
in Proceedings of the 36th International Conference on Software Engineering (ICSE ’14)
received ACM SIGSOFT Distinguished Paper Award

A Study and Toolkit for Asynchronous Programming in C#

Semih Okur∗, David L. HartveldΥ, Danny Dig†, Arie van DeursenΥ

∗University of Illinois ΥDelft University of Technology †Oregon State University
USA Netherlands USA

okur2@illinois.edu d.l.hartveld@student.tudelft.nl digd@eecs.oregonstate.edu
arie.vandeursen@tudelft.nl

ABSTRACT
Asynchronous programming is in demand today, because re-
sponsiveness is increasingly important on all modern devices.
Yet, we know little about how developers use asynchronous
programming in practice. Without such knowledge, devel-
opers, researchers, language and library designers, and tool
providers can make wrong assumptions.
We present the first study that analyzes the usage of asyn-

chronous programming in a large experiment. We analyzed
1378 open source Windows Phone (WP) apps, comprising
12M SLOC, produced by 3376 developers. Using this data,
we answer 2 research questions about use and misuse of asyn-
chronous constructs. Inspired by these findings, we developed
(i) Asyncifier, an automated refactoring tool that converts
callback-based asynchronous code to use async/await; (ii)
Corrector, a tool that finds and corrects common misuses
of async/await. Our empirical evaluation shows that these
tools are (i) applicable and (ii) efficient. Developers accepted
314 patches generated by our tools.
Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding Tools and Techniques
General Terms: Design, Experimentation
Keywords: Program transformation, asynchronous, C#

1. INTRODUCTION
User interfaces are usually designed around the use of a

single user interface (UI) event thread [15, 16, 23, 24]:a every
operation that modifies UI state is executed as an event on
that thread. The UI “freezes” when it cannot respond to
input, or when it cannot be redrawn. It is recommended that
long-running CPU-bound or blocking I/O operations execute
asynchronously so that the application (app) continues to
respond to UI events.
Asynchronous programming is in demand today because

responsiveness is increasingly important on all modern de-
vices: desktop, mobile, or web apps. Therefore, major pro-
gramming languages have APIs that support non-blocking,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

asynchronous operations (e.g., to access the web, or for file
operations). While these APIs make asynchronous program-
ming possible, they do not make it easy.
Asynchronous APIs rely on callbacks. However, callbacks

invert the control flow, are awkward, and obfuscate the intent
of the original synchronous code [38].
Recently, major languages (F# [38], C# and Visual Ba-

sic [8] and Scala [7]) introduced async constructs that re-
semble the straightforward coding style of traditional syn-
chronous code. Thus, they recognize asynchronous program-
ming as a first-class citizen.
Yet, we know little about how developers use asynchronous

programming and specifically the new async constructs in
practice. Without such knowledge, other developers cannot
educate themselves about the state of the practice, language
and library designers are unaware of any misuse, researchers
make wrong assumptions, and tool providers do not provide
the tools that developers really need. This knowledge is also
important as a guide to designers of other major languages
(e.g., Java) planning to support similar constructs. Hence,
asynchronous programming deserves first-class citizenship in
empirical research and tool support, too.
We present the first study that analyzes the usage of asyn-

chronous libraries and new language constructs, async/await
in a large experiment. We analyzed 1378 open source Win-
dows Phone (WP) apps, comprising 12M SLOC, produced
by 3376 developers. While all our empirical analysis and
tools directly apply to any platform app written in C# (e.g.,
desktop, console, web, tablet), in this paper we focus on the
Windows Phone platform.

We focus on WP apps because we expect to find many
exemplars of asynchronous programming, given that respon-
siveness is critical. Mobile apps can easily be unresponsive
because mobile devices have limited resources and have high
latency (excessive network accesses). With the immediacy
of touch-based UIs, even small hiccups in responsiveness
are more obvious and jarring than when using a mouse or
keyboard. Some sluggishness might motivate the user to
uninstall the app, and possibly submit negative comments
in the app store [37]. Moreover, mobile apps are becoming
increasingly more important. According to Gartner, by 2016
more than 300 billion apps will be downloaded annually [17].
The goal of this paper is twofold. First, we obtain a

deep understanding of the problems around asynchronous
programming. Second, we present a toolkit (2 tools) to
address exactly these problems. To this end, we investigate
1378 WP apps through tools and by hand, focussing on the
following research questions:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/16750938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:okur2@illinois.edu
mailto:d.l.hartveld@tudelft.nl
mailto:digd@eecs.oregonstate.edu
mailto:arie.vandeursen@tudelft.nl

RQ1: How do developers use asynchronous programming?

RQ2: To what extent do developers misuse async/await?

We found that developers heavily use callback-based asyn-
chronous idioms. However, Microsoft officially no longer rec-
ommends these asynchronous idioms [29] and has started to
replace them with new idioms in new libraries (e.g., WinRT).
Developers need to refactor callback-based idioms to new
idioms that can take advantage of the async/await keywords.
The changes that the refactoring requires are non-trivial,
though. For instance, developers have to inspect deep call
graphs. Furthermore, they need to be extra careful to pre-
serve exception handling behavior. Thus, we implemented
the refactoring as an automated tool, Asyncifier.
We also found that nearly half of WP8 apps have started to

use the 9-month-old async/await keywords. However, devel-
opers misuse async/await in various ways. We define misuse
as anti-patterns, which hurt performance and might cause
serious problems like deadlocks. For instance, we found that
14% of methods that use (the expensive) async/await key-
words do this unnecessarily, 19% of methods do not follow
an important good practice [21], 1 out of 5 apps misses op-
portunities in async methods to increase asynchronicity, and
developers (almost) always unnecessarily capture context,
hurting performance. Thus, we implemented a transforma-
tion tool, Corrector, that finds and corrects the misused
async/await.
This paper makes the following contributions:

Empirical Study: To the best of our knowledge, this is the
first large-scale empirical study to answer questions about
asynchronous programming and async/await, that will be
available soon in other major programming languages. We
present implications of our findings from the perspective
of four main audiences: developers, language and library
designers, researchers, and tool providers.
Toolkit: We implemented the analysis and transformation
algorithms to address the challenges (Asyncifier and Cor-
rector).
Evaluation: We evaluated our tools by using the code
corpus and applied the tools hundreds of times. We show
that our tools are highly applicable and efficient. Developers
find our transformations useful. Using Asyncifier, we applied
and reported refactorings in 10 apps. 9 replied and accepted
each one of our 28 refactorings. Using Corrector, we found
and reported misuses in 19 apps. 19 replied and accepted
each of our 286 patches.
Outreach: Because developers learn new language con-
structs through both positive and negative examples, we
designed a website, http://LearnAsync.NET, to show hundreds
of such usages of asynchronous idioms and async/await.

2. BACKGROUND
When a button click event handler executes a synchronous

long-running CPU-bound or blocking I/O operation, the
user interface will freeze because the UI event thread cannot
respond to events. Code listing 1 shows an example of such an
event handler, method Button_Click. It uses the GetFromUrl
method to download the contents of a URL, and place it in
a text box. Because GetFromUrl is waiting for the network
operation to complete, the UI event thread is blocked, and
the UI is unresponsive.
Keeping UIs responsive thus means keeping the UI event

thread free of those long-running or blocking operations. If

Code 1 Synchronous example
1 void Button_Click (...) {
2 string contents = GetFromUrl (url)
3 textBox .Text = contents ;
4 }
5 string GetFromUrl (string url) {
6 WebRequest request = WebRequest . Create (url);
7 WebResponse response = request . GetResponse ();
8 Stream stream = response . GetResponseStream ();
9 return stream . ReadAsString ();

10 }

these operations are executed asynchronously in the back-
ground, the foreground UI event thread does not have to
busy-wait for completion of the operations. That frees up
the UI event thread to respond to user input, or redraw the
UI: the user will experience the UI to be responsive.
CPU-bound operations can be executed asynchronously

by (i) explicitly creating threads, or (ii) by reusing a thread
from the thread pool.
I/O operations are more complicated to offload asyn-

chronously. The naive approach would be to just start
another thread to run the synchronous operation asyn-
chronously, using the same mechanics as used for CPU-bound
code. However, that would still block the new thread, which
consumes significant resources, hurting scalability.
The solution is to use asynchronous APIs provided by the

platform. The .NET framework mainly provides two models
for asynchronous programming: (1) the Asynchronous Pro-
gramming Model (APM), that uses callbacks, and (2) the
Task Asynchronous Pattern (TAP), that uses Tasks, which
are similar to the concept of futures found in many other
languages such as Java, Scala or Python.

2.1 Asynchronous Programming Model
APM, the Asynchronous Programming Model, was part

of the first version of the .NET framework, and has been
in existence for 10 years. APM asynchronous operations
are started with a Begin method invocation. The result is
obtained with an End method invocation. In Code listing 2,
BeginGetResponse is such a Begin method, and EndGetResponse
is an End method.

BeginGetRepsonse is used to initiate an asynchronous HTTP
GET request. The .NET framework starts the I/O opera-
tion in the background (in this case, sending the request
to the remote web server). Control is returned to the call-
ing method, which can then continue to do something else.
When the server responds, the .NET framework will “call
back" to the application to notify that the response is ready.
EndGetResponse is then used in the callback code to retrieve
the actual result of the operation. See Figure 1 for an illus-
tration of this flow of events.
The APM Begin method has two pattern-related parame-

ters. The first parameter is the callback delegate (which is
a managed, type-safe equivalent of a function pointer). It
can be defined as either a method reference, or a lambda
expression. The second parameter allows the developer to
pass any single object reference to the callback, and is called
state.
The .NET framework will execute the callback delegate on

the thread pool once the asynchronous background operation
completes. The EndGetResponse method is then used in the
callback to obtain the result of the operation, the actual
WebResponse.

http://LearnAsync.NET

Code 2 APM-based example
1 void Button_Click (...) {
2 GetFromUrl (url);
3 }
4 void GetFromUrl (string url) {
5 var request = WebRequest . Create (url);
6 request . BeginGetResponse (Callback , request);
7 }
8 void Callback (IAsyncResult aResult) {
9 var request = (WebRequest) aResult . AsyncState ;

10 var response = request . EndGetResponse (aResult);
11 var stream = response . getResponseStream ();
12 var content = stream . ReadAsString ();
13 Dispatcher . BeginInvoke (() => {
14 textBox .Text = content ;
15 });
16 }

Figure 1: Where is callback-based APM code executing?

Note a subtle difference between the synchronous, sequen-
tial example in Code listing 1 and the asynchronous, APM-
based example in Code listing 2. In the synchronous example,
the Button_Click method contains the UI update (setting the
download result as contents of the text box). However, in
the asynchronous example, the final callback contains an in-
vocation of Dispatcher.BeginInvoke(...) to change context
from the thread pool to the UI event thread.

2.2 Task-based Asynchronous Pattern
TAP, the Task-based Asynchronous Pattern, provides for

a slightly different approach. TAP methods have the same
base operation name as APM methods, without ‘Begin’ or
‘End’ prefixes, and instead have an ‘Async’ suffix. The API
consists of methods that start the background operation and
return a Task object. The Task represents the operation in
progress, and its future result.
The Task can be (1) queried for the status of the operation,

(2) synchronized upon to wait for the result of the operation,
or (3) set up with a continuation that resumes in the back-
ground when the task completes (similar to the callbacks in
the APM model).

2.3 Drawbacks of APM and Plain TAP
Using APM and plain TAP directly has two main draw-

backs. First, the code that must be executed after the
asynchronous operation is finished, must be passed explic-
itly to the Begin method invocation. For APM, even more
scaffolding is required: The End method must be called, and
that usually requires the explicit passing and casting of an
‘async state’ object instance - see Code listing 2, lines 9-
10. Second, even though the Begin method might be called

Code 3 TAP & async/await-based example
1 async void Button_Click (...) {
2 var content = await GetFromUrlAsync (url);
3 textBox .Text = content ;
4 }
5 async Task <string > GetFromUrlAsync (string url) {
6 var request = WebRequest . Create (url);
7 var response = await request . GetResponseAsync ()
8 . ConfigureAwait (false);
9 var stream = response . GetResponseStream ();

10 return stream . ReadAsString ();
11 }

Figure 2: Where is the async/await-based code executing?

from the UI event thread, the callback code is executed on a
thread pool thread. To update the UI after completion of
the asynchronous operation from the thread pool thread, an
event must be sent to the UI event thread explicitly - see
Code listing 2, line 13-15.

2.4 Pause & Play with async/await
To solve this problem, the async and await keywords have

been introduced in 2012 in C# 5.0. When a method has the
async keyword modifier in its signature, the await keyword
can be used to define pausing points. When a Task is awaited
in an await expression, the current method is paused and
control is returned to the caller. When the await’ed Task’s
background operation is completed, the method is resumed
from right after the await expression. Code listing 3 shows
the TAP- & async/await-based equivalent of Code listing 2,
and Figure 2 illustrates its flow of execution.
The code following the await expression can be considered

a continuation of the method, exactly like the callback that
needs to be supplied explicitly when using APM or plain
TAP. Methods that have the async modifier will thus run
synchronously up to the first await expression (and if it does
not have any, it will complete synchronously). Merely adding
the async modifier does not magically make a method be
asynchronously executed in the background.

2.5 Where is the Code Executing?
There is one important difference between async/await

continuations, and APM or plain TAP callback continuations:
APM and plain TAP always execute the callback on a thread
pool thread. The programmer needs to explicitly schedule a
UI event to interface with the UI, as shown in Code listing 2
and Figure 1.
In async/await continuations, the await keyword, by de-

fault, captures information about the thread in which it is
executed. This captured context is used to schedule execu-

tion of the rest of the method in the same context as when the
asynchronous operation was called. For example, if the await
keyword is encountered in the UI event thread, it will capture
that fact. Once the background operation is completed, the
continuation of the rest of the method is scheduled back onto
the UI event thread. This behavior allows the developer to
write asynchronous code in a sequential manner. See Code
listing 3 for an example.
Comparing the code examples in Code listings 1 and 3 will

show that the responsive version based on TAP & async/await
only slightly differs from the sequential version. It is readable
in a similar fashion, and even the UI update (setting contents
of the text box) is back at its original place.
By default, await expressions capture the current con-

text. However, it is not always needed to make the
expensive context switch back to the original context.
To forestall a context switch, an await’ed Task can be
set to ignore capturing the current context by using
ConfigureAwait(false). In Code listing 3, in GetFromUrlAsync,
none of the statements following the await expressions re-
quire access to the UI. Hence, the await’ed Task is set with
ConfigureAwait(false). In Button_Click, the statement fol-
lowing await GetFromUrlAsync(url) does need to update the
UI. So that await expression should capture the original
context, and the task should not be set up with Config-
ureAwait(false).

3. RESEARCH QUESTIONS
We are interested in assessing the usage of state of the art

asynchronous programming in real world WP apps.

3.1 Methodology
Corpus of Data: We chose Microsoft’s CodePlex [11]

and GitHub [18] as sources of the code corpus of WP apps.
According to a recent study [26], most C# apps reside in
these two repositories. We developed WPCollector to
create our code corpus. It is available online [10] and can be
reused by other researchers.
We used WPCollector to download all recently updated

WP apps which have a WP-related signature in their project
files. It ignores (1) apps without commits since 2012, and
(2) apps with less than 500 non-comment, non-blank lines of
code (SLOC). The latter “toy apps” are not representative
of production code.

WPCollector makes as many projects compilable as
possible (e.g., by resolving-installing dependencies), because
the Roslyn APIs that we rely on (see Analysis Infrastructure)
require compilable source code.

WPCollector successfully downloaded and prepared
1378 apps, comprising 12M SLOC, produced by 3376 devel-
opers. Our analysis uses all apps, without sampling.
In our corpus, 1115 apps are targeting WP7, released in

October 2010. Another 349 apps target WP8, released in
October 2012. 86 apps target both platforms.

Analysis Infrastructure: We developed AsyncAnalyzer
to perform the static analysis of asynchronous program-
ming construct usage. We used Microsoft’s recently released
Roslyn [30] SDK, which provides an API for syntactic and
semantic program analysis, AST transformations and editor
services in Visual Studio. Because the publicly available
version of Roslyn is incomplete and does not support the
async/await keywords yet, we used an internal build obtained
from Microsoft.

Table 1: Usage of asynchronous idioms. The three columns
per platform show the total number of idiom instances, the
total number of apps with instances of the idiom, and the
percentage of apps with instances of the idiom.

WP7 WP8
App % # # App %

I/O APM 1028 242 22% 217 65 19%
I/O TAP 123 23 2% 269 57 16%
New Thread 183 92 8% 28 24 7%
BG Worker 149 73 6% 11 6 2%
ThreadPool 386 103 9% 52 24 7%
New Task 51 11 1% 182 28 8%

We executed AsyncAnalyzer over each app in our corpus.
For each of these apps, it inspects the version from the main
development branch as of August 1st, 2013. We developed a
specific analysis to answer each research question.

3.2 How do Developers Use Asynchronous
Programming?

Asynchronous APIs: We detected all APM and TAP
methods that are used in our code corpus as shown in Table 1.
Because in WP7 apps, TAP methods are only accessible via
additional libraries, Table 1 tabulates the usage statistics for
WP7 and WP8 apps separately. The data shows that APM
is more popular than TAP for both WP7 and WP8.
We also manually inspected all APM and TAP methods

used and categorized them based on the type of I/O oper-
ations: network (1012), file system (310), database (145),
user interaction (102) and other I/O (e.g., speech recogni-
tion) (68). We found that asynchronous operations are most
commonly used for network operations.
There are two ways to offload CPU-bound operations to

another thread: by creating a new thread, or by reusing
threads from the thread pool. Based on C# books and ref-
erences [1], we distinguish 3 different approaches developers
use to access the thread pool: (1) the BackgroundWorker
class, (2) accessing the ThreadPool directly, and (3) creating
Tasks. Table 1 tabulates the usage statistics of all these
approaches. Because Task is only available in WP7 apps by
using additional libraries, the table shows separate statis-
tics for WP7 and WP8 apps. The data shows that Task is
used significantly more in WP8 apps, most likely because of
availability in the core platform.

Language Constructs: async/await have become acces-
sible for WP development in last quarter of 2012. While
they are available by default in WP8, WP7 apps have to
reference Microsoft.Bcl.Async library to use them.
We found that 45% (157) of WP8 apps use async/await

keywords. While nearly half of all WP8 apps have started to
use the new 9-month-old constructs, only 10 WP7 apps use
them. In the combined 167 apps, we found that there are
2383 async methods that use at least one await keyword in
their method body. An async method has 1.6 await keywords
on average, meaning that async methods call other async
methods.�
�

�
�

Callback-based APM is the most widely used idiom.
While nearly half of all WP8 apps have started to use

async/await, only 10 WP7 apps use them.

3.3 Do Developers Misuse async/await?
Because async/await are relatively new language con-

structs, we have also investigated how developers misuse
them. We define misuse as anti-patterns which hurt perfor-
mance and might cause serious problems like deadlocks. We
detected the following typical misusage idioms.

3.3.1 Fire & Forget Methods
799 of 2382 async/await methods return void instead of

Task. This means they are “fire&forget” methods, which can-
not be awaited. Exceptions thrown in such methods cannot
be caught in the calling method, and cause termination of
the app. Unless these methods are UI event handlers, this is
a code smell.
However, we found that only 339 out of these 799 async

void methods are event handlers. It means that 19% of
all async methods (460 out of 2383) are not following this
important practice [21]. Instead, such methods should return
Task, which does not force the developer to change anything
else, but it does enable easier error handling, composition
and testability.
One in five async methods violate the principle

that an async method should be awaitable unless it
is the top level event handler.

3.3.2 Unnecessary async/await Methods
Consider the example from “Cimbalino Windows Phone

Toolkit” [3]:
public async Task <Stream > OpenFileForReadAsync (...) {

return await Storage . OpenStreamForReadAsync (path);
}

The OpenStream method is a TAP call, which is awaited in
the OpenFile method. However, there is no need to await
it. Because there is no statement after the await expression
except for the return, the method is paused without reason:
the Task that is returned by Storage.OpenStream can be im-
mediately returned to the caller. The snippet below behaves
exactly the same as the one above:
public Task <Stream > OpenFileForReadAsync (...) {

return Storage . OpenStreamForReadAsync (path);
}

It is important to detect this kind of misuse. Adding the
async modifier comes at a price: the compiler generates some
code in every async method and generated code complicates
the control flow which results in decreased performance.
We discovered that in 26% of the 167 apps, 324 out of all

2383 async methods unnecessarily use async/await. There
is no need to use async/await in 14% of async methods.

3.3.3 Using Long-running Operations under Async
Methods

We also noticed that developers use some potentially long-
running operations under async methods even though there
are corresponding asynchronous versions of these methods
in .NET or third-party libraries. Consider the following
example from indulged-flickr [14]:
public async void GetPhotoStreamAsync (...) {

var response = await DispatchRequest (...);
using (StreamReader reader = new StreamReader (...)){

string jsonString = reader . ReadToEnd ();
}

}

The developer might use await ReadToEndAsync() instead of
the synchronous ReadToEnd call, especially if the stream is
expected to be large.

In the example below from iRacerMotionControl [22], the
situation is more severe.
private async void BT2Arduino_Send (string WhatToSend){

...
await BTSock . OutputStream . WriteAsync (datab);
txtBTStatus .Text = "sent";
System . Threading . Thread . Sleep (5000); ...

}

The UI event thread calls BT2Arduino_Send, which blocks the
UI thread by busy-waiting for 5 seconds. Instead of using
the blocking Thread.Sleep method, the developer should use
the non-blocking Task.Delay(5000) method call to preserve
similar timing behavior, and await it to prevent the UI to
freeze for 5 seconds.
We found 115 instances of potentially long-running oper-

ations in 22% of the 167 apps that use async/await. 1 out
of 5 apps miss opportunities in at least one async
method to increase asynchronicity.

3.3.4 Unnecessarily Capturing Context
async/await introduce new risks if the context is captured

without specifying ConfigureAwait(false). For example, con-
sider the following example from adsclient [2]:
void GetMessage (byte [] response) {

...
ReceiveAsync (response). Wait (); ...

}
async Task <bool > ReceiveAsync (byte [] message) {

...
return await tcs.Task;

}

If GetMessage is called from the UI event thread, the thread
will wait for completion of ReceiveAsync because of the Wait
call. When the await completes in ReceiveAsync, it attempts
to execute the remainder of the method within the captured
context, which is the UI event thread. However, the UI
event thread is already blocked, waiting for the completion
of ReceiveAsync. Therefore, a deadlock occurs.
To prevent the deadlock, the developer needs to set up

the await expression to use ConfigureAwait(false). Instead
of attempting to resume the ReceiveAsync method on the UI
event thread, it now resumes on the thread pool, and the
blocking wait in GetMessage does not cause a deadlock any
more. In the example above, although ConfigureAwait(false)
is a solution, we fixed it by removing await because it was also
an instance of unnecessary async/await use. The developer
of the app accepted our fix as a patch.
We found 5 different cases for this type of deadlock which

can happen if the caller method executes on UI event thread.
Capturing the context can also cause another problem:

it hurts performance. As asynchronous GUI applications
grow larger, there can be many small parts of async methods
all using the UI event thread as their context. This can
cause sluggishness as responsiveness suffers from thousands
of paper cuts. It also enables a small amount of parallelism:
some asynchronous code can run in parallel with the UI event
thread instead of constantly badgering it with bits of work
to do.
To mitigate these problems, developers should await the

Task with ConfigureAwait(false) whenever they can. If the
statements after the await expression do not update the UI,
ConfigureAwait(false) must be set. Detecting this misuse is
important because using ConfigureAwait(false) might pre-
vent future bugs like deadlocks and improve the performance.
1786 out of 2383 async methods do not update GUI

elements in their call graph after await expressions.

Table 2: Statistics of Misuses

Misuse # Method App
(1) Fire & Forget 460 19% 76%
(2) Unnecessary Async 324 14% 26%
(3) Potential LongRunning 115 5% 22%
(4) Unnecessary Context 1770 74% 86%

We found that ConfigureAwait(false) is used in only
16 out of these 1786 async methods in await expres-
sions. All 1770 other async methods should have used
ConfigureAwait(false). 99% of the time, developers did
not use ConfigureAwait(false) where this was needed.

4. TOOLKIT
Based on our findings from Section 3, we developed a two-

fold approach to support the developer: (1) Asyncifier, a
refactoring tool to upgrade legacy callback-based APM code
to take advantage of async/await construct (see Section 4.1)
and (2) Corrector, a tool for detecting and fixing misuses
of async/await in code (see Section 4.2).

Asyncifier helps the developer in two ways: (1) the code is
upgraded without errors, retaining original behavior, and (2)
it shows how to correctly use async/await in production code.
If the developer manually introduces async/await, Corrector
will help in finding and removing misuses.

4.1 Refactoring APM to async/await

4.1.1 Challenges
There are three main challenges that make it hard to

execute the refactoring quick and flawlessly by hand. First,
the developer needs to understand if the APM instance is
a candidate for refactoring based on the preconditions in
Section 4.1.2. Second, he must transform the code while
retaining the original behavior of the code - both functionally
and in terms of scheduling. This is non-trivial, especially
in the presence of (1) exception handling, and (2) APM End
methods that are placed deeper in the call graph.
Exception handling: The refactoring from APM to
async/await should retain the functional behavior of the orig-
inal program, both in the normal case and under exceptional
circumstances. In 52% of all APM instances, try-catch blocks
are in place to handle those exceptions. The try-catch blocks
surround the End method invocation, which throws an excep-
tion if the background operation results in an exceptional
circumstance. These catch blocks can contain business logic:
for example, a network error sometimes needs to be reported
to the user (“Please check the data or WiFi connection”).
Code listing 4 shows such an example.
The naive approach to introducing async/await is to re-

place the Begin method invocation with an invocation to
the corresponding TAP method, and await the result im-
mediately. However, the await expression is the site that
can throw the exception when the background operation
failed. In the APM code, the exception would be thrown
at the End call site. Thus, the exception would be thrown
at a different site, and this can drastically change behavior.
Exception handling behavior can be retained by introducing
the await expression as replacement of the End method call
at the exact same place. This is a non-trivial insight for de-

Code 4 EndGetResponse in try-catch block
void Button_Click (...) {

WebRequest request = WebRequest . Create (url);
request . BeginGetResponse (Callback , request);

}
void Callback (IAsyncResult ar) {

WebRequest request = (WebRequest)ar. AsyncState ;
try {

var response = request . EndGetResponse (ar);
// Code does something with successful response

} catch (WebException e) {
// Error handling code

}
}

Code 5 EndGetResponse on longer call graph path
void Button_Click (...) {

WebRequest request = WebRequest . Create (url);
request . BeginGetResponse (ar => {

IntermediateMethod (ar , request);
}, null);

}
void IntermediateMethod (IAsyncResult result ,

WebRequest request) {
var response = GetResponse (request , result);
// Code does something with response

}
WebResponse GetResponse (WebRequest request ,

IAsyncResult result) {
return request . EndGetResponse (result);

}

velopers, because online examples of async/await only show
the refactoring for extremely simple cases, where this is not
a concern.
Hidden End methods: The developer needs to take even
more care when the End method is not immediately called
in the callback lambda expression, but is ‘hidden’ deeper
down the call chain. Code listing 5 shows such an example.
In order to preserve exceptional behavior, the Task instance
must be passed down to the call site of the End method. This
requires an inter-procedural analysis of the code: each of the
methods, through which the IAsyncResult ‘flows’, must be
refactored, which makes the refactoring more tedious. The
developer must trace the call graph of the callback to find the
End method call, and in each encountered method: (1) replace
the IAsyncResult parameter with a Task<T> parameter (with
T being the return type of the TAP method, (2) replace the
return type R with async Task<R>, or void with async void or
async Task, and (3) introduce ConfigureAwait(false) at each
await expression. As shown in the results of the empirical
study, developers almost never use ConfigureAwait(false),
despite the fact that it is critical for UI responsiveness.

4.1.2 Algorithm Preconditions
An invocation of a Begin method is a candidate for refac-

toring to async/await constructs, if it adheres to the following
preconditions and restrictions:
P1: The APM method call must represent an asynchronous
operation for which a TAP-based method also exists. If
the TAP-based method does not exist, the code cannot be
refactored.
P2: The Begin method invocation statement must be con-
tained in a regular method, i.e, not in a lambda expression
or delegate anonymous method. The Begin method will be
made async. While it is possible to make lambdas and del-
egate anonymous methods async, this is considered a bad
practice because it usually creates an async void fire & forget
method (see Section 3.3.1).

Code 6 Adheres to precondition
void Action (WebRequest request) {

request . BeginGetResponse (asyncResult => {
var response = request . EndGetRequest (asyncResult);
// Code does something with response

}, null);
}

Code 7 Code listing 2 refactored to meet preconditions
void GetFromUrl (string url) {

var request = WebRequest . Create (url);
request . BeginGetResponse (asyncResult => {

Callback (asyncResult , request);
}, null);

}
void Callback (IAsyncResult ar , WebRequest request) {

var response = request . EndGetResponse (ar);
var stream = response . getResponseStream ();
var content = stream . ReadAsString ();
Dispatcher . BeginInvoke (() => {

textBox .Text = content ;
});

}

P3: The callback argument must be a lambda expression
with a body consisting of a block of statements and the call
graph of that block must contain an End method invocation
that takes the lambda IAsyncResult parameter as argument.
The callback must actually terminate the background opera-
tion. Otherwise, there is no way to get the result from the
asynchronous operation.
P4: In the callback call graph, the IAsyncResult lambda
parameter should not be used, except as an argument to the
End method, because it will be removed after the refactoring.
P5: In the initiating method (the method containing the
Begin method invocation), the IAsyncResult return value of
the Begin method should not be used, because it is returned
by a method invocation that will disappear.
Code listing 6 shows a valid example in the context of

these preconditions.
Applying these preconditions to APM instances in real-

world applications would restrict the number of APM in-
stances that can be refactored. Fortunately, many instances
in other forms can be refactored into this form. Code listing
2 shows an example that fails P3: the callback argument
is a method reference. This instance can be refactored into
the code shown in listing 7 by applying the “Introduce Pa-
rameter” refactoring to the request variable in the original
Callback method.
Based on encountered cases in the analyzed code corpus,

we have identified and implemented several such refactorings
in Asyncifier. An example is the rewriting of some callback
argument expressions (solves violations of P3)

4.1.3 Refactoring APM Instances
Asyncifier detects all Begin method invocations that fulfill

the preconditions. It takes the following steps to refactor the
APM instance to async/await-based constructs.

(1)Traveling the call graph from APM Begin to End:
First, Asyncifier explores the call graph of the body of the
callback lambda expression to find the invocation path to
the End invocation. It does a depth-first search of the call
graph, by looking up the symbols of any non-virtual method
that is encountered. There are two possible scenarios: the
End method invocation (1) is placed directly in the lambda
expression, or (2) it is found on the call graph of the lambda

body in another method’s body. Code listing 6 is an example
of the first case.
In the second case, Asyncifier identifies three different

methods which are on the call graph path: (1) the initiat-
ing method, i.e., the method containing the Begin method
invocation, (2) the result-obtaining method, i.e., the method
containing the End method invocation, and (3) intermediate
methods, i.e., the remaining methods on the path. Code list-
ing 7 is an example of the second case. We use this example
in the description of the following steps.

(2) Rewriting the initiating method: In both cases, the
initiating method needs to be rewritten. Asyncifier adds
the async modifier to the signature of the initiating method.
It changes the return value is to either Task instead of void,
or Task<T> for any return type T.
void GetFromUrl (string url) { ... }

⇓
async Task GetFromUrl (string url) { ... }

Asyncifier replaces the Begin method invocation statement
with a local variable declaration of a task that is assigned
the result of the corresponding TAP method invocation. The
parameterized type is the return type of the End method:
request . BeginGetResponse (...);

⇓
Task < WebResponse > task = request . GetResponseAsync ();

It then concatenates the statements in the lambda expres-
sion body to the body of the initiating method:
async Task GetFromUrl (string url) {

var request = WebRequest . Create (url);
var task = request . GetResponseAsync ();
Callback (asyncResult , request);

}

It replaces the asyncResult lambda parameter reference
asyncResult with a reference to the newly declared Task in-
stance.
async Task GetFromUrl (string url) {

var request = WebRequest . Create (url);
var task = request . GetResponseAsync ();
Callback (task , request);

}

(3) Rewriting the result-obtaining method: Asynci-
fier updates the signature of the result-obtaining method as
follows: (1) it adds the async modifier, (2) it replaces return
type void with Task, or any other T with Task<T>, and (3)
it replaces the IAsyncResult parameter with Task<R>, with R
the return type of the End method.
void Callback (IAsyncResult asyncResult ,

WebRequest request) { ... }

⇓
async Task Callback (Task < WebResponse > task ,

WebRequest request) { ... }

Then it replaces the End method invocation expression with
await task, without capturing the synchronization context:
var response = request . EndGetResponse (asyncResult);

⇓
var response = await task. ConfigureAwait (false);

Asyncifier refactors the APM instance into the code shown
in Code listing 8. If the introduction of new variables leads to
identifier name clashes, Asyncifier disambiguates the newly
introduced names by appending an increasing number to
them, i.e., task1, task2, etc.

Code 8 async/await code after refactoring Code listing 7
async Task GetFromUrl (string url) {

var request = WebRequest . Create (url);
Task < WebResponse > task= request . GetResponseAsync ();
Callback (task , request);

}

async Task Callback (Task < WebResponse > task ,
WebRequest request) {

var response = await task. ConfigureAwait (false);
var stream = response . getResponseStream ();
var content = stream . ReadAsString ();
Dispatcher . BeginInvoke (() => {

textBox .Text = content ;
});

}

(4) Callbacks containing the End call: If the End
method invocation is now in the initiating method, Asynci-
fier replaces it with an await expression, and the refactoring
is complete. The example in Code listing 6 would be com-
pletely refactored at this point:

void Action (WebRequest request) {
var task = request . GetResponseAsync ();
var response = await task. ConfigureAwait (false);
// Do something with response .

}

(5) Rewriting intermediate methods: Intermediate
methods must be rewritten if the End method is not invoked
in the callback lambda expression body. Asyncifier recur-
sively refactors every method, applying the same steps as for
the result-obtaining method. Additionally, at the call site of
each method, the reference to the (removed) result param-
eter is replaced with a reference to the (newly introduced)
task parameter.

4.1.4 Retaining Original Behavior
It is crucial that the refactored code has the same behav-

ior in terms of scheduling as the original code. With both
the Begin method and the TAP method, the asynchronous
operation is started. In the APM case, the callback is only
executed once the background operation is completed. With
async/await, the same happens-before relationship exists be-
tween the await expression and the statements that follow
the await of the Task returned by the TAP method. Because
the statements in callbacks are placed after the await ex-
pression that pauses execution until the completion of the
background operation, this timing behavior is preserved by
Asyncifier.

4.1.5 Implementation Limitations
The set of candidate programs that can be refactored is

restricted by tool limitations related to re-use of Begin or End
methods. First, there should not be other call graph paths
leading from Begin method call to the target End method,
which means that the specific End method invocation must
not be shared between multiple Begin invocations. Second,
recursion in the callback through another Begin call that
references the same callback again is not allowed (essentially,
this is also sharing of an End method call). Third, Asynci-
fier does not support multiple End method invocations that
correspond to a single Begin method invocation, for example
through the use of branching. However, this case is very
rare.

4.2 Corrector
We implemented another tool, Corrector, that detects

and corrects common misuses that we explained in Sec-
tion 3.3. Corrector gets the project file as an input and
automatically corrects the misuses if it finds any, thus oper-
ating in batch mode. In addition, Corrector also works in
interactive mode via Quick Fix mode for Visual Studio. This
mode shows a small icon close to the location of the misuse
to fix the problem. Because Corrector is constantly scanning
the source code as soon as the user typed in new code, it
dramatically shortens the time between the introduction of
an error and its correction.
Unnecessary async/await methods: Corrector checks
whether async method body has only one await keyword and
this await is used for a TAP method call that is the last
statement of the method. Corrector does not do this for
async void (fire&forget) methods; because if it removes await
from the last statement in async void methods, it will silence
the exception that can occur in that statement.
To fix these cases, Corrector removes the async from the

method identifiers and the await keyword from the TAP
method call. The method will return the Task that is the
result of TAP method call.
Long-running operations under async methods: To
detect these operations, Corrector looks up symbols of each
method invocation in the bodies of async methods. After
getting symbol information, Corrector looks at the other
members of the containing class of that symbol to check
whether there is an asynchronous version. For instance, if
there is an x.Read() method invocation and x is an instance
of the Stream class, Corrector looks at the members of the
Stream class to see whether there is a ReadAsync method that
gets the same parameters and returns Task. By checking the
members, Corrector can also find asynchronous versions not
only in the .NET framework but also in third-party libraries.

Corrector also maps corresponding blocking and non-
blocking methods which do not follow the Async suffix con-
vention (e.g., Thread.Sleep -> Task.Delay).

Corrector avoids introducing asynchronous operations
of file IO operations in loops, as this could result in slower
performance than the synchronous version.
After finding the corresponding non-blocking operation,

Asyncifier simply replaces the invocation with the new op-
eration and makes it await’ed.
Unnecessarily capturing context: Corrector checks
the call graph of async methods to see if there are accesses
of GUI elements. All GUI elements are in the namespaces
System.Windows and Microsoft.Phone. If Corrector does not
find any use of elements from those namespaces after await ex-
pressions, it introduces ConfigureAwait(false) in those await
expressions.
Fire & Forget methods: There is no automated fix for
this misuse. If fire & forget method is converted to async
Task method and is awaited in the caller, it will change the
semantics. Therefore, the developer’s understanding of code
is required to fix this case.

5. EVALUATION
To evaluate Asyncifier and Corrector, we studied their

applicability, their impact on the code, their performance,
and the usefulness of their results to developers.

Applicability: To evaluate the applicability, we executed
Asyncifier over our code corpus. After each transformation,
Asyncifier compiled the app in-memory and checked whether
compilation errors were introduced. 54% of the 1245 APM
instances adhere to the preconditions set in section 4.1.2,
which were all successfully refactored. By manually checking
10% of all transformed instances, randomly sampled, we
verified that Asyncifier refactors APM instances correctly.
In the 46% of unsupported APM instances, Asyncifier does
not change the original program.
The two main causes for unsuccessful refactorings are (1)

instances that do not adhere to preconditions, and (2) tool
limitations. The former consist mostly of instances that can
not be refactored because of fundamental limitations of the
algorithm. Examples are callback expressions that reference
a field delegate, or APM End methods that are hidden behind
interface implementations (violations of precondition P3).
The latter consist of the examples given in Section 4.1.5.

We also applied Corrector to the full corpus (2209 times).
All instances of type 2, 3, and 4 misuses (see Table 2 were
corrected automatically.
Code Impact: To evaluate the impact of our refactorings
on the code we investigate the size of the changes. Asyncifier
changes 28.9 lines on average per refactoring. This shows
that automation is needed, since each refactoring changes
many lines of code. Moreover, these changes are not trivial.

Corrector changes one line per each misuse of type (3)
and (4) in Section 4.2. It changes 2 or 3 lines per each misuse
of type (2); 2.1 lines on average.
Tool Performance: For Asyncifier, the average time
needed to refactor one instance is 508ms rendering Asyncifier
suitable for an interactive refactoring mode in an IDE.
Because the detection and fixing of type (2) and (3) misuses

is straightforward, we did not measure the execution time.
However, detecting type (4) misuse is expensive, as it requires
inspection of the call graph of the async method. We found
that analyzing one async method for this misuse takes on
average 47ms. This shows that Corrector can be used
interactively in an IDE, even for type (4) misuse.
Usefulness of Patched Code: To further evaluate the
usefulness in practice, we conducted a qualitative analysis
of the 10 most recently updated apps that have APM in-
stances. We applied Asyncifier ourselves, and offered the
modifications to the original developers as a patch via a pull
request.1 9 out of 10 developers responded, and accepted
each one of our 28 refactorings.
We received very positive feedback on these pull requests.

One developer would like to have the tool available right
now: “I’ll look forward to the release of that refactoring
tool, it seems to be really useful.” [33] The developer of
phoneguitartab [4] said that he had “been thinking about
replacing all asynchronous calls [with] new async/await style
code”. This illustrates the demand for tool support for the
refactoring from APM to async/await.
For Corrector, we selected the 10 most recently updated

apps for all type (2) and (3) misuses. In total, we selected 19
apps because one app had both type (2) and (3). We used
the same corpus of 19 apps to also fix misuses of type (4).
Developers of 19 apps replied and accepted all our patches,
corresponding to 149 instances of type (2), 39 instances of

1All patches can be found on our web site: LearnAsync.NET

type (3), and 98 instances of type (4) misuses. In total 18
apps accepted 286 instances of Corrector transformations.
Response to the fixes that removed unnecessary

async/await keywords was similarly positive. One developer
pointed out that he missed several unnecessary async/await
instances that Corrector detected: “[...] I normally try
to take the same minimizing approach, though it seems I
missed these.” [32] The developer of SoftbuildData [6] experi-
enced performance improvements after removing unnecessary
async/await: “[...] performance has been improved to 28 mil-
liseconds from 49 milliseconds.” Again, these illustrate the
need for tools that support the developer in finding problems
in the use of async/await.
Furthermore, the developers of the playerframework [5]

said that they missed the misuses because the particular
code was ported from old asynchronous idioms. This demon-
strates the need for Asyncifier as it can help a developer to
upgrade his or her code, without introducing incorrect usage
of async/await.

6. DISCUSSION
6.1 Implications
Our study has implications for developers, educators, lan-

guage and library designers, tool providers, and researchers.
Developers learn and educators teach new programming

constructs through both positive and negative examples.
Robillard and DeLine [35] study what makes large APIs hard
to learn and conclude that one of the important factors is the
lack of usage examples. We provide hundreds of real-world
examples of all asynchronous idioms on LearnAsync.net.
Because developers might need to inspect the whole source
file or project to understand the example, we also link to
highlighted source files on GitHub [39]. We also provide
negative examples anonymously, without giving app names.
Language and library designers can learn which constructs

and idioms are embraced by developers, and which ones are
tedious to use or error-prone. Because some other major
languages (Java 9) have plans to introduce similar constructs
for asynchronous programming, this first study can guide
them to an improved design of similar language constructs
for their languages. The architects of async constructs in
C#, F#, and Scala confirmed that our findings are useful
and will influence the future evolution of these constructs.
For instance, capturing the context need not be the default:
as we have seen developers are very likely to forget to use
ConfigureAwait(false).
Tool providers can take advantage of our findings on

async/await misuse. IDEs such as Visual Studio should have
built-in quick fixes (similar to ours) to prevent users from
introducing misuse. For instance, if developers introduce a
fire & forget method, the IDE should give a warning unless
the method is the top level event handler.
Researchers in the refactoring community can use our find-

ings to target future research. For example, as we see from
Table 1, the usage of Task jumped to 8% from 1% in WP8.
This calls for work on a tool that converts old asynchronous
idioms of CPU-bound computations (e.g., Thread) to new
idioms (e.g., Task).

6.2 Why is async/await Commonly Misused?
We have seen extensive misuse of the async/await keywords

in the projects in our code corpus. Different authors, both

LearnAsync.NET
LearnAsync.net

from Microsoft and others, have documented these potential
misuses extensively. This raises the question: Why is the
misuse so extensive? Are developers just uninformed, or
are they unaware of risks or performance characteristics of
async/await?
The async/await feature is a powerful abstraction. Asyn-

chronous methods are more complicated than regular meth-
ods in three ways. (1) Control flow of asynchronous methods.
Control is returned to the caller when awaiting, and the
continuation is resumed later on. (2) Exception handling.
Exceptions thrown in asynchronous methods are automati-
cally captured and returned through the Task. The exception
is then re-thrown when the Task is awaited. (3) Non-trivial
concurrent behavior. Up to the first await expression, the
asynchronous method is executed synchronously. The con-
tinuation is potentially executed in parallel with the main
thread. Each of these is a leak in the abstraction, which
requires an understanding of the underlying technology -
which developers do not yet seem to grasp.

Another problem might simply be the naming of the fea-
ture: asynchronous methods. However, the first part of the
method executes synchronously, and possibly the continu-
ations do so as well. Therefore, the name asynchronous
method might be misleading: the term pauseable could be
more appropriate.
Microsoft has introduced a powerful new feature with

async/await keywords in C# 5. This empowers developers.
However, the flip side of the same coin is that they can easily
misuse it. Therefore, it is important to support developers
in their understanding of the feature, its pros and cons, and
best practices. Documentation is one manner of doing this; a
toolkit and/or IDE support is another. The authors believe
that these are complimentary, and should both be provided.

6.3 Threats to Validity
External: For what C# programs are the results represen-
tative? First, despite the fact that our corpus contains only
open source apps, the 1378 apps span a wide domain, from
games, social networking, and office productivity to image
processing and third party libraries. They are developed
by different teams with 3376 contributors from a large and
varied community, comprising all Windows Phone apps from
GitHub and Codeplex.
Second, our tools can be applied to any C# system. Thus,

a similar search for misuses and refactoring opportunities
can be conducted on non-Phone systems, such as reusable
libraries, server side code, or desktop applications.

Internal: With respect to the misuse analysis, for most
cases, our analysis is an under-estimation: For example,
we detect one form of unnecessary async/await, but likely
there are other unnecessary uses that we do not detect. In
other cases, heuristics are used, for example to discover the
existence of asynchronous versions of long running methods,
or for detecting GUI code. Concerning the applicability of
the refactorings, our tool presently can handle 54% of the
APM cases. This percentage can go up by addressing some of
Asyncifier’s tool limitations.

Reliability: To facilitate replication of our analysis, we
provide a detailed description of our results with fine-grained
reports online at http://LearnAsync.NET/. The tools can be
downloaded through our webpage.

7. RELATED WORK
Empirical Studies: There are several empirical studies
[9, 19, 25, 28, 31] on the usage of libraries or programing
language constructs. To the best of our knowledge, there is
no empirical study on asynchronous constructs and language
constructs for asynchronous programming.
We have previously conducted an empirical study [27] on

how developers from thousands of open source projects use
Microsoft’s Parallel Libraries. There is a small intersection
between asynchronous and parallel libraries: only Thread,
Task, and ThreadPool constructs. In this paper, we stud-
ied these three constructs as 3 of 5 different approaches to
executing CPU-bound computations asynchronously.
Refactoring Tools: Traditionally, refactoring tools have
been used to improve the design of sequential programs.
There are a few refactoring tools that specifically target
concurrency. We have used refactoring [12,13] to retrofit par-
allelism into sequential applications via concurrent libraries.
In the same spirit, Wloka et al. present a refactoring for
replacing global state with thread local state [40]. Schafer
et al. present Relocker [36], a refactoring tool that lets pro-
grammers replace usages of Java built-in locks with more
flexible locks. Gyori et al. present Lambdaficator [20], that
refactors existing Java code to use lambda expressions to
enable parallelism.
To the best of our knowledge, there is no refactoring tool

that specifically targets asynchronous programming. In in-
dustry, ReSharper [34] is a well-known refactoring tool, but
it does not support async/await-specific refactorings. Our
refactoring helps developer design responsive apps, which is
an area that has not yet been explored.

8. CONCLUSION
Because responsiveness is very important on mobile devices,

asynchronous programming is already a first-class citizen in
modern programming languages. However, the empirical
research community and tool providers have not yet caught
up.
Our large-scale empirical study of Windows Phone apps

provides insight into how developers use asynchronous pro-
gramming. We have discovered that developers make many
mistakes when manually introducing asynchronous program-
ming. We provide a toolkit to support developers in pre-
venting and curing these mistakes. Our toolkit (1) safely
refactors legacy callback-based asynchronous code to the new
async/await, (2) detects and fixes existing errors, and (3) pre-
vents introduction of new errors. Evaluation of the toolkit
shows that it is highly applicable, and developers already
find the transformations very useful and are looking forward
to using our toolkit. We hope that our study motivates other
follow-up studies to fully understand the state of the art in
asynchronous programming.

9. ACKNOWLEDGEMENTS
This research is partly funded through NSF CCF-1213091

and CCF-1219027 grants, a SEIF award from Microsoft, and
a gift grant from Intel. The authors would like to thank
Cosmin Radoi, Yu Lin, Mihai Codoban, Caius Brindescu,
Sergey Shmarkatyuk, Alex Gyori, Michael Hilton, Felienne
Hermans, Eren Atbas, Mohsen Vakilian, Alberto Bacchelli,
Dustin Campbell, Jon Skeet, Don Syme, Stephen Toub, and
anonymous reviewers for providing helpful feedback on earlier
drafts of this paper.

http://LearnAsync.NET/

10. REFERENCES
[1] J. Albahari and B. Albahari. CSharp 5.0 in a Nutshell:

The Definitive Reference. O’Reilly Media, 2012.
[2] Adsclient App. August’13,

https://github.com/roelandmoors/adsclient.
[3] Cimbalino-Phone-Toolkit App. August’13, https:

//github.com/Cimbalino/Cimbalino-Phone-Toolkit.
[4] Phoneguitartab App. August’13,

http://phoneguitartab.codeplex.com/.
[5] Playerframework App. August’13,

http://playerframework.codeplex.com/.
[6] Softbuild.Data App. August’13,

https://github.com/CH3COOH/Softbuild.Data.
[7] Scala Async. August’13, http:

//docs.scala-lang.org/sips/pending/async.html.
[8] Gavin Bierman, Claudio Russo, Geoffrey Mainland,

Erik Meijer, and Mads Torgersen. Pause n Play:
Formalizing Asynchronous CSharp. In Proceedings of
the 26th European conference on Object-Oriented
Programming, ECOOP ’12, pages 233–257, 2012.

[9] Oscar Callaú, Romain Robbes, Éric Tanter, and David
Röthlisberger. How developers use the dynamic
features of programming languages. In Proceeding of
the 8th Working Conference on Mining Software
Repositories, MSR ’11, pages 23–32, 2011.

[10] WPCollector Source Code. August’13,
https://github.com/semihokur/wpcollector.

[11] CodePlex. August’13, http://codeplex.com.
[12] Danny Dig, John Marrero, and Michael D. Ernst.

Refactoring sequential Java code for concurrency via
concurrent libraries. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, pages 397–407, 2009.

[13] Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea,
and Ralph Johnson. Relooper. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and
Applications, OOPSLA ’09, pages 793–794, 2009.

[14] Indulged flickr App. August’13,
https://github.com/powerytg/indulged-flickr.

[15] Windows Forms. August’13, http://msdn.microsoft.
com/en-us/library/dd30h2yb.aspx.

[16] Windows Presentation Foundation. August’13, http://
msdn.microsoft.com/en-us/library/ms754130.aspx.

[17] Gartner. August’13,
http://www.gartner.com/newsroom/id/2153215.

[18] Github. August’13, https://github.com.
[19] Mark Grechanik, Collin McMillan, Luca DeFerrari,

Marco Comi, Stefano Crespi, Denys Poshyvanyk, Chen
Fu, Qing Xie, and Carlo Ghezzi. An empirical
investigation into a large-scale Java open source code
repository. In Proceedings of the International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, pages 11–21, 2010.

[20] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda.
Crossing the gap from imperative to functional
programming through refactoring. In Proceedings of the
Foundations of Software Engineering, FSE ’13, pages
543–553, 2013.

[21] Best Practices in Asynchronous Programming.
August’13, http://msdn.microsoft.com/en-us/
magazine/jj991977.aspx.

[22] iRacerMotionControl App. August’13, https:
//github.com/lanceseidman/iRacer_MotionControl.

[23] Oracle JavaAWT. August’13,
http://docs.oracle.com/javase/7/docs/api/java/
awt/package-summary.html.

[24] Oracle JavaSwing. August’13, http://docs.oracle.
com/javase/7/docs/technotes/guides/swing/.

[25] Siim Karus and Harald Gall. A study of language usage
evolution in open source software. In Proceeding of the
8th Working Conference on Mining Software
Repositories, MSR ’11, pages 13–22, 2011.

[26] Survival of the Forgest. August’13, http://redmonk.
com/sogrady/2011/06/02/blackduck-webinar/.

[27] Semih Okur and Danny Dig. How do developers use
parallel libraries? In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 54–65, 2012.

[28] Chris Parnin, Christian Bird, and Emerson
Murphy-Hill. Adoption and use of Java generics.
Empirical Software Engineering, 18(6):1047–1089, 2013.

[29] Microsoft Asynchronous Programming Patterns.
August’13, http://msdn.microsoft.com/en-us/
library/jj152938.aspx.

[30] The Roslyn Project. August’13,
http://msdn.microsoft.com/en-us/hh500769.

[31] Cosmin Radoi and Danny Dig. Practical static race
detection for java parallel loops. In Proceedings of the
2013 International Symposium on Software Testing and
Analysis, ISSTA ’13, pages 178–190, 2013.

[32] Cimbalino Pull Request. August’13, https://github.
com/Cimbalino/Cimbalino-Phone-Toolkit/pull/21.

[33] OCell Pull Request. August’13,
https://github.com/gjulianm/Ocell/pull/27.

[34] ReSharper. August’13,
http://www.jetbrains.com/resharper/.

[35] Martin P. Robillard and Robert DeLine. A field study
of API learning obstacles. Empirical Software
Engineering, 16(6):703–732, December 2010.

[36] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank
Tip. Refactoring Java programs for flexible locking. In
Proceeding of the 33rd international conference on
Software engineering, ICSE ’11, pages 71–80, 2011.

[37] Windows Store. August’13,
http://www.windowsphone.com/en-us/store.

[38] Don Syme, Tomas Petricek, and Dmitry Lomov. The
F# asynchronous programming model. In Proceedings
of the 13th international conference on Practical aspects
of declarative languages, PADL’11, pages 175–189, 2011.

[39] Our Companion Website. August’13,
http://learnasync.net.

[40] Jan Wloka, Manu Sridharan, and Frank Tip.
Refactoring for reentrancy. In Proceedings of the 7th
Joint Meeting of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, FSE ’09,
pages 173–182, 2009.

https://github.com/roelandmoors/adsclient
https://github.com/Cimbalino/Cimbalino-Phone-Toolkit
https://github.com/Cimbalino/Cimbalino-Phone-Toolkit
http://phoneguitartab.codeplex.com/
http://playerframework.codeplex.com/
https://github.com/CH3COOH/Softbuild.Data
http://docs.scala-lang.org/sips/pending/async.html
http://docs.scala-lang.org/sips/pending/async.html
https://github.com/semihokur/wpcollector
http://codeplex.com
https://github.com/powerytg/indulged-flickr
http://msdn.microsoft.com/en-us/library/dd30h2yb.aspx
http://msdn.microsoft.com/en-us/library/dd30h2yb.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://www.gartner.com/newsroom/id/2153215
https://github.com
http://msdn.microsoft.com/en-us/magazine/jj991977.aspx
http://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://github.com/lanceseidman/iRacer_MotionControl
https://github.com/lanceseidman/iRacer_MotionControl
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://redmonk.com/sogrady/2011/06/02/blackduck-webinar/
http://redmonk.com/sogrady/2011/06/02/blackduck-webinar/
http://msdn.microsoft.com/en-us/library/jj152938.aspx
http://msdn.microsoft.com/en-us/library/jj152938.aspx
http://msdn.microsoft.com/en-us/hh500769
https://github.com/Cimbalino/Cimbalino-Phone-Toolkit/pull/21
https://github.com/Cimbalino/Cimbalino-Phone-Toolkit/pull/21
https://github.com/gjulianm/Ocell/pull/27
http://www.jetbrains.com/resharper/
http://www.windowsphone.com/en-us/store
http://learnasync.net

	Introduction
	Background
	Asynchronous Programming Model
	Task-based Asynchronous Pattern
	Drawbacks of APM and Plain TAP
	Pause & Play with async/await
	Where is the Code Executing?

	Research Questions
	Methodology
	How do Developers Use Asynchronous Programming?
	Do Developers Misuse async/await?
	Fire & Forget Methods
	 Unnecessary async/await Methods
	Using Long-running Operations under Async Methods
	Unnecessarily Capturing Context

	Toolkit
	Refactoring APM to async/await
	Challenges
	Algorithm Preconditions
	Refactoring APM Instances
	Retaining Original Behavior
	Implementation Limitations

	Corrector

	Evaluation
	Discussion
	Implications
	Why is async/await Commonly Misused?
	Threats to Validity

	Related work
	Conclusion
	ACKNOWLEDGEMENTS
	References

