoc analysis 

showed that the interactions between diabetes and vibration detection threshold (HR for 

interaction = 1.23, 95% CI: 1.10-1.38) and diabetes and 10-g monofilament sensitivity (HR for 

interaction = 1.83, 95% CI: 1.32-2.55) were significant predictors of incident mobility limitation, 

indicating greater harmful effects of worse sensory nerve function by diabetes status. 

Strengths of our analysis include that we used multiple measures of sensory and motor 

nerve function, including a gold standard measure of nerve conduction that we found to be 

highly reproducible in a sample of participants from this aging cohort.65 One unique strength is 

that our outcome of incident mobility limitation was assessed semiannually over 10 years 

following the initial measurement of our predictor. Our analysis used prospective data from a 

large well-characterized cohort of older men and women. We assessed nerve function change by 

creating categories from clinically meaningful cut points that allowed for all directions of 

change, including sustained poor function over the seven years and improvement from poor to 

normal. In order to prevent minimal change from biasing our results, individuals with marginal 

 96 



change (< 5%) for continuous measures were not categorized in transitional nerve function 

groups (poor to normal and normal to poor).  

Some groups in the nerve function change analysis did have small numbers, such as the 

poor to normal motor amplitude (n=13) and vibration detection threshold groups (n=17) and the 

sustained poor vibration threshold group (n=13). Low statistical power may have accounted for 

lack of association and attenuation in these groups. Another potential limitation of our study is 

that our participants may have been somewhat healthier than the general population, given that 

they had no mobility limitation at the initial nerve exam. Despite this, we found that 30% of 

participants in the analysis of initial nerve function measures developed mobility limitation. This 

finding illustrates the high incidence of mobility limitation in older adults, and suggests that this 

rate could be even higher in less healthy populations. 

Our findings confirm that peripheral nerve function plays an important role in the 

development of mobility limitation in late-life. The importance of our findings are highlighted by 

the high incidence of mobility limitation that we found in this community-dwelling population of 

older adults and the high prevalence of poor nerve function in older adults.23 It is essential for 

future work to focus on the prevention of nerve function decline and subsequent disability in 

those with poor nerve function through known and novel risk factors.  
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Table 4.1 Participant characteristics as risk factors for mobility limitation 

Characteristics Value HR (95% CI) for mobility 
limitation 

P-value 

Age, years 76.5 (2.9) 1.15 (1.07-1.25) 0.0002 
Women, n (%) 1079 (50.2) 1.18 (1.01-1.37) 0.04 
Black race, n (%) 785 (36.6) 1.25 (1.07-1.46) 0.005 
Pittsburgh site, n (%) 1090 (50.7) 0.64 (0.55-0.75) <0.0001 
Body Composition    
   BMI, kg/m2 27.1 (4.6) 1.29 (1.20-1.39) <0.0001 
   Lean mass, kg 48.3 (10.2) 1.07 (0.99-1.16)  0.07 
   Fat mass, kg 26.5 (8.4) 1.28 (1.19-1.38) <0.0001 
Lifestyle characteristics    
   Current smoker, n (%) 176 (8.3) 1.56 (1.21-2.02) 0.0006 
   Past smoker, n (%) 974 (46.2) 1.05 (0.90-1.23) 0.51 
   Alcohol consumption > 1/week (%) 1103 (52.4) 0.73 (0.63-0.86) <0.0001 
   Physical activity, kcal/kg/week 6.3 (17.5) 0.27 (0.20-0.36) <0.0001 
Chronic conditions    
   Diabetes, n (%) 437 (10.7) 1.63 (1.37-1.96) <0.0001 
   Impaired fasting glucose, n (%) 348 (16.5) 1.02 (0.83-1.25) 0.87 
   Cardiovascular disease, n (%) 344 (17.4) 1.42 (1.16-1.73) 0.0006 
   Cerebrovascular disease, n (%) 126 (6.1) 1.87 (1.42-2.46) <0.0001 
   Hypertension, n (%) 1707 (80.9) 1.66 (1.33-2.08) <0.0001 
   AAI <0.9, n (%) 315 (15.3) 1.60 (1.31-1.96) <0.0001 
   AAI >1.3, n (%) 105 (5.1) 1.32 (0.95-1.84) 0.09 
   Depression, CES-D score 5.4 (5.5) 1.30 (1.22-1.39) <0.0001 
   Osteoporosis, n (%) 76 (3.6) 1.67 (1.18-2.35) 0.004 
   Knee or hip pain, n (%) 445 (21.0)  1.77 (1.50-2.09) <0.0001 
   Low vitamin B12, n (%) 345 (16.8) 1.07 (0.88-1.33) 0.48 
Cognition    
   3MSE score 90.7 (8.0) 0.86 (0.80-0.93) <0.0001 
   DSST score 37.2 (14.5) 0.83 (0.77-0.89) <0.0001 
Data are means ± SD unless otherwise specified; HR are per SD for continuous variables 
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Table 4.2 Peripheral nerve characteristics at year 4 

Peripheral nerve characteristics at Year 4 Value HR (95% CI) for mobility 
limitation 

P-value 

Motor nerve function 
   Amplitude, mV 3.4 (2.0) 1.30 (1.18-1.42) <0.0001 
   NCV, m/s 43.7 (5.3) 1.09 (1.00-1.19) 0.06 
Sensory nerve function 
   Vibration detection threshold 51.2 (35.4) 1.24 (1.15-1.34) <0.0001 
   Monofilament sensitivity 
      10-g, n (%) 1930 (91.6) 0.71 (0.54-0.92) 0.01 
      1.4-g, n (%) 1159 (54.5) 0.81 (0.70-0.95) <0.01 
PN symptoms 
   Pain, n (%) 315 (14.8) 1.92 (1.60-2.31) <0.0001 
   Numbness, n (%) 568 (26.6) 1.58 (1.34-1.86) <0.0001 
   Sores, n (%) 34 (1.6) 1.36 (0.79-2.36) 0.27 
   One, n (%) 735 (34.5) 1.74 (1.49-2.03) <0.0001 
   Two, n (%) 174 (8.1) 2.08 (1.66-2.60) <0.0001 
Data are means ± SD unless otherwise specified; HR are per SD for continuous variables 

Table 4.3 Initial (Year 4) nerve function predicts incident mobility limitation 

HR (95% CI) 
1st Models 2nd Models 3rd Models 4th Models 

Motor nerve function 
   Amplitude per SD lower 1.29 (1.17-1.42)§ 1.29 (1.17-1.42)§ 1.30 (1.17-1.44)§ 1.28 (1.16-1.43)§ 
   NCV per SD lower 1.10 (0.99-1.22) 1.10 (0.99-1.22) 1.10 (0.99-1.23) 1.11 (0.99-1.24) 
Sensory nerve function 
   Vibration per SD higher 1.21 (1.11-1.31)§ 1.18 (1.09-1.29)§ 1.20 (1.11-1.31)§ 1.13 (1.03-1.23)* 
   Monofilament sensitivity 
      None 1.27 (0.96-1.68) 1.24 (0.93-1.65) 1.31 (0.98-1.75) 1.20 (0.86-1.68) 
      10g 1.19 (1.00-1.40)* 1.18 (0.99-1.39) 1.20 (1.01-1.43)* 1.18 (0.98-1.41) 
      1.4g Reference Reference Reference Reference 
Symptoms 
   None Reference Reference Reference Reference 
   One 1.44 (1.21-1.71)§ 1.42 (1.19-1.70)§ 1.44 (1.20-1.73)§ 1.34 (1.10-1.63)† 
   Two 1.44 (1.11-1.86)† 1.41 (1.09-1.82)† 1.44 (1.10-1.87)† 1.42 (1.07-1.88)* 
*P<0.05; †P<0.01; ‡P<0.001; §P<0.0001.
1st Models – adjusted for age, race, height, weight, site 
2nd Models – 1st Models + diabetes 
3rd Models – 2nd Models + lean & fat mass instead of weight 
4th Models:  
Motor nerve function – 3nd Models + arterial stiffening, knee and hip pain, CES-D, smoking, 
alcohol consumption, physical activity, renal function 
Sensory nerve function – 3nd Models + low ankle arm index, cerebrovascular disease, knee and 
hip pain, osteoporosis, CES-D, smoking, physical activity, renal function 
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Symptoms – 3nd Models + low ankle arm index, arterial stiffening, cerebrovascular disease, knee 
and hip pain, CES-D, vitamin B12 status, smoking, alcohol consumption, physical activity, renal 
function 
 

 

 

Table 4.4 Change in nerve function (Year 4 to Year 11) predicts incident mobility limitation 

 Maintained 
Normal 

Normal 
to Poor 

Poor to 
Normal 

Sustained 
Poor 

Motor nerve function  HR 95% CI HR 95% CI HR 95% CI 
     Amplitude REF 2.02* 1.06-3.88 1.94 0.46-8.19 3.56† 1.63-7.76 
     NCV REF 1.75 0.90-3.40 1.73 0.72-4.17 1.97 0.94-4.16 
Sensory nerve function        
     1.4g  monofilament  
     sensitivity 

REF 1.06 0.64-1.75 1.40 0.86-2.29 1.17 0.73-1.89 

     10g monofilament  
     sensitivity 

REF 1.52 0.94-2.44 1.07 0.39-2.94 0.56 0.17-1.80 

     Vibration threshold REF 1.99* 1.11-3.59 2.45 0.96-6.25 2.90* 1.16-7.24 
2 Symptoms REF 1.94* 1.13-2.77 1.13 0.46-2.77 1.15 0.42-3.13 
Model adjusted for age, sex, race, site, height, weight, and weight change; 
Poor nerve function defined as <1 mV for motor amplitude, <40 m/s for velocity, lack of 
detection of 3 out of 4 touches with 1.4-g and 10-g monofilaments, lack of detection of >131 µ 
of vibration, reporting 2 or more peripheral neuropathy symptoms. 
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Figure 4.1 Participants in analysis 
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Figure 4.2 Bivariate associations between change in nerve function and mobility limitation 

*P<0.05; †P<0.01; ‡P<0.001; §P<0.0001;
Poor nerve function defined as <1 mV for motor amplitude, <40 m/s for velocity, lack of 
detection of 3 out of 4 touches with 1.4-g and 10-g monofilaments, lack of detection of >131 µ 
of vibration, reporting 2 or more peripheral neuropathy symptoms. 
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5.0  DISCUSSION 

5.1 SUMMARY OF FINDINGS 

The results of our analyses show that sensory and motor peripheral nerve function are associated 

with muscle power, longitudinal quadriceps strength, and mobility limitation in older adults. 

Findings from the MrOS study indicate that, in men, poor motor and sensory nerve function are 

independently associated with lower muscle power and that light monofilament insensitivity is 

associated with greater decline in muscle power. This was the first study to examine the cross-

sectional and longitudinal associations between nerve function measures commonly used in 

clinical evaluations and neurologic studies and muscle power. Prior to this, it was generally 

accepted that decline in power was at least partly due to loss of peripheral nerve function with 

age, although the association between these two measures had not been tested even at a cross-

sectional level. In addition, we presented the effect sizes of our nerve function predictors in 

terms of the effect of age and found that they were 1.5 to 3.5 times higher than one year of age. 

These findings contextualize the relationship between nerve function and power, since muscle 

power in known to decline with age at an even faster rate than strength,69,70 though strength has 

been more widely studied in aging research. Since our study was limited to mostly white men, 

future studies should examine these relationships in more diverse study populations of men and 

women. Our follow-up time for our longitudinal analysis was only 2.3 years, therefore the 
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longitudinal relationships between nerve function and muscle power over a longer time period 

should be investigated. In addition, other methods of measuring power should be assessed since 

they vary by intensity of activity, availability of data, and the force-velocity ratio that comprises 

power.  

Using prospective data from the Health ABC Study, we found that, in women, poor 

motor and sensory nerve function predicted lower subsequent strength and that poor sensory 

nerve function predicted greater strength decline. In men, however, only poor sensory nerve 

function predicted lower subsequent strength. When assessing concurrent change, sustained poor 

sensory nerve function, initial poor motor nerve function and monofilament sensitivity, and 

transitioning to poor vibration perception threshold were associated with lower longitudinal 

strength. This work is important because this was the first study to use prospective data to show 

that sensory and motor nerve function are predictive of subsequent strength and concurrent 

change in strength, indicating that poor nerve function may be an important mechanism for poor 

and declining strength in older adults. Because we used data from a large cohort of men and 

women, we were also able to identify sex as a modifier in the relationship between nerve 

function and longitudinal strength. These sex differences are important because they could shed 

light on differences in risk factors and disability outcomes between men and women. Moreover, 

they could suggest a need for interventions for specific impairments targeted towards each sex. 

Future work should further investigate these sex differences. Because we had small numbers in 

groups for the nerve function change analysis, these results should be confirmed in a larger 

population. In addition, we only measured nerve function change at two time points, seven years 

apart. Future studies should examine multiple time points to better characterize the timing of 
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peripheral nerve function and strength decline and the effect of the duration of poor nerve 

function. 

Once again, we used prospective data from the Health ABC study, this time with the goal 

of assessing the relationship between sensory and motor peripheral nerve function and mobility 

limitation. We found that 30% of our study population had incident mobility limitation. This is a 

staggering proportion and likely underestimates the rate experienced by the general population 

given that these participants were healthy at baseline and had to visit the clinic for a nerve exam 

during the 2000/01 study year. Poor initial motor and sensory nerve function and sustained poor 

motor nerve function over seven years independently predicted incident mobility limitation. This 

was the first study to use multiple measures of nerve function to examine the longitudinal 

relationship between motor nerve function and incident mobility limitation in cohort of both men 

and women. In addition, the majority of research had been cross-sectional and focused on 

performance measures20,27 or was limited to moderately to severely disabled women.27,31 These 

findings are significant since they suggest that future work targeting modifiable risk factors for 

peripheral nerve function may be important for disability prevention. Secondary prevention of 

disability in those who already have poor nerve function is also an important future direction. 

Moreover, we found that these associations persisted when adjusting for known risk factors such 

as diabetes mellitus and poor vitamin B12, suggesting that novel risk factors should be explored. 

5.2 PUBLIC HEALTH SIGNIFICANCE 

There is a high incidence and prevalence of poor nerve function and overt neuropathy in older 

adults both with and without diabetes mellitus.22,23 Many adults experiencing poor nerve function 
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may be asymptomatic and unaware of persisting pathology. Our findings indicate that poor initial 

motor and sensory nerve function may lead to lower strength, power, and greater incidence of 

mobility limitation anywhere from two to seven years later. We found evidence of improvement 

from poor to normal nerve function, yet this was not always accompanied by better muscle 

function; this suggests that although nerve function improvement is possible, the effect on 

muscle function and disability may persist. Therefore, future work should not only focus on 

interventions for modifiable risk factors of neuromuscular impairment, but also on administering 

those interventions early enough to have an effect. Light (1.4-g) monofilament insensitivity was 

predictive of greater muscle power decline. Future works should examine whether this simple 

test can be used as a screener to identify those who may be at risk for muscle power decline and 

whether it should be included as part of routine geriatric assessment. In addition, understanding 

the role of neuromuscular parameters in the disablement process may help to identify multiple 

points of intervention. The effects of known risk factors for poor nerve function such as diabetes 

and vitamin B12 deficiency and novel risk factors should be studied on muscle function and 

ultimately on mobility disability. In addition, interventions targeted at increasing muscle strength 

and power should be investigated in individuals with poor and at risk for poor peripheral nerve 

function, with the goal of preventing subsequent disability. 

106 



BIBLIOGRAPHY 

1. Edwards RHT, Jones DA. Diseases of Skeletal Muscle. Comprehensive Physiology: John
Wiley & Sons, Inc.; 2010.

2. Andersen JL. Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci
Sports. Feb 2003;13(1):40-47.

3. Federal Interagency Forum on Aging-Related Statistics. Number of people age 65 and
over, by age group, selected years 1900-2000 and projected 2010-2050. 2006;
http://www.agingstats.gov/Main_Site/Data/2006_Documents/Population.pdf.

4. Manton KG, Gu X. Changes in the prevalence of chronic disability in the United States
black and nonblack population above age 65 from 1982 to 1999. Proc Natl Acad Sci U S
A. May 22 2001;98(11):6354-6359.

5. Freedman VA, Martin LG. Understanding trends in functional limitations among older
Americans. Am J Public Health. Oct 1998;88(10):1457-1462.

6. Trupin L, Rice D, Max W. Medical Expenditures for People with Disabilities in the
United States, 1987. Washington DC: US Dept of Education, National Institute on
Disability and Rehabilitation Research. 1995.

7. Congressional Budget Office. Financing Long-Term Care for the Elderly. 2004.
http://www.cbo.gov. Accessed October 11, 2010.

8. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent
disability: consistency across studies, predictive models, and value of gait speed alone
compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci.
Apr 2000;55(4):M221-231.

9. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. Aug
2008;63(8):829-834.

10. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci.
Jan 2012;67(1):28-40.

11. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical
functioning in older adults. Exerc Sport Sci Rev. Jan 2012;40(1):4-12.

12. De Luca CJ, Gonzalez-Cueto JA, Bonato P, Adam A. Motor unit recruitment and
proprioceptive feedback decrease the common drive. Journal of neurophysiology. Mar
2009;101(3):1620-1628.

13. Gandevia SC, Macefield G, Burke D, McKenzie DK. Voluntary activation of human
motor axons in the absence of muscle afferent feedback. The control of the deafferented
hand. Brain. Oct 1990;113 ( Pt 5):1563-1581.

14. Hardy SE, Gill TM. Recovery from disability among community-dwelling older persons.
JAMA. Apr 7 2004;291(13):1596-1602.

107 

http://www.agingstats.gov/Main_Site/Data/2006_Documents/Population.pdf
http://www.cbo.gov/


15. Hardy SE, Dubin JA, Holford TR, Gill TM. Transitions between states of disability and 
independence among older persons. Am J Epidemiol. Mar 15 2005;161(6):575-584. 

16. Williamson JD, Espeland M, Kritchevsky SB, et al. Changes in cognitive function in a 
randomized trial of physical activity: results of the lifestyle interventions and 
independence for elders pilot study. J Gerontol A Biol Sci Med Sci. Jun 2009;64(6):688-
694. 

17. McGough EL, Kelly VE, Logsdon RG, et al. Associations between physical performance 
and executive function in older adults with mild cognitive impairment: gait speed and the 
timed "up & go" test. Phys Ther. Aug 2011;91(8):1198-1207. 

18. Wood KM, Edwards JD, Clay OJ, Wadley VG, Roenker DL, Ball KK. Sensory and 
cognitive factors influencing functional ability in older adults. Gerontology. Mar-Apr 
2005;51(2):131-141. 

19. Klass M, Baudry S, Duchateau J. Voluntary activation during maximal contraction with 
advancing age: a brief review. Eur J Appl Physiol. Jul 2007;100(5):543-551. 

20. Strotmeyer ES, de Rekeneire N, Schwartz AV, et al. The relationship of reduced 
peripheral nerve function and diabetes with physical performance in older white and 
black adults: the Health, Aging, and Body Composition (Health ABC) study. Diabetes 
Care. Sep 2008;31(9):1767-1772. 

21. Strotmeyer ES, de Rekeneire N, Schwartz AV, et al. Sensory and Motor Peripheral Nerve 
Function and Lower-Extremity Quadriceps Strength: The Health, Aging and Body 
Composition Study. J Am Geriatr Soc. Sep 28 2009. 

22. Baldereschi M, Inzitari M, Di Carlo A, Farchi G, Scafato E, Inzitari D. Epidemiology of 
distal symmetrical neuropathies in the Italian elderly. Neurology. May 1 
2007;68(18):1460-1467. 

23. Gregg EW, Sorlie P, Paulose-Ram R, et al. Prevalence of lower-extremity disease in the 
US adult population >=40 years of age with and without diabetes: 1999-2000 national 
health and nutrition examination survey. Diabetes Care. Jul 2004;27(7):1591-1597. 

24. McGill M, Molyneaux L, Spencer R, Heng LF, Yue DK. Possible sources of 
discrepancies in the use of the Semmes-Weinstein monofilament. Impact on prevalence 
of insensate foot and workload requirements. Diabetes Care. Apr 1999;22(4):598-602. 

25. Prevalence of chronic diseases in older Italians: comparing self-reported and clinical 
diagnoses. The Italian Longitudinal Study on Aging Working Group. Int J Epidemiol. 
Oct 1997;26(5):995-1002. 

26. Resnick HE, Stansberry KB, Harris TB, et al. Diabetes, peripheral neuropathy, and old 
age disability. Muscle Nerve. Jan 2002;25(1):43-50. 

27. Resnick HE, Vinik AI, Schwartz AV, et al. Independent effects of peripheral nerve 
dysfunction on lower-extremity physical function in old age: the Women's Health and 
Aging Study. Diabetes Care. Nov 2000;23(11):1642-1647. 

28. Ferrucci L, Bandinelli S, Cavazzini C, et al. Neurological examination findings to predict 
limitations in mobility and falls in older persons without a history of neurological disease. 
Am J Med. Jun 15 2004;116(12):807-815. 

29. Cavanagh PR, Derr JA, Ulbrecht JS, Maser RE, Orchard TJ. Problems with gait and 
posture in neuropathic patients with insulin-dependent diabetes mellitus. Diabet Med. Jun 
1992;9(5):469-474. 

 108 



30. Richardson JK, Ching C, Hurvitz EA. The relationship between electromyographically 
documented peripheral neuropathy and falls. J Am Geriatr Soc. Oct 1992;40(10):1008-
1012. 

31. Volpato S, Blaum C, Resnick H, et al. Comorbidities and impairments explaining the 
association between diabetes and lower extremity disability: The Women's Health and 
Aging Study. Diabetes Care. Apr 2002;25(4):678-683. 

32. Inzitari M, Carlo A, Baldereschi M, et al. Risk and predictors of motor-performance 
decline in a normally functioning population-based sample of elderly subjects: the Italian 
Longitudinal Study on Aging. J Am Geriatr Soc. Feb 2006;54(2):318-324. 

33. Lauretani F, Bandinelli S, Bartali B, et al. Axonal degeneration affects muscle density in 
older men and women. Neurobiol Aging. Aug 2006;27(8):1145-1154. 

34. Lexell J. Evidence for nervous system degeneration with advancing age. J Nutr. May 
1997;127(5 Suppl):1011S-1013S. 

35. Delbono O. Neural control of aging skeletal muscle. Aging Cell. Feb 2003;2(1):21-29. 
36. Payne AM, Delbono O. Neurogenesis of excitation-contraction uncoupling in aging 

skeletal muscle. Exerc Sport Sci Rev. Jan 2004;32(1):36-40. 
37. Campbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J Neurol 

Neurosurg Psychiatry. Apr 1973;36(2):174-182. 
38. Houmard JA. Muscle Function. In: Wortmann RL, ed. Diseases of Skeletal Muscle. 

Philadelphia: Lippincott Williams & Wilkins; 2000. 
39. Tomlinson BE, Walton JN, Rebeiz JJ. The effects of ageing and of cachexia upon 

skeletal muscle. A histopathological study. J Neurol Sci. Sep-Oct 1969;9(2):321-346. 
40. Lexell J, Downham DY. The occurrence of fibre-type grouping in healthy human muscle: 

a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 
83 years. Acta Neuropathol. 1991;81(4):377-381. 

41. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to 
age and muscle morphology. J Appl Physiol. Mar 1979;46(3):451-456. 

42. Canepari M, Pellegrino MA, D'Antona G, Bottinelli R. Single muscle fiber properties in 
aging and disuse. Scand J Med Sci Sports. Feb 2010;20(1):10-19. 

43. Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci 
Med Sci. Nov 1995;50 Spec No:11-16. 

44. Larsson L. Motor units: remodeling in aged animals. J Gerontol A Biol Sci Med Sci. Nov 
1995;50 Spec No:91-95. 

45. Kadhiresan VA, Hassett CA, Faulkner JA. Properties of single motor units in medial 
gastrocnemius muscles of adult and old rats. J Physiol. Jun 1 1996;493 ( Pt 2):543-552. 

46. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of 
neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. 
J Neurosci. Apr 1 2000;20(7):2534-2542. 

47. Suetta C, Hvid LG, Justesen L, et al. Effects of aging on human skeletal muscle after 
immobilization and retraining. J Appl Physiol. Oct 2009;107(4):1172-1180. 

48. Hamalainen N, Pette D. Patterns of myosin isoforms in mammalian skeletal muscle 
fibres. Microsc Res Tech. Apr 1 1995;30(5):381-389. 

49. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation 
and functional significance. Physiol Rev. Apr 1996;76(2):371-423. 

 109 



50. Kirschbaum BJ, Kucher HB, Termin A, Kelly AM, Pette D. Antagonistic effects of 
chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-
twitch muscle. J Biol Chem. Aug 15 1990;265(23):13974-13980. 

51. Sullivan MJ, Duscha BD, Klitgaard H, Kraus WE, Cobb FR, Saltin B. Altered expression 
of myosin heavy chain in human skeletal muscle in chronic heart failure. Med Sci Sports 
Exerc. Jul 1997;29(7):860-866. 

52. Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and 
capillary density in women and men with NIDDM. Diabetes Care. May 1994;17(5):382-
386. 

53. Hickey MS, Carey JO, Azevedo JL, et al. Skeletal muscle fiber composition is related to 
adiposity and in vitro glucose transport rate in humans. Am J Physiol. Mar 1995;268(3 Pt 
1):E453-457. 

54. Nyholm B, Qu Z, Kaal A, et al. Evidence of an increased number of type IIb muscle 
fibers in insulin-resistant first-degree relatives of patients with NIDDM. Diabetes. Nov 
1997;46(11):1822-1828. 

55. Bassett DR, Jr. Skeletal muscle characteristics: relationships to cardiovascular risk 
factors. Med Sci Sports Exerc. Aug 1994;26(8):957-966. 

56. Andersen P, Henriksson J. Training induced changes in the subgroups of human type II 
skeletal muscle fibres. Acta Physiol Scand. Jan 1977;99(1):123-125. 

57. Goldspink G, Scutt A, Martindale J, Jaenicke T, Turay L, Gerlach GF. Stretch and force 
generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal 
muscle. Biochem Soc Trans. Apr 1991;19(2):368-373. 

58. Bird SJ, Brown MJ, Spino C, Watling S, Foyt HL. Value of repeated measures of nerve 
conduction and quantitative sensory testing in a diabetic neuropathy trial. Muscle Nerve. 
Aug 2006;34(2):214-224. 

59. Dyck PJ, Litchy WJ, Daube JR, Harper CM, Davies J, O'Brien PC. Individual attributes 
versus composite scores of nerve conduction abnormality: sensitivity, reproducibility, 
and concordance with impairment. Muscle Nerve. Feb 2003;27(2):202-210. 

60. Dyck PJ, Norell JE, Tritschler H, et al. Challenges in design of multicenter trials: end 
points assessed longitudinally for change and monotonicity. Diabetes Care. Oct 
2007;30(10):2619-2625. 

61. Ward RE, Boudreau RM, Vinik AI, et al. Reproducibility of peroneal motor nerve 
conduction measurement in older adults. Clin Neurophysiol. Sep 25 2012. 

62. Perkins BA, Olaleye D, Zinman B, Bril V. Simple screening tests for peripheral 
neuropathy in the diabetes clinic. Diabetes Care. Feb 2001;24(2):250-256. 

63. Arezzo JC, Zotova E. Electrophysiologic measures of diabetic neuropathy: mechanism 
and meaning. International review of neurobiology. 2002;50:229-255. 

64. Joynt RL. Calculated nerve conduction velocity dependence upon the method of testing. 
Arch Phys Med Rehabil. May 1983;64(5):212-216. 

65. Ward RE, Boudreau RM, Vinik AI, et al. Reproducibility of peroneal motor nerve 
conduction measurement in older adults. Clin Neurophysiol. Mar 2013;124(3):603-609. 

66. Dyck PJ, Carter RE, Litchy WJ. Modeling nerve conduction criteria for diagnosis of 
diabetic polyneuropathy. Muscle Nerve. Sep 2011;44(3):340-345. 

67. Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab 
Care. May 2010;13(3):260-264. 

 110 



68. Lauretani F, Russo CR, Bandinelli S, et al. Age-associated changes in skeletal muscles 
and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. Nov 
2003;95(5):1851-1860. 

69. Young A, Skelton DA. Applied physiology of strength and power in old age. Int J Sports 
Med. Apr 1994;15(3):149-151. 

70. Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional 
ability of healthy people aged 65-89 years. Age Ageing. Sep 1994;23(5):371-377. 

71. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, 
and quality in older adults: the health, aging and body composition study. J Gerontol A 
Biol Sci Med Sci. Oct 2006;61(10):1059-1064. 

72. Delmonico MJ, Harris TB, Visser M, et al. Longitudinal study of muscle strength, 
quality, and adipose tissue infiltration. Am J Clin Nutr. Dec 2009;90(6):1579-1585. 

73. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and 
recommendations for training practices. Sports Med. 2006;36(2):133-149. 

74. Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young 
and older adults. J Gerontol A Biol Sci Med Sci. Dec 2004;59(12):1334-1338. 

75. Gooch CL, Weimer LH. The electrodiagnosis of neuropathy: basic principles and 
common pitfalls. Neurologic clinics. Feb 2007;25(1):1-28. 

76. Falck B, Stalberg E. Motor nerve conduction studies: measurement principles and 
interpretation of findings. J Clin Neurophysiol. May 1995;12(3):254-279. 

77. Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB, Burke D. The firing rates 
of human motoneurones voluntarily activated in the absence of muscle afferent feedback. 
J Physiol. Nov 1993;471:429-443. 

78. Brown M, Sinacore DR, Binder EF, Kohrt WM. Physical and performance measures for 
the identification of mild to moderate frailty. J Gerontol A Biol Sci Med Sci. Jun 
2000;55(6):M350-355. 

79. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance 
depends on sensation, speed, balance, and psychological status in addition to strength in 
older people. J Gerontol A Biol Sci Med Sci. Aug 2002;57(8):M539-543. 

80. Phillips SK, Bruce SA, Newton D, Woledge RC. The weakness of old age is not due to 
failure of muscle activation. J Gerontol. Mar 1992;47(2):M45-49. 

81. Roos MR, Rice CL, Connelly DM, Vandervoort AA. Quadriceps muscle strength, 
contractile properties, and motor unit firing rates in young and old men. Muscle Nerve. 
Aug 1999;22(8):1094-1103. 

82. McNeil CJ, Vandervoort AA, Rice CL. Peripheral impairments cause a progressive age-
related loss of strength and velocity-dependent power in the dorsiflexors. J Appl Physiol. 
May 2007;102(5):1962-1968. 

83. Hakkinen K, Kraemer WJ, Kallinen M, Linnamo V, Pastinen UM, Newton RU. Bilateral 
and unilateral neuromuscular function and muscle cross-sectional area in middle-aged 
and elderly men and women. J Gerontol A Biol Sci Med Sci. Jan 1996;51(1):B21-29. 

84. Clark DJ, Patten C, Reid KF, Carabello RJ, Phillips EM, Fielding RA. Impaired 
voluntary neuromuscular activation limits muscle power in mobility-limited older adults. 
J Gerontol A Biol Sci Med Sci. May 2010;65(5):495-502. 

85. McNeil CJ, Doherty TJ, Stashuk DW, Rice CL. Motor unit number estimates in the 
tibialis anterior muscle of young, old, and very old men. Muscle Nerve. Apr 
2005;31(4):461-467. 

 111 



86. Dalton BH, McNeil CJ, Doherty TJ, Rice CL. Age-related reductions in the estimated 
numbers of motor units are minimal in the human soleus. Muscle Nerve. Sep 
2008;38(3):1108-1115. 

87. Cartee G. Aging skeletal muscle:response to exercise. In: Holloszy J, ed. Ecescise and 
sports sciences reviews. Baltimore, MD: Williams & Wilkins; 1994:91-120. 

88. Rogers M. Changes in skeletal muscle with aging: effects of exercise training. In: 
Holloszy J, ed. Exercise and sports sciences reviews. Baltimore, MD: Williams & 
Wilkins; 1993:65-102. 

89. Grimby G. Muscle performance and structure in the elderly as studied cross-sectionally 
and longitudinally. J Gerontol A Biol Sci Med Sci. Nov 1995;50 Spec No:17-22. 

90. Houmard JA, Weidner ML, Gavigan KE, Tyndall GL, Hickey MS, Alshami A. Fiber 
type and citrate synthase activity in the human gastrocnemius and vastus lateralis with 
aging. J Appl Physiol. Oct 1998;85(4):1337-1341. 

91. Essen-Gustavsson B, Borges O. Histochemical and metabolic characteristics of human 
skeletal muscle in relation to age. Acta Physiol Scand. Jan 1986;126(1):107-114. 

92. Brown AB, McCartney N, Sale DG. Positive adaptations to weight-lifting training in the 
elderly. J Appl Physiol. Nov 1990;69(5):1725-1733. 

93. Charette SL, McEvoy L, Pyka G, et al. Muscle hypertrophy response to resistance 
training in older women. J Appl Physiol. May 1991;70(5):1912-1916. 

94. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity 
strength training in nonagenarians. Effects on skeletal muscle. JAMA. Jun 13 
1990;263(22):3029-3034. 

95. Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ. Strength 
conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl 
Physiol. Mar 1988;64(3):1038-1044. 

96. Balducci S, Iacobellis G, Parisi L, et al. Exercise training can modify the natural history 
of diabetic peripheral neuropathy. J Diabetes Complications. Jul-Aug 2006;20(4):216-
223. 

97. Fisher MA, Langbein WE, Collins EG, Williams K, Corzine L. Physiological 
improvement with moderate exercise in type II diabetic neuropathy. Electromyography 
and clinical neurophysiology. Jan-Feb 2007;47(1):23-28. 

98. Kluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, 
nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. 
J Diabetes Complications. Sep-Oct 2012;26(5):424-429. 

99. Castaneda C, Layne JE, Munoz-Orians L, et al. A randomized controlled trial of 
resistance exercise training to improve glycemic control in older adults with type 2 
diabetes. Diabetes Care. Dec 2002;25(12):2335-2341. 

100. Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. 
N Engl J Med. Jan 27 2005;352(4):341-350. 

101. Newman AB, Brach JS. Gender gap in longevity and disability in older persons. 
Epidemiol Rev. 2001;23(2):343-350. 

102. Wray LA, Blaum CS. Explaining the role of sex on disability: a population-based study. 
Gerontologist. Aug 2001;41(4):499-510. 

103. Murtagh KN, Hubert HB. Gender differences in physical disability among an elderly 
cohort. Am J Public Health. Aug 2004;94(8):1406-1411. 

 112 



104. Tinetti ME, Williams CS. Falls, injuries due to falls, and the risk of admission to a 
nursing home. N Engl J Med. Oct 30 1997;337(18):1279-1284. 

105. Coutinho ES, Fletcher A, Bloch KV, Rodrigues LC. Risk factors for falls with severe 
fracture in elderly people living in a middle-income country: a case control study. BMC 
Geriatr. 2008;8:21. 

106. Lynch NA, Metter EJ, Lindle RS, et al. Muscle quality. I. Age-associated differences 
between arm and leg muscle groups. J Appl Physiol. Jan 1999;86(1):188-194. 

107. Krivickas LS, Fielding RA, Murray A, et al. Sex differences in single muscle fiber power 
in older adults. Med Sci Sports Exerc. Jan 2006;38(1):57-63. 

108. Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in 
maximal muscle power during stretch-shortening cycle movements in elderly males and 
females. Eur J Appl Physiol. Mar 2001;84(3):206-212. 

109. Bassey EJ, Fiatarone MA, O'Neill EF, Kelly M, Evans WJ, Lipsitz LA. Leg extensor 
power and functional performance in very old men and women. Clin Sci (Lond). Mar 
1992;82(3):321-327. 

110. Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB. Age and gender 
differences in single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci. 
Jan 1999;54(1):M44-50. 

111. Robinson LR, Rubner DE, Wahl PW, Fujimoto WY, Stolov WC. Influences of height 
and gender on normal nerve conduction studies. Arch Phys Med Rehabil. Nov 
1993;74(11):1134-1138. 

112. Norbury R, Cutter WJ, Compton J, et al. The neuroprotective effects of estrogen on the 
aging brain. Experimental gerontology. Jan-Feb 2003;38(1-2):109-117. 

113. Porter MM, Myint A, Kramer JF, Vandervoort AA. Concentric and eccentric knee 
extension strength in older and younger men and women. Canadian journal of applied 
physiology = Revue canadienne de physiologie appliquee. Dec 1995;20(4):429-439. 

114. Clark DJ, Patten C, Reid KF, Carabello RJ, Phillips EM, Fielding RA. Muscle 
performance and physical function are associated with voluntary rate of neuromuscular 
activation in older adults. J Gerontol A Biol Sci Med Sci. Jan 2011;66(1):115-121. 

115. Stauber WT. Eccentric action of muscles: physiology, injury, and adaptation. Exerc Sport 
Sci Rev. 1989;17:157-185. 

116. Rosenberg IH. Summary comments. Am J Clin Nutr. 1989(50):1231-1233. 
117. Rosenberg IH, Roubenoff R. Stalking sarcopenia. Ann Intern Med. Nov 1 

1995;123(9):727-728. 
118. Visser M, Kritchevsky SB, Goodpaster BH, et al. Leg muscle mass and composition in 

relation to lower extremity performance in men and women aged 70 to 79: the health, 
aging and body composition study. J Am Geriatr Soc. May 2002;50(5):897-904. 

119. Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and 
functional capacity. J Nutr. Feb 1993;123(2 Suppl):465-468. 

120. Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of old 
age disability. JAMA. Feb 10 1999;281(6):558-560. 

121. Rantanen T. Muscle strength, disability and mortality. Scand J Med Sci Sports. Feb 
2003;13(1):3-8. 

122. Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in 
older community-dwelling women. J Am Geriatr Soc. Oct 1994;42(10):1110-1117. 

 113 



123. Rantanen T, Avlund K, Suominen H, Schroll M, Frandin K, Pertti E. Muscle strength as a 
predictor of onset of ADL dependence in people aged 75 years. Aging Clin Exp Res. Jun 
2002;14(3 Suppl):10-15. 

124. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on 
definition and diagnosis: Report of the European Working Group on Sarcopenia in Older 
People. Age Ageing. Jul 2010;39(4):412-423. 

125. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older 
adults. Current consensus definition: prevalence, etiology, and consequences. 
International working group on sarcopenia. J Am Med Dir Assoc. May 2011;12(4):249-
256. 

126. Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, 
pathogenesis, consequences and future perspectives. J Nutr Health Aging. Aug-Sep 
2008;12(7):433-450. 

127. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, 
clinical consequences, intervention, and assessment. Osteoporos Int. Apr 2010;21(4):543-
559. 

128. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia 
in the United States. J Am Geriatr Soc. Jan 2004;52(1):80-85. 

129. Harridge S, Magnusson G, Saltin B. Life-long endurance-trained elderly men have high 
aerobic power, but have similar muscle strength to non-active elderly men. Aging 
(Milano). Feb-Apr 1997;9(1-2):80-87. 

130. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors 
of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci. 
Dec 2002;57(12):M772-777. 

131. Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual-energy 
X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, Aging, 
and Body Composition Study--Dual-Energy X-ray Absorptiometry and Body 
Composition Working Group. J Appl Physiol. Oct 1999;87(4):1513-1520. 

132. Visser M, Pahor M, Tylavsky F, et al. One- and two-year change in body composition as 
measured by DXA in a population-based cohort of older men and women. J Appl Physiol. 
Jun 2003;94(6):2368-2374. 

133. Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength 
in the elderly: The Health ABC Study. J Appl Physiol. Jun 2001;90(6):2157-2165. 

134. Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-
body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. Jun 
1990;51(6):1106-1112. 

135. Chumlea WC, Guo SS, Vellas B, Guigoz Y. Techniques of assessing muscle mass and 
function (sarcopenia) for epidemiological studies of the elderly. J Gerontol A Biol Sci 
Med Sci. Nov 1995;50 Spec No:45-51. 

136. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in 
older persons is associated with functional impairment and physical disability. J Am 
Geriatr Soc. May 2002;50(5):889-896. 

137. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among 
the elderly in New Mexico. Am J Epidemiol. Apr 15 1998;147(8):755-763. 

 114 



138. Newman AB, Kupelian V, Visser M, et al. Sarcopenia: alternative definitions and 
associations with lower extremity function. J Am Geriatr Soc. Nov 2003;51(11):1602-
1609. 

139. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia, lower 
extremity performance, and functional impairment with aging in older men and women. J 
Am Geriatr Soc. May 2007;55(5):769-774. 

140. Bean JF, Kiely DK, Herman S, et al. The relationship between leg power and physical 
performance in mobility-limited older people. J Am Geriatr Soc. Mar 2002;50(3):461-
467. 

141. Bean JF, Leveille SG, Kiely DK, Bandinelli S, Guralnik JM, Ferrucci L. A comparison of 
leg power and leg strength within the InCHIANTI study: which influences mobility 
more? J Gerontol A Biol Sci Med Sci. Aug 2003;58(8):728-733. 

142. Marsh AP, Miller ME, Saikin AM, et al. Lower extremity strength and power are 
associated with 400-meter walk time in older adults: The InCHIANTI study. J Gerontol 
A Biol Sci Med Sci. Nov 2006;61(11):1186-1193. 

143. Foldvari M, Clark M, Laviolette LC, et al. Association of muscle power with functional 
status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci. Apr 
2000;55(4):M192-199. 

144. Clemencon M, Hautier CA, Rahmani A, Cornu C, Bonnefoy M. Potential role of optimal 
velocity as a qualitative factor of physical functional performance in women aged 72 to 
96 years. Arch Phys Med Rehabil. Aug 2008;89(8):1594-1599. 

145. Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in 
older people. Eur J Appl Physiol. Apr 2004;91(4):450-472. 

146. Thom JM, Morse CI, Birch KM, Narici MV. Triceps surae muscle power, volume, and 
quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci. Sep 
2005;60(9):1111-1117. 

147. Capodaglio P, Capodaglio Edda M, Facioli M, Saibene F. Long-term strength training for 
community-dwelling people over 75: impact on muscle function, functional ability and 
life style. Eur J Appl Physiol. Jul 2007;100(5):535-542. 

148. Cuoco A, Callahan DM, Sayers S, Frontera WR, Bean J, Fielding RA. Impact of muscle 
power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci 
Med Sci. Nov 2004;59(11):1200-1206. 

149. Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle flexors predicts functional 
performance in community-dwelling older women. J Am Geriatr Soc. Sep 
2001;49(9):1161-1167. 

150. Puthoff ML, Nielsen DH. Relationships among impairments in lower-extremity strength 
and power, functional limitations, and disability in older adults. Phys Ther. Oct 
2007;87(10):1334-1347. 

151. Bean JF, Kiely DK, Leveille SG, et al. The 6-minute walk test in mobility-limited elders: 
what is being measured? J Gerontol A Biol Sci Med Sci. Nov 2002;57(11):M751-756. 

152. Bean JF, Kiely DK, LaRose S, Alian J, Frontera WR. Is stair climb power a clinically 
relevant measure of leg power impairments in at-risk older adults? Arch Phys Med 
Rehabil. May 2007;88(5):604-609. 

153. Kuo HK, Leveille SG, Yen CJ, et al. Exploring how peak leg power and usual gait speed 
are linked to late-life disability: data from the National Health and Nutrition Examination 
Survey (NHANES), 1999-2002. Am J Phys Med Rehabil. Aug 2006;85(8):650-658. 

 115 



154. Izquierdo M, Ibanez J, Gorostiaga E, et al. Maximal strength and power characteristics in 
isometric and dynamic actions of the upper and lower extremities in middle-aged and 
older men. Acta Physiol Scand. Sep 1999;167(1):57-68. 

155. Manini TM, Visser M, Won-Park S, et al. Knee extension strength cutpoints for 
maintaining mobility. J Am Geriatr Soc. Mar 2007;55(3):451-457. 

156. Hicks GE, Shardell M, Alley DE, et al. Absolute strength and loss of strength as 
predictors of mobility decline in older adults: the InCHIANTI study. J Gerontol A Biol 
Sci Med Sci. Jan 2012;67(1):66-73. 

157. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and 
responsiveness in common physical performance measures in older adults. J Am Geriatr 
Soc. May 2006;54(5):743-749. 

158. Bean JF, Kiely DK, LaRose S, Goldstein R, Frontera WR, Leveille SG. Are changes in 
leg power responsible for clinically meaningful improvements in mobility in older 
adults? J Am Geriatr Soc. Dec 2010;58(12):2363-2368. 

159. Metter EJ, Conwit R, Tobin J, Fozard JL. Age-associated loss of power and strength in 
the upper extremities in women and men. J Gerontol A Biol Sci Med Sci. Sep 
1997;52(5):B267-276. 

160. Caserotti P, Aagaard P, Larsen JB, Puggaard L. Explosive heavy-resistance training in 
old and very old adults: changes in rapid muscle force, strength and power. Scand J Med 
Sci Sports. Dec 2008;18(6):773-782. 

161. Bean J, Herman S, Kiely DK, et al. Weighted stair climbing in mobility-limited older 
people: a pilot study. J Am Geriatr Soc. Apr 2002;50(4):663-670. 

162. Thomas M, Fiatarone MA, Fielding RA. Leg power in young women: relationship to 
body composition, strength, and function. Med Sci Sports Exerc. Oct 1996;28(10):1321-
1326. 

163. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. 3rd ed. New 
York: John Wiley & Sons; 2003. 

164. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. 
Psychological bulletin. Mar 1979;86(2):420-428. 

165. Bassey EJ, Short AH. A new method for measuring power output in a single leg 
extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol. 
1990;60(5):385-390. 

166. Lindemann U, Claus H, Stuber M, et al. Measuring power during the sit-to-stand transfer. 
Eur J Appl Physiol. Jun 2003;89(5):466-470. 

167. Rittweger J, Schiessl H, Felsenberg D, Runge M. Reproducibility of the jumping 
mechanography as a test of mechanical power output in physically competent adult and 
elderly subjects. J Am Geriatr Soc. Jan 2004;52(1):128-131. 

168. Caserotti P, Harris TB, Vannozzi G, Aagaard P. Assessment of Muscle Power in Older 
Adults and Association with Functional Performance. Gerontological Society of America 
62nd Annual meeting. Atlanta, GA2009. 

169. Runge M, Rittweger J, Russo CR, Schiessl H, Felsenberg D. Is muscle power output a 
key factor in the age-related decline in physical performance? A comparison of muscle 
cross section, chair-rising test and jumping power. Clin Physiol Funct Imaging. Nov 
2004;24(6):335-340. 

 116 



170. Stenholm S, Tiainen K, Rantanen T, et al. Long-term determinants of muscle strength 
decline: prospective evidence from the 22-year mini-Finland follow-up survey. J Am 
Geriatr Soc. Jan 2012;60(1):77-85. 

171. Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal 
muscle fiber quality in older men and women. Am J Physiol Cell Physiol. Sep 
2000;279(3):C611-618. 

172. Newman AB, Haggerty CL, Goodpaster B, et al. Strength and muscle quality in a well-
functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am 
Geriatr Soc. Mar 2003;51(3):323-330. 

173. Verdijk LB, Snijders T, Beelen M, et al. Characteristics of muscle fiber type are 
predictive of skeletal muscle mass and strength in elderly men. J Am Geriatr Soc. Nov 
2010;58(11):2069-2075. 

174. Kryger AI, Andersen JL. Resistance training in the oldest old: consequences for muscle 
strength, fiber types, fiber size, and MHC isoforms. Scand J Med Sci Sports. Aug 
2007;17(4):422-430. 

175. Verdijk LB, Gleeson BG, Jonkers RA, et al. Skeletal muscle hypertrophy following 
resistance training is accompanied by a fiber type-specific increase in satellite cell 
content in elderly men. J Gerontol A Biol Sci Med Sci. Mar 2009;64(3):332-339. 

176. Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and 
muscle fat infiltration as predictors of incident mobility limitations in well-functioning 
older persons. J Gerontol A Biol Sci Med Sci. Mar 2005;60(3):324-333. 

177. Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat 
distribution. Ageing research reviews. Oct 2009;8(4):339-348. 

178. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin 
resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol 
Metab. Dec 2001;86(12):5755-5761. 

179. Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training 
increases intramyocellular lipid and oxidative capacity in older adults. American journal 
of physiology. Endocrinology and metabolism. Nov 2004;287(5):E857-862. 

180. Dube JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-
induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox 
revisited. American journal of physiology. Endocrinology and metabolism. May 
2008;294(5):E882-888. 

181. del Porto LA, Nicholson GA, Ketheswaren P. Correlation between muscle atrophy on 
MRI and manual strength testing in hereditary neuropathies. Journal of clinical 
neuroscience : official journal of the Neurosurgical Society of Australasia. Jul 
2010;17(7):874-878. 

182. Strotmeyer ES, Cauley JA, Faulkner KA, et al. Poor sensory and motor peripheral nerve 
function is associated with higher skeletal muscle adiposity: The Osteoporotic Fractures 
in Men (MrOS) Study. Paper presented at: The Gerontological Society of America 65th 
Annual Scientific Meeting; 2012, 2012; San Diego, CA, USA. 

183. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. Jul 
1956;11(3):298-300. 

184. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human 
skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. 
Proc Natl Acad Sci U S A. Jun 24 2003;100(13):7996-8001. 

 117 



185. Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE. Large energetic adaptations 
of elderly muscle to resistance and endurance training. J Appl Physiol. May 
2001;90(5):1663-1670. 

186. McKeough ZJ, Alison JA, Bye PT, et al. Exercise capacity and quadriceps muscle 
metabolism following training in subjects with COPD. Respir Med. Oct 
2006;100(10):1817-1825. 

187. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of 
exercise on mitochondrial content and function in aging human skeletal muscle. J 
Gerontol A Biol Sci Med Sci. Jun 2006;61(6):534-540. 

188. Kent-Braun JA, Ng AV, Young K. Skeletal muscle contractile and noncontractile 
components in young and older women and men. J Appl Physiol. Feb 2000;88(2):662-
668. 

189. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative 
diseases. Nature. Oct 19 2006;443(7113):787-795. 

190. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, 
and cancer: a dawn for evolutionary medicine. Annual review of genetics. 2005;39:359-
407. 

191. Delbono O. Regulation of excitation contraction coupling by insulin-like growth factor-1 
in aging skeletal muscle. J Nutr Health Aging. 2000;4(3):162-164. 

192. Jimenez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ 
release declines in muscle fibers from aging mice. Biophys J. Apr 15 2008;94(8):3178-
3188. 

193. Renganathan M, Messi ML, Delbono O. Dihydropyridine receptor-ryanodine receptor 
uncoupling in aged skeletal muscle. J Membr Biol. Jun 1 1997;157(3):247-253. 

194. Delbono O, O'Rourke KS, Ettinger WH. Excitation-calcium release uncoupling in aged 
single human skeletal muscle fibers. J Membr Biol. Dec 1995;148(3):211-222. 

195. Moreno RJ, Messi ML, Zheng Z, et al. Role of sustained overexpression of central 
nervous system IGF-I in the age-dependent decline of mouse excitation-contraction 
coupling. J Membr Biol. 2006;212(3):147-161. 

196. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor 
system in myogenesis. Endocr Rev. Oct 1996;17(5):481-517. 

197. Mourkioti F, Rosenthal N. IGF-1, inflammation and stem cells: interactions during 
muscle regeneration. Trends Immunol. Oct 2005;26(10):535-542. 

198. Caroni P, Grandes P. Nerve sprouting in innervated adult skeletal muscle induced by 
exposure to elevated levels of insulin-like growth factors. J Cell Biol. Apr 
1990;110(4):1307-1317. 

199. Li L, Oppenheim RW, Lei M, Houenou LJ. Neurotrophic agents prevent motoneuron 
death following sciatic nerve section in the neonatal mouse. J Neurobiol. Jul 
1994;25(7):759-766. 

200. Rabinovsky ED, Gelir E, Gelir S, et al. Targeted expression of IGF-1 transgene to 
skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. Jan 
2003;17(1):53-55. 

201. Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains 
hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. Feb 
2001;27(2):195-200. 

 118 



202. Wang ZM, Messi ML, Delbono O. Sustained overexpression of IGF-1 prevents age-
dependent decrease in charge movement and intracellular Ca(2+) in mouse skeletal 
muscle. Biophys J. Mar 2002;82(3):1338-1344. 

203. Gonzalez E, Messi ML, Zheng Z, Delbono O. Insulin-like growth factor-1 prevents age-
related decrease in specific force and intracellular Ca2+ in single intact muscle fibres 
from transgenic mice. J Physiol. Nov 1 2003;552(Pt 3):833-844. 

204. Sood S, Hanson ED, Delmonico MJ, et al. Does insulin-like growth factor 1 genotype 
influence muscle power response to strength training in older men and women? Eur J 
Appl Physiol. Feb 2012;112(2):743-753. 

205. Morley JE, Kaiser FE, Perry HM, 3rd, et al. Longitudinal changes in testosterone, 
luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 
Apr 1997;46(4):410-413. 

206. Schaap LA, Pluijm SM, Deeg DJ, et al. Low testosterone levels and decline in physical 
performance and muscle strength in older men: findings from two prospective cohort 
studies. Clin Endocrinol (Oxf). Jan 2008;68(1):42-50. 

207. Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol 
Metab. Oct 1992;75(4):1092-1098. 

208. Ly LP, Jimenez M, Zhuang TN, Celermajer DS, Conway AJ, Handelsman DJ. A double-
blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel 
on muscular strength, mobility, and quality of life in older men with partial androgen 
deficiency. J Clin Endocrinol Metab. Sep 2001;86(9):4078-4088. 

209. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of 
transdermal testosterone on bone and muscle in older men with low bioavailable 
testosterone levels. J Gerontol A Biol Sci Med Sci. May 2001;56(5):M266-272. 

210. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. Oral 
testosterone supplementation increases muscle and decreases fat mass in healthy elderly 
males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci. Jul 
2003;58(7):618-625. 

211. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, et al. Effect of testosterone 
supplementation on functional mobility, cognition, and other parameters in older men: a 
randomized controlled trial. JAMA. Jan 2 2008;299(1):39-52. 

212. Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 
Nov 2004;33(6):548-555. 

213. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J 
Appl Physiol. Mar 2005;98(3):911-917. 

214. Schaap LA, Pluijm SM, Deeg DJ, et al. Higher inflammatory marker levels in older 
persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol 
A Biol Sci Med Sci. Nov 2009;64(11):1183-1189. 

215. Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the 
management of sarcopenia. J Am Med Dir Assoc. Jul 2010;11(6):391-396. 

216. Forbes SC, Little JP, Candow DG. Exercise and nutritional interventions for improving 
aging muscle health. Endocrine. Aug 2012;42(1):29-38. 

217. Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence 
and implications for preventive strategies. Journal of aging research. 2012;2012:510801. 

218. Kerstetter JE, O'Brien KO, Insogna KL. Low protein intake: the impact on calcium and 
bone homeostasis in humans. J Nutr. Mar 2003;133(3):855S-861S. 

 119 



219. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean 
mass change in older, community-dwelling adults: the Health, Aging, and Body 
Composition (Health ABC) Study. Am J Clin Nutr. Jan 2008;87(1):150-155. 

220. Millward DJ. Sufficient protein for our elders? Am J Clin Nutr. Nov 2008;88(5):1187-
1188. 

221. Candow DG, Chilibeck PD, Facci M, Abeysekara S, Zello GA. Protein supplementation 
before and after resistance training in older men. Eur J Appl Physiol. Jul 2006;97(5):548-
556. 

222. Hartman JW, Tang JE, Wilkinson SB, et al. Consumption of fat-free fluid milk after 
resistance exercise promotes greater lean mass accretion than does consumption of soy or 
carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. Aug 2007;86(2):373-
381. 

223. Kukuljan S, Nowson CA, Sanders K, Daly RM. Effects of resistance exercise and 
fortified milk on skeletal muscle mass, muscle size, and functional performance in 
middle-aged and older men: an 18-mo randomized controlled trial. J Appl Physiol. Dec 
2009;107(6):1864-1873. 

224. Yang Y, Breen L, Burd NA, et al. Resistance exercise enhances myofibrillar protein 
synthesis with graded intakes of whey protein in older men. The British journal of 
nutrition. Nov 2012;108(10):1780-1788. 

225. Bartali B, Frongillo EA, Stipanuk MH, et al. Protein intake and muscle strength in older 
persons: does inflammation matter? J Am Geriatr Soc. Mar 2012;60(3):480-484. 

226. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of 
sarcopenia. Curr Opin Clin Nutr Metab Care. Jan 2009;12(1):86-90. 

227. Borsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR. Effect of amino 
acid supplementation on muscle mass, strength and physical function in elderly. Clinical 
nutrition. Apr 2008;27(2):189-195. 

228. Milne AC, Potter J, Vivanti A, Avenell A. Protein and energy supplementation in elderly 
people at risk from malnutrition. Cochrane database of systematic reviews. 
2009(2):CD003288. 

229. Holick MF. The vitamin D deficiency pandemic and consequences for nonskeletal health: 
mechanisms of action. Molecular aspects of medicine. Dec 2008;29(6):361-368. 

230. Hamid Z, Riggs A, Spencer T, Redman C, Bodenner D. Vitamin D deficiency in 
residents of academic long-term care facilities despite having been prescribed vitamin D. 
J Am Med Dir Assoc. Feb 2007;8(2):71-75. 

231. Morley JE. Vitamin d redux. J Am Med Dir Assoc. Nov 2009;10(9):591-592. 
232. Braddy KK, Imam SN, Palla KR, Lee TA. Vitamin d deficiency/insufficiency practice 

patterns in a veterans health administration long-term care population: a retrospective 
analysis. J Am Med Dir Assoc. Nov 2009;10(9):653-657. 

233. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study A. Low vitamin D and high 
parathyroid hormone levels as determinants of loss of muscle strength and muscle mass 
(sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. Dec 
2003;88(12):5766-5772. 

234. Montero-Odasso M, Duque G. Vitamin D in the aging musculoskeletal system: an 
authentic strength preserving hormone. Molecular aspects of medicine. Jun 
2005;26(3):203-219. 

 120 



235. Llewellyn DJ, Lang IA, Langa KM, et al. Vitamin D and risk of cognitive decline in 
elderly persons. Archives of internal medicine. Jul 12 2010;170(13):1135-1141. 

236. Annweiler C, Schott AM, Berrut G, et al. Vitamin D and ageing: neurological issues. 
Neuropsychobiology. Aug 2010;62(3):139-150. 

237. Dhesi JK, Jackson SH, Bearne LM, et al. Vitamin D supplementation improves 
neuromuscular function in older people who fall. Age Ageing. Nov 2004;33(6):589-595. 

238. Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing 
"D"ecline? Molecular aspects of medicine. Dec 2008;29(6):415-422. 

239. Ross AC, Institute of Medicine (U. S.). Committee to Review Dietary Reference Intakes 
for Vitamin D and Calcium. Dietary reference intakes calcium, vitamin D. Washington, 
DC: National Academies Press; 2011: 
http://pitt.idm.oclc.org/login?url=http://site.ebrary.com/lib/pitt/Top?id=10466016. 

240. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, 
gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr 
Soc. Dec 2011;59(12):2291-2300. 

241. Baik HW, Russell RM. Vitamin B12 deficiency in the elderly. Annual review of 
nutrition. 1999;19:357-377. 

242. Klee GG. Cobalamin and folate evaluation: measurement of methylmalonic acid and 
homocysteine vs vitamin B(12) and folate. Clinical chemistry. Aug 2000;46(8 Pt 
2):1277-1283. 

243. Saperstein DS, Barohn RJ. Peripheral Neuropathy Due to Cobalamin Deficiency. Current 
treatment options in neurology. May 2002;4(3):197-201. 

244. Mold JW, Vesely SK, Keyl BA, Schenk JB, Roberts M. The prevalence, predictors, and 
consequences of peripheral sensory neuropathy in older patients. The Journal of the 
American Board of Family Practice / American Board of Family Practice. Sep-Oct 
2004;17(5):309-318. 

245. Kado DM, Bucur A, Selhub J, Rowe JW, Seeman T. Homocysteine levels and decline in 
physical function: MacArthur Studies of Successful Aging. Am J Med. Nov 
2002;113(7):537-542. 

246. Shorvon SD, Carney MW, Chanarin I, Reynolds EH. The neuropsychiatry of 
megaloblastic anaemia. British medical journal. Oct 18 1980;281(6247):1036-1038. 

247. Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA. 
Homocysteine and vitamin B12 status relate to bone turnover markers, broadband 
ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res. Jun 
2005;20(6):921-929. 

248. van Wijngaarden JP, Doets EL, Szczecinska A, et al. Vitamin B12, folate, homocysteine, 
and bone health in adults and elderly people: a systematic review with meta-analyses. 
Journal of nutrition and metabolism. 2013;2013:486186. 

249. Leishear K, Boudreau RM, Studenski SA, et al. Relationship between vitamin B12 and 
sensory and motor peripheral nerve function in older adults. J Am Geriatr Soc. Jun 
2012;60(6):1057-1063. 

250. Leishear K, Ferrucci L, Lauretani F, et al. Vitamin B12 and homocysteine levels and 6-
year change in peripheral nerve function and neurological signs. J Gerontol A Biol Sci 
Med Sci. May 2012;67(5):537-543. 

 121 

http://pitt.idm.oclc.org/login?url=http://site.ebrary.com/lib/pitt/Top?id=10466016


251. Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in 
older adults with type 2 diabetes: the health, aging, and body composition study. 
Diabetes. Jun 2006;55(6):1813-1818. 

252. Park SW, Goodpaster BH, Strotmeyer ES, et al. Accelerated loss of skeletal muscle 
strength in older adults with type 2 diabetes: the health, aging, and body composition 
study. Diabetes Care. Jun 2007;30(6):1507-1512. 

253. Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR. Excessive adipose tissue 
infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and 
peripheral neuropathy: association with performance and function. Phys Ther. Nov 
2008;88(11):1336-1344. 

254. Ward R, Boudreau R, Rosano C, et al. Leg power and functional mobility in the oldest 
old: The Health, Aging and Body Composition Study. Paper presented at: The 
Gerontological Society of America 63rd Annual Scientific Meeting2010; New Orleans, 
LA, USA. 

255. McDermott MM, Guralnik JM, Albay M, Bandinelli S, Miniati B, Ferrucci L. 
Impairments of muscles and nerves associated with peripheral arterial disease and their 
relationship with lower extremity functioning: the InCHIANTI Study. J Am Geriatr Soc. 
Mar 2004;52(3):405-410. 

256. McDermott MM, Hoff F, Ferrucci L, et al. Lower extremity ischemia, calf skeletal 
muscle characteristics, and functional impairment in peripheral arterial disease. J Am 
Geriatr Soc. Mar 2007;55(3):400-406. 

257. McDermott MM, Guralnik JM, Ferrucci L, et al. Asymptomatic peripheral arterial 
disease is associated with more adverse lower extremity characteristics than intermittent 
claudication. Circulation. May 13 2008;117(19):2484-2491. 

258. Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta 
Physiol Scand. Mar 1998;162(3):261-266. 

259. Thompson LV, Fitts RH. Muscle fatigue in the frog semitendinosus: role of the high-
energy phosphates and Pi. Am J Physiol. Oct 1992;263(4 Pt 1):C803-809. 

260. Wilkie DR. Muscular fatigue: effects of hydrogen ions and inorganic phosphate. Fed 
Proc. Dec 1986;45(13):2921-2923. 

261. Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman E. Influence of oral 
creatine supplementation of muscle torque during repeated bouts of maximal voluntary 
exercise in man. Clin Sci (Lond). May 1993;84(5):565-571. 

262. Eisen A, Siejka S, Schulzer M, Calne D. Age-dependent decline in motor evoked 
potential (MEP) amplitude: with a comment on changes in Parkinson's disease. 
Electroencephalography and clinical neurophysiology. Jun 1991;81(3):209-215. 

263. Salat DH, Buckner RL, Snyder AZ, et al. Thinning of the cerebral cortex in aging. Cereb 
Cortex. Jul 2004;14(7):721-730. 

264. Marner L, Nyengaard JR, Tang Y, Pakkenberg B. Marked loss of myelinated nerve fibers 
in the human brain with age. J Comp Neurol. Jul 21 2003;462(2):144-152. 

265. Sale MV, Semmler JG. Age-related differences in corticospinal control during functional 
isometric contractions in left and right hands. J Appl Physiol. Oct 2005;99(4):1483-1493. 

266. Smith AE, Ridding MC, Higgins RD, Wittert GA, Pitcher JB. Age-related changes in 
short-latency motor cortex inhibition. Exp Brain Res. Oct 2009;198(4):489-500. 

267. Pitcher JB, Ogston KM, Miles TS. Age and sex differences in human motor cortex input-
output characteristics. J Physiol. Jan 15 2003;546(Pt 2):605-613. 

 122 



268. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. Oct 
2001;81(4):1725-1789. 

269. Clark BC, Taylor JL. Age-related changes in motor cortical properties and voluntary 
activation of skeletal muscle. Curr Aging Sci. Dec 2011;4(3):192-199. 

270. Jakobi JM, Rice CL. Voluntary muscle activation varies with age and muscle group. J 
Appl Physiol. Aug 2002;93(2):457-462. 

271. Skelton DA, Young A, Greig CA, Malbut KE. Effects of resistance training on strength, 
power, and selected functional abilities of women aged 75 and older. J Am Geriatr Soc. 
Oct 1995;43(10):1081-1087. 

272. Bean JF, Kiely DK, LaRose S, O'Neill E, Goldstein R, Frontera WR. Increased velocity 
exercise specific to task training versus the National Institute on Aging's strength training 
program: changes in limb power and mobility. J Gerontol A Biol Sci Med Sci. Sep 
2009;64(9):983-991. 

273. Drey M, Zech A, Freiberger E, et al. Effects of strength training versus power training on 
physical performance in prefrail community-dwelling older adults. Gerontology. 
2012;58(3):197-204. 

274. Henwood TR, Taaffe DR. Short-term resistance training and the older adult: the effect of 
varied programmes for the enhancement of muscle strength and functional performance. 
Clin Physiol Funct Imaging. Sep 2006;26(5):305-313. 

275. Bottaro M, Machado SN, Nogueira W, Scales R, Veloso J. Effect of high versus low-
velocity resistance training on muscular fitness and functional performance in older men. 
Eur J Appl Physiol. Feb 2007;99(3):257-264. 

276. Henwood TR, Taaffe DR. Detraining and retraining in older adults following long-term 
muscle power or muscle strength specific training. J Gerontol A Biol Sci Med Sci. Jul 
2008;63(7):751-758. 

277. Miszko TA, Cress ME, Slade JM, Covey CJ, Agrawal SK, Doerr CE. Effect of strength 
and power training on physical function in community-dwelling older adults. J Gerontol 
A Biol Sci Med Sci. Feb 2003;58(2):171-175. 

278. Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA. High-
velocity resistance training increases skeletal muscle peak power in older women. J Am 
Geriatr Soc. Apr 2002;50(4):655-662. 

279. de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal 
load for increasing muscle power during explosive resistance training in older adults. J 
Gerontol A Biol Sci Med Sci. May 2005;60(5):638-647. 

280. Reid KF, Callahan DM, Carabello RJ, Phillips EM, Frontera WR, Fielding RA. Lower 
extremity power training in elderly subjects with mobility limitations: a randomized 
controlled trial. Aging Clin Exp Res. Aug 2008;20(4):337-343. 

281. Marsh AP, Miller ME, Rejeski WJ, Hutton SL, Kritchevsky SB. Lower extremity muscle 
function after strength or power training in older adults. Journal of aging and physical 
activity. Oct 2009;17(4):416-443. 

282. Holsgaard-Larsen A, Caserotti P, Puggaard L, Aagaard P. Stair-ascent performance in 
elderly women: effect of explosive strength training. Journal of aging and physical 
activity. Apr 2011;19(2):117-136. 

283. Skelton DA, Kennedy J, Rutherford OM. Explosive power and asymmetry in leg muscle 
function in frequent fallers and non-fallers aged over 65. Age Ageing. Mar 
2002;31(2):119-125. 

 123 



284. Bean JF, Herman S, Kiely DK, et al. Increased Velocity Exercise Specific to Task 
(InVEST) training: a pilot study exploring effects on leg power, balance, and mobility in 
community-dwelling older women. J Am Geriatr Soc. May 2004;52(5):799-804. 

285. Buschbacher RM. Peroneal nerve motor conduction to the extensor digitorum brevis. Am 
J Phys Med Rehabil. 1999 1999;78(6 Suppl):S26-31. 

286. Rivner MH, Swift TR, Malik K. Influence of age and height on nerve conduction. Muscle 
Nerve. Sep 2001;24(9):1134-1141. 

287. Kong X, Lesser EA, Megerian JT, Gozani SN. Repeatability of nerve conduction 
measurements using automation. Journal of clinical monitoring and computing. Dec 
2006;20(6):405-410. 

288. Fisher MA. Comparison of automated and manual F-wave latency measurements. Clin 
Neurophysiol. Feb 2005;116(2):264-269. 

289. Evans W. Functional and metabolic consequences of sarcopenia. J Nutr. May 1997;127(5 
Suppl):998S-1003S. 

290. Cawthon PM, Fox KM, Gandra SR, et al. Clustering of strength, physical function, 
muscle, and adiposity characteristics and risk of disability in older adults. J Am Geriatr 
Soc. May 2011;59(5):781-787. 

291. Miljkovic I, Cauley JA, Petit MA, et al. Greater adipose tissue infiltration in skeletal 
muscle among older men of African ancestry. J Clin Endocrinol Metab. Aug 
2009;94(8):2735-2742. 

292. Expert Committee on the D, Classification of Diabetes M. Report of the expert 
committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. Jan 
2003;26 Suppl 1:S5-20. 

293. Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination. The Journal of 
clinical psychiatry. Aug 1987;48(8):314-318. 

294. Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the 
Elderly (PASE): development and evaluation. J Clin Epidemiol. Feb 1993;46(2):153-162. 

295. Simoneau GG, Derr JA, Ulbrecht JS, Becker MB, Cavanagh PR. Diabetic sensory 
neuropathy effect on ankle joint movement perception. Arch Phys Med Rehabil. May 
1996;77(5):453-460. 

296. Van den Bosch CG, Gilsing MG, Lee SG, Richardson JK, Ashton-Miller JA. Peripheral 
neuropathy effect on ankle inversion and eversion detection thresholds. Arch Phys Med 
Rehabil. Sep 1995;76(9):850-856. 

297. Vinik AI, Strotmeyer ES, Nakave AA, Patel CV. Diabetic neuropathy in older adults. 
Clin Geriatr Med. Aug 2008;24(3):407-435, v. 

298. England JD, Gronseth GS, Franklin G, et al. Distal symmetric polyneuropathy: a 
definition for clinical research: report of the American Academy of Neurology, the 
American Association of Electrodiagnostic Medicine, and the American Academy of 
Physical Medicine and Rehabilitation. Neurology. Jan 25 2005;64(2):199-207. 

299. Ferrucci L, Guralnik JM, Buchner D, et al. Departures from linearity in the relationship 
between measures of muscular strength and physical performance of the lower 
extremities: the Women's Health and Aging Study. J Gerontol A Biol Sci Med Sci. Sep 
1997;52(5):M275-285. 

300. Visser M, Deeg DJ, Lips P, Harris TB, Bouter LM. Skeletal muscle mass and muscle 
strength in relation to lower-extremity performance in older men and women. J Am 
Geriatr Soc. Apr 2000;48(4):381-386. 

 124 



301. Marsh AP, Rejeski WJ, Espeland MA, et al. Muscle strength and BMI as predictors of 
major mobility disability in the Lifestyle Interventions and Independence for Elders pilot 
(LIFE-P). J Gerontol A Biol Sci Med Sci. Dec 2011;66(12):1376-1383. 

302. Cawthon PM, Fox KM, Gandra SR, et al. Do muscle mass, muscle density, strength, and 
physical function similarly influence risk of hospitalization in older adults? J Am Geriatr 
Soc. Aug 2009;57(8):1411-1419. 

303. Alley DE, Koster A, Mackey D, et al. Hospitalization and change in body composition 
and strength in a population-based cohort of older persons. J Am Geriatr Soc. Nov 
2010;58(11):2085-2091. 

304. Rantanen T, Harris T, Leveille SG, et al. Muscle strength and body mass index as long-
term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. Mar 
2000;55(3):M168-173. 

305. Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated 
with mortality in the health, aging and body composition study cohort. J Gerontol A Biol 
Sci Med Sci. Jan 2006;61(1):72-77. 

306. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 
Jan 2013;36 Suppl 1:S67-74. 

307. Roberts RE, Vernon SW. The Center for Epidemiologic Studies Depression Scale: its use 
in a community sample. The American journal of psychiatry. Jan 1983;140(1):41-46. 

308. Mehta KM, Simonsick EM, Rooks R, et al. Black and white differences in cognitive 
function test scores: what explains the difference? J Am Geriatr Soc. Dec 
2004;52(12):2120-2127. 

309. Shlipak MG, Wassel Fyr CL, Chertow GM, et al. Cystatin C and mortality risk in the 
elderly: the health, aging, and body composition study. Journal of the American Society 
of Nephrology : JASN. Jan 2006;17(1):254-261. 

310. Koster A, Ding J, Stenholm S, et al. Does the amount of fat mass predict age-related loss 
of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci 
Med Sci. Aug 2011;66(8):888-895. 

311. National Institute of Neurological Disorders and Stroke. Peripheral Neuropathy Fact 
Sheet. 2012; 
http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.ht
m. Accessed February 13, 2013. 

312. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 
update: a report from the American Heart Association. Circulation. Feb 1 
2011;123(4):e18-e209. 

313. Tesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic peripheral 
neuropathy and its relation to glycaemic control and potential risk factors: the 
EURODIAB IDDM Complications Study. Diabetologia. Nov 1996;39(11):1377-1384. 

314. Maser RE, Nielsen VK, Dorman JS, Drash AL, Becker DJ, Orchard TJ. Measuring 
subclinical neuropathy: does it relate to clinical neuropathy? Pittsburgh epidemiology of 
diabetes complications study-V. The Journal of diabetic complications. Jan-Mar 
1991;5(1):6-12. 

315. Grant GA, Goodkin R, Kliot M. Evaluation and surgical management of peripheral nerve 
problems. Neurosurgery. Apr 1999;44(4):825-839; discussion 839-840. 

 125 

http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.htm
http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.htm


316. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific 
concepts and clinical significance. The Journal of hand surgery. May 2000;25(3):391-
414. 

317. Amthor KF, Dahl-Jorgensen K, Berg TJ, et al. The effect of 8 years of strict glycaemic 
control on peripheral nerve function in IDDM patients: the Oslo Study. Diabetologia. Jun 
1994;37(6):579-584. 

318. Service FJ, Rizza RA, Daube JR, O'Brien PC, Dyck PJ. Near normoglycaemia improved 
nerve conduction and vibration sensation in diabetic neuropathy. Diabetologia. Oct 
1985;28(10):722-727. 

319. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic 
neuropathy. Diabetes Care. Jun 2006;29(6):1294-1299. 

320. Ward JD. Improvement in motor nerve conduction following treatment in newly 
diagnosed diabetics. Advances in metabolic disorders. 1973;2:Suppl 2:569-573. 

321. Strotmeyer ES, Arnold AM, Boudreau RM, et al. Long-term retention of older adults in 
the Cardiovascular Health Study: implications for studies of the oldest old. J Am Geriatr 
Soc. Apr 2010;58(4):696-701. 

322. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates 
for the year 2000 and projections for 2030. Diabetes Care. May 2004;27(5):1047-1053. 

323. Launer LJ, Harris T, Rumpel C, Madans J. Body mass index, weight change, and risk of 
mobility disability in middle-aged and older women. The epidemiologic follow-up study 
of NHANES I. JAMA. Apr 13 1994;271(14):1093-1098. 

324. Ettinger WH, Jr., Fried LP, Harris T, Shemanski L, Schulz R, Robbins J. Self-reported 
causes of physical disability in older people: the Cardiovascular Health Study. CHS 
Collaborative Research Group. J Am Geriatr Soc. Oct 1994;42(10):1035-1044. 

325. Leveille SG, Guralnik JM, Ferrucci L, Langlois JA. Aging successfully until death in old 
age: opportunities for increasing active life expectancy. Am J Epidemiol. Apr 1 
1999;149(7):654-664. 

326. Hillsdon MM, Brunner EJ, Guralnik JM, Marmot MG. Prospective study of physical 
activity and physical function in early old age. American journal of preventive medicine. 
Apr 2005;28(3):245-250. 

327. Gill TM, Gahbauer EA, Murphy TE, Han L, Allore HG. Risk factors and precipitants of 
long-term disability in community mobility: a cohort study of older persons. Ann Intern 
Med. Jan 17 2012;156(2):131-140. 

328. Fitzpatrick AL, Buchanan CK, Nahin RL, et al. Associations of gait speed and other 
measures of physical function with cognition in a healthy cohort of elderly persons. J 
Gerontol A Biol Sci Med Sci. Nov 2007;62(11):1244-1251. 

329. Royall DR, Palmer R, Chiodo LK, Polk MJ. Declining executive control in normal aging 
predicts change in functional status: the Freedom House Study. J Am Geriatr Soc. Mar 
2004;52(3):346-352. 

330. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of 
neuropathy in diabetes and impaired glucose tolerance. Neurology. Jan 14 
2003;60(1):108-111. 

331. De Rekeneire N, Resnick HE, Schwartz AV, et al. Diabetes is associated with subclinical 
functional limitation in nondisabled older individuals: the Health, Aging, and Body 
Composition study. Diabetes Care. Dec 2003;26(12):3257-3263. 

 

 126 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0  Introduction
	1.1 The Epidemiology and Public Health Consequences of Neuromuscular Impairment and Disability in Late Life
	Figure 1.1. Neuromuscular impairment and the disablement pathway
	1.1.1 Incidence and prevalence of impaired peripheral nerve function with age
	1.1.2 Mobility-related consequences of reduced nerve function with age

	1.2 Denervation and Pathophysiology of Muscle Aging
	Figure 1.2. Neuropathic and aging muscle characteristics
	Table 1.1. Muscle fiber type characteristics

	1.3 Muscle Function Consequences of Neuromuscular Aging
	Table 1.2. Nerve conduction (NC) studies and electromyography (EMG)74
	1.3.1 Sex trends in neuromuscular parameters with age

	1.4 Sarcopenia and Dynapenia
	Figure 1.3. Etiology of the age-associated loss of strength (dynapenia)*

	1.5 Muscle Power vs. Muscle Strength
	Table 1.3. Strength vs. power
	1.5.1 Measuring muscle power in older adults
	Table 1.4. Advantages of different muscle power methods


	1.6 Contributing Factors to Declining Neuromuscular Function 
	1.6.1 Muscle mass and muscle quality
	1.6.2 Effects of muscle structural changes
	1.6.3 Mitochondrial dysfunction
	1.6.4 Excitation contraction uncoupling
	1.6.5 Hormones
	1.6.6 Inflammatory cytokines
	1.6.7 Nutrition
	1.6.8 Disease related risk factors
	1.6.9 Central nervous system

	1.7 Strength and Power Training
	Table 1.5. Strength vs. power training

	1.8 Limitations in the Literature
	1.9 Objectives and Specific Aims

	2.0  Peripheral Nerve Function & Lower Extremity Muscle Power in Older Men
	2.1 Abstract
	2.2 Background
	2.3 Methods
	2.3.1 Study population
	2.3.2 Lower extremity muscle power
	2.3.3 Peripheral nerve measures
	2.3.4 Additional covariates
	2.3.5 Statistical analysis

	2.4 Results
	2.5 Conclusions
	Table 2.1. Characteristics of study population by muscle power (watts/kg) tertiles
	Table 2.2 Nerve function by muscle power (watts/kg) tertiles
	Table 2.3 Separate multivariate linear regression models for each measure of nerve function and muscle power (watts/kg)
	Table 2.4 Separate multivariate linear regression models for each measure of nerve function and decline in muscle power (watts/kg)
	Figure 2.1 Effect size of nerve conduction amplitudes and monofilament insensitivity compared to age


	3.0  Sensory and Motor Peripheral Nerve Function Predict Longitudinal Lower-Extremity Quadriceps Strength
	3.1 Abstract
	3.2 Background
	3.3 Methods
	3.3.1 Study participants
	3.3.2 Quadriceps strength
	3.3.3 Sensory and motor peripheral nerve function
	3.3.4 Additional covariates
	3.3.5 Statistics

	3.4 Results
	3.5 Discussion
	Figure 3.1 Participants with strength & nerve function
	Figure 3.2 Percent of participants in each nerve change group
	Table 3.1 Participant characteristics by sex
	Table 3.2 Initial peripheral nerve characteristics by sex
	Table 3.3 Initial nerve function predicts longitudinal quadriceps strength in women
	Table 3.4 Initial nerve function predicts longitudinal quadriceps strength in men
	Table 3.5 Seven-year change in nerve function predicts concurrent longitudinal quadriceps strength


	4.0  Longitudinal Sensory and Motor Peripheral Nerve Function and Incident Mobility Limitation
	4.1 Abstract
	4.2 Background
	4.3 Methods
	4.3.1 Study participants
	4.3.2 Mobility limitation
	4.3.3 Peripheral nerve function
	4.3.4 Additional covariates
	4.3.5 Statistics

	4.4 Results
	4.5 Discussion
	Table 4.1 Participant characteristics as risk factors for mobility limitation
	Table 4.2 Peripheral nerve characteristics at year 4
	Table 4.3 Initial (Year 4) nerve function predicts incident mobility limitation
	Table 4.4 Change in nerve function (Year 4 to Year 11) predicts incident mobility limitation
	Figure 4.1 Participants in analysis
	Figure 4.2 Bivariate associations between change in nerve function and mobility limitation


	5.0  Discussion
	5.1 Summary of Findings
	5.2 Public Health Significance

	Bibliography



