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In recent decades, algorithms for disease outbreak detection have become one of 

the main interests of public health practitioners as a way to identify and localize an 

outbreak as early as possible in order to inform further public health response to prevent a 

pandemic from developing. Today’s increased threat of biological warfare and terrorism 

provide an even stronger impetus to develop methods for outbreak detection based on 

symptoms as well as definitive laboratory diagnoses.  

In this dissertation work, I explore the problems inherent to rapid disease outbreak 

detection using both spatial and temporal information. I develop a framework of non-

parameterized algorithms which search for patterns of disease outbreak in spatial sub-

regions of the monitored region within a certain period. Compared to the current existing 

spatial or tempo-spatial algorithm, the algorithms in this framework provide a 

methodology for fast searching of either a univariate data set or multivariate data set. It 

first measures how likely a study area has an outbreak occur given the baseline data and 

currently observed data. Then it applies a greedy searching mechanism to look for 

clusters with high posterior probabilities given the risk measurement for each unit area as 

a heuristic. The performance of the proposed algorithms is then evaluated.  

From the perspective of predictive modeling, I adopted a Gamma-Poisson (GP) 

model to compute the probability of having an outbreak in each cluster when analyzing 
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univariate data. I built a multinomial generalized Dirichlet (MGD) model to identify 

outbreak clusters from multivariate data that include the OTC data streams collected by 

the national retail data monitor (NRDM) [1] and the ED data streams collected by the 

RODS system [2].  

Key contributions of this dissertation include 1) the introduction of a rank-based 

tempo-spatial clustering algorithm, RSC, which utilizes greedy searching and a Bayesian 

GP model for disease outbreak detection with comparable detection timeliness, cluster 

positive prediction value (PPV) and improved running time; 2) the proposing of a 

multivariate extension of RSC (MRSC) which applies an MGD model. The evaluation 

demonstrates the advantage of the MGD model in effectively suppressing the false alarms 

caused by baseline shifts.   
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1.0 Introduction 

Until the 20
th

 century, infectious disease outbreaks, whether naturally occurring or 

caused by bioterrorist attacks, routinely devastated the world’s urban population. 

Between 1348 and 1351 the Black Plague killed 25% to 50% of Europe’s population. In 

1518, smallpox wiped out a large portion of the native population of Hispaniola (now 

Haiti and the Dominican Republic) and spread from there to Mesoamerica (present-day 

Mexico), contributing to the demise of the Aztecs. And more recently, the SARS 

outbreak in 2003 took away 774 people’s lives. This last outbreak started from an 

apartment building in Hong Kong and then quickly spread to most of the southern cities 

in China and several countries nearby in Asia. Recent H1N1 swine flu outbreaks starting 

from Mexico are also an example.  

To our knowledge, these disease outbreaks normally start from a relatively small 

number of geo-locations and then expand to larger, often contiguous or non-contiguous 

geographical areas when morbidity and mortality become significant and economic loss 

becomes large. Thus in the recent decades, it has become one of the main interests of 

public health practitioners to identify and localize an outbreak as early as possible in 

order to warrant further public health response before a pandemic develops. Today’s 

increased threat of biological warfare and terrorism provide an even stronger impetus to 
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develop methods for outbreak detection based on symptoms as well as definitive 

laboratory diagnoses.  

1.1 Research domain 

From the perspective of data dimensions analyzed for outbreak detection, currently 

there are three principal approaches: temporal analysis, spatial analysis and tempo-spatial 

analysis.  

Temporal analysis using time series algorithms is the most popular approach due to 

its relatively simple handling of time series data as opposed to other types of information 

such as demographic data or geographic data. Time series algorithms such as moving 

average (e.g., Exponentially Weighted Moving Average [3]), control charts (e.g., 

cumulative sum (CuSUM) [4]), adaptive linear regressions (e.g., Recursive Least Squares 

[5]), the Bayesian change-point detector [6], and the Wavelet Anomaly Detector (WAD) 

[7], are commonly used in biosurveillance systems. 

The other two principal approaches, spatial and tempo-spatial algorithms, allow for 

better detection and localization of the outbreaks caused by infectious but non-contagious 

disease agents (e.g., aerosol release of B. Anthraces, water borne diseases caused by 

pathogenic microorganisms, etc.), which typically spread in an aggregated group of 

geographic areas. Moreover, spatial approaches are also desired to analyze (either 

retrospectively or prospectively) geographical patterns of non-infectious syndromes such 

as infant death [8], prostate cancer survival data [9] and other data types. Essentially, the 

common use of a spatial algorithm is not limited to outbreak detection, but to test whether 
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there are significant aberrancies correlated with geographical distributions. Current state-

of-the-art spatial algorithms include Kulldorff's spatial scan statistic (KSS) [8] and the 

Bayesian spatial scan statistic (BSS) [10]. Takahashi, et. al. recently developed a flexible 

spatial scan statistic (FSS), which is an improvement over KSS in that it relaxes the 

constraint on cluster shape [11]. This method, however, results in higher complexity, 

which is impractical for processing large data sets. Other algorithms, such as the risk-

adjusted nearest neighbor hierarchical clustering algorithm (RNNH) [12] and support 

vector machines (SVMs) [13], utilize traditional clustering approaches proven to be 

computationally efficient. However, it is a challenge for these approaches to 

automatically determine the required control parameters (e.g. parameters that can be set 

to influence the number and the shape of the clusters) [13]. 

In addition, researchers have started using the multivariate analysis on multiple data 

types to rapid detect and monitor unusual disease outbreak. Multiple data types are 

routinely collected by public health surveillance systems, such as chief complaints from 

emergency departments (ED), school or work absenteeism data, sales of over-the-counter 

(OTC) health care products and daily measurements of water quality. Some of these data 

are believed to have similar responses to some disease outbreaks. For example, if a flu-

like disease outbreak occurs in a region, we often expect its effects to be seen in both 

OTC medications sales and emergency department chief complaint records. To be more 

specific, consider the characteristics of OTC data and ED data. The signal of an outbreak 

is often expected to appear first in OTC medication sales then in ED data since 

individuals with the initial symptoms of the disease will typically attempt to treat 

themselves before seeking medical care [14]. While the early signal in OTC data is 
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appealing as an elevation, this signal will probably be weak. However, if the signal of ED 

chief complaint data appears following the signal of OTC data, the indication of an 

outbreak is stronger. 

1.2 Overview of the proposed methodology 

Despite the success of existing disease outbreak detection algorithms, most of them 

face some common limitations. First, they are computationally intensive due to extensive 

searching and/or randomization testing. This is important as in time-sensitive applications, 

an algorithm taking too long to complete can render its results outdated or delayed for 

decision makers. For instance, directly applying these algorithms to large data sets will 

probably result in computational infeasibility. Second, certain artificial cluster shapes 

(e.g., circle, rectangle) used by some algorithms may not conform to true outbreak 

clusters which may provide inaccurate information for decision makers. Furthermore, in 

addition to the univariate algorithms, there is still limited research on the multivariate 

analysis for rapid outbreak detection given multiple data streams.  

In this dissertation work, I explore the problems of rapid disease outbreak detection 

using both spatial and temporal information. I develop a non-parameterized framework 

which searches for patterns of disease outbreak in spatial sub-regions of the monitored 

region within a certain period. Compared to the current existing spatial or tempo-spatial 

algorithm, the algorithms in this framework provide a methodology for fast searching. It 

applies a measurement to decide which study area is more likely to have an outbreak 

occurring given the baseline data and currently observed data. Then it will apply a greedy 
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searching mechanism to look for clusters with high posterior probabilities given the risk 

measurement for each unit area as heuristic. I will also explore the performance of the 

proposed framework.  

In this framework, I adopt a Gamma-Poisson model to compute the probability of 

having an outbreak in each cluster when analyzing univariate data. I build a multinomial 

generalized Dirichlet model to identify outbreak clusters from multivariate data which 

include the OTC data streams collected by the national retail data monitor (NRDM) [1] 

and the ED data streams collected by the RODS system [2]. The detection power of this 

multivariate model is evaluated by comparing it with the univariate methods and two 

other existing multivariate methods. We can also adjust the parameters of the model to 

detect the outbreaks with either same effects on different data streams or different effects.      

1.3 Dissertation hypothesis 

In this dissertation work, I propose a rank-based spatial clustering framework 

which includes the algorithm analyzing a single data stream at a time (RSC) and the 

algorithm analyzing multiple data streams simultaneously (MRSC). I plan to compare 

both RSC and MRSC algorithms to the currently existing state-of-the-art algorithms, BSS, 

KSS and their multivariate versions, MBSS and MKSS, respectively. My hypotheses 

include that 1) RSC is more computationally efficient than BSS and KSS while still being 

able to achieve comparable detection power and detection timeliness; 2) MRSC has better 

detection power than the univariate detectors when an outbreak is present in multiple data 
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streams; and 3) the MRSC algorithm adjusted for varied outbreak effects improves the 

performance of detecting outbreaks having different effects on data streams. 

1.4 Guide for the reader 

The dissertation is organized as follows. Chapter 2 contains the background of the 

dissertation research. Since the proposed framework uses Bayes’ Theorem to compute the 

posterior probability of a cluster having an outbreak, I first provide an introduction of 

Bayes’ Theorem and priors. Then I provide an overview of the Poisson-Gamma 

distribution I applied in univariate model and multinomial and generalized Dirichlet 

distributions used in the multivariate model.  

In Chapter 3, I provide a brief overview of some commonly used disease outbreak 

detection algorithms, which include both temporal and spatial or tempo-spatial 

approaches. In addition, each detection approach is categorized as either a frequentist 

method or a Bayesian method. I focus more carefully on reviewing spatial methods since 

the disease outbreak detection algorithm I propose searches for spatial clusters having 

outbreaks. I review both currently existing univariate detection methods and multivariate 

detection methods. Furthermore, the methods to calculate predicted/expected values are 

also described since they provide baseline values used in outbreak detection. Finally, I 

discuss some issues existing in current approaches and the hypothetical advantages of the 

proposed framework. 

Chapter 4 describes the experimental domain of this dissertation work. The data sets 

for this study include the real syndromic data collected by the RODS system and the 
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superimposed outbreak data. The background data for the experiments are from two data 

sources. One is the ED data set, which contains the counts of patient’s visit to emergency 

rooms categorized by the chief complaints; the other is the over-the-counter (OTC) 

pharmaceutical sales data collected by the National Retail Data Monitor (NRDM). The 

outbreak data are simulated by outbreak simulation models. For univariate analysis, I 

used the linear shaped simulation model. For multivariate analysis, the outbreak data 

were simulated by the multivariate spatial-temporal event simulator.  

Chapter 5 first introduces the proposed rank-based spatial clustering algorithm 

(RSC). The rank of each cluster is determined by the cluster’s disease risk. Two 

approaches to estimate disease risks are described. Then I propose the greedy searching 

algorithm based on the rank of each cluster and the adjacency relationship between 

clusters. I adopt the Poisson-Gamma model to compute the posterior probability of 

having an outbreak inside each cluster. In the evaluation, several sets of experiments are 

done to test the hypothesis. The second part of Chapter 5 described RSC algorithm which 

searches for outbreak cluster from grid-based structure. The performance of the algorithm 

is also showed.   

Chapter 6 describes a multivariate extension of RSC (MRSC). In particular, the 

Multinomial generalized Dirichlet model used for analyzing multiple data streams is 

proposed. I also described the inference of the model to compute the posterior probability. 

It is followed by the estimation of hyper-parameters of the model. Then I also describe 

how to adjust the model parameters to detect outbreaks with either same effects on 

multiple data streams or different effects. I illustrate the results of five sets of 

experiments to demonstrate the algorithm performance in the evaluation sub-chapter.    
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Finally, Chapter 7 contains conclusions and suggestions for future research. 

Table 1.1 lists the notations which are used in the dissertation. 

Table 1.1 List of notations 

Notation Notation represents 

  A general hypothesis 

   Alternative hypothesis 

   None hypothesis 

             A Poisson distribution with parameter   and mean   

           A Gamma distribution with shape parameter   and rate parameter   

               A Multinomial distribution with parameters      for   
        and       

   ;     is number of trials 

        A generalized Dirichlet distribution with parameterse   
          and             

  A single time series data 

  Data with     dimensions 

  The length of an available time series 

  The number of data streams in analysis 

  The sub-region (cluster) in test; or the three dimensional cylinder 

(two in space and on in time) in spatial temporal scan statistics. 

  The entire study region 

  The variable used to represent any study area in   

     The observed value in area  , time  ;     
  is used in multivariate 

analysis where   represents data stream   

    
  The observed value in area  , time   and data stream  ; used in 

multivariate analaysis 

     The expected value in area  , time  ;     
  is used in multivariate 

analysis where   represents data stream   

    
  The expected value in area  , time   and data stream  ; used in 

multivariate analysis 

  Used in different outbreak simulation models to represent the 

outbreak strength 



9 

 

2.0 Background 

Disease-outbreak detection is an important application domain in anomaly detection. 

The term “biosurveillance” denotes disease surveillance practiced by public health 

organizations and many other organizations that monitor for disease, such as hospitals, 

agribusinesses, and zoos [5]. “Electronic biosurveillance” refers to the systematic 

collection and automated analysis of electronically available data with the intent of 

detecting outbreaks of disease rapidly [15]. These electronic data include information 

related to emergency department (ED) visits, over-the-counter (OTC) medication sales, 

school or work absentees, water quality records. The goal of surveillance of these data 

feeds for disease outbreaks is to identify or/and characterize outbreaks rapidly with few 

false alarms. 

The proposed spatial outbreak-detection framework is a Bayesian approach that 

assumes the data follow the Gamma-Poisson distribution and the Multinomial-

generalized-Dirichlet distribution for univariate and multivariate analysis, respectively. In 

this chapter I first provide background knowledge about Bayesian theorem and choice of 

data distributions in Bayesian inference. In addition, since the procedure before applying 

most spatial/tempo-spatial algorithms is to compute the baselines of background time 

series data, I will then briefly describe the methods for baseline calculation. 
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2.1 Bayesian framework 

2.1.1 Bayes’ Theorem 

Let   be a hypothesis and   denote some available evidence in data. We are often 

interested in knowing the posterior probability of   in light of  , that is       . Assume 

we can estimate the likelihood       . Frequently such likelihood are derived from a 

model that represents the probability that   generates  . A Bayesian approach requires 

the specification of a prior probability of  , which is our belief in   before seeing data  . 

Equation 2.1 is the well-known application of the Bayes’ rule to derive       . 

       
          

                 
 

(2.1) 

where the sum is taken over all hypotheses    in a set   that are modeled as having a 

non-zero prior probability. 

2.2 Priors 

In Bayesian statistical inference, a prior probability distribution, often called simply 

the prior, of an uncertain quantity   (for example, suppose   is the proportion of voters 

who will vote for the politician named Smith in a future election) is the probability 

distribution that would express one's uncertainty about   before the "data" (for example, 

an opinion poll) is considered [16]. The unknown quantity may be a parameter or latent 

variable.  
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As shown in the above chapter, Bayes’ theorem multiplies the prior by the 

likelihood and then normalizes, to get the posterior probability, which is the conditional 

distribution of the uncertain quantity given the data. A prior is either the purely subjective 

assessment of an experienced expert or a non-informative distribution. People will 

usually choose a conjugate if they can, to make calculation of the posterior distribution 

easier. 

To distinguish the parameters of prior distributions from the parameters of data 

models, the former are often called hyper-parameters [17]. For instance, if one is using a 

Gamma distribution to model the parameter   of a Poisson distribution, then   is a 

parameter of the Poisson distribution and   and   are parameters of the prior distribution, 

Gamma, hence hyper-parameters. 

Informative priors express specific, definite information about a variable. One of the 

methods to assess the prior information is called the empirical Bayes method which 

utilizes the data to inform the prior distribution. It assumes a prior distribution for an 

unknown parameter  , the distribution of  , which we write as     , has its own parameters, 

referred to as hyper-parameters. The hyper-parameters can either be assumed to be known, 

for example, by assessing expert opinions or be estimated by using methods such as 

maximum likelihood or method of moment matching. 

Non-informative priors or "uninformative priors" express vague or general information 

about a variable. They are actually objective priors, i.e. ones not subjectively elicited. 

Non-informative priors can express "objective" information such as "the variable is 

positive" or "the variable is less than some limit". The simplest and oldest rule for 

determining a non-informative prior is the principle of indifference, which assigns equal 

probabilities to all possibilities. 
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2.3 Several statistical distributions 

2.3.1 Gamma and Poisson distribution 

In probability theory and statistics, the Poisson distribution is a discrete probability 

distribution that expresses the probability of a number of events occurring in a fixed 

period of time if these events occur with a known average rate and independently of the 

time since the last event [18].  

 With the discrete Poisson model, the number of cases within a time period (e.g., 

one day) is Poisson-distributed. The probability that there are exactly   cases (   ) is 

equal to        
     

  
, where   is a positive real number, equal to the expected number 

of occurrences that occur during the given interval.  

 In Bayesian inference, the conjugate prior for the rate parameter   of the Poisson 

distribution is the Gamma distribution which is             . If the goal of the 

detection is to respond to the elevated number of cases, then we presume the prior 

follows               in the alternative hypothesis where     against the non-

hypothesis where             . This distribution model is used in the Bayesian 

spatial scan statistic algorithm proposed by Neill et. al. [10]. 

2.3.2 Multinomial distribution 

In probability theory, multinomial distribution is a generalization of binomial 

distribution. It can be considered a categorical distribution, where each trial results in 

exactly one of some fixed finite number k of possible outcomes, with probabilities 
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           (so that      for           and       
   ), and there are   

independent trials[19].  

The probability mass function of the multinomial distribution is: 

                      

  

       
  

     
            

 

   

 

           

  

(2.2) 

for non-negative integers        . 

 The expected number of times for the outcome   to be observed over   trials is 

         . The covariance matrix is as follows. Each diagonal entry is the variance of 

a binomially distributed random variable, and is therefore                  . The 

off-diagonal entries are the covariances:                   for     distinct. 

 One of the most common of multinomial distribution involves drawing cards. 

Suppose a card is drawn randomly from an ordinary deck of playing cards, and then put 

back in the deck. This exercise is repeated five times. What is the probability of drawing 

1 spade, 1 heart, 1 diamond, and 2 clubs? To solve this problem, we apply the 

multinomial formula. We know the following: 1) the experiment consists of 5 trials, so 

   ; 2) the 5 trials produce 1 spade, 1 heart, 1 diamond, and 2 clubs; so     ,     , 

    , and     ; 3) on any particular trial, the probability of drawing a spade, heart, 

diamond, or club is 0.25, 0.25, 0.25, and 0.25, respectively. Thus,        ,        , 

       , and        . We plug these inputs into the multinomial formula,   

  

            
  

    
    

    
          , and get our answer. 

Multinomial distribution can also be applied in the field of public health 

surveillance. For example, pneumonia patients with respiratory symptoms will seek 
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treatment through different ways. Some will probably visit the emergency department, 

some will purchase an OTC medication and others may visit their physicians, call the 

nurse or wait the sickness out. To model the infected population by using multinomial 

distribution, one can compute    as the probability of people visiting the ED,    as the 

probability of people purchasing OTC medication and    as the probability of other 

behaviors, assuming the people who visit ED will not purchase OTC medications within 

the same time interval and vice versa. The categorical data collected by a syndromic 

surveillance system can be another example of where multinomial distribution can be 

used. If the surveillance system collects the data of patient visits to Emergency 

Department and categorizes each visit in terms of the syndrome a patient may have, such 

as respiratory, gastrointestinal, constitutional or others, these categorical data can be 

considered following a multinomial distribution. To model this data set, one can compute 

   as the probability of an ED patient having reparatory syndrome and    as the 

probability of the patient having constitutional syndrome and so on. If the syndrome of a 

patient have cannot be recognized, one can use    to model a category of others or 

unknown. Generally,    is the probability of an ED patient having syndrome   and  

      
   . 

2.3.3 Dirichlet distribution 

In probability and statistics, the Dirichlet distribution, often denoted        is a 

family of continuous multivariate probability distributions parameterized by a vector   of 

positive real numbers. It is the multivariate generalization of the beta distribution. 

Dirichlet distributions are very often used as prior distributions in Bayesian statistics, and 
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in fact the Dirichlet distribution is the conjugate prior of the categorical and multinomial 

distribution. That is, its probability density function returns the belief that the 

probabilities of K rival events are xi given that each event has been observed       

times. 

The support of the Dirichlet distribution (i.e. the set of values for which the density 

is non-zero) is a K-dimensional vector of real numbers in the range (0, 1), all of which 

sum to 1. These can be viewed as the probabilities of a K-way categorical event. Another 

way to express this is that the domain of the Dirichlet distribution is itself a probability 

distribution, specifically a K-dimensional discrete distribution. Note that the technical 

term for the set of points in the support of a K-dimensional Dirichlet distribution is the 

open standard (K-1)-simplex, which is a generalization of a triangle, embedded in the 

next-higher dimension. For example, with K = 3, the support looks like an equilateral 

triangle embedded in a downward-angle fashion in three-dimensional space, with vertices 

at (1,0,0),(0,1,0) and (0,0,1), i.e. touching each of the coordinate axes at a point 1 unit 

away from the origin. 

The Dirichlet distribution of order     with parameters           has a 

probability density function is given by  

                   
 

    
   

    

 

   

 

(2.3) 

for all             satisfying            , where               . 

The density is zero outside this open (K-1)-simplex. 

 The normalizing constant is the multinomial beta function, which can be 

expressed in terms of the gamma function where            : 
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(2.4) 

 Let                   , meaning that the first     components have the 

above density and               . Define       
 
   . Then       

  

  
 

and         
         

  
       

 
              

    
. The covariance between    and    is always 

negative in that            
     

  
       

. 

When     , the distribution becomes non-informative. The means of all the    

stay the same if all    are scaled with the same multiplicative constant. The variances 

will, however, get smaller as the parameters    grow. The pdfs of the Dirichlet 

distribution with certain parameter values are shown in Figure 2.1 [20]. 

 

Figure 2.1 Plots of one component of a two dimensional Dirichlet distribution. The parameters are chosen 

such that         with the values for   shown on each individual image. Because both the parameters 

of the distribution are equal, the distribution of the other component will be exactly the same. 
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The Dirichlet distribution is conjugate to the multinomial distribution in the 

following sense: if             and    is the number of occurrences of   points from 

the discrete distribution on         defined by   and                 , then 

            . This relationship is used in Bayesian statistics to estimate the hidden 

parameters, X, of a categorical distribution (discrete probability distribution) given a 

collection of   samples. Intuitively, if the prior is represented as       , then       

   is the posterior following a sequence of observations with histogram  .  

Several researchers have assigned a Dirichlet distribution as a prior to the 

parameter vector of a multinomial distribution. For example, Novick and Grizzle in [21] 

applied Bayesian analysis by using the Dirichlet density as the prior on the categorized 

data collected from an on-going experiment to compare the relative efficacy of four 

operative treatments for ulcer. In addition, Lochner and Basu [22] have used a Dirichlet 

prior density for life-testing situations with either complete or censored data. Ferguson in 

[23] has studied a “Dirichlet process” in which for any arbitrary partitioning 

           of the sample space of the parent population,            has a Dirichlet 

distribution. 

2.3.4 Generalized Dirichlet distribution 

Although some studies in Bayesian inference using Dirichlet distribution to model 

priors of multinomial distributions have produced useful results, some researchers have 

objected to the use of a Dirichlet prior density in some situations [24][25][26]. For 

example, when                has a Dirichlet distribution, any two random 

variables in   will be negatively correlated. However, in some practical cases, two 
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random variables may be positively correlated, and hence the Dirichlet distribution will 

not be a reasonable choice to be a prior distribution in Bayesian analysis. Generalized 

Dirichlet distribution has a more general covariance structure than Dirichlet distribution 

[27]. Connor and Mosimann [28] used the concept of complete neutrality to generalize 

the Dirichlet distribution. 

A random vector   is said to be completely neutral if              is independent 

of                     for all    , where                . Let      , 

and let            for            When the    are independent, then   is also 

completely neutral. Connor and Mosimann supposed that each    has a beta distribution 

with parameters    and    , and derived the density function for the generalized Dirichlet 

distribution as follows:  

         
    

                       

   

   

 

(2.5) 

for                and      for          , where 

               
        

      
 and                              is the Beta 

function for            , and          .  

 In a Dirichlet distribution,    and    are always negatively related (recall 

           
     

  
       

). However, while in a generalized Dirichlet distribution,    is 

always negatively correlated with the other random variables but    and    can be 

positively correlated for      [26]. If there exists some     such that    and    are 

positively (negatively) correlated, than    will be positively (negative) correlated with    

for all    [27]. Since the generalized Dirichlet distribution has a more general 



19 

 

covariance structure than the Dirichlet distribution, this makes the generalized Dirichlet 

distribution more practical and useful. 



20 

 

3.0 Related work 

In this chapter, I provide a brief overview of some commonly used disease outbreak 

detection algorithms, which include both temporal and spatial approaches. In addition, 

each detection approach is categorized as either a frequentist method or a Bayesian 

method. I focus more carefully on reviewing spatial methods since the disease outbreak 

detection algorithm I propose searches for spatial clusters having outbreaks. 

From perspective of the data dimensions an algorithm analyzes, existing disease 

outbreak-detection algorithms can be categorized as temporal detection algorithms, 

spatial detection algorithms and spatial-temporal detection algorithms. Temporal methods 

operate on aggregate data that are measured only with respect to the time to find unusual 

spikes. Spatial methods involve accumulating data over some time interval, removing the 

time information, and then searching for areas of unusually high incidences of events. 

Spatial-temporal methods use spatial and temporal data to look for areas of unusually 

high incidences of events.  
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3.1 Temporal detection methods 

Temporal analysis using time series algorithms is the most popular approach due to 

its relatively simple handling of a sequence of data points (i.e. counts) aggregated at a 

certain amount of time interval (e.g. one day) and a certain census tract (e.g. zip code or 

street group). Time series algorithms such as moving average (e.g., Exponentially 

Weighted Moving Average [3]), control charts (e.g., cumulative sum (CuSUM) [4]), 

adaptive linear regressions [5] (e.g., Recursive Least Squares), the Bayesian change-point 

detector [6], and the Wavelet Anomaly Detector (WAD) [7], are commonly used in 

biosurveillance systems. 

3.2 Spatial and tempo-spatial detection methods 

Researchers have recently developed spatial or tempo-spatial algorithms to take 

spatial distribution into account, in the belief that the additional spatial distribution 

information allows detection algorithms to better detect and localize the outbreaks caused 

by infectious but non-contagious disease agents (e.g., aerosol release of B. anthracis, 

water borne diseases caused by pathogenic microorganisms, etc.), which typically spread 

in an aggregated group of geographic areas. Moreover, spatial approaches are also 

desired to analyze (either retrospectively or prospectively) geographical patterns of non-

infectious syndromes such as infant death [8], and of prostate cancer survival data [9] as 

well as data of other types. Essentially, the common use of a spatial algorithm is not 
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limited to outbreak detection, but to test whether there are significant aberrancies 

correlated with geographical distributions. 

3.2.1 Frequentist approaches 

Spatial scan statistic (KSS) proposed by Kulldorff et al. is one of the state-of-the-art 

algorithms used to search for geographical distributions of clusters possibly having 

outbreaks. KSS scans the region of interest for clusters using circular or elliptic windows 

in different sizes and locations. The areas within a scanning window are considered a 

potential cluster. This algorithm finds the cluster with the highest likelihood ratio of 

having an outbreak in the cluster (H1) vs. no outbreaks (H0). At the end, KSS applies 

Monte Carlo Simulation to test the significance of an identified cluster.  

Flexible spatial scan statistic (FleXScan) is an improvement over KSS in that it relaxes 

the constraint on cluster shape [29]. As I described in the above paragraph, the purely 

spatial scan statistic (KSS) imposes a circular window   on each centroid of regions for 

each of the time intervals. For each of centroids, the radius of the circle is varied from 

zero up to a pre-set maximum radius, for example, the window never includes more than 

50% of the study region (or total population at risk). In another way, we can use a pre-set 

maximum number of regions   to be included in the cluster as an upper-bound of the 

radius. If the base contains the centroid of a region, then that whole region is included in 

the base. In total, a very large number of different but overlapping circular bases are 

created, each with a different set of neighboring regions and each being a possible 

candidate area containing a disease outbreak. On the other hand, a flexible space-time 

scan statistic  imposes a prismatic window with an arbitrarily shaped base. For any given 
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region  , it creates the set of arbitrarily shaped bases consisting of   connected regions 

(     ) including  . To avoid detecting a cluster of unlikely peculiar shape, the 

connected regions are restricted as the subset of the  -nearest neighbors to the region  , 

where     implies the region   itself. By this way, FSS searches for flexible shaped 

clusters. However, this algorithm has a higher time complexity than KSS, which makes it 

less practical for processing large data sets.  

Upper level set scan statistic (ULS)  is also a scan statistic algorithm, but searches from 

a reduced parameter space [30]. By estimating the elevated response,    
  

  
, for each 

study area  , it searches clusters from a collection of subsets, each of which is called an 

upper level set (ULS),                is a threshold value to determine a ULS. All 

the connected areas of all possible upper level sets make up the search space of the ULS 

algorithm. Like KSS, ULS computes the likelihood ratio of having an outbreak in each 

cluster. This algorithm is faster than KSS because it reduces the searching space, but it 

still needs the randomization test to decide the significance of each cluster. 

Machine learning clustering methods  Other algorithms, such as Risk-adjusted Nearest 

Neighbor Hierarchical Clustering (RNNH) [12] and support vector machines (SVMs) 

[13], utilize traditional clustering approaches proven to be computationally efficient and 

provide alternative methodologies other than scan statistic algorithms. RNNH was first 

developed for crime hotspot analysis [31]. It is based on the well-known nearest neighbor 

hierarchical clustering method, combining the hierarchical clustering capabilities with 

kernel density interpolation techniques. In other words, it dynamically adjusts the 

threshold distance inversely proportional to some density measure of the baseline factor 

(e.g., the population). SVM is a systematic approach with well-defined optimization 
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formulations and can be solved using well-established computational methods. One of 

SVM-based approaches, data description and novelty detection (DDND) is particularly 

relevant to anomaly detection and was used in tempo-spatial data analysis in infectious 

disease outbreak detection [13]. The authors of [13] developed a risk-adjusted variation 

based on the ideas similar to those in RNNH. They compute the kernel density 

estimations using the baseline points and they adjust with parameter   in the Gaussian 

kernel function based on such density estimations. The basic intuition is as follows: 

When the baseline density is high, they use higher  , which makes it harder for points to 

cluster together. However, each method evaluated in the study of [13] has control 

parameters that can be set to influence the number and the shape of the hotspots. In their 

study, the authors tried the experiment with various settings first and then choose the best 

settings for each method examined, so the comparison is far from complete. Thus, it is 

still a challenge for these approaches to automatically determine the required control 

parameters [13]. Other concerns include that these approaches are based on analyzing the 

data points in terms of case time and exact geo-location which may not be available 

because of confidential issue.  

3.2.2 Bayesian approaches 

Bayesian spatial scan statistic (BSS) employs a rectangular window (aligning with x,y-

axes) to search for clusters. The rectangular scanning window is composed of one or 

more grid cells in an mm  grid covering the whole area of interest. The algorithm 

identifies the cluster with the highest posterior probability of having an outbreak, which 
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is computed using a Poisson-Gamma model. Unlike KSS, BSS does not require a 

randomization test to determine cluster significance.  

BARD (Bayesian aerosol release detector) analyzes both medical surveillance data and 

meteorological data for early detection and characterization of outdoor releases of 

B.anthracis [32]. The approach is general and could be applied to outbreaks due to other 

biological agents that can be disseminated by outdoor aerosol release. BARD is the first 

algorithm to integrate meteorological data and a model of atmospheric dispersion into the 

analysis of medical surveillance data. BARD computes the posterior probability of a 

release given these data and a posterior distribution over the release location, quantity, 

and time. BARD is also used for simulating outbreaks due to inhalational anthrax. 

Simulated anthrax cases generated by BARD were used in [33]. 

PANDA (the population-wide anomaly detection and assessment algorithm) uses a 

causal Bayesian network to model spatio-temporal patterns of a non-contagious disease 

in an entire population of people [14] [34][35]. In [34], each person in the population being 

monitored for an outbreak is explicitly modeled using a sub-network. In particular, each 

person in the population is represented with a six-node network structure that includes 

disease status, patient symptoms and other personal information while avoiding any 

information that could personally identify the individual (e.g., name, social security number, 

and home street address). The primary clinical information about each person is whether he 

or she presented to the ED with a chief complaint of interest (e.g., a cough). The sub-

networks are connected through a common set of nodes that represent the disease outbreak 

conditions, such as the hypothesized location and time of release of anthrax spores. Given 

current data about individuals in the population, techniques for inference and modeling are 

applied on a Bayesian network to derive the posterior probabilities of outbreak diseases in the 
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population.  

In the original PANDA model, the algorithm was designed to monitor only ED chief 

complaint data. It was extended by Wong and his colleagues to simultaneously monitor 

data sources of different granularity – specifically aggregated regional counts for OTC 

sales and multivariate ED records for individual patients [14]. 

Jiang and Cooper in [35] further extended the original PANDA-CDCA (PC) 

algorithm to spatial-temporal system, PANDA-CDCA-Temporal-Spatial (PCTS) 

algorithm.  They proposed the Bayesian Network Spatio-temporal (BNST) model to 

incorporate spatial information and temporal information by using two extra nodes SUB 

and Y representing the outbreak sub-region and the number of days into the outbreak if 

there is an outbreak. Their study support that PCTS provides improved disease outbreak 

detection, relative to PC from which it was derived. Besides often detecting outbreaks 

earlier (at a given false alert rate), PCTS was better at maintaining a stable detection 

signal over time. 

3.2.3 Issues of algorithms using scan statistics 

 Regardless of whether they use a frequentist or Bayesian approach, scan-statistic-

like algorithms face some common limitations. First, they are computationally intensive 

due to extensive searching and/or randomization testing. This is important as in time-

sensitive applications, an algorithm taking too long to complete can render its results 

outdated or delayed for decision makers. Since directly applying these algorithms to large 

data sets will probably result in computational infeasibility, Neill and Moore et al have 

developed a fast multi-resolution algorithm which relies on an overlap-kd tree data 
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structure. It greatly reduced the time complexity of BSS from       to             

by using approximation [36][37].  

Neill also proposed an algorithm called fast subset scan (FSS) [38]. The algorithm 

treats event detection as a search over subsets of data records, finding the subset which 

maximizes some score function. Neill theoretically proved that many commonly used 

functions (e.g.Kulldorff’s spatial scan statistic and extensions) satisfy the ‘linear time 

subset scanning’ property, enabling exact and efficient optimization over subsets. In [38], 

he demonstrated that proximity-constrained subset scans substantially improved the 

timeliness and accuracy of event detection, detecting emerging outbreaks faster than 

existing methods. He also found in certain cases, the unconstrained fast subset scan 

approach reduced to a variant of the upper level set (ULS) scan statistic. Moreover, both 

FSS and ULS are closely related to the rank-based clustering algorithm (RSC) originally 

proposed in [33]. The fast localized multiscan algorithm, one of the mostly related 

algorithms using FSS proposed in [38], has a time complexity of      .     

Secondly, certain artificial cluster shapes (e.g., circle, rectangle) used by those 

algorithms may not conform to true outbreak clusters which may provide inaccurate 

information for decision makers. As an effort to overcome this issue, some work has been 

done to identify flexible shapes of outbreak clusters, such as the flexible spatial scan 

statistic (FLeXScan) [29] and a recursive algorithm for Bayesian cluster detection using 

PANDA [39]. As I explained in the previous chapter, FSS increases the order of the time 

complexity of KSS since it searches for all the   connected areas starting from any area   

within the study region with       and   is an upper-bound of cluster size. The 

recursive Bayesian cluster detection algorithm searches for clusters based on all the 
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rectangular clusters as created in BSS. It recursively searches for finer clusters inside 

each rectangular cluster found by BSS and exhaustively joins any two rectangles and 

updates the score if the joint cluster has a higher score. The worst case time complexity 

of this algorithm is       where   is the grid size [39]. 

3.3 Multivariate methods 

In disease surveillance, there are often more than one data sources for which we wish 

to do surveillance. If each data set is analyzed separately rather than collectively, the 

statistical power to detect an outbreak that is present in all data sets may suffer due to the 

data noise alone. Another major reason for taking a multivariate approach to disease 

surveillance is that no single data source captures all the individuals in the outbreak. 

Depending on the disease, some will go to their pharmacy and buy an over-the-counter 

medication; some will call their physician or a nurse hot-line, while others may visit their 

regular physician, go to a hospital emergency room, or call an ambulance [40]. On the 

other hand, if the data sets are simply added together by taking the sum of the values in 

each data set, then a present signal in one data set with relatively low counts may be 

overwhelmed by the random noise in another data set with relatively high counts. 

Various multivariate approaches exist.  

Multivariate scan statistics (MKSS), proposed by Kulldorff et al., is an extension of the 

spatial and space-time scan statistic that simultaneously incorporates multiple data sets 

into a single likelihood function. This is done by defining the combined log likelihood as 
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the sum of the individual log likelihoods for those data sets for which the observed case 

count is higher (or lower) than the expected.  

 We can write down this model in mathematical notation. Let              be 

either the population or the expected number of cases in cylinder   including location   

during time period  ,           is the total population/expected cases,               

is the number of observed cases in cylinder  ,           is the total number of 

observed cases, and          represents the index of the data types. For the Poisson 

model, let 

             
  

  
 

  

 
    

    
 

    

         
(3.1) 

and 

            
  

  
 

  

 
    

    
 

    

         
(3.2) 

 

be the likelihood ratio for high and low clusters, respectively, for cylinder   in data set  . 

The test statistic can now be written as 

     
 

                              

  

  
(3.3) 

If there is only interest in one of these two, only one of the sums in the second step above 

is used. That is, when searching only for high clusters which is often the scenario for 

outbreak detection,                     . 

In order to adjust for the multiple testing inherent in the many cylinder location 

and sizes evaluated in the same way, a randomization test is used. This method is 

computer intensive because of the nature of the scanning window and the need to 
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evaluate the test statistic for 999 or more random replicas of the data set [40]. Another 

negative aspect of this method is that a data source with a large count may mask data 

sources with smaller counts. As an alternative, Burkom proposes calculating the log 

likelihood ratio for each data source and summing these ratios to form the scan statistic 

[41]. The technique of Edgington’s consensus method that Burkom suggest we use 

assumes independence among the data sources [42]. 

Multivariate Bayesian scan statistic (MBSS) is an extension of the Bayesian spatial 

scan statistic approach [43]. MBSS integrates prior information and observations from 

multiple data streams in a principled Bayesian framework, computing the posterior 

probability of the event (e.g., disease outbreaks). 

 Mathematically, we can use   to represent a data set   consisting of multiple data 

streams   , for        . Each data stream consists of spatial time series data 

collected at a set of spatial locations  , for      For each stream    and location  , we 

have a time series of counts     
 , where     represents the current time step and 

        represent the counts form 1 to   time steps ago respectively. By assuming a 

Gamma-Poisson model the posterior probability of having an event    happening can be 

written as the following if we drop the sub- and superscripts and simply write       
 , 

      
 ,       

 ,       
 ,     

  and     
 , where     

  is the expected value for 

area   at time   for data type  , and     
      

     
 .   

  and   
  are the shape and rate 

parameters of Gamma distribution, respectively. 



31 

 

                                                

 
     

       
                   

            

                
 

(3.4) 

 This approach assumes that the counts     
  are conditionally independent given 

the values of     
 ,     

 ,   
 and    

 , the likelihood of the entire data set        
   for a 

given set of effects        
   is the product of these conditional probabilities: 

              
      

      
    

    
     

  
 

  
      

  

    
   

 

      
   

      
  

      
   

  
          

 

(3.5) 

 In this expression, terms not dependent on the     
  have been removed since these 

are constant for all hypotheses under consideration. For the null hypothesis   , it sets 

    
    everywhere,            

  
 

  
      

  
  

 
    

      
  

    
       ; for the alternative 

hypothesis         , the marginal probability is 

                                   , where the effects     
  are dependent on 

the event type    and its magnitude. 

PANDA also provides an extended version which combines information from multiple 

data streams [14]. The authors extend the causal Bayesian network model used in the 

Population-wide Anomaly detection and Assessment (PANDA) [34] to incorporate 

evidence from daily OTC sales data. They model, at the level of individual person, the 

actions that result in the purchase of OTC products, as well as admission to an ED. A 

prototype model for detecting an Anthrax outbreak was created by expert judgment. In 

addition to the nodes, Home Zip, Age Decile, Gender, and outbreak strength, three other 

evidence nodes representing two different data streams are incorporated as well and are 
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called OTC sales for Zip Code, Respiratory Chief Complaint When Admitted and ED 

Admission. The parameter of some nodes were estimated from a training set consisting of 

one year’s worth of ED patient data from the year 2000 or from one year’s worth of OTC 

data from 2004. The parameters of other variables were obtained from U.S. Census data 

about the region. The probabilities of the rest nodes (whether prior or conditional) were 

derived as a logical function of their parents or assessed subjectively as informed by the 

literature or by general knowledge about the infectious diseases. Let   be the set of 

population-wide evidence, namely the OTC sales volume for each zip code in the county-

wide region. Similarly, let   be the collective set of evidence from individual people 

consisting of case information from those that were recently seen in EDs in the region. 

The posterior probability of a disease outbreak given the OTC data (    ) and the ED 

data (    ) can be written mathematically as 

                                     where   is the proportionality 

constant. After using Bayesian network inference, they derived the term as 

                                                 given the evidence set   . 

The evaluation of the work was not provided in [12]. 

WSARE, an abbreviation for “what’s strange about recent events”, is a rule-based 

anomaly detection algorithm which is used to tackle the problem of early disease 

outbreak detection [44]. It searches over all possible one or two component rules in the 

data set. It determines whether the count of cases that match the rule in the test data set is 

significantly different from the expected count determined by the training data set. The 

statistical significance of each rule is determined using a Fisher’s exact test on the two-

by-two contingency tables. To account for multiple hypothesis testing, the p-values are 
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adjusted using a randomization test. In a later version of the algorithm [45], the authors 

considered determining the baseline using a Bayesian network rather than directly using 

the counts from the training data set. A similar rule-based study was conducted as well in 

[46]. 

Other multivariate surveillance methods have also been proposed and applied to the 

disease surveillance domain. One proposed by Burkom is a derivation of the spatial scan 

statistic. It combines multiple and disparate data sources as the covariance variables in 

the scan statistic [47]. However, because the scan statistic numerators are formed by 

adding counts of disparate sources, a data source with highly variable or relatively large 

counts may mask signals in sources with smaller or more stable counts. Another method 

is a network-based method proposed by Reis et al. In [48], he describes an 

epidemiological network model that monitors the relationships between health-care 

utilization data streams for the purpose of detecting disease outbreaks. Instead of 

monitoring the observed counts directly, he models the significance of the ratios between 

each target data stream (as numerator) and each context data stream (as denominator). 

However, although this method integrates information from multiple data streams, it is 

still a purely temporal detection method and so does not take spatial information into 

account; therefore, while it may be used to detect anomalous increases in the aggregate 

time series of the entire area being monitored, it cannot detect and pinpoint a spatial 

cluster of affected locations. 

Table 3.1 provides an innovation timeline for all the spatial or tempo-spatial 

algorithms and also lists the main properties of these algorithms. Most of them have been 

discussed with more details in the previous sub-sections.   
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Table 3.1 An innovation timeline of the spatial/tempo-spatial algorithms 

Time Algorithm 

(Authors) 

Properties 

Frequen-

tist 

Bayesian General Uni-

variate 

Multi-

variate 

Search 

space 

Cluster 

shape 

1997 A spatial scan 

statistic [8] 

(Kulldorf et. 

al.) 

       All 

circular 

windows 

Circular 

2004 Upper level set 

scan statistic 

[30] 

(Patil et. al.) 

       Stratified 

subsets 

Flexible 

2004 PANDA [34] 

(Cooper et. al.) 

       N/A Flexible 

2005 A Bayesian 

spatial scan 

statistic [10] 

(Neill et. al.) 

       All 

rectan-

gular 

windows 

Rectan-

gular 

2005 WSARE [14] 

(Wong et. al.) 

       N/A N/A 

2006 An elliptic 

spatial scan 

statistic [49] 

(Kulldorf et. 

al.) 

       All 

elliptical 

windows 

Elliptic 

2007 BARD [32] 

(Hogan et. al.) 

       N/A Plume-

shaped 

2007 Mutivariate 

spatial scan 

statistic [40] 

(Kulldorff et. 

al.) 

       All 

circular/ 

elliptic 

windows 

Circular/

Elliptic 

2008 A flexibly 

shaped spatial-

time scan 

statistic [29] 

(Takahashi et. 

al.) 

       All k-

nearest-

neigh-

bors in 

the 

circular 

windows 

Flexible 

2008 A multi-level 

rank-based 

spatial 

clustering [33] 

(Que et. al.) 

       Subsets Flexible 

2010 PCTS [35] 

(Jiang et. al.) 

       Recur-

sive 

Flexible 
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2010 A multivariate 

Bayesian scan 

statistic 

(Neill et. al.) 

       All 

windows 

Rectan-

gular/Cir

cular 

2011 Fast subset 

scan [50] 

(Neill et. al.) 

        Subsets Flexible 

2011 Rank-bases 

spatial 

clustering [51] 

(Que et. al.) 

       Subsets Flexible 

2012 Fast subset 

scan [38] 

(Neill et. al.) 

        Subsets Flexible 

 

3.4 Calculation of baselines 

In the above introduction of disease outbreak detection algorithms, we have paid 

relatively little attention to the question of how the underlying populations or baselines 

are obtained. However, determination of baseline is a critical issue in the performance of 

anomaly detection. Better identification of the real underlying pattern within data can 

improve the performance of detection methods by reducing false alarm rates.  

In the population-based methods (such as in the spatial scan statistic [8]), we often 

use census data as baseline data, which gives an unadjusted population corresponding to 

each census tract. This population can then be adjusted for covariates using demographic 

data such as the distribution of patient gender or age group, giving an estimated “at-risk” 

population for each census tract.  

The expectation-based methods make use of historical data to compute the number 

of cases we expect to see in each area. When the data are not complete or not rational to 
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the population/adjusted population, it would be inappropriate using population as the 

baseline. For example, if we only collect the over-the-counter (OTC) sales data from 

partial vendors and we lack the market share information of these vendors, then using the 

entire population to compute the estimated OTC sales for the data we have would 

decrease the sensitivity of detection. Thus, we must predict the expected number of cases 

for each area based on its history of past counts at that location. This becomes a 

univariate time series analysis problem and any of the temporal detection algorithms we 

mentioned in Chapter 3.1 can be used compute the expected number of cases. For 

example, simple mean or exponentially weighted moving average methods can compute 

the estimated number of cases as the mean of the counts 7, 14, 21 and 28 days ago, as in 

Neill et al. [10]. For data sets which include strong day-of-week effects, we can stratify 

the data sets into subsets including data for different days of the week and apply time 

series algorithms on each subset. 

Among the aforementioned time series algorithms, the WAD [5] algorithm is well 

established as one of the most effect methods of capturing seasonal effects compared to 

other time series algorithms [6][52]. WAD is a non-parametric algorithm using wavelet 

transform, suitable for non-stationary time series. It makes use of frequency 

decomposition in wavelet transform to predict the number of cases. By setting a proper 

scale of resolution (e.g., setting the scale of 6 to get 2
6
=64 day frequency or setting the 

scale of 7 to get 2
7
=128 day frequency), it is able to capture underlying seasonal trends. 

Another method, proposed by Kulldorff et al [53], is to compute the expected count in a 

given region as the total count of the entire area under surveillance, multiplied by the 

historical proportion of counts in that region. In addition to the methods we discussed 
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above, there are approaches using regressions, Bayesian theories and others. Until now, 

accurate inference of expected counts from historical data is still an open problem. 

The testing and evaluation of the algorithm detection methods either use 

population/adjusted population or use expected cases estimated by historical data was 

further discussed in the work by Siegrist et al [52] and Buckeridge et al [6]. 

3.5 Computational considerations 

Before applying any spatial or tempo-spatial algorithm for early outbreak detection, 

it is necessary to consider the computational resources need to perform an algorithm. If 

the algorithm is to be used to analyze a very large area (e.g. multiple states) at a detailed 

level (e.g., zip code or street group), we need to consider whether an algorithm can 

achieve an efficient performance; whether it has a high computational complexity or 

require a randomization test. In the following paragraph, we discuss the computational 

complexity of two spatial scan statistics, the spatial scan statistic by Kulldorff et al (KSS) 

[8] and the Bayesian spatial scan statistic by Neill et al (BSS) [10]. 

The KSS algorithm considers a set of   distinct spatial locations in two dimensions. 

The number of circular regions it searches is proportional to    and the number of 

elliptic regions (assuming the length of both semi-major and semi-minor can vary) is 

proportional to   . KSS searches for clusters either over    circular scan windows [8] or 

searches over    elliptic scan windows [49]. In addition, the algorithm runs on   

replications to decide the significance of the top clusters, where   is often greater than  . 

This makes the algorithm have computational complexity of        for circular clusters 
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and        for elliptic clusters. BSS utilizes a two dimensional     grid, and the 

number of axis-aligned rectangular regions with varied lengths, widths and centers is 

proportional to   . The searching operations within this algorithm has a computational 

complexity of      . 

3.6 The hypothetical advantages of proposed algorithms 

As I mentioned in Chapter 1, my research problem is focused on rapid disease 

outbreak detection. I will develop a non-parameterized framework using tempo-spatial 

clustering algorithms. The framework includes both a univariate algorithm, the rank-

based spatial clustering algorithm (RSC), and a multivariate algorithm, the multivariate 

rank-based spatial clustering algorithm (MRSC).  

The data RSC and MRSC analyze are aggregated to some extent (e.g., a ZIP code 

level, a city level, etc.). They are more similar to the spatial scan statistic algorithms such 

as BSS/MBSS, KSS/MKSS, FSS and ULS. They are all population based algorithms 

rather than individual based algorithms such as PANDA-CDCA and PANDA-CDCA-

Spatial-Temporal.  

Compared to the spatial or tempo-spatial algorithms discussed in this chapter, both 

RSC and MRSC algorithms in this framework provide a methodology with lower order 

of time complexity in terms of cluster searching. They apply a measurement to decide 

which study area is more likely to have an outbreak occurring given the baseline data and 

currently observed data. Using the estimated risk measurement as heuristic, they apply a 
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greedy searching mechanism to look for the cluster with the highest posterior 

probabilities.   

RSC and MRSC are able to find clusters with irregular shapes since they do not 

impose any artificial shape for cluster scanning as KSS, MKSS, BSS and MBSS do. 

However, they require the information of adjacency relationship between any two study 

areas. I will discuss more about the time complexity of computing the shortest distance 

between any two geographic areas. Fortunately, using a hash table or querying a spatial 

database system can solve this problem in linear time. FSS and ULS also search for 

flexible-shaped clusters. Nonetheless, FSS has a higher order of time complexity than 

KSS which makes it computational infeasible when analyzing a large data set. RSC is 

similar to ULS regarding they search for clusters from reduced search spaces. However, 

the ULS and RSC differ in three respects: the risk estimation models used, the cluster 

search space and cluster significance testing. More specifically, ULS stratifies the data set 

into several subsets using a set of pre-defined threshold rates and looking for tessellated 

areas from each subset, whereas RSC creates a new cluster each time when taking the 

next-ranked area into consideration, which makes its search space a super set of ULS.  A 

special case is when ULS sets a set of thresholds and each value in the set is equal to the 

risk rate of each geographic unit in the study. In this way, ULS finds sets of clusters 

identical to those RSC would find if both apply the same risk estimation model. In terms 

of significance testing, ULS uses frequentist randomization test whereas RSC applies 

Bayesian inference.  

Like MBSS and MKSS, MRSC searches for clusters from multiple data streams. 

Particularly, it is more similar to MBSS since it also applies a Bayesian model to derive 
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the posterior probability of having an outbreak inside each cluster. However, the data 

model of MRSC is different from MBSS. MRSC applies a hierarchical Multinomial-

generalized-Dirichlet (MGD) distribution to model the multiple data streams 

simultaneously, whereas MBSS applies a hierarchical Poisson-Gamma distribution to 

model a single data stream and compute the joint probability. As in the preliminary study 

of my dissertation work, MRSC is designed to be more sensitive to the outbreak which 

occurs simultaneously in multiple data streams. In addition, since the multinomial 

distribution used in MRSC actually models the weights of each single data stream, 

another hypothetical advantage of MRSC is that it is more robust to the data with 

underlying non-disease related shifts. I will also discuss more about it in Chapter 6.0
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4.0 The experimental domain 

The experimental domain for my proposed research is the semi-synthetic data sets 

created for this study, which include the real syndromic data collected by the RODS 

system and the superimposed outbreak data.  For univariate analysis, I used the linear 

shaped simulation model which was used in [10][43][51][54]. I will describe this model 

in details in Chapter 4.2. For multivariate analysis, the outbreak data were simulated by 

the multivariate spatial-temporal outbreak simulator [55], which will be introduced in 

Chapter 4.3.  

The background data for the experiments are from two data sources. One is the ED 

data set, which contains the counts of patient’s visit to emergency rooms categorized by 

the chief complaints; the other is the over-the-counter (OTC) pharmaceutical sales data 

collected by the National Retail Data Monitor (NRDM) [1]. The outbreak simulation 

model used for this research is called the multivariate spatial-temporal outbreak simulator. 

This model generates multiple data streams of outbreak data which can be used for 

evaluating detection algorithms used in disease surveillance systems.  
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4.1 Background data 

Disease surveillance refers to methods relying on detection of individual and 

population health indicators that are discernible before confirmed diagnoses are made. 

During an outbreak of an infectious disease, prior to the laboratory confirmation of the 

disease, ill persons may exhibit behavioral patterns, symptoms, signs, or laboratory 

findings that can be tracked through a variety of data sources [15]. Disease surveillance is 

important at such times because it could detect a surge by analyzing these data sources, 

thus providing an early warning at the start of an outbreak as well as acting as a tool for 

monitoring an ongoing crisis.  

4.1.1 ED data 

Should a disease outbreak or an unannounced biological attack occur, the first 

sign could be an increase in healthcare utilization, probably by patients with relatively 

common symptoms, for example, anthrax-infected persons with respiratory complaints. If 

the first wave of patients is spread out over a large geographic area, it may present similar 

aberrant patterns across different public health organizations in the area, meaning real-

time surveillance based on syndromes can provide one of the quickest ways to recognize 

and respond to many natural or unnatural disease outbreak scenarios. 

Over the past decade, physicians and researchers at the RODS lab have been 

collecting syndromic data for surveillance. The first data type they started collecting was 

the chief complaints of patients during their visit to emergency rooms in Allegheny 

County in Pennsylvania. After a patient was registered in an emergency department, the 
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chief complaint was automatically sent to the RODS system and classified into one of the 

nine syndrome groups including gastrointestinal, constitutional, respiratory, rash, 

hemorrhagic, botulinic, neurological and other.  

The RODS system then provides a data set that contains the daily counts of 

patients’ ED visits grouped by different syndromes and the patient home ZIP code. From 

this data set, I selected a 3 year period as my study period which is from Jan. 1, 2006 to 

Dec. 31, 2008 for this study.  

4.1.2 OTC data 

Over-the-counter (OTC) medication sales can serve as an early indicator of 

communitywide disease outbreaks as when people first get sick, they often first try OTC 

medicine to get well before seeking professional medical treatment [56,57,58]. Therefore, 

to enhance detection of natural and intentional infectious disease outbreaks, since 2003 

the RODS lab has tracked OTC medication sales as well as ED data. Each OTC 

medication purchase is automatically classified into one of 23 categories based on the 

symptoms and the age group it treats; examples include anti-fever pediatric, anti-fever 

adult, bronchial remedy, diarrhea remedy, thermometer pediatric and thermometer adult. 

4.1.3 OTC data simulation model using NRDM data 

Because the existing data set collected by NRDM does not include information 

about patient home ZIP code for each product sale, I created a data simulation model to 

allocate the counts of OTC sales into patients’ residential ZIP code areas. The possible 
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application of this model is to simulate background counts for the areas with missing data 

and thereby allow the outbreak simulation algorithms to generate outbreak data for these 

areas. 

To demonstrate the model, I chose to look at OTC medication purchases made by 

the patients living in six ZIP code areas with or without pharmacy stores (Figure 4.1). 

The model is illustrated in Figure 4.2. The nodes are connected by three types of arrows 

representing the different types of commuting. We presume: 1) people living in a ZIP 

code area with pharmacy stores will purchase OTC medications from those stores; and 2) 

people living in a ZIP code area without stores will purchase OTC medications from a) 

an adjacent ZIP code area that has stores (solid arrows), b) the nearest with-store ZIP 

code area if neither their living ZIP codes nor the adjacent has stores (dashed arrows), or 

c) their ZIP code areas where they work, which has stores (doubled arrows). 

 

Figure 4.1 Illustration of six adjacent ZIP code areas. The green areas represent the ZIP codes with 

pharmacy stores and the blue ones represent the ones without. 
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Figure 4.2  Modeling OTC medication purchases made by the patients living in the six ZIP code areas in 

Figure 4.1. The arrows illustrate three types of commuting in between: 1) doubled arrows represent work 

flows from none-store areas to with-store areas, respectively; 2) solid arrows represent the remaining 

population who travel to the connected with-store areas; they start from none-store areas and end at 

connected with-store areas; 3) dashed arrows represent those who start from a none-store area which has no 

adjacent areas with pharmacy stores and end at the nearest with-store area.  

The simulation consists of three steps. I use      to denote each of with-store 

area and      to represent each none-store area. 

First, I split each none-store node into sub-nodes so that each sub-node only has one 

arrow going out. In the rightmost graph in Figure 4.3,    
  represents the population work 

flow between    and    which was collected during the 2000 census, and     represents 

the remaining population in area    who purchased OTC medication in area    which is 

computed as proportional to the population of its target node. Mathematically, I use 

      to denote the set of all the working areas for the people who live in area    and I 

use the set       to represent the set of areas neighboring of area    other than the 

working areas. I represent the set of sub-nodes as         
                    . I 

compute the corresponding population for each sub-node,        and      
  , as shown in 

Equation (4.1) and (4.2). 

     
       (4.1) 
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(4.2) 

 

Figure 4.3  Splitting nodes 

Second, for each with-store node which has multiple arrows coming in, I adjust its 

counts and re-allocate them to all the other nodes which have arrows coming in. I 

introduce the randomness by assuming the counts for all the incoming nodes and the node 

itself follow a Multinomial distribution. The parameters of                  
          

are estimated as ratios of populations (Equation (4.3)-(4.5)) where     ,     . I use 

      to represent the set of areas which have people work in    and       to represent the 

set of the rest of the incoming none-store nodes. 

   
     

            
          

                

 
(4.3) 

   
  

     
  

            
          

                

 
(4.4) 

    
      

            
          

                

 
(4.5) 
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If we use       to represent the total counts for a with-store node    on day     

       , then                 
             

               
 where 

           
                                

         .  

In the third step, I combine the sub-nodes back into the original none-store node by 

summing the allocated counts together, as in Equation (4.6), where   
     represents the 

simulated counts in area   . The simulated counts for the with-store node are then 

adjusted in Equation (4.7). 

  
         

    

        

         

        

           
(4.6) 

  
                     (4.7) 

Figure 4.4 is an example of the simulated counts in Allegheny County of 

Pennsylvania. I this model, I re-allocated the counts from 54 ZIP code areas with stores 

(in green) to the remaining 43 ZIP codes without stores.  

 

          (a)                                                     (b)  

Figure 4.4 The simulated OTC counts in Allegheny County. (a) is the distribution of the counts which are 

available in the 54 ZIP code areas with stores and (b) is the simulated counts after applying the model. 

 The data set used in this research is the OTC sales of anti-cough/cold products. 

The simulation model provides a simulated OTC data set which can be used later in the 
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multivariate analysis for early outbreak detection in addition to other data types which are 

available with regard to patient’s residential ZIP code (for example, Ed visits, as 

mentioned above). 

The data describing the commuting patterns was collected during the 2000 Census; 

it has national coverage and is provided at the census tract level: each commuting flow 

denotes the average daily number of commuters between a residence census tract and a 

work census tract. Since the surveillance data to analyze is available at a ZIP code level, 

we were required to adjust the commuting flows from a tract-to-tract level to a ZIP-to-

ZIP level. Several approaches have been studied. The first, attempted by Buckeridge, was 

to convert the County-to-County commuting flows to the ZIP code level [59]. In [59] the 

flow conversion was realized by leveraging additional employment data at the ZIP code 

level. The second approach was to convert the Tract-to-Tract flows to a block group 

level . 

In the following, I describe the approach we used to convert the Tract-to-Tract 

commuting flows to the ZIP code level. Note that ZIP code area can overlap with one or 

more census tracts, and vice versa. To perform the conversion we split each commuting 

flow between a pair of census tracts   , and    into several smaller-sized flows according 

to the following to rules: (i) the number of workers coming from each constituent partial 

ZIP code area of    was assumed to be proportional to the allocated area of the ZIP code 

within   ; (ii) the number of workers going to    was assumed to be divided among its 

constituent partial ZIP code areas, and they are proportional to the allocated area of those 

partial ZIP codes within   . The final commuting graph at the ZIP code level was then 

created by aggregating the portions of workflows between each ZIP code pair. 
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4.2 Linear outbreak simulator 

Since the precise occurrence of outbreaks in historical public health surveillance 

data is often not well-defined, and historical surveillance data generally contain few well-

documented outbreaks, outbreak simulation is often necessary to test detection algorithms 

[52][55][57][60][61]. Here I describe a simplified simulation model with linear 

increasing cases and it was used in the evaluation of univariate algorithms which I will 

discuss in the next chapter. The generated cases will then be injected into the background 

real data set to generate semi-synthetic experimental data. The injected signal is defined 

by a controlled feature set, including outbreak size (K), slope ( ) and duration ( D ). Eq. 

(4.8) defines the simulated outbreak counts; these counts will be added on the top of the 

background data in the pre-selected outbreak areas.  

          
                             

 

 
 

                 
 

 
       

  

(4.8) 

where   is the number of days after outbreak release and    is the mean value of the daily 

counts in area  . Figure 4.5 shows a simulated outbreak curve, which has a simple 

triangular shape with an upward phase (Phase 1) simulating the spreading period.  We 

define a true positive as an algorithm being able to find any of the outbreak areas within 

Phase 1. Although this simplified simulation is clearly a not very realistic outbreak, it 

does have several advantages: it allows us to precisely control the slope of the outbreak 

curve and examine how this affects our method’s detection ability; in addition, the slowly 

elevated curve (slower than the log normal curves often observed in real outbreaks) 
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extends the outbreak onset period to some extent, which allows us to distinguish the 

performance in terms of timeliness of  each of the detection algorithms [10][62]. 

 

Figure 4.5  Illustration of the temporal shape of an artificial outbreak from Day 1 to Day D (D=14). 

  The geographical shapes of simulated outbreaks created in this study are designed 

to be flexible and independent of any detection algorithm, except that the simulator 

assumes an outbreak cluster has contiguous areas. First, I randomly selected a unit area as 

an outbreak area. Second, I randomly chose the rest of the outbreak areas; each one had 

to be adjacent to at least one of the previously selected areas. In this way, the outbreak 

simulator was mostly simplified and generalised. It conformed to the exhibiting 

characteristics of most outbreaks generated by many well-known simulation models 

which distribute infected cases into clustered (oftentimes connected) regions 

[63,64,65,66].  

4.3 Multivariate spatial-temporal event simulator 

I apply a multivariate spatial-temporal event simulator [55] to generate artificial 

outbreak cases and then superimpose them on the background data described in Chapter 

4.1 to evaluate the multivariate algorithm I will propose in Chapter 5.  
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4.3.1 Parameters 

Outbreak magnitude, denoted by  , is the total number of outbreak cases, including 

those not captured by the biosurveillance systems. 

Behavior probability vector is a vector of length   , consisting of the joint probabilities 

for the M  behaviors for each outbreak case. For example, consider the simulation of a 

pneumonia outbreak with two data available streams: ED respiratory visit data and OTC 

anti-cough/cold medication sales. A joint probability vector (0.1, 0.35, 0.45, 0.1) means 

that for any outbreak case with probability 0.1, the case both went to an ED with a 

respiratory chief complaint and bought an anti-cough/cold OTC product; with probability 

0.35 the case went to the emergency room but didn’t buy an OTC product; with 

probability 0.45 the case didn’t go to an ED but bought an OTC product; and with 

probability 0.1 the case neither went to an ED nor bought an OTC product. 

Data coverage vector is a vector of length  , consisting of the coverage of each data 

stream. For example, RODS system is collecting ED data from 91% of the healthcare 

givers in Allegheny County, Pennsylvania. It means the ED data streams have 91% of 

coverage in this area. In other word, if an outbreak occurs in this area and we will expect 

that approximately 91% of outbreak cases can be captured by the system. 

Spatial-temporal template is a function   of time and space that describes how the rate 

of new cases changes across time and space. Specifically, it is defined as        

            , and it is a bounded joint probability mass function and probability density 

function over the spatial location and event times for each case.       is the probability 

that a case is assigned to region  . This probability is a function of the elevated risk in 
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region  . Specifically, for region  , let    denote the elevated spatial disease risk, and    

denote the population. Then 

      
    

           
 

(4.9) 

  

 One can define the spatial disease risk    as 1) flat, meaning each region   has the 

same risk, no matter how far it is to the center of the outbreak; 2) linear, meaning the 

region   is negatively proportional to the distance to itself and the center; and 3) other 

relationship. 

One can define the temporal simulation function         given tract   as 1) flat, 

meaning each time unit has the same expected number of outbreak cases; 2) linear, 

meaning the mean value of the simulated cases at time   is linearly increased from the 

onset of an outbreak; and 3) other relationship. 

One can also define                  when a time lag applies in one or 

multiple data streams, where    is the lag in the data stream in tract  .  

4.3.2 The model 

The outbreak simulation includes four steps: 

Step 1: Determine the total number of outbreak cases   and the release region   .  

Step 2: Distribute the cases geographically into regions. In other words, randomly assign 

each case to a region according to the spatial template   . For example,    can be defined 

as a function which is in inverse ratio to the distance between   and   , such that    

becomes a decreasing function of distance from the release region. 

Step 3: Use the behavior probability vector, which may depend on the case’s region, to 
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determine the behaviors that the case will engage. Then, for each such behavior, use the 

associated coverage probability, which also may depend on the case’s region, to 

determine whether that behavior is captured by the biosurveillance system. 

Step 4: After determining the collection of captured behaviors for each case, simulate the 

vector of behavior event times by drawing an observation from the joint marginal 

distribution to event times for those behaviors in that case’s region. 

 Figure 4.6 shows a geographical illustration of a simulated 7-day outbreak. The 

darker areas represent the areas with more outbreak cases. This outbreak is centered at 

the ZIP code area, 15228, and it spreads to the areas surrounding to the center when it 

develops along the duration (linear function, the counts in region   is negatively 

proportional to the distance to itself and the center). Figure 4.7 shows a temporal 

illustration of a 7-day outbreak using a linear temporal template where the numbers of the 

cases follow the Poisson process with linearly increased mean values.  

 
(a) Day 1                (b) Day 2                        (c) Day 3                      (d) Day 4              

 
(e) Day 5                           (f) Day 6                       (g) Day 7 

 

Figure 4.6  A simulated 7-day outbreak showing the increased strength (darker colored) along when the 

outbreak develops. The outbreak is centered at 15228 and covers 8 ZIP code areas.  
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Figure 4.7 The simulated 7-day outbreak which infects 3 data streams. The y axis represents the summed 

counts over 8 ZIP code areas for each day within the outbreak duration (x axis
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5.0 Rank-based tempo-spatial clustering (RSC) 

This chapter describes the first part of the primary work I have done for the 

dissertation research. It includes a rank-based spatial clustering (RSC) framework I am 

proposing to meet the need for a biosurveillance system to identify disease outbreaks 

rapidly. In this chapter, I focus on the algorithms analyzing univariate data. A 

multivariate extension will be described in Chapter 6.0. 

5.1 An algorithm for early outbreak detection—rank-based tempo-spatial 

clustering (RSC) 

The input data for RSC include the observed values for each unit and the 

corresponding expected values. First, the study unit is chosen at the desired resolution 

level: a ZIP code area, a county, or even a rectangular grid cell. Observed data are then 

aggregated into each unit. To compute expected values, one can choose from the large 

variety of existing time series algorithms or statistical regression models. 

The key steps in RSC include: 1) measuring the risk of each geographic unit 

having an ongoing outbreak; 2) ranking each unit by estimating its risk rate; 3) searching 
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for clusters based on geographic adjacency given the order of the rankings; 4) computing 

the posterior probabilities of the clusters and identifying those with the highest. 

5.1.1 Risk rate assessment 

To assess risk rate, field epidemiologists normally prioritize all the areas of 

interest and then investigate the most abnormal ones first. Likewise, to prioritize, RSC 

first assesses the risk of a disease outbreak occurring in each unit area.  

In the following, I propose two measures to estimate the risks. One is called 

standard score, which is computed as the number of standard deviations of the observed 

count varying from the expected count. This value is predicted from a time series of 

previous data [67]; the other is posterior probability using Bayesian inference.  

Standard score (z-score).  Generally, a risk R  can be estimated as a ratio,        

  
    

    
, where      is the number of observed cases in area   on the most current day 

   , and      usually denotes the population or the expected value computed from the 

baseline data for    on day   [30]. This ratio represents how far away the number of 

observed cases in area   is from the expected value.  However, it does not clearly 

represent the normalized extent of the deviation.  

The model computes a standard score (also known as z-score),        

        
         

  
, to measure the risk for each area  , where    represents the 

estimated standard deviation of the residuals. Residuals are computed by subtracting 

expected values from observed ones in the time series for each area  . Historical data are 

required to compute expected values using this method. 
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Bayesian posterior probability using a Gamma-Poisson model. Standard score may 

not apply when most of the counts are close to mean values because in such cases, it 

yields a close-to-zero standard deviation and results in an unreasonably large value for 

the z-score.  With         estimated as the posterior probability, however, one can use a 

Bayesian approach,             , where   is the most current day [33]. I write it as 

              =             . I assume that the counts for each area   within each 

period         follow a Poisson distribution, which is commonly used to model a 

certain variable that counts a number of discrete occurrences during a time-interval of a 

given length [18]. Gamma distribution is used in Bayesian inference to model the prior 

variable   (the ratio between observed counts and expected counts) since it is the 

conjugate prior of a Poisson distribution. Expert knowledge can also be introduced by 

setting different prior probabilities,           , to different unit areas   at different 

times  . For simplicity purposes, we applied uniform priors in this study. The posterior 

probability of    (having an outbreak in area   ) on day   is computed using Bayes 

theorem (Eq. (5.1)), where the likelihood of    (not having an outbreak) and    are 

integrals over the ratio   (Eq. (5.2) and (5.3)) with different shape parameters    and   , 

respectively.  The marginal probability is computed as the sum over the two hypotheses 

as denoted in Equation (5.4).  

                
                         

       
 

(5.1) 
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(5.2) 

                                                           

 
    

    

     
 

  
             

         
        

      
 

(5.3) 

                                                            (5.4) 

In the above equations,      and      are the observed and the expected values for 

area   on day  , respectively, and     represents the gamma function. The shape 

parameter (  ) and the rate parameter (  ) of the Gamma distribution are learned from 

the historical data by matching the first and second moments to sample mean and 

variance (Eq. (5.5-5.8)), assuming no outbreaks. As with the alternative hypothesis, I 

assume that the outbreak will increase q  by a multiplicative factor  ; thus I multiply    

by   while leaving    unchanged. Since we typically do not know the exact value of  , 

here we use a discretized uniform distribution for  ,         where         at 

intervals of 0.2. 

   
       

 

       
 

(5.5) 

   
     

       
 

(5.6) 

    
             

 

             
 

(5.7) 
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(5.8) 

5.1.2 Adjacency criterion  

RSC identifies potential clusters by determining the shortest Euclidean distance 

    between every two areas    and   . In most cases, when a unit study area is a 

demographic area (e.g., a street group, a postal code or a county), the computation of the 

shortest distance needs to be done only once and the results can be stored for later use. I 

define an adjacency threshold,  . If      , then areas    and    are considered to be 

adjacent. The areas are considered to fall into the same cluster when each is adjacent to at 

least one of the others in the cluster.  

Computing the shortest distance between any two geographic areas is not trivial. 

However, most spatial database systems (e.g., postGIS) offer querying capabilities on 

topological relations. If regions of a plane are stored as vector polygons, the task starts by 

checking if the two polygons are intersecting; otherwise the shortest distance in between 

is computed. The first step takes       operations, where each operation is to determine 

if two line segments intersect, with   and   representing the numbers of the vertices for 

the two polygons. If the two polygons do not intersect, the second step is then to compute 

their shortest distance, which can be completed in another       operation [62].  For the 

purpose of simplicity, the adjacency threshold is set to 0 (i.e.,    ) in this study, and 

the task is reduced to intersection detection only.  
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5.1.3 Searching for clusters 

RSC sorts all of the areas in descending order based on the risk rates estimated for 

all study areas. The search for emerging clusters is greedy — it starts from the highest 

ranked area, and this area becomes the first potential cluster itself. Then in the second 

iteration, the area with the second ranking is considered for clustering. If this area is 

adjacent to the first, they merge to form a bigger cluster.  If not, they remain two separate 

clusters. Similarly, when the next area comes in, the algorithm checks if it is adjacent to 

one or more of the previously constructed clusters. If so, the algorithm unites the new 

area and its adjacent clusters into one cluster; otherwise it constructs a separate single-

area cluster. Figure 5.1 illustrates all the clusters produced by the algorithm from a region 

where some areas are adjacent (connected in this example) and some are not.  

     
(a)                                            (b)                                           (c) 

     
(d)                                            (e)                                           (f) 

     
(g)                                            (h)                                           (i) 

 
Figure 5.1  Clusters created within a region of eight areas (Fig. 5.1(a)). Fig. 5.1(b)-(i) show the eight 

clusters in the order in which they were created. The number in each cell is the ranking of its risk rate, 

which represents the order in which it will be considered by the algorithm. 

In order to constrain the growth of large clusters, we can determine an upper 

bound. For example, in this study, a cluster stops merging if it includes more than half of 
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the study areas. The searching will cease after all the study areas have been analyzed. 

Each created cluster is scored using posterior probability, which will be described in the 

following chapter. A pseudo code is provided in Figure 5.2. 

 
Figure 5.2 The pseudo code for cluster searching. 

5.1.4 Priors 

In practices, most Bayesian analyses are performed with so-called 

“noninformative” priors, that is, priors constructed by some formal rules. As in this 

dissertation, the prior probability of each cluster   having an outbreak is assumed to 

follow a uniform distribution,          
  

 
, where    represents the probability of 

there being an outbreak somewhere in the entire study region, and   is the total number 

of clusters created by the algorithm. However, subjectivism is the dominant philosophical 

foundation of Bayesian inference, so it is beneficial to construct an “informative” prior. 

One way to construct a meaningful prior for disease outbreak clustering is to adjust priors 

by using information about cluster sizes, populations, etc.. Since it is not a focus for this 

dissertation, this topic can certainly be explored in future work. 

1. CL = {} 

2. compute                

3. sort              into     
    

      
  where      

         
 ,           

4. for     to   

5. add    
 into a new cluster      

6. for each cluster   in CL 

7. if    
is adjacent to any area in   

8. add all the areas in   into      

9. if        
 

 
   

10.        compute score         for cluster      

11.        add      into CL 

12. output          in CL  if      is greater than or equal to a predefined threshold 
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5.1.5 Computing posterior probability of a cluster 

To compute the posterior probability of each cluster   I use a Bayesian approach 

with the Gamma-Poisson model used in Bayesian spatial scan statistic (BSS) [10]. The 

hypothesis the model is testing is whether one cluster of areas has a disease outbreak 

occurring or whether there is no outbreak occurring in the entire study region. Eq. (5.9) 

and Eq. (5.10) compute the likelihood of not having an outbreak in the region (H0) and 

the likelihood of having an outbreak in a cluster   (H1), respectively. 

        
    

                

                           
  

  
  

   
   

 
(5.9) 

           
   

             

                      
 

    
                

                           

  
  

  

   
   

 

(5.10) 

In the null hypothesis, H0, the number of observed cases summed over all the 

areas      follow a Poisson distribution, i.e.,                        , where      is the 

number of expected cases summed over all these areas, and the disease rate      follows a 

Gamma distribution, denoted as                      . Similarly, in the alternative 

hypothesis      , the number of observed cases in the areas within cluster Z,    , 

follows a Poisson distribution                    , where     is the number of 

expected cases summed over all the areas inside the cluster Z, and the disease rate has a 

Gamma distribution                   . For the study areas outside cluster Z,     , 

    ,      and      represent the corresponding parameters. The prior variables in 
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Gamma distributions can be estimated using the moment matching approach described in 

Eq. (5.5-5.8). The posterior probability can then be computed using the Bayes’ Theorem 

in Eq. (5.11); the marginal probability is computed in Eq. (5.12).  

           
                  

    
 

(5.11) 

                                     

 

 
(5.12) 

5.1.6 The temporal window 

In addition to the spatial dimension, we can consider each searching region with 

different time durations           , for some constant integer  . In other words, 

each cluster can be thought of as a prism with an n-sided polygonal base which covers the 

spatial areas of interest and a height which is the temporal duration. Since my study 

focuses on prospective analysis, which means that we are interested only in events that 

are current and recent,         represents the two dimensional cluster including the 

most current day’s data while        represents the cluster including the data from 

the most current day and the previous     days. In the following study, I use a simpler 

scenario setting    , and thus only search over regions with 1-day duration; a larger 

value of the maximum temporal window size would be useful for identifying more 

slowly growing outbreaks. Choosing a different set of search regions would most likely 

affect the detection power of the methods, however, I expect that the relative 

performance of different methods will remain approximately the same.   
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5.1.7 Experiments 

In this study, I compare the performance of RSC to KSS, the most widely known 

frequentist approach, and BSS, a Bayesian approach with competitive performance [10]. I 

also compare RSC to WAD, a well-established time series algorithm, to demonstrate the 

possible advantages of spatial algorithms [6][52]. I applied each algorithm to semi-

synthetic data sets generated by superimposing outbreak cases into real over-the-counter 

(OTC) medicine sales data assumed to have no outbreaks. 

Over-the-counter pharmaceutical sales data. As mentioned previously, some studies in 

the literature claim that the over-the-counter medication sales data can be one of the 

competent data sets for outbreak detection [56][57][58]. Thus I applied our algorithms to 

the data of OTC medicine sales in the cough/cold category in Pennsylvania between Jan. 

1, 2006 and Dec. 31, 2008. This type of OTC medicine sales was chosen because it can 

indicate influenza activity. 

  I removed noisy data resulting from an imperfect data collection process. This 

was necessary as noisy data may bias an algorithm’s detection power significantly since 

they do not correctly reflect the actual behaviors of medication purchases by patients. We 

defined an abnormal store reporting as a case when a store did not send any record in any 

of the 23 OTC categories for more than 27 days (allowing for an up to 5% data dropping 

rate plus 3 federal holidays each year). We then excluded those stores with abnormal 

reporting from this study. In the end, our dataset included 1,004 of the 1,502 stores 

located in the area being studied, and the data were aggregated into 471 ZIP code areas. 
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  We chose the training period of between Jan. 1, 2007 and Dec. 31, 2007 to 

compute threshold values given fixed false alarm rates by assuming there were no known 

outbreak signals in this period. Each day within the training period was analyzed using an 

algorithm and the greatest score (i.e., the posterior probability) was recorded. A set of 

scores was then used as thresholds to control different false alarm rates. It is worth noting 

that the threshold values computed in this way are likely to be overestimated because of 

possibly existing but veiled outbreak signals. The overestimation problem can be 

corrected by excluding known outbreak periods from the training data set if historical 

outbreak information is available.  

Semi-synthetic outbreaks. I used the linear outbreak simulation model introduced in 

Chapter 4.2 to generate artificial outbreak cases, which were then injected into the OTC 

data set to produce semi-synthetic experimental data. Recall that the injected signal is 

defined by a controlled feature set, including outbreak size (K, the number of study areas 

considered outbreak areas), slope ( ) and duration ( D ). I generated six groups of data 

sets, with   and   chosen from {4, 8, 12} and {0.2, 0.3}, respectively. I arbitrarily chose 

10 as the value for D. Each group included 100 outbreaks which were distinct from each 

other either geographically or temporally. More elevated outbreaks (i.e.,      ) are not 

discussed because of the indistinguishable performances among the different algorithms 

applied in the experiments. 

  During the evaluation period, from Jan. 1, 2008 to Dec. 31, 2008, I injected each 

simulated outbreak into a randomly selected interval of length D days during the 

evaluation period. I used a time series algorithm to compute each day’s expected value 
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during the evaluation period, which was derived using the data from the 12 months prior 

to the study day.   

Evaluation metrics. The evaluation metrics include 1) the receiver operating 

characteristic (ROC) curve [68], 2) the activity monitoring operating characteristic 

(AMOC) curve [69], 3) the areas under ROC and AMOC, 4) computation time, 5) cluster 

sensitivity (the proportion of the number of areas correctly detected) and 6) cluster 

positive predictive value (PPV, the proportion of the number of true outbreak areas in the 

detected cluster) [9][11][70]. 

Gold standard. For any spatial algorithm, we define a true positive output cluster as one 

that satisfies the three conditions: 1) having the highest score, which must be greater than 

a given threshold value, 2) having one or more outbreak area identified, and 3) having 

been identified within the upward phase of the outbreak (i.e., within the first 5 days).  

For the purely temporal algorithm, WAD, a true positive output must be the unit 

area that 1) has the highest score, which must be greater than a given threshold value, and 

2) is one of the outbreak areas. 

Experimental results. I compared the performance of RSC to that of the wavelet 

anomaly detector (WAD) [7], the spatial scan statistic (KSS) [8][53][49]  and the 

Bayesian spatial scan statistic (BSS) [10]. Note that the WAD was not only compared as 

an individual detection algorithm but also used to compute expected values required by 

the three spatial algorithms. 

I applied the discrete Poisson model proposed in the KSS for a purely spatial 

analysis performed by SaTScan v8.0. Per the suggestion of the author of SaTScan, the 

size of a searched cluster was limited to be less than 3% of the population favoring 
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relatively small and focused outbreaks. The parameter file SaTScan used for this study is 

in 7.2Appendix A. For BSS, we used a 24-by-24 grid structure to cover the entire study 

region (i.e., state of Pennsylvania), and the area of each cell was approximately 80 square 

miles.  

The experiments were executed on a Linux server with a 2GHz Intel CPU and 

4GB memory. All of the algorithms were implemented in Java 1.5 except for KSS. 

The ROC curves of the RSC algorithms using the standard score model and the 

Bayesian model are shown in Figure 5.3, as well as the curves for WAD, BSS and KSS. 

Figure 5.4 provides the corresponding AMOC curves. Because the lowest false alarm rate 

KSS could achieve is 0.761, it is not shown in the figures, which show a false alarm rate 

ranging between 0 and 0.2 per day. I assume that any false alarm rates greater than 0.2 (1 

false alarm per 5 days) have no practical advantage to public health practitioners. 

                                                 
1 In order to compute false alarm rates, we applied the KSS (as well as other compared algorithms) on each day 

between 01/01/2007 and 12/31/2007 without injecting any outbreak cases. For each day, only the cluster with the 

lowest p-value was considered. The results of the KSS showed that 278 out of 365 clusters had the lowest p-value, 

0.001, which means the lowest false alarm rate the algorithm was able to achieve was 278/365=0.76. 
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Figure 5.3  ROC curves of the four algorithms with different outbreak settings. (a) K=4,      ; (b) K=4, 

     ; (c) K=8,      ; (d) K=8,      ; (e) K=12,      ; (f) K=12,       where K represents 

outbreak size and   represents outbreak intensity. 
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Figure 5.4  AMOC curves of the four algorithms with different outbreak settings. (a) K=4,      ; (b) 

K=4,      ; (c) K=8,      ; (d) K=8,      ; (e) K=12,      ; (f) K=12,      , where K 

represents outbreak size and   represents outbreak intensity. 

Table 5.1 computes partial areas under ROC with a false positive rate within a 

range of [0, 0.2] using trapezoidal approximation. DeLong testing [71] showed no 

significant difference between any pair of the algorithms in this study regarding the areas 

under the curve, indicating that RSC, BSS and WAD showed similar detection powers. 

Table 5.1 Algorithm comparison in terms of the areas under ROC between the range of false positive rates 

[0, 0.2]; the underscored numbers show the best performing methods and those in bold are not significantly 

different from the best. 

    RSCz-score RSCBayesian BSS WAD 

          0.1005 0.0957 0.0599 0.0875 

      0.1348 0.1280 0.0794 0.1525 

          0.1069 0.0889 0.0792 0.1028 

      0.1497 0.1364 0.1093 0.1706 
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           0.1151 0.1082 0.0935 0.1256 

      0.1560 0.1402 0.1224 0.1740 

From the AMOC curves shown in Figure 5.4, the two RSC methods exhibited 

better timeliness than the other algorithms in 5 out of the 6 groups of experiments. The 

average days it took for the algorithms to detect the outbreaks are in Table 5.2. Paired 

student T-tests on the variable days-to-detect show that both the RSC methods were able 

to detect outbreaks significantly earlier than the BSS in all 6 groups of experiments, at a 

false alarm rate of 0.1 (i.e., 1 false alarm per 10 days). The RSC methods also 

outperformed the WAD when analyzing the data sets injected with low intensity 

outbreaks (i.e.,     ).  

Table 5.2  Average days to detection at 1 false alarm per 10 days, for each of the 6 groups of simulations. 

The underscored results indicate the best performance and those in bold are not significantly different (at 

α=0.05) from the best.  

K   RSCz_score RSCBayesian BSS WAD 

          4.3 4.2 4.63 4.62 

      3.83 3.79 4.4 3.83 

          4.08 4.29 4.53 4.47 

      3.51 3.61 3.95 3.5 

           4.22 3.98 4.32 4.37 

      3.27 3.52 3.92 3.17 

The measures for average cluster sensitivities for the spatial algorithms at a false 

alarm rate of 0.1 are provided in Table 5.3. In all 6 groups of experiments, either 

RSCstd_score  or RSCBayesian had significantly higher values. This indicates that RSC is 

capable of identifying more outbreak areas than the other algorithms. In a similar fashion, 

Table 5.3 also shows the average measures for cluster PPVs (Positive Predictive Values). 
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Both RSC algorithms again performed the best, which suggests the RSC algorithms made 

fewer type II errors than the other algorithms did.  

Table 5.3 Comparison of average cluster PPV’s and cluster sensitivities at a false alarm rate of 0.1; the 

underscored results indicate the best performance and those in bold are not significantly different (at 

α=0.05) from the best. 

Algorithm RSCz-score RSCBayesian BSS 

Cluster 

PPV 

)2.0,4(  K  0.89 0.83 0.54 

)3.0,4(  K  0.89 0.85 0.55 

)2.0,8(  K  0.72 0.75 0.60 

)3.0,8(  K  0.84 0.84 0.56 

)2.0,12(  K  0.76 0.69 0.49 

)3.0,12(  K  0.71 0.70 0.53 

Cluster 

Sensitivity 

)2.0,4(  K  0.93 0.94 0.81 

)3.0,4(  K  0.95 0.95 0.79 

)2.0,8(  K  0.90 0.91 0.76 

)3.0,8(  K  0.91 0.89 0.77 

)2.0,12(  K  0.86 0.91 0.77 

)3.0,12(  K  0.86 0.86 0.71 

 

In the experiments, the average running times for the RSCz-score, RSCBayesian, WAD, 

BSS and KSS are 26 seconds, 24 seconds, 0.22 seconds, 44 minutes and 2.58 seconds, 

respectively. WAD ran faster than any of the spatial algorithms. However, among the 

spatial algorithms, both the RSCstd_score  and RSCBayesian were 100+ times faster than the 

BSS. The running time for each algorithm can be explained theoretically looking at their 

computational complexity. The computational complexity of RSC is      , where   is 

the number of total areas of interest. As I described in Chapter 3.5, BSS has an       

computational complexity, where   is the length of the grid [10]. KSS has an        

complexity for the purely spatial model, where   represents the number of replicated 
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analyses required by randomization tests.      is the computational complexity of the 

pyramid algorithm implemented in the WAD [72]. Please note that the measured average 

running time of the KSS is not strictly comparable since the software SaTScan was 

implemented in a different programming language C.  

5.1.8 Discussion 

I have presented a rank-based spatial clustering algorithm and demonstrated 

several ways in which this approach is preferable to other temporal or spatial scan 

algorithms. I have also demonstrated that RSC using both risk estimation models 

consistently outperforms the other algorithms in terms of detection timeliness while 

having comparable detection powers. As a result, RSC revealed itself to be a more 

desirable algorithm for rapid and early detection of an outbreak.  

One clear advantage to RSC is that it allows us to detect outbreaks in areas which 

are not connected. In some cases, the threshold distance can be adjusted so as to be 

inversely proportional to some density measure of a baseline factor (e.g., population). In 

others, non-residential landforms (e.g., lakes, valleys, etc.) may be attached to their 

nearest census tract and may be considered in the analysis as well. In fact, in the next 

chapter, I will introduce a study conducted using a grid cell as the unit study area and 

search for clusters with adjacent grid cells, where the geographical areas (e.g., ZIP code 

areas) inside two or more connected grid cells can be clustered together when they are 

not connected [73]. 

The accuracy and precision of its detection are also significant. Either an 

inaccurate or unreasonably larger-than-outbreak cluster may result in barriers for 
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epidemiologists to conduct investigations given the very limited resources they typically 

have available. With the results showing that RSC is superior in finding compact clusters, 

it suggests that RSC is an ideal candidate among spatial algorithms for biosurveillance 

systems. 

Another advantage of RSC is that it does not return a pre-determined cluster 

shape. The output of RSC is a combination of a set of adjacent areas (e.g., ZIP code 

areas). A cluster identified by RSC may be any irregular and flexible shape, and the 

shape can be informative and indicative. For example, an elongated cluster may suggest 

an aerosol release of a disease agent that is following a downwind direction.  

In addition to postal code areas as used in this study, other spatial units may be 

applied to spatial algorithms. For example, individual cases can be aggregated into street 

groups for a drill-down analysis, given that a more finely grained data set is available 

(e.g., street-level address is available for analysis). However, when no predefined 

demographic unit is appropriate, such as individual cases which are indicative of an 

environmental hazard (e.g., a radiation leak) or a nosocomial infection (i.e., hospital-

acquired infection), artificial units have to be considered, such as circles centering on a 

nuclear plant or a grid structure displaying ward locations in a hospital.  

For the compared BSS algorithm, I used a 24-by-24 grid structure to cover the 

entire study region (i.e., state of Pennsylvania), with the area of each grid cell being 

approximately 80 square miles. Using a rather coarse grid structure may be one of the 

reasons why BSS performed less well. It would make a more compelling case to compare 

RSC to BSS with a finer grid size. However, to have a finer grid so that each cell can 

cover a single ZIP code area (assuming each ZIP code area covers about 10 square miles 
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in average) we would need a finer than 64-by-64 grid structure. One of our pilot studies 

showed that a BSS with a grid size of 32 required 70+ minutes. Theoretically, 

considering the time complexity of BSS which is )( 4mO , a 64-by-64 grid size algorithm 

might take about 42  times 70 minutes which is about 19 hours. 

  One limit of the study is it employs a simplified outbreak curve. Despite the 

several advantages of the outbreak simulation model used in this study mentioned in the 

Methods Chapter, the outbreak curve was, nonetheless, artificially constructed and 

therefore may not represent the complexity of real outbreaks. It will be more challenging 

to use sophisticated and complicated outbreak simulators because they not only model the 

disease specific features but also consider the stochastic effects to some extent [64][65]. 

There are also multivariate simulators which consider the scenarios when signals of an 

outbreak are present in one or more data types [55]. The utilization of these simulators for 

algorithm evaluation, therefore, will become another substantial study as one of the 

extensions of this work. 

5.2 Grid-based RSC (G-RSC) 

While RSC uses the postal geographic unit (i.e., ZIP code), G-RSC superimposes 

an m-by-m grid window on the study region. Each ZIP code in the region is assigned to 

one of m
2
 cells in the grid based on the longitude and latitude of its geographical centroid. 

The searching mechanism remains the same, but the unit of searching is a cell as opposed 

to a postal code. A benefit to this algorithm is it relaxes the limitation of the connectivity 

constraint at the scale of postal codes used in the previous study. It also overcomes to 
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some extent the bias caused by false spikes produced by noisy data from the single 

isolated areas.  

To evaluate the performance of G-RSC, I used the same evaluation metrics 

discussed above. I then compared its performance with that of the Bayesian spatial scan 

statistic (BSS). I applied the algorithms to semi-synthetic over-the-counter (OTC) 

medicine sales data sets. Each data set was generated by superimposing outbreak data 

onto the baseline data set (which has no known outbreaks to the best of our knowledge).  

5.2.1 Experiments 

 The experimental baseline data set and the outbreak simulator I used in this study 

are the same as those used in the previous study described above. 

Algorithm configuration. I compared G-RSC with the Bayesian spatial scan statistic 

(BSS) [10]. For both algorithms I employed WAD to compute the expected values by 

analyzing the 12-month historical data. I used wavelet transform at resolution level 7 to 

approximately extract the underlying seasonal trends (2
7
=128 days) from a time series [7]. 

I superimposed a 24-by-24 grid onto the state of Pennsylvania with each cell covering 

approximately 80 square miles.   

The experiments involved detecting 4 groups of independently generated 

outbreaks. Each group included 100 data sets, and each was injected with an outbreak 

having the same settings of outbreak size   and outbreak magnitude  .  The tuple,      , 

were chosen from the set, {(4, 0.2), (4, 0.3), (8, 0.2), (8, 0.3)}.  
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5.2.2 Experimental results 

Figure 5.5 shows the ROC curves for the two algorithms G-RSC and BSS for 

each of the four groups of data sets. The areas under ROC were computed and are 

presented in Table 5.4. Figure 5.6 provides the corresponding AMOC curves for both 

algorithms. 

I applied the nonparametric approach proposed by DeLong et al [71] to compare 

the AUROCs of G-RSC and BSS statistically. The results show that in all four groups of 

experiments, G-RSC performed better than BSS (p-value=0.05), but not significantly. To 

compare their timeliness, I performed paired student T-tests on the variable days-to-

detect to determine the difference between the two algorithms at a low false alarm rate, 

0.1 per day (i.e., 3 false alarms are allowed per month). The results here show that G-

RSC was able to detect outbreaks significantly earlier than BSS at a significance level of 

0.05.   

In addition to AUROC and days-to-detect, Table 5.4 also lists the average running 

time of the algorithms. G-RSC was shown to run more than 100 times faster than BSS. 

Moreover, Table 5.4 provides the average cluster PPV values and the cluster sensitivity 

values with 95% confidence intervals obtained at a false alarm rate of 0.1 (per day). In 

most of the experiments, G-RSC had a performance comparable to that of BSS. 

 

 

                   (a)                                                 (b)                                                            
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                   (c)                                                 (d)                                                            

Figure 5.5  ROC curves of the four groups of experiments 

 

                   (a)                                                 (b)                                                            

 

                   (c)                                                 (d)                                                            

Figure 5.6 AMOC curves of the four groups of experiments 

Table 5.4 Comparison of AUROC, running time, cluster PPV and cluster sensitivity; the underscored 

results indicate the best performance and those in bold are not significantly different (at α=0.05) from the 

best. 

Metrics AU-ROC Days to Detect Avg. Run 

Time (secs) 

Cluster PPV 
(95% CI) 

Cluster 

Sensitivity 
(95% CI) 

Algorithms G-RSC BSS G-RSC BSS G-RSC BSS G-RSC BSS G-RSC BSS 

          0.06 0.03 4.67 4.92 21.20 2574.5 0.45 
(0.34,0.58) 

0.45 
(0.31,0.58) 

0.83 
(0.74, 0.92) 

0.89 
(0.81,0.98) 

      0.11 0.08 4.25 4.62 21.48 2556.9 0.45 
(0.36,0.53) 

0.59 
(0.50,0.68) 

0.83 
(0.77,0.89) 

0.79 
(0.72,0.87) 

          0.10 0.07 4.28 4.58 21.48 2540.7 0.41 
(0.33,0.49) 

0.51 
(0.42,0.60) 

0.86 
(0.81,0.90) 

0.83 
(0.77, 0.90) 

      0.15 0.13 3.67 4.00 21.43 2545.9 0.41 
(0.36, 0.47) 

0.54 
(0.49, 0.59) 

0.89 
(0.86, 0.92) 

0.89 
(0.86, 0.92) 

 

5.2.3 Discussion 

With advances in information technology, the number of data types and data 

sources available for public health surveillance is consistently increasing. For example, 
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our OTC data comprises 23 categories and ED chief complaint can be classified into 

multiple syndromes. In addition, data may be available at various scale levels such as 

county, state or even nation. Due to practical concerns, the computation time of an 

algorithm to finish analyzing all available data sets is important. As mentioned in the 

introduction chapter, most of the scan statistic algorithms suffer from excessive running 

times. KSS has a time complexity of O((R+1)n
2
) where n is the number of geographic 

locations in the study and R is the times of randomization required for significance testing 

(e.g. R is usually set to 999 (or greater) in most outbreak detection analysis). The time 

complexity of BSS is O(m
4
) when an m-by-m grid window is applied to the entire study 

region. When m is bigger, the computation time of BSS becomes intractable. However, 

G-RSC has a complexity of O(m
2
). The experimental results in this study showed that G-

RSC ran 100+ faster than BSS with the same grid structure of size 24-by-24, which 

consequently would allow biosurveillance systems to analyze multiple data sets daily or 

even hourly. 

By applying the grid structure in this study, G-RSC was able to outperform BSS 

in terms of both the detection power and timeliness. Since both G-RSC and BSS used 

grid cell as unit study area, the reason why G-RSC performed better can be explained as: 

when the outbreak shapes were irregular, BSS suffered from having innocent areas in the 

rectangular clusters which could possibly worsen its performance. It can be tested in one 

of the future work by comparing the performance of the two algorithms detecting 

rectangular shaped outbreaks.  

There is no significant difference in cluster sensitivity and cluster PPV (except the 

experiment with K=8 and      ) between BSS and G-RSC, partially because both 
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algorithms use a coarse resolution (a grid cell rather than a ZIP code area). However, the 

cluster PPV values of G-RSC were a bit lower than BSS. Since G-RSC is 

computationally efficient, a finer grid window may be applied.     

Applying grid windows for clustering relaxes the connectivity constraint in the 

previous RSC. Two geographical locations can be classified into one cluster as long as 

they are adjacent enough (they are allocated into one cell or neighboring cells), but they 

do not have to be connected. This makes G-RSC capable of analyzing sparse data sets 

covering only small portions of a study region.  

There were limitations with respect to the simulated outbreaks in this study. I only 

considered outbreak ZIP codes that were connected to each other, in accordance with the 

general belief that most infectious but non-contagious diseases are more likely to disperse 

to contiguous geographic locations. In addition, as in the study of the RSC algorithm 

described in Chapter 5.1, the same model used for producing outbreak cases was over-

simplified; it may not represent all real outbreaks. Future work will employ a more 

sophisticated outbreak simulator, such as the Anthrax outbreak simulated by BARD or a 

multivariate outbreak simulator by Zhang et al [55,65]. 
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6.0 The multivariate rank-based clustering (MRSC) 

In disease surveillance, there is often more than one data source with which we wish 

to do surveillance. For example, the RODS system at the University of Pittsburgh 

[1,5,74,75,76] collects data from different sources, such as the patient registry data from 

emergency departments (ED), the over-the-counter (OTC) medication sales from 

pharmacies, and water quality data (including information about water distribution 

systems) from water companies. Using a multivariate approach to analyze these various 

types of data can have several advantages. First, if each type of data set is analyzed 

separately rather than collectively, the statistical power for detecting a disease outbreak 

inherent in all data sets may suffer, possibly due to the fact that individual data stream 

may be prone to noise alone. In addition to eliminating the impact of noisy data, another 

major reason for taking a multivariate approach to disease surveillance is that no single 

data source captures all the individuals affected by the outbreak. Depending on the 

disease, for example, some may go to their pharmacy and buy an over-the-counter 

medication for self-treatment; others may call their physician or a nurse hot-line, while 

others may visit their regular physician, or be sick enough to go to a hospital emergency 

room, or call an ambulance for urgent treatment [40]. At the same time, if the data sets 

are simply added together by taking the sum of the values in each data set, then a signal 



81 

 

present in one data set with relatively low counts may be overwhelmed by the random 

noise in another data set which has relatively high counts. 

As I mentioned in Chapter 3.0, new methods have been developed to improve the 

overall detection capabilities. However, most current algorithms are vulnerable to 

dramatic and unpredictable shifts in the health-care data that they monitor [48]. These 

shifts can occur during major public events, such as the Olympics or big conferences, as a 

result of population surges and public closures. Shifts can also occur during epidemics 

and pandemics as a result of quarantines, the worried well flooding emergency 

departments (e.g., during H1N1 flu pandemic [77]) or, conversely, the public staying 

away from hospitals for fear of nosocomial infection. Most surveillance systems are not 

robust to such shifts in health-care utilization because they do not adjust baselines and 

alert-thresholds to new utilization levels. As a result, it is necessary to consider the 

baseline shifts in order to deal with public-health crises and major public events that 

threat to undermine health-surveillance systems. In this dissertation, I want to consider 

this baseline shift phenomenon as one of the motivations and propose a new approach to 

tackle this problem.  

As I have explained in Chapter 4.0, both ED and OTC data reflect, to some extent, 

the ways by which people seek treatment [56,57,58]. Because these treatment seeking 

behaviors are difficult to measure, the data streams from both data sources are equally 

weighted in this study. One disease outbreak can be thought of as a process that affects 

some subset of the data streams following some probabilistic characteristics. In this 

proposed model, I assume that an outbreak causes an increase in counts (for some subset 

of data streams). Specifically, if a flu-like outbreak is present, we may expect to see both 
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an elevation of ED visits by patients with constitutional syndrome and an increase in 

OTC sales of anti-fever medications and thermometers.  

Like the univariate rank-based clustering algorithm described in Chapter 5.1, the 

goal of the multivariate algorithm is outbreak detection and localization with fewer false 

alarms. That is, we want to decide if there is a disease outbreak given the data; if so, we 

want to determine the affected outbreak locations. More specifically, we are given a 

specific disease and   data streams, and each of them consists of time series data 

collected at a set of geographical locations   , for        . I assume within the   data 

streams there are     data streams which are related to the modeled disease and   

 +1 data streams are unrelated. To model the given disease, I prepare a data set   as the 

following. Consider   as a matrix and    is column  . I use columns           , to 

store the data streams which are related to the modeled disease, respectively; I use 

column    to store the “other” unrelated data streams, which column consists of a time 

series of the summed data over all data streams subtracting the counts of the data streams 

         . From the perspective of statistical testing, this data stream can be 

considered a control group because the data share a common characteristic, that is, “non-

relevant to the disease outbreak of interest”. For example, assume we are given eight data 

streams (either from ED or OTC data sets) and we want to detect a flu-like outbreak that 

is believed to have effects on three of those data streams: 1) a time series of the counts of 

ED visits of patients with constitutional syndrome (CO); 2) a time series of sales of OTC 

anti-fever medications (AF); and 3) a time series of the counts of sales of thermometers 

(TH). We can model the disease in accordance with the following:    consists of the data 

streams of CO;    consists of the data stream of AF;    consists of the data stream of TH; 
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and    consists of a time series encompassing the remaining five data streams deemed 

irrelevant to flu-like diseases—for instance, the data streams consisting of OTC anti-

diarrhea medication sales or ED visits of patients with rash syndrome. 

I want to compare the set of alternative hypotheses      , each representing the 

occurrence of outbreak of interest in some region  , against the null hypothesis   , 

which signifies that no such outbreak has occurred in any area in the entire study region. 

Like Equations (5.11) and (5.12), the Bayes’ Theorem to compute the posterior 

probability of each       then can be written as the following formula: 

           
                  

                                   

 (6.1) 

where                  .  

When choosing the set of search regions  , we have different methods.  For 

example, Kulldorff’s spatial scan statistic [8][49] searches over circular or elliptic regions 

of continuously varying radii or axes, centered at each location  . Neill’s Bayesian spatial 

scan statistic [10] uses an m-by-m grid to cover the entire study region and each region is 

composed of cells in a rectangle of various sizes and locations. In this study, I use the 

same heuristic methodology that I described in Chapter 5.1.3, where the unit study area is 

ZIP code area. I sort all of the areas in descending order based on the risk rates estimated 

for all study areas. The search for emerging clusters is greedy. It starts from the highest 

ranked area. This area itself becomes the first potential cluster. Then in the second 

iteration, the area with the second ranking is considered for clustering. If this area is 

adjacent to the first, both areas merge to a bigger cluster.  If not, they remain two separate 

clusters. Similarly, when we consider the next area—that is the area which ranks highest 

among those areas not yet analyzed— the algorithm checks if it is adjacent to one or 
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more of the previously constructed clusters. If so, the algorithm unites the new area and 

its adjacent clusters into one cluster; otherwise, it constructs a separate single-area cluster.  

A risk rate of an area    given multiple data streams can now be defined as: 

      
 

   
         

 

   
 (6.2) 

where        represents the standard score risk rate for area   estimated using data 

stream   which has been described in Chapter 5.1.1.    is the weighting factor that can 

be adjusted empirically to suit the user’s different preferences on different data streams. 

Please note that the index variable   starts from 2, since the data stream   is the time 

series encompassing the remaining data streams that are unrelated to the modeled disease. 

6.1 Computing likelihoods using the Multinomial-generalized-Dirichlet (MGD) 

model 

One way to model both the disease-relevant data streams and also the control data 

streams is to use pair-wised Binomial-Beta distribution. More specifically, we can pair 

each disease-relevant data stream with each non-disease relevant data stream and model 

the change caused by a disease outbreak by using hierarchical Binomial-Beta distribution. 

If we do not have prior knowledge on how to pair the data streams, it is natural to find out 

all the combinations of pairing and perform the test on each of the combinations as in 

[48]. If we have   disease-relevant data streams and   control data streams (i.e., non-

disease relevant data streams), the number of the pairs we need to consider would be   . 

However, it will be convenient to have a model that considers all the data streams as a 
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whole. Thus, this reason leads me to consider the hierarchical Multinomial-generalized-

Dirichlet distribution and I will explain how in the following.   

I assume that the counts in the given data streams have been generated from a 

hierarchical Multinomial-Generalized-Dirichlet (MGD) model. Since all these data 

streams are categorical and exclusive, it is natural to use multinomial distribution to 

model the counts as vector               , where I use            to represent 

the count in each data stream of interest and              to represent the rest 

of the counts (  is the total count within a particular time interval over all the data 

streams under modeling). 

In the literature of Bayesian analysis, Dirichlet distribution has been used as a prior 

for statistical models because it is the conjugate prior of both multinomial and categorical 

distributions. Spiegelhalter et al [78] used Dirichlet distrution to study the frequencies of 

congenital heart disease. Paulino and Pereira [79] developed a Bayesian approach to 

analyze incomplete categorical data that does not follow any specific pattern. Lange [80] 

assumed that allele frequency had a Dirichlet prior, and constructed a model to compute 

the forensic match probabilities. Dirichlet distribution, as a special case of generalized 

Dirichlet (GD) distribution, also has been widely used in geology, biology, and chemistry 

for handling compositional data which are subject to non-negativity and constant-sum 

constraints [27]. The statistical properties of such constrained random variables have 

been of interest in a variety of fields [81,82,83].  

Generalized Dirichlet distribution has a more general covariance structure than 

Dirichlet distribution. This makes the generalized Dirichlet distribution to be more 

practical and useful [27]. Some contour graphs for Dirichlet distribution         , 
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                are shown in Figure 6.1. The four contours in each graph are 0.05, 0.2, 

0.5 and 0.9 contours comparing to the highest density value. No matter the value of  , the 

expectations of the three variables are all 
 

 
.   Figure 6.2 shows some contour graphs for 

generalized Dirichlet distribution for               ,                  No matter 

the value of  , the expectations of the three variables are all 
 

 
 too. However, by 

comparing Figure 6.1 and Figure 6.2, we can see that the contours of the Dirichlet 

distributions are symmetric, but the contours of the generalized Dirichlet distribution are 

not. This implies that an analyst whose prior is a generalized Dirichlet distribution can 

have different degree of beliefs on the random variables that have the same expected 

value.  
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Figure 6.1 Contour graph for Dirichlet distribution. Adapted from “Generalized Dirichlet distribution in 

Bayesian analysis”, By Tzu-Tsung Wong, 1998. 
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Figure 6.2 Contour graph for generalized Dirichlet distribution. Adapted from “Generalized Dirichlet 

distribution in Bayesian analysis”, By Tzu-Tsung Wong, 1998. 

As I have described in Chapter 2.0, any two variables in                will be 

negatively correlated when   follows a Dirichlet distribution. However, in some domains, 

such as public health surveillance, two random variables may be positively correlated. 

For example, if   models the weights of the OTC medication sales in different categories 

(e.g.,    models the weight of anti-fever medications sales, and    models the weight of 
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cough/cold medications sales,    ), it is possible that    and    are both increased, i.e., 

positively correlated when there is an influenza outbreak occurring and the infected 

people are likely to have both symptoms. Hence I chose the GD distribution instead of 

the Dirichlet distribution based on the following two facts: 1) GD allows positive 

correlation among data streams, and 2) GD distribution is the conjugate prior of 

multinomial distribution used in our Bayesian model [27].   

6.2 Bayesian inference 

As described in the beginning of this chapter, to compute the posterior probability 

of each cluster   using the Bayes’ Theorem we need to compute the marginal likelihood 

          . Since our alternative hypothesis is that there is a cluster   having an 

outbreak and there is no outbreak anywhere else, the marginal likelihood can then be 

written as                                         , where         

                             , 

                                                  and  ’s and  ’s are the 

hyper-parameters of MGD distribution.    

Since the observed counts                  of each area   in the cluster   (i.e., 

   ) follows a multinomial distribution with the parameter priors, we can then integrate 

over all possible latent variables    to compute the marginal. Since             and 

                  follow the same inference, I only derive             in the 

following and write      and      to simplify notation. 
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 (6.3) 

where         
 
    is the total counts across all data streams for area  .  

By explicitly writing out the formula for GD distribution and Multinomial distribution, 

we get: 

           

     
      

    
    

    

 

   

 

            

 

   

   

    

    

 

      

  
 

     
      

    
    

    

 

     

 

            

 

   

   

   

    

 

   

  
 

 

(6.4) 

where   
 

            
   

  
       

 
      

           
   

     and               for data stream   . 

After reorganizing Equation (6.4), we get: 

           

     

           
    

         
    

 

     

 

            

 

   

   

  
 

 
(6.5) 

Because 

GD(                
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   (the total area under a pdf is 1),  

            can then be computed in a closed form. Eventually, we can get: 
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(6.6) 

 Similarly, let         and        . We can then write                   

as: 

                 

   
       

 
      

           
   

 

     

 
                        

 
      

          

   

   

 

(6.7) 

Again, the likelihood of the non-hypothesis         is the following if we write 

      and        as: 

           

   
       

 
      

           
   

 

   

 
                    

 
      

          

   

   

 

(6.8) 

 By plugging Equations (6.6), (6.7) and (6.8) into Equation (6.1) which applies the 

Bayes’ Theorem, we can get the posterior probability of having an outbreak happening in 

cluster  : 

           
                  

                                   

 
                                    

                                                         
 

(6.9) 
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6.3 Estimating hyper-parameters 

I use the method of moment matching to estimate the prior parameters from 

historical data. The first and second moments are readily obtained from the results given 

in [28]. 

      
  

     
 

  

     

   

   

           

(6.10) 

              
    

       
 

    

       

   

   

                  

(6.11) 

We can solve this for each   recursively from     to      and let    

 
    

       
   
     for           and     . Eventually, we get 

   
         

        
   
         

 
(6.12) 

   
      

 
           

        
   
         

 
(6.13) 

where             
    

  

     
, for          .  

Considering the historical data as a random sample (             ),   

     , we can estimate        
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    for          . 
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6.4 Modeling outbreak effects 

In order to model the alternative hypothesis,      , we need to consider the 

different effects of a disease outbreak on different data streams. In my proposed model, 

the effects of a disease outbreak on the data are determined by values    defined for the 

  data stream, respectively. In other words, given an alternative hypothesis,      , with 

  being the region affected by the disease outbreak of interest, I use an MGD distribution 

with parameters (    ;   ) where   is the identity matrix of size     to model the 

data in  . The vector of effects                  changes the expected values of the 

parameters in the multinomial distribution from       
  

     
 

  

     

   
     to       

    

       
 

  

       

   
    by multiplying    by   . In the following, I consider two 

scenarios of outbreaks: 1) the outbreaks have same effects on all the disease-relevant data 

streams; and 2) the outbreaks have different effects on different disease-relevant data 

streams. 

6.4.1 Modeling same outbreak effects on different disease-relevant data streams 

When there is no prior knowledge which can be assessed about the characteristics 

of a disease outbreak, we usually assume the outbreak will have the same effects on the 

data streams. Consider the effect vector                  where I set      and 

     for          , the expected value of    will then be reduced from 
  

     
 to 

    

       
 but all the expected values of         will be increased by a factor of 
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   , for     (see Equation (6.10)). Recall in a matrix of data  , I 

put all the data streams which are believed to be affected by the disease of interest in the 

column    to column    and the rest of the unrelated data are summed into one column 

  . In this way, we are able to model the alternative hypothesis,      , since all      , 

   , of the data in region   are increased by the factor of   .  

The distribution of    is not only dependent on the specific disease outbreak we 

are interested in but also on the intensity of the outbreak signals. Here I assume a 

simplified model, in which the effect variable    follows a discrete uniform distribution 

between [      ) with   possible values. For example, if a given outbreak has an effect 

variable    which follows the discrete uniform distribution in the range         with 9 

values in between, then    is equally likely to be the values in the set   {0.1, 0.2, 0.3, 

0.4. 0.5, 0.6, 0.7, 0.8, 0.9}. The marginal probability of the alternative hypothesis 

likelihood is then computed as: 

                              

 

 
 

   
             

                   

 

(6.14) 

where             . 

 In Chapter 6.5.2 and 6.5.3, I simulate two sets of outbreaks using the multivariate 

spatial temporal event simulator described in Chapter 4.3. I assume same data coverage 

on different data streams; thus the strength of the injected outbreaks are same for the all 

the disease-relevant data streams. I apply both the Multinomial-Dirichlet (MD) model 

and the Multinomial-generalized Dirichlet (MGD) model in an MRSC algorithm to detect 
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the simulated outbreaks and measure the performance of detection. In Chapter 6.5.4, I 

compare the MRSC using an MGD model to two other multivariate algorithms, MKSS 

and MBSS.  

6.4.2 Modeling different outbreak effects on different disease-relevant data 

streams 

In Chapter 6.4.1, I introduced the way I model outbreaks having the same effects 

on different data streams. Nonetheless, it is necessary to study the scenario when 

different data streams contain outbreak signals with different magnitudes as well. One 

reason is that some diseases may affect different data streams to different extents. For 

example, among all the symptoms of SARS, cough and fever are most common whereas 

diarrhea and nausea are less common. Therefore, if a SARS outbreak occurs, the data 

streams recording anti-fever and anti-coughing medication sales may have stronger 

signals than the data stream of anti-diarrhea medication sales. Another reason to study 

this scenario is that coverage of the data sources may differ depending on the surveillance 

system used to collect data. For instance, the RODS system has different market-share 

coverage between OTC stores and emergency departments in hospitals.  

In order to better model data streams with different signal strength, we need to 

find a set of    (       ) values such that the MGD model with parameters       

and    can fit the data under the alternative hypothesis,      , with the region   being 

the affected areas by the disease outbreak of interest.  

Given a disease outbreak, I assume the proportionality constants of the elevations 

among all the disease-relevant data streams can be assessed by domain experts or learned 
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from training data. For example, we may have the knowledge that the increase percentage 

of data stream   caused by a certain type of disease outbreak will be twice of that of data 

stream  . Mathematically, let    represent the expected values of multinomial 

distribution parameters (     ) before an outbreak occurs, and     represent the expected 

values (      ) after the outbreak occurs, and let    
      

  
 (     represent the 

increase in percentage for data stream  . In addition, as in Chapter 6.4.1, I define      

and as equally likely to be the values in the set   {0.1, 0.2, 0.3, 0.4. 0.5, 0.6, 0.7, 0.8, 

0.9}. Given the proportionality constants among   ’s (   ) and the value of   , we can 

then solve for    (   ). I describe the formula in the following paragraph.  

Recall that    
  

     
 

  

     

   
    is recursively dependent on          .  Let 

    
    

       
 

  

       

   
   , and     

    

       
. Given the constraint of the multinomial 

distribution where       
   , the total change across all data streams should be 0, that 

is         
   . Eventually,    (     can be computed recursively as the following 

given   ,    , and the proportionality constants    of   ’s (see 7.2Appendix D). 

   
  

  

   

     
 

(6.15) 

where     
   

           
   

 and        
      

     
 
   

     for    . 

In Chapter 6.5.5 (Experiment IV – varied outbreak effects on different data 

streams), I simulate outbreaks by using the multivariate spatial temporal event simulator 

described in Chapter 4.3. I define different data coverage on different data streams; thus 

the strength of the injected outbreaks are different for the data streams. As I mentioned, 

the proportionality constants among   ’s can be assessed either by domain experts or 
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learned from previous known outbreaks using machine learning approaches. I also 

describe how I learned the values of   ’s from the simulated outbreaks in Chapter 6.5.5 

by using maximum likelihood.  

6.4.3 Detecting outbreaks from multiple data streams with a time lag 

Since multiple data sources are available for disease surveillance, people have 

been investigating the temporal correlations between different data types, such as 

between the OTC thermometer sales and ED visits for Influenza like illness [84]. 

Although temporal correlations between OTC and ED data during an outbreak are hard to 

estimate from data because few existing training data capture the effects of a large-scale 

epidemic on these data sources over the same period, it seems logical to believe that time 

lags exist. For example, the supposition exists that most ED event times occur later than 

OTC event times if cases tend to self-treat with OTC products earlier in the course of an 

illness and visit an ED later in the course of the same illness. In other words, over-the-

counter (OTC) medications are commonly taken before or instead of seeking medical 

care [85,86,87]. The data stream of medication sales from OTC stores therefore might 

contain earlier cases of communitywide illness than the data streams of ED patient visits. 

In Chapter 6.5.6, I apply the MGD model to analyze data streams which have been 

injected with time-lagged outbreaks cases. I assume that the time lag on different data 

streams with respect to a certain disease is already known or can be learned from 

literature. The hypothesis of the study is that the MGD model can be helpful to detect 

outbreaks with time lags by assuming early data streams have larger elevation than the 

later data streams. I test this hypothesis in Experiment V (Chapter 6.5.6).  
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6.5 Evaluation 

6.5.1 Experimental data sets 

Emergency departments and drug stores are two main resources from which the 

RODS (Real-Time Outbreak and Disease Surveillance) system collects data [1,74,76]. 

The data include patient ED registration information from more than 100 health providers 

in Pennsylvania and also cover OTC medication purchases from more than 30,000 drug 

stores of 13 companies in the U.S. In all my experiments, I used seven data streams from 

either ED or OTC data sources in Allegheny County, Pennsylvania, which include daily 

counts (sales or patient visits) of anti-fever OTC, diarrhea remedies OTC, thermometer 

OTC, hydrocortisones OTC, gastrointestinal ED, constitutional ED and rash ED.  

Additional data streams, such as stomach remedies OTC, neurological ED, etc., are also 

available, but these disparate data streams are less related to the infectious diseases we 

are interested in and so they were not considered in the analysis in this study. I will 

further discuss this in the discussion (Chapter 6.6). 

The temporal coverage of the data set is the 24 months between Jan. 1, 2007 and 

Dec. 31, 2008. The geographic region in this study is Allegheny County, Pennsylvania. 

As in my previous study, I removed partial data which resulted from an imperfect data 

collection process (described in the following); they would bias an algorithm’s detection 

power significantly since they do not correctly reflect the actual behaviors of medication 

purchases by patients. I defined an abnormal reporting as a case when a store or an 

emergency department did not send any record in any of the 23 OTC categories or any of 

the 9 ED syndrome categories for more than 27 days (allowing for a 5% data dropping 
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rate plus 3 federal holidays each year). I excluded the drug stores and emergency 

departments with abnormal reporting. In the end, my data set included data aggregated 

into 54 Zip code areas in Allegheny County which had been reporting data for all of the 

seven streams during the entire study period.   

6.5.2 Experiment I – detecting flu-like disease outbreaks  

In this set of experiments, we model flu-like disease outbreaks. Among the seven 

data streams, we believe a flu-like disease outbreak will have effects on three: anti-fever 

OTC (AF), thermometer OTC (TH) and constitutional ED (CO). The other four data 

streams are believed to remain unaffected and their daily counts are summed together to 

form the data stream which I call “Others”. Recall both the MD and MGD models have a 

requirement for the order of the input data types. They model the elevations in the data 

streams in column       and the decreases in the data stream in the first column. Thus, 

the input data streams for the MRSC algorithm have the order of Others, AF, CO and TH.  

I used the multivariate spatial-temporal outbreak simulator proposed by Zhang 

and Wallstrom [55] described in Chapter 4.3. This model is able to simulate outbreak 

data simultaneously in more than one data types by assuming that the counts for each 

data type follow either the same or different random processes. In this study, I used the 

simple version to generate outbreak data for the three data types, AF, TH and CO by 

assuming the cases for all the data types are drawn from linear Poisson processes with 

increasing means which are proportional to the data means. The behavior vector in this 

model was set to be (1, 1, 1, 0, 0, 0, 0, 0). This means the model does not consider any of 

the behaviors that one patient will contribute to more than one data types at the same time 
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interval, i.e., that a patient will not purchase an anti-fever medication from pharmacy if 

he/she has been to an ED and vice versa. The spatial disease risk function was set to be 

flat, which means the risks of infected regions   show no differences in terms of their 

distance to the outbreak center. 

I ran 4 groups of simulations in order to compare the detection power of different 

methods, given that the background data injected with outbreaks had varied intensities. 

Each outbreak was arbitrarily set to have a     day duration and to infect at most 8 ZIP 

code areas. The total injected counts was set to be     , where   was chosen from {
 

 
, 

 

 
, 

 

 
,1} and    is the average daily counts of data stream   . Each group included 100 

different outbreaks, and each of them was superimposed on the background data stream 

with a randomly selected outbreak start date. 

The outbreak effect vector                 was set to be            where    

is equally likely to be any value in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (i.e., 

discrete uniform distribution). 

I compared the MRSC algorithm’s performance analyzing the four data streams 

simultaneously with that of the RSC algorithm’s performance analyzing each data stream 

separately, and I also compared MRSC with the joint results of RSC algorithms (JRSC) 

by simply computing the product of the three posterior probabilities of a cluster with each 

computed using univariate RSC analyzing one of the three disease-relevant data streams.  

The MRSC algorithm applying the Multinomial-Dirichlet model is called MRSC_MD 

and the one applying the Multinomial generalized Dirichlet model is called MRSC_MGD. 

The univariate detectors applied to different data streams are named as RSC_AF, 

RSC_CO and RSC_TH, respectively.  
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In Figure 6.3 and Figure 6.4, I plot both the partial ROC curves and the partial 

AMOC curves with false positive rates less than 12 per two months, respectively. I 

computed the areas under the partial ROC curves and tested the difference (Table 6.1). In 

all four groups, MRSC_MGD had the best performance in terms of ROC curves and 

areas under the curves; but there are no significant differences between the MRSC_MGD 

and the others for all   (  
 

 
 
 

 
 
 

 
  ).    

As a practical summary measure, I considered the average “days to detect” for 

each method, at a fixed false positive rate of 1 per month. For this measure, any missed 

outbreaks are penalized for the entire duration of the outbreak, and thus counted as     

days to detect. The detection performance for each method for each of the four outbreak 

intensities is presented in Table 6.2. 

  

(a)   
 

 
                                                     (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.3  ROC curves of the four groups of experiments 
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(a)   
 

 
                                                      (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.4  AMOC curves of the four groups of experiments 

Table 6.1 Comparison of the areas under the partial ROC curves with false positive rates in the range [0, 

12]. The underscored results are the best performance and those in bold are not significantly different (at 

      ) from the best. 

  MRSC_MGD MRSC_MD JRSC RSC_AF RSC_CO RSC_TH 

 

 
  0.1523 0.1171 0.1230 0.0822 0.0915 0.0891 

 

 
  0.1787 0.1683 0.1701 0.1584 0.1161 0.1212 

 

 
  0.1866 0.1822 0.1834 0.1842 0.1405 0.1449 

1 0.1959 0.1898 0.1902 0.1928 0.1572 0.1611 

 

Table 6.2  Average days to detect at 1 false alarm per month, for each of the 4 groups of simulations. The 

underscored results are the best performance and those in bold are not significantly different (at       ) 

from the best.  

  MRSC_MGD MRSC_MD JRSC RSC_AF RSC_CO RSC_TH 

 

 
  6.33 6.67 6.32 6.99 6.68 6.72 

 

 
  5.09 6.08 5.74 6.36 6.56 6.38 

 

 
  4.18 5.30 4.82 5.42 6.32 6.33 

1 3.60 4.52 3.78 4.51 5.96 5.76 

 

 As can be seen in Table 6.2, considering multiple data streams altogether, 

MRSC_MGD was able to detect outbreaks earlier than MRSC_MD, JRSC and the 
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univariate detectors in three sets of experiments when   
 

 
 
 

 
   given the false alarm 

rate is 1 per month. With the same false alarm rate, the achieved timeliness of 

MRSC_MGD is significantly better than MRSC_GD and the three univariate detectors 

RSC’s in three out of four groups when   
 

 
 
 

 
  . MRSC_MGD also has significantly 

better timeliness than JRSC when   
 

 
 
 

 
. 

6.5.3 Experiment II – detecting diarrhea disease outbreaks  

To further test my hypothesis that multivariate approaches can be helpful for early 

outbreak detection, I set up a second set of experiments modeling diarrhea disease 

outbreaks. I believed that a diarrhea outbreak would have effects on two of the seven data 

streams: Diarrhea remedies OTC (DR) and Gastrointestinal ED (GI). The other five data 

streams I believed would remain unaffected and so their daily counts were summed 

together to form the data stream called “Others”. The input data streams for our MRSC 

algorithm had the order of Others, DR and GI. 

I used the same multivariate spatial-temporal event simulator proposed by Zhang 

and Wallstrom [55] used in Experiment I. Also, I again used the simple version to 

generate outbreak data for the two affected data types, DR and GI, by assuming the cases 

for all the data types are drawn from linear Poisson processes with increasing means 

proportional to the data means. The behavior vector in this model was set to be (1, 1, 0, 0), 

which again assumes that no patient contributes to more than one data type.  The spatial 

disease risk function was set to be flat, meaning the risks of the infected regions   have 

no differences in terms of their distance to the outbreak center. 
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As in Experiment I, I ran 4 groups of simulations in order to compare the 

detection power of different methods across outbreak scenarios with varied intensities. 

Also as above, each outbreak was arbitrarily set to have a     day duration, and each 

infected at most 8 ZIP code areas. The total injected counts was set to be     , where   

was chosen from {
 

 
, 

 

 
, 

 

 
, 1} and    is the average daily counts of data stream   . Each 

group included 100 different outbreaks, and each outbreak was superimposed on the 

background data stream with a randomly selected outbreak start date. 

The outbreak effect vector              was set to be          where    is 

equally likely to be any value in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (i.e., 

(discrete uniform distribution). The RSC algorithms’ analyses of each data stream were 

named RSC_DR and RSC_GI, respectively.  

In Figure 6.5 and Figure 6.6, I plot the partial ROC curves and the partial AMOC 

curves for the algorithms, respectively. I computed the areas under the partial ROC 

curves and tested the difference (Table 6.3). MRSC_MGD had the best performance in 

terms of ROC curves and areas under the curves in all four groups of experiments, but the 

differences were not significant.   

The timeliness performance for each method, for each of the four outbreak 

intensities, is presented in Table 6.4. Again, I measured the average “days to detect” for 

each method at a fixed false positive rate of 1 per month. MRSC_MGD was the best 

performing algorithm in all four groups where   
 

 
 
 

 
 
 

 
  . It detected the outbreaks 

significantly earlier than RSC_GI when   
 

 
 
 

 
   and than MRSC_MD when   

 

 
 
 

 
 
 

 
. 
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(a)   
 

 
                                                     (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.5  ROC curves of the four groups of experiments 

 

(a)   
 

 
                                                      (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.6  AMOC curves of the four groups of experiments 

Table 6.3  Comparison of the areas under the partial ROC curves with false positive rates in the range [0, 

12]. The underscored method is the best-performing method and methods in bold are not significantly 

different (at       ) from the best.. 

  MRSC_MGD MRSC_MD RSC_DR RSC_GI 

 

 
  0.1613 0.1418 0.1458 0.1177 

 

 
  0.1845 0.1816 0.1792 0.1558 

 

 
  0.1921 0.1904 0.1868 0.1754 

1 0.1947 0.1932 0.1915 0.1804 
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Table 6.4 Average days to detect at 1 false alarm per month, for each of the 4 groups of simulations. The 

underscored method is the best-performing method and methods in bold are not significantly different (at 

α=0.05) from the best.  

  MRSC_MGD MRSC_MD RSC_DR RSC_GI 

 

 
  5.86 6.59 6.26 6.03 

 

 
  4.81 5.69 5.10 5.62 

 

 
  3.66 4.63 3.93 5.01 

1 3.33 3.83 3.64 4.50 

 

In Experiment I and II, MRSC applying the Multinomial-generalized-Dirichlet 

model (MRSC_MGD) consistently performed better than that applying the Dirichlet 

model. The results confirm the fact I mentioned in Chapter 2.3.4 that when   

             has a Dirichlet distribution any two random variables in   will be 

negatively correlated. However, in our cases, two random variables may be positively 

correlated (e.g., elevations in all the disease-relevant data streams), and hence the 

Dirichlet distribution would not be the better choice to be a prior distribution in our 

multivariate analysis than the generalized Dirichlet distribution. Therefore, in the 

following experiments, I only focus on the study using the MGD model.  

6.5.4 Experiment III – comparing to other multivariate algorithms 

As described in Chapter 3.3, some researchers have proposed multivariate 

approaches for use in the field of disease surveillance. In this sub-chapter, I compare 

MRSC_MGD with two other multivariate algorithms named the multivariate scan 
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statistic by Kulldorff et al (MKSS) [40] and the multivariate Bayesian scan statistic 

(MBSS) by Neill et al[43]. MKSS is an extension of a very well-known algorithm, the 

spatial scan statistic, and its implementation (SaTScan) have been used in many areas 

[88,89]. MBSS is an extension of the Bayesian spatial scan statistic and has been 

demonstrated to have better performance than MKSS [40]. Like MRSC_MGD, MBSS 

utilizes Bayes’ Theorem to compute the posterior probability of each potential cluster. In 

the following, I show the results of the comparison on two experimental data sets. One is 

the same flu data set as used in Experiment I. The other is a data set injected with both 

simulated flu cases and cases caused by some background events (e.g., big conference 

meetings or super bowl games). I used the multivariate spatial and temporal event 

simulator, described in Chapter 4.3 to generate the cases in both data sets. 

Simulated flu data set 

MKSS and MBSS were applied to the flu data set and the results were compared 

with MRSC_MGD’s. I applied a purely spatial model and standard Monte Carlo method 

(for the computation of p-value) in SaTScan (MKSS implementation) in MKSS. 

However, the algorithm generated 6 false alarms per month when analyzing historical 

data (believed to have no underlying outbreaks) with the lowest threshold p-value at 

0.001, which means the algorithm cannot detect outbreaks given a false alarm rate lower 

than 6 per month (see 7.2Appendix B for parameter setting of SaTScan). For MBSS, the 

grid size was set to be 16 by 16. The ROC and AMOC curves of MRSC and MBSS are 

showed in Figure 6.7  and Figure 6.8 (note no performance of MKSS can be shown in the 

figures with false alarm rates less than 12 per TWO months).   
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(b)   
 

 
                                                      (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.7 ROC curves of MRSC_MGD and MBSS analyzing three data streams in the flu data sets. 

 

 

(c)   
 

 
                                                      (b)   

 

 
 

 

(d)   
 

 
                                                     (d)     

Figure 6.8 AMOC curves of MRSC_MGD and MBSS analyzing three data streams in the flu data sets. 

Table 6.5  Comparison of the areas under the partial ROC curves with false positive rates in the range [0, 

12]. The underscored method is the best-performing method and methods in bold are not significantly 

different (at       ) from the best.. 

  MRSC_MGD MBSS 

 

 
  0.1523 0.1685 

 

 
  0.1787 0.1835 
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  0.1866 0.1899 

1 0.1959 0.1928 

  

Table 6.6 Average days to detect at 1 false alarm per month, for each of the 4 groups of simulations. The 

underscored method is the best-performing method and methods in bold are not significantly different (at 

α=0.05) from the best.  

  MRSC_MGD MBSS 

 

 
  6.33 5.58 

 

 
  5.09 4.80 

 

 
  4.18 4.16 

1 3.60 3.44 

 

In the experiments, the average running times for the MRSC_MGD, MBSS and 

MKSS are 0.54 seconds, 0.23 seconds and 2.53 seconds respectively. MBSS ran faster 

than two other spatial algorithms. One reason is that in [43], the likelihood ratio for each 

spatial location is pre-computed by the algorithm MBSS. When computing the log-

likelihood ratio for a given spatial region, the algorithm only needs to sum the log-

likelihood ratios for all locations in that region. The algorithm has an added benefit that 

the expensive likelihood ratio computations are only performed a number of times 

proportional to the number of locations, rather than the (much larger) number of regions. 

Note again that the running time of MKSS cannot be compared strictly with others 

because it was implemented in SaTScan v9.1 which was programmed in different 

language C. 

We can see from the comparison that MBSS performed slightly better than 

MRSC_MGD. Statistically speaking, there is no significant difference between the two 
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algorithms in most of the experiments except that MBSS detected outbreaks significantly 

earlier than MRSC_MGD given at most one false alarm per month is allowed when the 

outbreaks are weak (  
 

 
 , at       ). One of the possible reasons that MRSC_MGD 

did not perform as well as MBSS did might be due to the incorporation of the non-

disease-relevant data streams in the analysis. Because of the nature of MGD model 

applied in MRSC, the algorithm cannot detect the outbreaks if the non-disease relevant 

data streams also have elevated signals in the same areas where outbreak cases occur. In 

addition, if there is a drop of the counts in the non-disease relevant data streams, the 

algorithm with MGD model would also have signaled a false alarm.  

Simulated flu data set with background events 

 Social events, such as super bowl games, Olympics, conference meetings, etc., 

can cause population surges at event locations. A big population surge may cause 

elevated signals in biosurveillance systems. However, different from disease outbreaks, 

elevated signals may occur in most of the data streams, not only disease-relevant data 

streams. For example, the Hot August Nights event in Reno, Nevada (Washoe County) 

usually brings 50-60K people to the city every year during the first week of August 

where the city population is normally only about 220K. Our RODS system captured 

simultaneously increased counts of OTC anti-diarrhea, rash, anti-fever, cough/cold 

medication sales in Washoe during every first week of August when this event is held in 

Reno (Figure 6.9). Another example where increased population affects data streams is 

the Cherry Blossom Festival in DC between the end of March and the beginning of April 

every year when people go to celebrate the peak bloom period. Figure 6.10 shows eight 

data streams that almost have simultaneous elevations because of the event. 
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Figure 6.9  Four data streams of NRDM categories (Anti-Diarrhea, Cough/Cold, Rash and Thermometers) 

between Aug. 2, 2008 and Aug. 7, 2008 in Washoe County Nevada. 

 

Figure 6.10  Eight data streams of NRDM categories (Anti-Diarrhea, Anti-Fever Adult, Chest Rubs, 

Cough/Cold, Baby/Child Electrolytes, Nasal Products, Rash and Thermometers) between Apr. 3, 2011 and 

Apr. 8, 2011 in Washington DC. 

In order to demonstrate the hypothetical advantage of MRSC_MGD by modeling 

not only the disease-relevant data streams but also other non-disease-relevant data 

streams, I simulated such background events using the multivariate spatial temporal event 

simulator as well (see Chapter 4.3). I assumed that cases captured during social events 

follow the flat template (with a random process) in both affected spatial and temporal 

dimensions. Since it is common for the number of cases in different data streams to 

increase to some similar extent due to the population surge, the magnitudes were set to be 

same for all the data streams including not only the disease-relevant but also the non-

disease-relevant ones. Ten events were simulated and the cases were injected into all the 

background streams of the affected spatial areas. The magnitudes of the events were set 
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to 1.0 (      . Each event covered eight ZIP codes and lasted for seven days. The 

simulated flu outbreaks used in Experiment I were then injected on the top of the 

background data. I then tested the detection performances of the two multivariate 

algorithms MRSC_MGD and MBSS on the data sets with injected cases caused by either 

outbreaks or underlying events. To distinguish the algorithm performance from that of 

the MRSC_MGD and MBSS applied to the data sets without background events, I call 

these MRSCE and MBSSE, respectively. Both ROC curves and AMOC curves are showed 

in Figure 6.11 and Figure 6.12, respectively. 

    

(a)   
 

 
                                                      (b)   

 

 
 

 

(c)   
 

 
                                                     (d)     

Figure 6.11 ROC curves of the algorithms, MRSCE and MBSSE, representing the results of the algorithms 

applied on the data set injected with background events, and their previous performances on the data set 

without injected background events. 

 

(a)   
 

 
                                                      (b)   
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(c)   
 

 
                                                     (d)     

Figure 6.12  AMOC curves of the algorithms.  

 We can see from Figure 6.11 and Table 6.7 that MRSCE had overall greater AUC 

than MBSSE and it performed significantly better than MBSSE when   
 

 
. I also 

measured the performance drop of AUC when applying these two algorithms to the data 

sets with simulated non-disease-related background events. As shown in Table 6.7, 

MRSC_MGD’s performance dropped only 4.54% on average while MBSS dropped 37.0% 

through the four sets of experiments with different outbreak magnitudes. The 

performance drop of MBSS is more significant when the outbreaks are weak, as shown in 

Figure 6.11(a) and (b).  

As shown in Figure 6.12 and Table 6.8, MRSCE was able to detect outbreaks 

earlier than MBSSE in all four sets of experiments and the timeliness was significantly 

better when   
 

 
 
 

 
  , given that only one outbreak per month is allowed. In addition, 

MBSSE took on average 1.88 days longer than MBSS to detect outbreaks, compared with 

MRSC_MGDE which took 0.73 days longer than MRSC_MGD. The results showed that 

the MGD model used in MRSC provides more robustness when there are simultaneous 

increases in both disease-relevant and non-disease-relevant data streams.   

Table 6.7  Areas under partial ROC curves with false positive rates in the range [0, 12] and the performance 

drop after including background events.   represents outbreak intensity. The underscored method is the 

best-performing method and methods in bold are not significantly different (at       ) from the best. 

  No Background Events With Background Performance Drop (%) 
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Events 

MRSC_MGD MBSS MRSC_MGD MBSS MRSC_MGD MBSS 

 

 
  0.1523 0.1685 0.1384 0.0314 9.13% 81.4% 

 

 
  0.1787 0.1835 0.1738 0.1107 2.74% 39.7% 

 

 
  0.1866 0.1899 0.1820 0.1556 2.47% 18.1% 

1 0.1959 0.1928 0.1884 0.1762 3.83% 8.61% 

 

Table 6.8 Average days to detect at 1 false alarm per month and the number of days delayed after including 

background events.   represents outbreak intensity. The underscored method is the best-performing method 

and methods in bold are not significantly different (at α=0.05) from the best.  

  

No Background Events 
With Background 

Events 
Performance Drop (days) 

MRSC_MGD MBSS MRSC_MGD MBSS MRSC_MGD MBSS 

 

 
  6.33 5.58 6.74 6.82 0.41 1.24 

 

 
  5.09 4.80 5.63 6.78 0.54 1.98 

 

 
  4.18 4.16 5.16 6.29 0.98 2.13 

1 3.60 3.44 4.58 5.61 0.98 2.17 

 

6.5.5 Experiment IV – varied outbreak effects on different data streams 

Recall in Chapter 6.4.2 I introduce how to model the outbreak effects on different 

disease-relevant data streams. Here I demonstrate the performance of MRSC_MGD 

where data streams respond to outbreaks differently (I call it VMRSC_MGD). It is easy 

to simulate such outbreak cases using the multivariate spatial temporal event simulator by 

defining different values in the data coverage vectors (see Chapter 4.3).  



115 

 

I compared the performance of VMRSC_MGD, which applies varied effect 

values, and MRSC_MGD, which applies the same effect values for all disease-relevant 

data streams. I simulated six groups of outbreaks with different data coverage on different 

data streams. Each set of effect values (  ,    ) used in VMRSC_MGD was computed 

from the proportionality constants (          ) of the increase percentages (  ’s, 

   ) which were learned from simulated outbreaks using maximum likelihood. More 

specifically, given a set of infected areas     and their historical mean counts   , I used 

the multivariate spatial temporal event simulator to generate 100 sets of outbreaks cases 

for each outbreak strength   where    
 

 
 
 

 
 
 

 
   . The data coverage vector for different 

data streams was also pre-defined for outbreak simulation. Thus, for each data coverage 

vector, we have 400 sets of outbreak cases to learn from. Given the knowledge of where 

these cases occurred as well, we can then calculate the proportionality constants among 

the multiple data streams with maximum likelihood. Table 6.9 lists the normalized 

proportionality constants of the increase percentages for those disease-relevant data 

streams learned from each outbreak sample set. The constants were then used to compute 

corresponding    values in the model, as described in Chapter 6.4.2. 

Table 6.9  Normalized proportionality constants of the increase percentages for the disease-relevant data 

streams learned from simulated outbreaks.  

Data 

Coverage 

(AF,CO,TH) 

Normalized 

Proportionality 

Constants 

(           ) 

Data Coverage 

(AF,CO,TH) 

Normalized 

Proportionality 

Constants 

(           ) 

(1.0,0.5,0.5) (0.51,0.25,0.24) (0.5,1.0,1.0) (0.20,0.41,0.39) 

(0.5,1.0,0.5) (0.25,0.47,0.28) (1.0,0.5,1.0) (0.40,0.19,0.41) 

(0.5,0.5,1.0) (0.25,0.27,0.48) (1.0,1.0,0.5) (0.41,0.41,0.18) 
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Table 6.10 shows the average number of days the algorithms took to detect the 

outbreaks. We can see from the table that in most experiments, VMRSC_MGD 

performed better than MRSC_MGD in terms of detection timeliness when the data 

streams included outbreak signals with different strengths  . When the injected outbreak 

strength was big (   ), VMRSC_MGD was able to detect outbreaks significantly 

earlier in 5 out of 6 groups of experiments because of the prior knowledge of different 

outbreak effects on different data streams.  

Table 6.10  Average number of days to detect the outbreaks using varied effect parameters in MRSC_MGD 

(VMRSC_MGD) and fixed effect parameters (MRSC_MGD). The underscored method is the best-

performing method and methods in bold are not significantly different (at α=0.05) from the best. 

Data 

Coverage 

(AF,CO,T

H) 

  
VMRSC_M

GD 

MRSC_M

GD 

Data 

Coverage 

(AF,CO,T

H) 

  
VMRSC_M

GD 

MRSC_M

GD 

1.0,0.5,0.5 

 

 
  6.03 6.16 

0.5,1.0,1.0 

 

 
  6.64  6.72 

 

 
  5.19 5.45 

 

 
  5.93 6.11 

 

 
  4.14 4.43 

 

 
  5.19 5.39 

1 3.34 3.78 1 4.62 5.19 

0.5,1.0,0.5 

 

 
  6.60 6.68 

1.0,0.5,1.0 

 

 
  6.13 6.22 

 

 
  6.07 6.05 

 

 
  4.92 5.20 

 

 
  5.5 5.63 

 

 
  4.20 4.69 

1 5.01 4.91 1 3.59 4.16 

0.5,0.5,1.0 

 

 
  6.85 6.83 

1.0,1.0,0.5 

 

 
  6.21 6.26 

 

 
  6.1 6.21 

 

 
  4.86 4.90 

 

 
  5.58 5.67 

 

 
  4.22 4.47 

1 4.68 5.18 1 3.56 4.03 
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6.5.6 Experiment V – detecting outbreaks with time lag effects 

In this set of experiments, I test the hypothesis that the MGD model can be 

helpful for detection outbreaks with time lagged signals by setting larger effect values for 

the data streams which respond earlier and smaller effect values for lagged data streams. I 

use the flu data set described in Experiment I, which includes three disease-relevant data 

streams including AF, CO and TH. I set up three sets of experiments, each of which has 

one data stream injected with delayed outbreak cases. Table 6.11 shows the average 

number of days to detect the outbreaks with time lags in one data stream using 

MRSC_GMD with varied outbreak effect values (VMRSC_MGD) versus MRSC_MGD 

with the same outbreak effects. We can see from the table that VMRSC_MGD performed 

consistently better than MRSC_MGD in most of the experiments, and it was significantly 

better (at       ) when the strength of the outbreaks     when the signal in either 

data stream AF or CO has lagged time.  

Table 6.11  Average days to detect the outbreaks using MRSC_MGD with varied outbreak effect values 

and MRSC_MGD with same outbreak effect values. The underscored method is the best-performing 

method and methods in bold are not significantly different (at α=0.05) from the best. 

# of lagged days 

(AF,CO,TH) 

Effect Ratios Used 

For 

VMRSC_MGD 

(   ,   ,   ) 

  VMRSC_MGD MRSC_MGD 

(2, 0, 0) (0.2,0.4,0.4) 

 

 
  6.64 6.72 

 

 
  5.96 6.22 

 

 
  5.15 5.69 

1 4.48 5.02 

(0, 2, 0) (0.4,0.2,0.4) 
 

 
  6.16 6.25 



118 

 

 

 
  4.86 5.22 

 

 
  4.21 4.59 

1 3.59 4.17 

(0, 0, 2) (0.4,0.4,0.2) 

 

 
  6.16 6.13 

 

 
  5.09 5.15 

 

 
  4.63 4.54 

1 3.67 3.86 

 

6.6 Discussion 

In Experiment I and Experiment II, where I compared the performances among 

six algorithms: two MRSC algorithms using either MGD model or MD model, the joint 

RSC algorithm by multiplying the cluster posteriors computed from three disease-

relevant data streams and the three univariate detectors. The results supported the 

hypothesis that the integration of information from multiple data streams is essential for 

detecting emerging outbreaks at the early stages. When detecting flu-like disease 

outbreaks, MRSC_MGD was able to detect the outbreak 1.05 days on average earlier 

than the best of the univariate detectors at a false alarm rate of one per month. When 

detecting diarrhea disease outbreaks, MRSC_MGD was able to detect the outbreak 0.27 

days on average earlier than the best of the univariate detectors. 

In addition, I found that the RSC applied to the data stream with the largest mean 

values will perform better than when applied to the other data streams, for example, the 
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RSC_AF in Experiment I and the RSC_DR in Experiment-II were able to detect 

outbreaks earlier than the other univariate detectors most of the time. I measured the 

average means and the standard deviations of these data streams, the results of which are 

shown in Table 6.12. I also calculated the coefficients of variation to show the 

normalized measures of data dispersion, which are computed as the ratios of the standard 

deviations to the means. As we can see from Table 6.12, AF and DR are two data streams 

that have minimal values for the coefficient of variation, meaning they have the least 

dispersion. This, to some extent, may indicate they were less influenced by the noise and 

thus presented data sets with better quality.   

Table 6.12  Average mean and standard deviation of each study data stream of 54 ZIP codes in Allegheny 

County.  

 AF  CO TH DR GI 

Avg. Mean 26.17 1.43 0.74 6.09 2.02 

Avg. Std 8.56 1.37 0.94 2.91 1.56 

Coefficient of Variation 0.33 0.96 1.27 0.48 0.77 

    

In addition to the data streams we want to surveill, considering which data 

streams should be counted into the “Others” type in the MGD model is not a trivial 

problem. In other words, since we are modeling the changes of the proportions of the 

disease-specific data streams among all the data streams, choosing a “good” control 

group is important. In this study, I included seven data streams in the experiments, anti-

fever OTC, diarrhea remedies OTC, thermometer OTC, hydrocortisones OTC, 

gastrointestinal ED, constitutional ED and rash ED.  Some other data streams, such as 

stomach remedies OTC and neurological ED were not counted in the “Others” data type. 

There are two reasons for being selective for the data streams included in the “Others” 

data type. First, we want to improve the model’s overall detection capability which 

means it should be less vulnerable to dramatic and unpredictable shifts in the health-care 
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data that it analyzes. This is because real world data are subject to all kinds of shifts that 

occur during major public events, such as the Olympics, as a result of population surges 

and public closures, and during promotions throughout the pharmacy store chains. Shifts 

can also occur during epidemics and pandemics, with the worried-well buying 

medications or flooding emergency departments but not actually having the disease. 

More often, public health data streams also have shifts due to the day-of-week effect. 

Thus, the data streams included in the “denominator” should be able to reflect the same 

shift effects which are unrelated to the monitored disease to some extent. The seven 

selected data streams share the same properties in that they are all infectious disease 

related and they are all subject to some non-stationary shifts such as seasonal effects or 

marketing strategies. Second, we do not want the mean count of the “Others” data stream 

in the model to be extremely big or it will overwhelm the other data streams in the model. 

I thus simply excluded all of the disparate and unrelated data types.  

In addition, to form the control group, I used multiple available non-disease-

relevant data streams. One reason is that some single control group has small sample size 

and we will prefer to include more controls when these data can be available. I simply 

summed the counts from the multiple control streams without prior knowledge about the 

relations among the control streams. One other way to explore is to normalize the counts 

such that each data stream provides same weights.   

 One potential advantage of MRSC_MGD over other multivariate algorithms (e.g., 

MKSS and MBSS) is that MRSC_MGD is able to adjust the baseline by incorporating 

the data type “Others”, which actually helps to adjust the elevated baseline counts caused 

by population surges, some non-disease-related events or the day-of-week effects. For 
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example, if a public event (e.g., a big conference) causes significant elevations on all the 

data streams under surveillance, algorithms only analyzing those specific data types will 

signal a false alarm since all of the monitored data types are presenting elevations. On the 

other hand, if all the data types are elevated to the same extent, the proportions of the 

specific data types will stay the same. In this way the MGD model becomes more robust 

than other algorithms which only analyze the specific data types of interest. The results 

shown in Experiment III – comparing to other multivariate algorithms demonstrated this 

advantage.  

 Consequently, one limitation of MRSC is that it cannot work if there is no control 

group available because it is designed to detect relative shifts rather than absolute shifts 

based on the nature of the model. It is suggested to use MBSS or other multivariate 

algorithms to detect absolute baseline shifts.  

In Experiment III I compared MRSC_MGD with two other multivariate algorithms, 

MBSS and MKSS. MBSS, the better performing of the two, demonstrated more 

sensitivity than MRSC_MGD when there are no big background events occurring (i.e., 

no big elevation in the data streams other than outbreak-relevant data streams). One of 

the possible reasons, as I explained above, might be due to the incorporation of the non-

disease-relevant data streams in the analysis. If there are some elevations occurring in the 

non-disease relevant data streams during the same time period as an outbreak, MRSC 

cannot detect the outbreak because of the nature of the MGD model. On the other hand, 

MBSS cannot perform as well as MRSC_MGD on data sets including simultaneous 

signals in all data streams which may be due to the events other than outbreaks. Since 



122 

 

there is a trade-off in applying either algorithm, one suggestion for practice can be that 

we apply both algorithms to achieve both better detection sensitivity and better specificity. 

In Chapter 6.4.3 I touched on the problem of detecting outbreaks having time-lag 

effects on different data streams by simply using an MGD model with varied outbreak 

effect values. The results showed improvement of detection. However, this method 

should only be applied when one has a prior knowledge about which data stream(s) have 

lagged effects from outbreaks. Another possible way to tackle time-lag effects, which can 

be studied in the future, is to introduce a variable called a lag window  , 0   

     . This process is similar to what we do to compute cross-correlation between 

two time series sequences. We can fix a time series of one data type, then slide the other 

time series forward by   days. Recall in Chapter 6.1 where I compute the likelihood for a 

region   of the data in Equation (6.3). We can re-write the equation to specify the day   

we are analyzing as: 

                                      

 

     
 

   

   

  
(6.16) 

For a surveillance of two data streams    and    (in addition to the data stream “Others”, 

  ) with a time lag   existing in the data stream   , the likelihood becomes: 

                   

                                  

                            

(6.17) 

 As I mentioned earlier in Chapter 6.4, the MGD model has a requirement for the 

order of the input data types. It models the elevations in the data streams in column 

      and the decrease in the data stream in the first column. Thus, in the research 

domain of disease outbreak detection, I put the “Others” data stream into the first column 
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and put the disease-relevant data streams into the following columns without considering 

the sequence. However, it is worth noting that if we model the disease-relevant data 

streams in different sequences it will result in different likelihood values computed using 

Equation (6.3), which is written in Equation (6.18) with the derivation removed. Also 

recall how we estimate the hyper-parameters of MGD in Equation (6.19) and Equation 

(6.20),    and    for data stream    are computed based on the sum of   ,          

 , which are the expected values of the weights of the previous data streams          , 

respectively.  

                                

 

     
 

   

   

 

(6.18) 

   
         

        
   
         

 
(6.19) 

   
      

 
           

        
   
         

 
(6.20) 

 In this chapter, I have discussed using the MGD model to detect diseases for 

which we already have prior knowledge about what data streams are likely to be affected 

and computing the probability of the elevations existing in these data streams 

simultaneously. However, it is also possible that we may want to detect some unknown 

disease outbreaks for which we do not have prior knowledge of what symptoms will be 

present for the infected population. One way to do that is to enumerate different 

combinations of data streams and model the elevations for each one. For example,   

denotes the maximum number of data streams we can analyze using the MGD model, 

excluding the “Others” data stream;        is the number of total available data streams 

that can be incorporated in the analysis and         . The number of the combinations 
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including   data streams except for the “Others” data stream is  
      

 
 , and the total 

number of the combinations will then be   
      

 
  

   . Thus, we will need to run the 

MRSC_MGD algorithm for   
      

 
  

    times and each time analyze one combination 

of the data streams. However, partial prior knowledge (e.g., we know one or two 

symptoms of the unknown disease) will reduce the time of running the algorithm 

repeatedly. In literature, some research work has also been done to detect unknown 

diseases by using Bayesian modeling [90]. 
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7.0 Conclusions and future work 

This dissertation investigates a framework of rank-based tempo-spatial clustering 

(RSC) algorithms for early disease outbreak detection. It introduces a heuristic searching 

approach and Bayesian models for analyzing either univariate or multivariate data. In 

particular, this new searching approach utilizes the risk of having an outbreak for each 

spatial unit as heuristic information to find a cluster of areas considered all together to 

have a great probability of having an outbreak. In the evaluation, I demonstrated that 

RSC consistently outperformed other algorithms in terms of the timeliness in outbreak 

detection while having comparable detection powers. I conclude that RSC is a preferred 

algorithm for rapid and early detection of an outbreak.  

This dissertation also proposes a Multinomial-generalized-Dirichlet (MGD) model 

which can be used in RSC for multivariate analysis (MRSC_MGD). Different from other 

existing multivariate algorithms [40,43], MGD models outbreak signals based on both 

disease-relevant data streams and non-disease-relevant data streams. The evaluation 

shows that MRSC_MGD has overall better performance than the univariate detectors and 

is more robust on the signals caused by non-outbreak events than two other multivariate 

algorithms. I conclude that MRSC_MGD can be a good extended algorithm to achieve 
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both better sensitivity and better specificity for outbreak detection especially when there 

are non-outbreak-related events such as festivals or super bowl games.    

The remainder of this chapter first summarizes the contributions of this dissertation 

research and then presents areas for future research. 

7.1 Contributions 

7.1.1 A rank-based tempo-spatial clustering algorithm 

I proposed a rank-based tempo-spatial clustering algorithm for early disease outbreak 

detection. The main contribution in this part of the research work includes: 

1) Proposed two measures to estimate the risk of having an outbreak for each 

spatial unit. One is called standard score (or  -score), which is computed as 

the number of standard deviations of the observed count varying from the 

expected count. This value is predicted by analyzing a time series of previous 

data; the other is posterior probability using Bayesian inference. These two 

measurements are later used as heuristic information for cluster searching; 

2) Proposed a greedy searching mechanism for outbreak clusters. The searching 

starts from the highest ranked area (i.e., having highest risk), and iteratively 

adds the next ranked area into analysis. The adjacent areas are merged into a 

cluster. This searching mechanism is approximate but efficient;   

3) Proposed a rank-based tempo-spatial clustering algorithm, RSC, utilizing the 

proposed greedy searching and Gamma-Poisson model for disease outbreak 
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detection with improved detection timeliness, cluster positive prediction 

value (PPV) and running time; 

4) Investigated the performance of grid-based RSC (GRSC) (i.e., using grid 

cells as spatial units rather than exact spatial shapes) compared with that of 

Bayesian scan statistic algorithm (BSS), which also uses grid structures for 

searching. 

7.1.2 A multivariate extension of RSC (MRSC) 

In disease surveillance, there is an increasing trend to use more than one data 

source for surveillance. The meaningful use act, for example, incentivizes hospitals or 

health care providers to report additional data to public health agencies. The originally 

proposed RSC algorithm is only used in univariate analysis, therefore I also proposed a 

multivariate extension of RSC (MRSC) as the second part of my dissertation work. The 

main contributions of this part of the work include: 

1) Proposed Multinomial-generalized-Dirichlet (MGD) model to capture the 

elevated signals only present in multiple disease-relevant data streams but not 

in non-disease-relevant data streams. In this model, I assume the counts in the 

monitored data streams follow a hierarchical Multinomial-Generalized-

Dirichlet distribution. The reasons include: 1) it is natural to use multinomial 

distribution to model categorical data and 2) the generalized Dirichlet 

distribution is the conjugate prior of both multinomial and categorical 

distributions. This model not only takes the disease-relevant data streams into 
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account but also the non-disease-relevant data streams. In the evaluation, it is 

proven to be more robust to those signals caused by non-outbreak events. 

2) Developed and evaluated MRSC, which applies the Multinomial-generalized-

Dirichlet (MGD) model. This model was utilized in the cluster searching 

algorithm on multiple data streams. The evaluation demonstrated the 

advantage of the MGD model with its ability to effectively suppress false 

alarms caused by elevated signals that were not disease related but occured in 

all the analyzed data streams. I also investigated the performance of MRSC to 

better detect outbreaks when multiple data streams contain outbreak signals 

of different strengths by adjusting outbreak effect parameters. In addition, I 

attempted to detect the outbreaks with time lag effects on different data 

streams using MRSC_MGD with adjustable outbreak effect parameters.    

7.2 Future work 

This section describes future work and some open problems related to the 

dissertation research.  

Recall that during the cluster searching in the RSC algorithm, clusters are merged if 

the shortest distance between them is less than or equal to an adjacency threshold,  , 

where   is set to be 0 in the study. By setting    , only clusters with connected spatial 

areas are considered in the algorithm. However, it is often not true that an infectious 

disease outbreak only affects connected spatial areas. For example, some non-residential 

landforms, such as rivers, canyons, etc., may geographically separate the populations. 
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One way to overcome this limit is to use a grid cell as a unit study area and search for 

clusters with adjacent grid cells, where the geographical areas (e.g., ZIP code areas) 

inside two or more connected grid cells can be clustered together when they are not 

connected. I conducted such a study, reported in Chapter 5.2. However, if we still want to 

use each specific spatial shape as a unit, we can adjust the threshold distance to be 

inversely proportional to some density measure of a baseline factor (e.g., population). 

alternatively, the non-residential landforms (e.g., lakes, valleys, etc.) may be attached to 

their nearest census tract and may be considered in the analysis as well. Therefore, an 

investigation of the algorithm performance when     can be a supplement to this 

dissertation work. Another example where outbreak areas may be more dispersed is when 

people who are infected with the disease commute; commuting is a common occurrence 

nowadays. In Chapter 4.1.3, I considered people’s commuting between their places of 

residence and places of work and created a data simulation model to allocate the counts 

of OTC sales into patients’ residential ZIP code areas since the existing data set collected 

by NRDM only include the locations of pharmacies. There are also studies on commute 

models in literature [91]. However, further study is necessary in order to explicitly model 

this problem and use it for disease outbreak detection.   

 Another limitation of the study is it uses a simplified outbreak simulator for the 

evaluation of RSC performance. Despite the several advantages of the outbreak 

simulation model used in this study mentioned in the Chapter 4.2, the outbreak curve was, 

nonetheless, artificially constructed and therefore may not represent the complexity of 

real outbreaks. It would be more challenging to use sophisticated and complicated 

outbreak simulators because they not only model the disease specific features but also 
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consider the stochastic effects to some extent [64][65]. Multivariate simulators should 

also be used as they consider real-life scenarios in which signals of an outbreak are 

present in one or more data types [55]. The utilization of these simulators for algorithm 

evaluation, therefore, will become another substantial study as one of the extensions of 

this work. 

 Recall that in Chapter 3.2, spatial or tempo-spatial disease outbreak detection 

algorithms other than KSS and BSS which can detect irregularly shaped outbreaks are 

discussed, including the fast subset scan algorithm (FSS), the flexible spatial scan statistic 

(FleXScan), the upper level set scan statistic (ULS) and the PANDA-CDCA-Temporal-

Spatial (PCTS) algorithm. A comprehensive comparison among these algorithms and 

RSC would also a desired study as it could provide a bigger picture in this field and help 

decision makers to carefully select a suitable algorithm to use in practice with certain 

requirements. 

 In Experiment I and II, I tested the algorithm performance with prior knowledge 

of disease types (i.e., the disease-relevant data streams are known). We also want to 

tackle the problem when we do not have this kind of prior knowledge. One of the 

solutions is to exhaustively iterate through all the combinations of the data streams. But 

the running time becomes exponential to the number of available data streams.  

As I mentioned in Chapter 6.6, I only touched on the problem of detecting 

outbreaks having time-lag effects on different data streams by simply using MGD model 

with varied outbreak effect values. The results showed improvement of detection. 

However, another possible way to tackle this problem which can be studied in the future 

is to model the time lag explicitly by introducing a variable called lag window  , 
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0        . The idea is similar to what we do to compute cross-correlation 

between two time series sequences. We can fix a time series of one data type; then slide 

the other time series forward by   days. The likelihood of each cluster having an 

outbreak inside it should be updated to incorporate this variable as well. An evaluation of 

this model would be valuable as a future study.
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Appendix A. Parameter settings of the univariate analysis using the 

purely spatial model to run SaTScan v8.0  
 [Input] 

; case data filename 

CaseFile=experiment_directroy\cas\4_0.2\0\1.cas 

; control data filename 

ControlFile= 

; population data filename 

PopulationFile= experiment_directroy\pop\pa_adjusted.pop 

; coordinate data filename 

CoordinatesFile= experiment_directroy\coordinate\pa.coo 

; use grid file? (y/n) 

UseGridFile=n 

; grid data filename 

GridFile= 

; time precision (0=None, 1=Year, 2=Month, 3=Day) 

PrecisionCaseTimes=0 

; coordinate type (0=Cartesian, 1=latitude/longitude) 

CoordinatesType=1 

; study period start date (YYYY/MM/DD) 

StartDate=2008/01/01 

; study period end date (YYYY/MM/DD) 

EndDate=2009/01/01 

 

[Analysis] 

; analysis type (1=Purely Spatial, 2=Purely Temporal, 3=Retrospective Space-Time, 4=Prospective Space-

Time, 5=N/A, 6=Prospective Purely Temporal) 

AnalysisType=1 

; model type (0=Discrete Poisson, 1=Bernoulli, 2=Space-Time Permutation, 3=Ordinal, 4=Exponential, 

5=Normal, 6=Continuous Poisson, 7=Multinomial) 

ModelType=0 

; scan areas (1=High Rates(Poison,Bernoulli,STP); High Values(Ordinal,Normal); Short 

Survival(Exponential), 2=Low Rates(Poison,Bernoulli,STP); Low 

Values(Ordinal,Normal); Long Survival(Exponential), 3=Both Areas) 

ScanAreas=1 

; time aggregation units (0=None, 1=Year, 2=Month, 3=Day) 

TimeAggregationUnits=0 

; time aggregation length (Positive Integer) 

TimeAggregationLength=1 

; Monte Carlo replications (0, 9, 999, n999) 

MonteCarloReps=999 

 

[Output] 

; analysis results output filename 

ResultsFile=experiment_directory\result\4_0.2\0\1.out.txt 

; output simulated log likelihoods ratios in ASCII format? (y/n) 

SaveSimLLRsASCII=n 

; output simulated log likelihoods ratios in dBase format? (y/n) 

SaveSimLLRsDBase=n 

; output relative risks in ASCII format? (y/n) 

IncludeRelativeRisksCensusAreasASCII=n 

; output relative risks in dBase format? (y/n) 

IncludeRelativeRisksCensusAreasDBase=n 

; output location information in ASCII format? (y/n) 
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CensusAreasReportedClustersASCII=y 

; output location information in dBase format? (y/n) 

CensusAreasReportedClustersDBase=n 

; output cluster information in ASCII format? (y/n) 

MostLikelyClusterEachCentroidASCII=n 

; output cluster information in dBase format? (y/n) 

MostLikelyClusterEachCentroidDBase=n 

; output cluster case information in ASCII format? (y/n) 

MostLikelyClusterCaseInfoEachCentroidASCII=n 

; output cluster case information in dBase format? (y/n) 

MostLikelyClusterCaseInfoEachCentroidDBase=n 

 

[Multiple Data Sets] 

; multiple data sets purpose type (0=Multivariate, 1=Adjustment) 

MultipleDataSetsPurposeType=0 

 

[Data Checking] 

; study period data check (0=Strict Bounds, 1=Relaxed Bounds) 

StudyPeriodCheckType=0 

; geographical coordinates data check (0=Strict Coordinates, 1=Relaxed Coordinates) 

GeographicalCoordinatesCheckType=0 

 

[Spatial Neighbors] 

; neighbors file 

NeighborsFilename= 

; use neighbors file (y/n) 

UseNeighborsFile=n 

; meta locations file 

MetaLocationsFilename= 

; use meta locations file (y/n) 

UseMetaLocationsFile=n 

; multiple coordinates type (0=OnePerLocation, 1=AtLeastOneLocation, 2=AllLocations) 

MultipleCoordinatesType=0 

 

[Spatial Window] 

; maximum spatial size in population at risk (<=50%) 

MaxSpatialSizeInPopulationAtRisk=50 

; maximum spatial size in max circle population file (<=50%) 

MaxSpatialSizeInMaxCirclePopulationFile=50 

; maximum spatial size in distance from center (positive integer) 

MaxSpatialSizeInDistanceFromCenter=1 

; restrict maximum spatial size - max circle file? (y/n) 

UseMaxCirclePopulationFileOption=n 

; restrict maximum spatial size - distance? (y/n) 

UseDistanceFromCenterOption=n 

; include purely temporal clusters? (y/n) 

IncludePurelyTemporal=n 

; maximum circle size filename 

MaxCirclePopulationFile= 

; window shape (0=Circular, 1=Elliptic) 

SpatialWindowShapeType=0 

; elliptic non-compactness penalty (0=NoPenalty, 1=MediumPenalty, 2=StrongPenalty) 

NonCompactnessPenalty=1 

; isotonic scan (0=Standard, 1=Monotone) 

IsotonicScan=0 
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[Temporal Window] 

; maximum temporal cluster size (<=90%) 

MaxTemporalSize=50 

; include purely spatial clusters? (y/n) 

IncludePurelySpatial=n 

; how max temporal size should be interpretted (0=Percentage, 1=Time) 

MaxTemporalSizeInterpretation=0 

; temporal clusters evaluated (0=All, 1=Alive, 2=Flexible Window) 

IncludeClusters=0 

; flexible temporal window start range (YYYY/MM/DD,YYYY/MM/DD) 

IntervalStartRange=2000/1/1,2000/12/31 

; flexible temporal window end range (YYYY/MM/DD,YYYY/MM/DD) 

IntervalEndRange=2000/1/1,2000/12/31 

 

[Space and Time Adjustments] 

; time trend adjustment type (0=None, 1=Nonparametric, 2=LogLinearPercentage, 

3=CalculatedLogLinearPercentage, 4=TimeStratifiedRandomization) 

TimeTrendAdjustmentType=0 

; time trend adjustment percentage (>-100) 

TimeTrendPercentage=0 

; adjustments by known relative risks file name (with HA Randomization=1) 

AdjustmentsByKnownRelativeRisksFilename= 

; use adjustments by known relative risks file? (y/n) 

UseAdjustmentsByRRFile=n 

; spatial adjustments type (0=No Spatial Adjustment, 1=Spatially Stratified Randomization) 

SpatialAdjustmentType=0 

 

[Inference] 

; prospective surveillance start date (YYYY/MM/DD) 

ProspectiveStartDate= 

; terminate simulations early for large p-values? (y/n) 

EarlySimulationTermination=n 

; adjust for earlier analyses(prospective analyses only)? (y/n) 

AdjustForEarlierAnalyses=n 

; perform iterative scans? (y/n) 

IterativeScan=n 

; maximum iterations for iterative scan (0-32000) 

IterativeScanMaxIterations=0 

; max p-value for iterative scan before cutoff (0.000-1.000) 

IterativeScanMaxPValue=0.000 

 

[Clusters Reported] 

; criteria for reporting secondary clusters(0=NoGeoOverlap, 1=NoCentersInOther, 

2=NoCentersInMostLikely,  3=NoCentersInLessLikely, 

4=NoPairsCentersEachOther, 5=NoRestrictions) 

CriteriaForReportingSecondaryClusters=0 

; restrict reported clusters to maximum geographical cluster size? (y/n) 

UseReportOnlySmallerClusters=y 

; maximum reported spatial size in population at risk (<=50%) 

MaxSpatialSizeInPopulationAtRisk_Reported=50 

; maximum reported spatial size in max circle population file (<=50%) 

MaxSizeInMaxCirclePopulationFile_Reported=50 

; maximum reported spatial size in distance from center {positive integer) 

MaxSpatialSizeInDistanceFromCenter_Reported=1 

; restrict maximum reported spatial size - max circle file? (y/n) 

UseMaxCirclePopulationFileOption_Reported=n 
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; restrict maximum reported spatial size - distance? (y/n) 

UseDistanceFromCenterOption_Reported=n 

 

[Additional Output] 

; report critical values for .01 and .05? (y/n) 

CriticalValue=n 

 

[Elliptic Scan] 

; elliptic shapes - one value for each ellipse (comma separated decimal values) 

EllipseShapes=1.5,2,3,4,5 

; elliptic angles - one value for each ellipse (comma separated integer values) 

EllipseAngles=4,6,9,12,15 

 

[Power Simulations] 

; p-values for 2 pre-specified log likelihood ratios? (y/n) 

PValues2PrespecifiedLLRs=n 

; power calculation log likelihood ratio (no. 1) 

LLR1=0 

; power calculation log likelihood ratio (no. 2) 

LLR2=0 

; simulation methods (0=Null Randomization, 1=HA Randomization, 2=File Import) 

SimulatedDataMethodType=0 

; simulation data input file name (with File Import=2) 

SimulatedDataInputFilename= 

; print simulation data to file? (y/n) 

PrintSimulatedDataToFile=n 

; simulation data output filename 

SimulatedDataOutputFilename= 

 

[Run Options] 

; analysis execution method  (0=Automatic, 1=Successively, 2=Centrically) 

ExecutionType=0 

; number of parallel processes to execute (0=All Processors, x=At Most X Processors) 

NumberParallelProcesses=1 

; log analysis run to history file? (y/n) 

LogRunToHistoryFile=y 

; suppressing warnings? (y/n) 

SuppressWarnings=n 

 

[System] 

; system setting - do not modify 

Version=8.1.1 
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Appendix B. Outbreak simulation parameter settings in the 

experiments 
 

Table B.1 The parameter settings for outbreak simulations in the experiments 

Chapter No. Simulator Parameter values Comments 

5.1.7 Linear simulator 

                 

For       

            Outbreak strength 

    Outbreak duration 

           Outbreak size 

5.2.1 Linear simulator 

                 

For       

            Outbreak strength 

    Outbreak duration 

        Outbreak size 

6.5.2 Multivariate spatial-

temporal event 

simulator (outbreaks) 

AF,CO,TH Outbreak data 

streams 

         Total cases 

   
 

 
 
 

 
 
 

 
    

Outbreak strength 

    Outbreak size 

(1.0, 1.0, 1.0, 0, 0, 0, 0) Behavior probability 

vector 

(1.0, 1.0, 1.0) Coverage vector 

Linear Poisson Temporal function 

Flat/Uniform Spatial function 

6.5.3 Multivariate spatial-

temporal event 

simulator (outbreaks) 

DR,GI Outbreak data 

streams 

         Total cases 

   
 

 
 
 

 
 
 

 
    

Outbreak strength 

    Outbreak size 

(1.0, 1.0, 0) Behavior probability 

vector 

(1.0, 1.0) Coverage vector 

Linear Poisson Temporal function 

Flat/Uniform Spatial function 

6.5.4 Multivariate spatial-

temporal event 

simulator (outbreaks) 

AF,CO,TH Outbreak data 

streams 

         Total cases 

   
 

 
 
 

 
 
 

 
    

Outbreak strength 

    Outbreak size 

(1.0, 1.0, 1.0, 0,0,0,0) Behavior probability 

vector 

(1.0, 1.0,1.0) Coverage vector 

Linear Poisson Temporal function 

Flat/Uniform Spatial function 
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6.5.4 Multivariate spatial-

temporal event 

simulator (baseline 

shifts) 

AF,CO,TH Outbreak data 

streams 

         Total cases 

    Outbreak strength 

    Outbreak size 

(1.0, 1.0, 1.0, 0,0,0,0) Behavior probability 

vector 

(1.0, 1.0,1.0) Coverage vector 

Flat/Uniform Temporal function 

Flat/Uniform Spatial function 

6.5.5 Multivariate spatial-

temporal event 

simulator (outbreaks) 

AF,CO,TH Outbreak data 

streams 

         Total cases 

   
 

 
 
 

 
 
 

 
    

Outbreak strength 

    Outbreak size 

(1.0, 1.0, 1.0, 0,0,0,0) Behavior probability 

vector 

(1.0, 1.0,1.0) 

(1.0, 0.5,1.0) 

(1.0,1.0,0.5) 

(0.5, 0.5,1.0) 

(0.5, 1.0,0.5) 

(1.0, 0.5, 0.5) 

Coverage vector 

Linear Poisson Temporal function 

Flat/Uniform Spatial function 

6.5.6 Multivariate spatial-

temporal event 

simulator (outbreaks) 

AF,CO,TH Outbreak data 

streams 

         Total cases 

   
 

 
 
 

 
 
 

 
    

Outbreak strength 

    Outbreak size 

(1.0, 1.0, 1.0, 0,0,0,0) Behavior probability 

vector 

(1.0, 1.0,1.0) Coverage vector 

(2, 0, 0) 

(0, 2, 0) 

(0, 0, 2) 

Time lag (days) 

Linear Poisson Temporal function 

Flat/Uniform Spatial function 
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Appendix C. Parameter settings of multivariate analysis using the 

purely spatial model to run SaTScan v9.1  
[Input] 

; case data filename 

CaseFile=/experiment_directroy/casefile_1.cas 

; control data filename 

ControlFile= 

; population data filename 

PopulationFile=/experiment_directroy/populationfile_1.pop 

; coordinate data filename 

CoordinatesFile=/experiment_directroy/coordinatesfile.geo 

; use grid file? (y/n) 

UseGridFile=n 

; grid data filename 

GridFile= 

; time precision (0=None, 1=Year, 2=Month, 3=Day, 4=Generic) 

PrecisionCaseTimes=0 

; coordinate type (0=Cartesian, 1=latitude/longitude) 

CoordinatesType=1 

; study period start date (YYYY/MM/DD) 

StartDate=2008/01/01 

; study period end date (YYYY/MM/DD) 

EndDate=2009/01/01 

[Analysis] 

; analysis type (1=Purely Spatial, 2=Purely Temporal, 3=Retrospective Space-Time, 4=Prospective Space-

Time, 5=Spatial Variation in Temporal Trends, 6=Prospective Purely Temporal) 

AnalysisType=1 

; model type (0=Discrete Poisson, 1=Bernoulli, 2=Space-Time Permutation, 3=Ordinal, 4=Exponential, 

5=Normal, 6=Continuous Poisson, 7=Multinomial) 

ModelType=0 

; scan areas (1=High Rates(Poison,Bernoulli,STP); High Values(Ordinal,Normal); Short 

Survival(Exponential), 2=Low Rates(Poison,Bernoulli,STP); Low Values(Ordinal,Normal); Long 

Survival(Exponential), 3=Both Areas) 

ScanAreas=1 

; time aggregation units (0=None, 1=Year, 2=Month, 3=Day, 4=Generic) 

TimeAggregationUnits=0 

; time aggregation length (Positive Integer) 

TimeAggregationLength=1 

[Output] 

; analysis results output filename 

ResultsFile=/oradata02/jque_data/mSaTScan/allegheny_adjusted_standardMC/results/0_1.out 

; output simulated log likelihoods ratios in ASCII format? (y/n) 

SaveSimLLRsASCII=n 

; output simulated log likelihoods ratios in dBase format? (y/n) 

SaveSimLLRsDBase=n 

; output relative risks in ASCII format? (y/n) 

IncludeRelativeRisksCensusAreasASCII=y 

; output relative risks in dBase format? (y/n) 

IncludeRelativeRisksCensusAreasDBase=n 

; output location information in ASCII format? (y/n) 

CensusAreasReportedClustersASCII=y 

; output location information in dBase format? (y/n) 

CensusAreasReportedClustersDBase=n 

; output cluster information in ASCII format? (y/n) 

MostLikelyClusterEachCentroidASCII=y 



139 

 

; output cluster information in dBase format? (y/n) 

MostLikelyClusterEachCentroidDBase=n 

; output cluster case information in ASCII format? (y/n) 

MostLikelyClusterCaseInfoEachCentroidASCII=n 

; output cluster case information in dBase format? (y/n) 

MostLikelyClusterCaseInfoEachCentroidDBase=n 

[Multiple Data Sets] 

; multiple data sets purpose type (0=Multivariate, 1=Adjustment) 

MultipleDataSetsPurposeType=0 

; case data filename (additional data set 2) 

CaseFile2=/experiment_directroy/casefile_2.cas 

; case data filename (additional data set 3) 

CaseFile3=/experiment_directroy/casefile_3.cas 

; control data filename (additional data set 2) 

ControlFile2= 

; control data filename (additional data set 3) 

ControlFile3= 

; population data filename (additional data set 2) 

PopulationFile2=/experiment_directroy/populationfile_2.pop 

; population data filename (additional data set 3) 

PopulationFile3=/experiment_directroy/populationfile_3.pop 

[Data Checking] 

; study period data check (0=Strict Bounds, 1=Relaxed Bounds) 

StudyPeriodCheckType=0 

; geographical coordinates data check (0=Strict Coordinates, 1=Relaxed Coordinates) 

GeographicalCoordinatesCheckType=0 

[Spatial Neighbors] 

; neighbors file 

NeighborsFilename= 

; use neighbors file (y/n) 

UseNeighborsFile=n 

; meta locations file 

MetaLocationsFilename= 

; use meta locations file (y/n) 

UseMetaLocationsFile=n 

; multiple coordinates type (0=OnePerLocation, 1=AtLeastOneLocation, 2=AllLocations) 

MultipleCoordinatesType=0 

[Spatial Window] 

; maximum spatial size in population at risk (<=50%) 

MaxSpatialSizeInPopulationAtRisk=50 

; maximum spatial size in max circle population file (<=50%) 

MaxSpatialSizeInMaxCirclePopulationFile=50 

; maximum spatial size in distance from center (positive integer) 

MaxSpatialSizeInDistanceFromCenter=1 

; restrict maximum spatial size - max circle file? (y/n) 

UseMaxCirclePopulationFileOption=n 

; restrict maximum spatial size - distance? (y/n) 

UseDistanceFromCenterOption=n 

; include purely temporal clusters? (y/n) 

IncludePurelyTemporal=n 

; maximum circle size filename 

MaxCirclePopulationFile= 

; window shape (0=Circular, 1=Elliptic) 

SpatialWindowShapeType=0 

; elliptic non-compactness penalty (0=NoPenalty, 1=MediumPenalty, 2=StrongPenalty) 

NonCompactnessPenalty=0 
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; isotonic scan (0=Standard, 1=Monotone) 

IsotonicScan=0 

[Temporal Window] 

; maximum temporal cluster size (<=90%) 

MaxTemporalSize=50 

; include purely spatial clusters? (y/n) 

IncludePurelySpatial=n 

; how max temporal size should be interpretted (0=Percentage, 1=Time) 

MaxTemporalSizeInterpretation=0 

; temporal clusters evaluated (0=All, 1=Alive, 2=Flexible Window) 

IncludeClusters=0 

; flexible temporal window start range (YYYY/MM/DD,YYYY/MM/DD) 

IntervalStartRange=2000/1/1,2000/12/31 

; flexible temporal window end range (YYYY/MM/DD,YYYY/MM/DD) 

IntervalEndRange=2000/1/1,2000/12/31 

[Space and Time Adjustments] 

; time trend adjustment type (0=None, 1=Nonparametric, 2=LogLinearPercentage, 

3=CalculatedLogLinearPercentage, 4=TimeStratifiedRandomization, 5=CalculatedQuadraticPercentage) 

TimeTrendAdjustmentType=0 

; time trend adjustment percentage (>-100) 

TimeTrendPercentage=0 

; adjustments by known relative risks file name (with HA Randomization=1) 

AdjustmentsByKnownRelativeRisksFilename= 

; use adjustments by known relative risks file? (y/n) 

UseAdjustmentsByRRFile=n 

; spatial adjustments type (0=No Spatial Adjustment, 1=Spatially Stratified Randomization) 

SpatialAdjustmentType=0 

; time trend type - SVTT only (Linear=0, Quadratic=1) 

TimeTrendType=0 

[Inference] 

; prospective surveillance start date (YYYY/MM/DD) 

ProspectiveStartDate=2000/12/31 

; p-value reporting type (Default p-value=0, Standard Monte Carlo=1, Early Termination=2, Gumbel p-

value=3)  

PValueReportType=1 

; report Gumbel p-values 

ReportGumbel=n 

; early termination threshold 

EarlyTerminationThreshold=50 

; adjust for earlier analyses(prospective analyses only)? (y/n) 

AdjustForEarlierAnalyses=n 

; perform iterative scans? (y/n) 

IterativeScan=n 

; maximum iterations for iterative scan (0-32000) 

IterativeScanMaxIterations=10 

; max p-value for iterative scan before cutoff (0.000-1.000) 

IterativeScanMaxPValue=0.05 

; Monte Carlo replications (0, 9, 999, n999) 

MonteCarloReps=999 

[Clusters Reported] 

; criteria for reporting secondary clusters(0=NoGeoOverlap, 1=NoCentersInOther, 

2=NoCentersInMostLikely,  3=NoCentersInLessLikely, 4=NoPairsCentersEachOther, 5=NoRestrictions) 

CriteriaForReportingSecondaryClusters=0 

; restrict reported clusters to maximum geographical cluster size? (y/n) 

UseReportOnlySmallerClusters=n 

; maximum reported spatial size in population at risk (<=50%) 
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MaxSpatialSizeInPopulationAtRisk_Reported=50 

; maximum reported spatial size in max circle population file (<=50%) 

MaxSizeInMaxCirclePopulationFile_Reported=50 

; maximum reported spatial size in distance from center {positive integer) 

MaxSpatialSizeInDistanceFromCenter_Reported=1 

; restrict maximum reported spatial size - max circle file? (y/n) 

UseMaxCirclePopulationFileOption_Reported=n 

; restrict maximum reported spatial size - distance? (y/n) 

UseDistanceFromCenterOption_Reported=n 

[Additional Output] 

; report critical values for .01 and .05? (y/n) 

CriticalValue=n 

; report cluster rank (y/n) 

ReportClusterRank=n 

; print ascii headers in output files (y/n) 

PrintAsciiColumnHeaders=n 

[Elliptic Scan] 

; elliptic shapes - one value for each ellipse (comma separated decimal values) 

EllipseShapes=1.5,2,3,4,5 

; elliptic angles - one value for each ellipse (comma separated integer values) 

EllipseAngles=4,6,9,12,15 

[Power Simulations] 

; p-values for 2 pre-specified log likelihood ratios? (y/n) 

PValues2PrespecifiedLLRs=n 

; power calculation log likelihood ratio (no. 1) 

LLR1=0 

; power calculation log likelihood ratio (no. 2) 

LLR2=0 

; simulation methods (0=Null Randomization, 1=HA Randomization, 2=File Import) 

SimulatedDataMethodType=0 

; simulation data input file name (with File Import=2) 

SimulatedDataInputFilename= 

; print simulation data to file? (y/n) 

PrintSimulatedDataToFile=n 

; simulation data output filename 

SimulatedDataOutputFilename= 

[Run Options] 

; analysis execution method  (0=Automatic, 1=Successively, 2=Centrically) 

ExecutionType=0 

; number of parallel processes to execute (0=All Processors, x=At Most X Processors) 

NumberParallelProcesses=1 

; log analysis run to history file? (y/n) 

LogRunToHistoryFile=n 

; suppressing warnings? (y/n) 

SuppressWarnings=n 

[System] 

; system setting - do not modify 

Version=9.1.1 
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Appendix D. Derivation of the outbreak effect parameters 

Let vector                  represents the outbreak effect values for all the 

study data streams, and it is used in the model          ,   ) to model the alternative 

hypothesis,      . Let    represent the expected values of multinomial distribution 

parameters (     ) before an outbreak occurs, and     represent the expected values 

(      ) after the outbreak occurs, and let    
      

  
 (     represent the increase 

percentage for data stream  . Recall that    
  

     
 

  

     

   
    is recursively 

dependent on          .  Let     
    

       
 

  

       

   
    and     

    

       
. We can 

then rewrite them as the following.  

               
   

   
 (D.1) 

   
  

  

   

     
 (D.2) 

In order to compute          in Equation (D.2), we need to compute    . We 

can rewrite Equation (D.1) again in the following.  

    
   

           
   

 (D.3) 

Given the constraint of the multinomial distribution where          
    (i.e., 

      
   , and        

    as well), the total change across all data streams should be 

0, which is: 

       
 

   
 (D.4) 
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Because the proportionality constants among   ’s (   ) are known, we can let 

       where   ’s (   ) are known. Using Equation (D.4),   and          can 

be computed as in the following because the value of    (i.e.,   ) is known (Recall as in 

Chapter 6.4.1, I define      and is equally likely to be the values in the set   {0.1, 

0.2, 0.3, 0.4. 0.5, 0.6, 0.7, 0.8, 0.9}) 

  
     

     
 
   

 (D.5) 

   
       

     
 
   

 (D.6) 

Recall    
      

  
 (    ,    ,     can then be computed in the following 

using Equation (D.6). 

       
      

     
 
   

    (D.7) 

Now we can solve          using Equation (D.2) and (D.7). 
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