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EXECUTIVE SUMMARY:   

 

During the past segment, all activities outlined in the annual work plan were 

accomplished and within the specified budget.  The goal of this study is to develop management 

strategies that maximize growth, recruitment, and harvest of largemouth bass Micropterus 

salmoides in Illinois impoundments.  Largemouth bass are frequently stocked in many Illinois 

impoundments to compensate for variable recruitment.  Even so, the long-term contribution of 

stocked fish to recruitment and harvest of natural bass populations is unknown and we are 

addressing these questions. In addition, information on the importance of rearing technique, size 

of stocked fish, forage base, cover, resident predators, physical-chemical conditions, and 

stocking stress in determining largemouth bass stocking success is needed to optimize use of 

hatchery produced fish.  Because stocking is only one of several management options for this 

species, it is critical that additional information on factors limiting recruitment processes be 

identified. 

There was no new activity in Job 101.1 as final recommendations were presented in 

previous reports.  In Job 101.2, we continued our evaluation of stocking success of largemouth 

bass.  We conducted additional data analysis in a study comparing intensive and extensive 

rearing techniques.  Intensively reared fish were raised in raceways and fed pellets, whereas 

extensively reared fish were raised in ponds and fed zooplankton and minnows.  Extensively 

reared fish experienced better survival through the spring following stocking, but by the 

following fall (age-1) there was no difference in abundance between the two rearing techniques.  

We observed a high level of variation in the number of fish produced in the rearing ponds.  Cost 

of rearing was much higher for the extensively reared fish for both hatchery ponds and lake side 

rearing facilities.  Higher initial survival and larger size in the fall of extensively reared fish 

initially appears to justify the added cost.  However, long term survival was low for both rearing 

types and very few stocked fish were recruited to the fishery.  In this segment, we also continued 

to evaluate different stocking techniques to improve survival of stocked largemouth bass.  Three 

lakes were stocked with largemouth bass, with half the fish stocked at the boat ramp and half 

dispersed throughout the lake and into woody or vegetated habitat.  Very few stocked fish have 

been recaptured from any stockings conducted thus far regardless of method.  We plan to 

continue additional stockings and adjust stocking time to minimize high temperatures and 

potential related mortality.  CPUE of stocked fish in this experiment has been lower than 

observed in stockings conducted as previous  parts of this project and we hope to observe greater 

survival in the future in order to evaluate the success of these two stocking strategies. 

In Job 101.3, we evaluated the survival and reproductive success of stocked largemouth 

bass relative to resident populations.  To determine the contribution of stocked fish, the MDH 

B2B2 allele was used as a genetic tag for fingerlings stocked into six study lakes.  Once these 

fish were part of the reproducing population, it was possible to assess the reproductive success 

and recruitment of these stocked fish in five of the six lakes by comparing the pre-stocking with 

post stocking MDH B2 allele frequencies.  We also looked at lake size and resident bass CPUE 

as a possible factors that may have influenced reproductive success.  Stocked fish survival to 

adulthood was variable in the five study lakes, ranging from less than 10% to around 35%.  

Contribution of stocked fish to reproduction was also variable and was higher in small lakes than 

in larger ones.  The density of resident bass as measured by CPUE had no relationship to the 

contribution of stocked bass reproduction in the lakes that we studied.  Based on the proportion 

of stocked adults in the populations we could predict the change in the frequency of the MDH B2 
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allele to determine how reproductive success of stocked fish compared to wild fish.  We found 

that reproductive success of stocked fish was similar to wild fish.  Our results indicate that 

stocking is most likely to be successful in small lakes and that the genetic influence of stocked 

fish will persist in successive generations.  In future reports, we will examine how prey 

availability could affect stocked largemouth bass condition and ability to secure good nesting 

sites differently than wild fish.   

In Job 101.4, we continued a multi lake experiment examining the influence of vegetation 

on largemouth bass recruitment.  Lakes were divided into treatments by the vegetation 

management strategy.  Two lakes (Stillwater and Airport) were treated for vegetation in an effort 

to reduce the vegetation present and yield more intermediate vegetation densities.  The 

vegetation treatments were initiated in this segment and have been successful at reducing 

vegetation in Stillwater Lake, but not Airport Lake.  Two lakes (Paradise and Dolan) experienced 

management to increase vegetation.  Vegetation planting was initiated in 2008 in Lake Paradise 

and planting efforts continued in this segment.  We are evaluating the success of different species 

of vegetation and the size of cage used.  American pondweed has shown the greatest long-term 

survival and the large cages have been most effective in producing vegetation.  In this segment, 

American pondweed was planted in 5 additional cages and a number of cages were expanded to 

promote the spread of successful cages.  We also evaluated fish and invertebrate communities 

associated with vegetated and non-vegetated cages and observed higher densities of both fish and 

invertebrates in vegetated cages.  Rehabilitation at Dolan Lake has continued to yield higher 

vegetation and reduced gizzard shad and carp numbers.  There is some evidence of gizzard shad 

populations rebounding.  Four lakes with experimental treatments and 7 control lakes were 

monitored for fish populations, vegetation densities, and prey organisms and will be compared 

through time as the management experiment continues.  CPUE of young of year largemouth bass 

was higher in lakes with greater vegetation densities, but differences were not significant.  The 

density of larval gizzard shad was significantly correlated with the proportion of lake area and 

perimeter that was vegetated.  No other lake conditions that were measured were related to 

vegetation density.  We will continue to monitor vegetation, fish, and prey communities in the 11 

research lakes to evaluate the role of vegetation management to increase largemouth bass 

recruitment. 

In this segment, we also continued to examine patterns in abundance of young-of-year 

largemouth bass, other fish species, and associated biotic communities among vegetated, woody, 

and open lakeshore habitat types in two Illinois lakes.  While we did not find significant 

differences in age-0 largemouth bass densities among the microhabitat types sampled in our 

enclosure surveys, we did find significant differences in the community composition and 

abundance of potentially important prey items (juvenile sunfishes, caddisflies, chironomids, 

stonefiles and cyclopoid copepods).  Increases in abundance of potential invertebrate and fish 

prey in vegetated and wooded sites supports the idea that these habitats are important sources of 

littoral productivity.   

There is potential for dam escapement to influence largemouth bass recruitment.  In order 

to access dam escapement, we sampled downstream of the dam on two reservoirs, Ridge Lake 

and Forbes Lake via backpack electrofishing and seines.  Some largemouth bass were observed 

in sampling below the dam at both Forbes and Ridge Lake following high water events however 

there were few fish in all sampling.  The assessment of dam escapement is in the very early 

stages of implementation and evaluation and much more data is needed to draw conclusions 

about the effect of escapement on largemouth bass populations and recruitment. Additional data 
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will be collected so that a baseline can be established in order to compare largemouth bass 

numbers after an increased discharge event to largemouth bass numbers during low flow periods. 

There is potential for angling to have a large influence on largemouth bass populations.  

In particular, competitive tournament fishing for black bass has grown rapidly over the past 

several years.  Previous work has shown high levels of mortality associated with these 

tournaments in other parts of the United States.  However, little is known about the effects of 

tournaments on largemouth bass recruitment.  In Job 101.5, we continued to examine effects of 

tournaments for largemouth bass.  In this segment, we also continued monitoring largemouth 

bass spawning activities at Lincoln Trail Lake.  Water clarity limited our ability to identify 

largemouth bass nests in spring 2011.  We will continue to evaluate nesting activity, nest 

guarding behavior, vulnerability to angling, and nest predation in future segments.  In this 

segment, we continued to conduct largemouth bass tournaments in alternating years on Ridge 

Lake to evaluate their effect on recruitment.  A series of spring tournaments were conducted in 

2007 and 2010 and largemouth bass populations were compared among tournament and non-

tournament years.  Initial results show no differences in recruitment between tournament and 

non-tournament years.  In addition, no changes were observed in adult largemouth bass 

abundance or size structure.  These results are preliminary and additional years will be needed to 

evaluate treatment effects.   

We are continuing a pond experiment examining the population effects of tournament 

angling during the spawning season on largemouth bass recruitment.  In the current segment, we 

initiated the second year of the two-year study.  Results from the first year indicate that 

tournament angling has a moderate effect on largemouth bass recruitment in terms of numbers, 

and a rather large effect on young-of-year largemouth bass biomass.  After adjustment for 

summer zooplankton abundance, which was a significant covariate for largemouth bass 

recruitment, ponds in which tournament angling was conducted had approximately 22% less 

recruits and 64% less young-of-year biomass than control ponds. In the future segment, we will 

include data from the second year to strengthen results. 

In this segment we also continued to evaluate tournament activity on nine Illinois lakes as 

well as 5 control lakes with no tournaments.  Tournament data was used to calculate total 

tournament angler hours per acre as well as catch rates and statistics on the sizes and types of 

tournaments on each lake.  We evaluated the largemouth bass population in each lake by 

performing electrofishing transects in the spring.  CPUE of young-of-year largemouth bass and 

largemouth bass over 14 inches was not correlated with tournament pressure (angler hours/acre).  

The mean number of fish weighed in at a tournament was correlated with CPUE of largemouth 

bass over 14 inches and was also correlated with lake size.  Tournament lakes did not have 

reduced recruitment when compared to lakes with no tournament angling.  Tournament lakes had 

higher CPUE of largemouth bass larger than 14 inches than control lakes, but it is difficult to 

separate the effects of tournaments from the size of the lake and the fact that tournaments may 

target lakes with more abundant adult largemouth bass.  We will continue to collect tournament 

and largemouth bass population data in future segments to further evaluate and understand how 

tournaments influence largemouth bass populations. 

In Job 101.6, a portion of Clinton Lake that was closed to fishing was sampled to 

continue assessment of the effects of a refuge on largemouth bass populations.  Electrofishing 

samples yielded a higher abundance of adult largemouth bass in the refuge than in the main lake.  

No increase in the number of largemouth bass has been observed throughout the lake.  Sampling 

will continue at Clinton Lake to monitor largemouth bass populations for changes resulting from 
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the refuge.  We also continued sampling Otter Lake as an additional location to evaluate refuges.  

Electrofishing and seine samples were conducted in two refuge sites as well as three control 

sites.  The refuge was closed to fishing in June 2010 and we initiated sampling for post refuge 

conditions.   

We also began assessing effects of harvest regulations on largemouth bass populations.  

In this segment, we expanded our database of lakes using the Fisheries Analysis System (FAS) 

containing electrofishing data from 2000-2007 collected by DNR biologists.  We grouped lakes 

by regulation type into 7 groups; Bag by Size (Bag limit above and below a specified size), 

Catch-and Release (no harvest allowed), Standard (14” length limit, 6 fish creel), Lowered Bag 

(14” length limit, <6 fish bag limit), Raised Length (>14” length limit, 6 fish bag limit), Raised 

Length/Low Bag (>14” length limit, <6 fish bag limit), No Length (No minimum size limit), and 

Slot (no fish harvest slot).  We compared catch rates of young-of-year and adults (greater than 14 

inches), memorable (greater than 510 mm), and proportion stock density (PSD).  Lakes with slot 

limit regulations had the highest CPUE of young-of-year, total, and memorable sized largemouth 

bass.  No other significant differences existed among groups.  In future segments, we will 

combine FAS, INHS sampling and creel data to further evaluate regulations and how they affect 

angler catch rates.  These data can then be used to guide future discussions about various 

management experiments that might be implemented. 
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Job 101.1  Evaluating marking techniques for fingerling largemouth bass 

 

OBJECTIVE: To determine the most reliable and cost-effective method for mass-marking 

fingerling largemouth bass. 

 

RECOMMENDATIONS:  No activity in this segment.  Final recommendations were presented 

in previous reports. 
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Job 101.2.  Evaluating various production and stocking strategies for largemouth bass. 

 

OBJECTIVE: To compare size specific survival and growth among different sizes of stocked 

largemouth bass fingerlings and to compare various rearing techniques. 

 

 

INTRODUCTION:  
 

Supplemental stocking of largemouth bass Micropterus salmoides is a commonly used 

management tool to enhance populations.  Supplemental stocking efforts are directed at either 

increasing harvest rates and reproductive potential, or restoring predator/prey balance in a fish 

community.  However, for these positive benefits to occur, stocked fish must contribute to the 

natural population.  Numerous studies have examined either the introductions of different genetic 

stocks of largemouth bass (Rieger and Summerfelt 1978; Maceina et al. 1988; Mitchell et al. 

1991; Gilliland 1992; Terre et al. 1993) or the introductions of largemouth bass into ponds 

(Dillard and Novinger 1975; Modde 1980; Stone and Modde 1982).  Surprisingly, few studies 

have examined the factors thought to influence supplemental stocking of largemouth bass.  The 

few studies that have examined the contribution of stocked largemouth bass to a natural 

population, examined only one (Lawson and Davies 1979; Buynak and Mitchell 1999) or two 

lakes (Boxrucker 1986; Ryan et al. 1996).  Given that lakes are highly variable, examining 

stocking evaluations from only one or two lakes limits our ability to make generalizations. 

 Factors influencing stocking success may include predation, prey availability, and abiotic 

variables (Wahl et al. 1995).  Predation from older age classes of largemouth bass may be 

especially important given that they have been shown to prey heavily on other species of stocked 

fish (Wahl and Stein 1989; Santucci and Wahl 1993) and are highly cannibalistic (Post et al. 

1998).  The availability of appropriate sized prey has also been shown to be important to survival 

of stocked fish for other species (Fielder 1992; Stahl and Stein 1993).  Finally, abiotic factors 

such as water temperature at time of stocking may contribute to stocking success.  High water 

temperatures at time of stocking may increase stocking stress and subsequent mortality (Clapp et 

al. 1997).  Determining which of these factors is most important to stocking success has 

important implications for deciding the appropriate locations and times to stock. 

 Previous stocking evaluations conducted in the Midwest have often examined species 

that do not naturally reproduce in the recipient water body (e.g. muskellunge Esox masquinongy, 

Szendrey and Wahl 1996; walleye Stizostedion vitreum, Santucci and Wahl 1993).  Largemouth 

bass, however, reproduce naturally in most Midwestern impoundments, and therefore 

supplemental stocking programs are directed at enhancing existing populations.  The number of 

natural fish produced during the year of stocking may influence stocking success through 

competitive interactions for food and habitat.  Because native largemouth bass may out compete 

stocked largemouth bass, a large natural year class may decrease stocking success in an 

individual lake.  Conversely, stocked largemouth bass may do well in years where the population 

exhibits high natural recruitment because they are potentially influenced by the same variables.  

In previous segments, we evaluated success of three sizes of stocked largemouth bass.  We found 

low survival of all size classes.  Small fingerlings (2 inch) experienced high levels of predation 

and stocking mortality and had no long term survival.  Medium (4 inch), large (6 inch), and 

advanced (8 inch) fingerlings had some initial size differences, but there was no long term 

difference in abundance or growth.  Four inch fingerlings were the cheapest to produce and 
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survived as well as other stocking sizes and were the recommended stocking size for producing 

hatchery largemouth bass.  Because of the low overall survival of stocked largemouth bass in 

these earlier segments, we continue to evaluate stocking success and determine if using 

alternative rearing and stocking methods will increase survival. 

 Differences in rearing and stocking method (e.g., intensive raceway versus extensive 

ponds and point versus dispersed stocking) of the largemouth bass fingerlings may also influence 

growth and survival.  Largemouth bass raised on commercial food pellets have been shown to 

grow better when stocked into rearing ponds than those fed a diet of fathead minnows (Hearn 

1977).  A number of Illinois reservoirs and impoundments are stocked with largemouth bass 

raised extensively in rearing ponds.  These and other lakes can also be stocked using largemouth 

bass raised at state hatcheries.  The relative merits of these two rearing techniques have not yet 

been assessed.  In addition, stocking fish into habitat may be preferred to the common practice of 

point stocking at the boat ramp.  Bass have shown increased ability to avoid predation when 

stocked in a variety of habitats or habituated before stocking (Schlechte et al. 2005).  However, 

these two stocking strategies have not been directly compared in a field setting. 

 

 

PROCEDURES: 

 

Rearing Technique: Intensive v. Extensive 

 

 The effects of rearing techniques on growth and survival of stocked largemouth bass 

were evaluated in lakes Shelbyville, Jacksonville and Walton Park.  Extensively reared bass were 

produced at the Little Grassy Fish Hatchery where they were held in ponds and fed on minnows 

until stocking.  Walton Park was stocked directly from Little Grassy Fish Hatchery in early 

August.  Jacksonville and Shelbyville utilized lake side rearing ponds.  Fish were delivered to the 

rearing pond in June along with minnows for prey and were allowed to grow until fall.  The 

rearing ponds were drained in late August and fish were marked using fin clips and stocked into 

the main lake.  Intensively reared bass were produced at the Jake Wolf Fish Hatchery where they 

were held in 265 L concrete tanks and fed commercially produced pellets until stocking. Each 

fish was given a distinct pelvic fin clip for future identification of rearing technique.  Fish were 

transported from the hatchery in oxygenated hauling tanks to the recipient lakes.  Hauling time 

ranged between 0.5 to 3 hours.  Fifty largemouth bass were measured (nearest mm) and weighed 

(nearest g) before stocking on each date.  Fish were released near shore at a single location at 

each lake.  Attempts were made to stock largemouth bass at a rate of 60 fish per hectare, 

however rates varied by individual lake due to varying success of rearing ponds and hatchery 

production. 

 In previous segments, we concluded sampling for fish stocked as part of this study.  The 

last stocking occurred in 2004 and we have monitored these fish until they are no longer found in 

electrofishing samples.  Growth and survival of stocked largemouth bass was determined in each 

fall and spring by sampling during the day with a 3-phase AC electrofishing boat.  Three 

shoreline transects on each lake were electrofished for 0.5 h each on a sampling date and all 

largemouth bass were collected, measured, weighed, and examined for clips.  Scales were 

removed from all clipped fish and aged by two independent readers.  The stocking year and 

rearing type was determined for each fish using the age of the fish and the existing clip.  Catch 

per unit of effort (CPUE) was calculated as the number of stocked fish collected per hour and 
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was used as a relative measure of survival across lakes.  Growth was estimated using the mean 

size of bass for each age class at the time of sampling.  In this segment, we acquired data on 

stocking numbers and sizes from the Jacksonville rearing pond that were not previously available 

and were able to calculate stocking costs.  Hatchery costs of producing fish were provided by the 

hatchery and included the feed cost per fish as well as the estimated hatchery labor and operation 

cost.  The cost of operating the lake side rearing facilities were determined as the price of 

electricity used to pump the ponds, and the cost of fertilizer and minnows.  Data was available 

for cost per fish produced from the rearing pond on Lake Shelbyville, Lake Jacksonville, and the 

Little Grassy fish hatchery which served as the rearing pond for Walton Park.  Cost per fish was 

then used to estimate the mean total cost of producing fish per acre for each lake.  We calculated 

the cost per number of fish surviving as the total cost of stocking divided by the CPUE from 

electrofishing in the 1
st
, 2

nd
, and 3

rd
 fall following stocking.  Rearing pond survival was also 

evaluated for each lake and compared to the number of fish stocked from the hatchery. 

 

Stocking Technique: Boat Ramp v. Dispersed  

 

 In this segment, we continued to evaluate the influence of stocking location on survival 

of stocked largemouth bass.  Otter Lake, Homer Lake, Mingo Laker, and Lake Charleston (n=4) 

were stocked with 100mm largemouth bass fingerlings in 2010 using two stocking techniques.  

Half of the fish at each lake were stocked at the boat ramp, directly from the hatchery truck, 

while the other half were loaded into aerated hauling tanks in boats and distributed throughout 

the lake.  Distributed stockings targeted placing fingerlings into wood and vegetated habitat 

dispersed throughout the lake.  Fish were marked with a pelvic fin clip two weeks prior to 

stocking at the Jake Wolf Memorial Fish hatchery.  Fish stocked at the boat ramp were given a 

left pelvic fin clip and fish to be dispersed were given a right pelvic fin clip.  Lakes were 

sampled two times in the fall and two times in the spring using DC electrofishing.  Three 30 

minute electrofishing transects were performed on each sampling date and all largemouth bass 

were collected, measured for total length, examined for clips, and scales were collected from all 

clipped fish for age determination.  CPUE was calculated for stocked and wild fish and 

contribution of stocked fish to the total bass population was calculated.  The CPUE from this 

segment was combined with the data from 3 years of previous stockings in the same lakes. Catch 

rates and mean size were calculated for each year class and compared between the two rearing 

techniques.  CPUE from electrofishing was calculated and differences between stockings were 

examined using repeated measures ANOVA and Tukey-Kramer (T-K) adjusted P value were 

used to determine significance in post hoc tests. 

 

 

FINDINGS: 

 

Rearing Techniques: Intensive v. Extensive 

 

 We have concluded electrofishing sampling in the three stocked reservoirs, and can now 

conduct final analyses.  Mean survival of fish stocked into the rearing pond was 46% in 

Jacksonville and 42% in Shelbyville.  We could not estimate pond survival for Walton Park 

because the fish were provided directly from the hatchery.  The mean number of extensively 

reared fish stocked per year was similar to the intensively reared fish in Jacksonville (ext. n = 
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5511 ± 2271 SE; int. n = 4250 ± 750 SE), Shelbyville (ext. n = 8684 ±  1821 SE; int. n = 8813 ± 

12.5 SE), and Walton Park (ext. n = 625 ± 0 SE; int. n = 625 ± 0 SE) and no significant 

difference existed between the number of intensive or extensive fish stocked (paired t-test; t= -

12; P =  0.91).  Because there were no significant differences in the number stocked, we did not 

adjust CPUE when evaluating survival.  Variation in number stocked was much greater for the 

lake side rearing ponds than for fish produced by the hatchery.  Mean stocking size was larger 

for extensively reared fish than intensively reared fish in Jacksonville (ext. = 144.5 mm; int. = 

99.0 mm) and Walton Park (ext. = 119.8 mm; int. = 101.4 mm), but stocking size was similar for 

both stocking techniques in Shelbyville (ext. = 101.4 mm; int. = 108.3mm) fish.  

 Significant differences existed between CPUE of largemouth bass from each of the 

stocking strategies through time.  There was also a significant interaction between stocking 

strategy and time after stocking (RMANOVA, F = 2.21, P = 0.007).  Extensively reared 

largemouth bass were recaptured at a significantly higher rate than intensively reared fish the 

first fall following stocking (Figure 2-1 A., T-K, t = 4.11, P = 0.02) and the following spring (T-

K, t = 4.33, P = 0.007).  After the first spring, catch rates for both intensive and extensive fish 

declined to below 1 fish per hour of electrofishing and there was no longer a significant 

difference in survival between the two rearing strategies (P > 0.05).  Despite better initial 

survival of extensively reared fish, we found low long term survival of stocked fish from either 

rearing strategy and no long-term differences in relative abundance.   

 Significant differences also existed in mean size among intensive, extensive, and wild 

fish.  There was again a significant interaction between stocking strategy and time following 

stocking (RMANOVA, F = 8.97, P < 0.0001).  Extensively reared fish were larger than wild fish 

(T-K, t = 4.18, P = 0.02) but not significantly larger than intensively reared fish (T-K, t = 3.06, P 

= 0.50) the first fall following stocking (Figure 2-2).  Wild and intensively reared fish were also 

not different in size in the first fall following stocking (t = 0.58, adj. P = 1.00).  Differences in 

size were no longer significant in the spring following stocking.  Extensively reared fish were 

similar in size to both wild (T-K, t = 2.64, P = 0.82) and intensive fish (T-K, t = 0.38, P = 1.00) 

and no difference existed between intensive and wild fish (T-K, t = 1.60, P = 1.00).  Wild, 

intensive and extensive fish remained similar in size throughout the remaining months they were 

collected in electrofishing samples.  Although extensively reared fish were larger than 

intensively reared fish and wild fish when they were stocked, size differences were short lived 

and by the spring following stocking there are no differences in size among these fish. 

 The cost of producing fish varied among rearing types and individual lakes.  Lake 

Shelbyville was less costly to stock per acre due to its large size, but fish were stocked at a lower 

density.  For all lakes, mean total cost of stocking was higher for extensively reared fish (Table 

2-1) as a result of the greater cost per fish produced.  The hatchery cost of producing the two 

inch fish to stock into rearing ponds is very low and a large number of fish can be produced at a 

low cost.  However the cost of maintaining the fish in the rearing pond due to minnow expenses 

greatly increases the cost of producing fish to stock.  Because the initial survival of extensive 

fish was higher than intensive fish, the cost per relative survival was similar in the first fall 

following stocking.  However, extensive fish experienced low long term survival resulting in the 

cost per fish surviving to increase in subsequent years.  Because of this the cost was twice that of 

the intensive fish when considering the high cost and no differences in long term survival. 

 

Stocking Techniques: Boat Ramp v. Dispersed 
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 Four lakes were stocked with four inch largemouth bass in 2010 for comparison of boat 

ramp and dispersed stocking.  All lakes continued to have very low survival of both boat ramp 

and dispersed stocked fish to the first fall following stocking (Table 2-1).  Only fish stocked at 

the boat ramp in Otter Lake were observed in the spring of 2011.  Continued low survival of the 

stocked fish from both stocking methods has made it difficult to evaluate these methods.  At this 

point there is no difference in mean CPUE of  boat ramp or dispersed stocked fish in the first fall 

following stocking and catch rates the following spring are very low.  We have begun to find 

some fish from previous stockings in our electrofishing samples, but the CPUE is very low and 

there is no consistent difference between stocking method.  We will need to age these fish in 

order to determine which year they were stocked.  The poor survival of all stocked fish may be 

due to the warm lake temperatures on the date of stocking.  High mortality of dispersed fish 

could be affected by the increased handling time associated with loading the fish onto a boat and 

dispersing them throughout the lake.  We did not however observe good survival of fish stocked 

at the boat ramp where this handling did not occur.  Additional years of stocking are required to 

evaluate differences in these stocking techniques.  We will continue to stock four lakes each year 

using these strategies in order to make management recommendations regarding stocking 

locations to maximize survival. 

 

 

RECOMMENDATIONS: 

 

Comparisons between intensive and extensive stocked fish showed differences in growth 

and survival initially following stocking.  Extensively reared largemouth bass had higher 

survival than intensively reared fish and were larger than wild fish in the fall following stocking.  

Extensive fish remained more abundant than intensively reared fish the following spring, but 

were no longer larger than wild fish.  Despite higher initial stocking success with extensively 

reared fish, there were no differences in growth or survival by the second fall following stocking 

and survival was low for both stocking strategies (< 1 fish per hour of electrofishing).  The low 

long-term survival of stocked fish results in no differences in catch rates between rearing method  

after the first year.  Many factors influenced the variation in the number of fish produced by the 

rearing ponds.  In Lake Jacksonville, the rearing pond had green sunfish contamination which 

resulted in only 125 largemouth bass being produced in 2002.  The Lake Shelbyville rearing 

pond had gizzard shad accidentally introduced during a high water year that yielded a larger size 

variation in the fish produced.  Rearing pond production is less predictable and varies greatly in 

success and this must be considered in producing fish for stocking.   

Raising fish in a rearing pond greatly increases the cost of production, however when fish 

are harvested from the pond, they are generally larger than the intensively produced fish.  In 

addition, the greater survival of extensively reared fish until the second fall following stocking 

suggests there is potential for extensive rearing to produce more harvestable fish, however long 

term mortality was high and there was no difference in abundance after the second fall.  Because 

the cost of producing extensive fish is much greater than that for intensive fish, there was no 

difference in cost per CPUE in the first fall following stocking.  The cost per CPUE for extensive 

fish increased through time as the catch rates decreased making the cost per CPUE much higher 

than intensive fish.  We do not know the absolute number of stocked fish surviving through time, 

but the cost per CPUE can be used to compare between the two rearing methods because the 

relative abundance can be measured from electrofishing CPUE.  The ratio of intensive and 
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extensive fish captured can be used to evaluate the relative cost of each rearing strategy.  There 

may be other benefits to using lakeside rearing ponds for producing fish due to the rearing 

occurring in a more natural environment and allowing the fish to feed on natural prey rather than 

artificial feed before stocking.  Due to the close proximity to the stocking lake, these fish should 

experience a similar thermal regime to their destination lake and may reduce the acclimation 

time required when released in the lake.  Experience with feeding on fish prior to stocking has 

been shown to result in greater growth and survival following stocking for other species (Suboski 

and Templeton 1989; Szendrey and Wahl 1995; Wahl et al. 1995b) as well as for largemouth 

bass in laboratory experiments in this project (see previous reports).  However, low survival of 

all stocked largemouth bass led to few fish growing large enough to contribute to the fishery.  

Fish did not reach 14 inches until their fourth year in the lake.  CPUE for these fish was less than 

0.5 per hour of electrofishing and they did not significantly contribute to the adult largemouth 

bass population.   

We will continue evaluating stocking location to assess the potential to increase survival 

of stocked largemouth bass.  In the first three years, we have observed very low survival of 

largemouth bass stocked both at the boat ramp and dispersed throughout the lake.  Survival of 

fish in this study has been lower than survival observed from previous stockings we have 

evaluated.  Survival may have been limited due to the high temperatures on the dates of stocking 

or the increased handling time due to the stocking techniques.  Future efforts will be made to 

stock the fish during the lowest possible to facilitate survival.  We will continue to compare 

survival of point stocking versus dispersed stocking at multiple locations of optimal habitat 

throughout the study lakes.  In 2011 we will stock Lake Charleston, Homer Lake, Lake Mingo, 

and Otter Lake using these two methods.  We will evaluate growth and survival by conducting 

spring and fall electrofishing.  Ultimately we hope to evaluate if increased survival of stocked 

largemouth bass can be achieved through these techniques and provide management 

recommendations on best stocking method. 

 Our results continue to suggest the need to evaluate long-term survival of largemouth 

bass to fully evaluate stocking success.  Although stocked fish may exhibit similar survival to 

wild fish in a lake initially following stocking, significant mortality can occur through adulthood.  

Stocking success could be evaluated incorrectly if long-term survival is not considered.  We have 

found that recruitment of largemouth bass is not determined in the first year after stocking.  

Many previous evaluations of stocking success for other species have not examined stocking 

success beyond the first spring.  These studies may omit a critical period for determining survival 

of stocked fish.  For largemouth bass, success of stocked fish in the first year is often not 

reflected in future creel data providing further evidence for variable survival following the first 

year after stocking (Boxrucker 1986; Neal et al. 2002).  Managers should consider survival to 

age-1 and adult fish when managing a lake or reservoir by stocking.  Considering the availability 

of appropriate prey and habitat for larger stocked fish may reduce mortality and increase 

recruitment to the fishery.  We will continue to evaluate different stocking methods which may 

increase long term survival of stocked largemouth bass.  At this point, we have not been able to 

find benefits of stocking extensively reared fish or larger fish.  Future efforts will be required to 

assess if stocking fish into optimal habitat can increase stocking success.  In future segments we 

will examine other lake specific factors that may influence stocking success such as prey 

abundance and availability, available habitat, thermal regimes, and fishing pressure.  We will 

examine variation among lakes in order to further explore what factors may play a role in 

determining growth and survival of stocked fish. 
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Job 101.3  Assessing the long-term contribution of stocked fish to largemouth bass populations. 

 

OBJECTIVE: To evaluate the long-term contribution of stocked largemouth bass to the 

numbers of reproducing and harvestable adults. 

 

INTRODUCTION:   
 

Fish stocking is common throughout North America for a number of species.  Fish may 

be stocked to introduce a species to a new system (Douwalter and Jackson 2005), sustain a 

population in areas where the fish do not reproduce naturally (Santucci et al. 1994), supplement 

wild populations that have been reduced due to anthropogenic influences (i.e. fishing, habitat 

degradation; Wingate 1986) or to alter the genetics of a population (Maceina et al. 1988, 

Buckmeier et al. 2003).  The initial success of a stocking program depends on the survival of 

introduced fish.  Much research examining the success of stocking programs has focused on 

initial survival (Boxrucker 1986, Buckmeier and Betsill 2002, Hoffman and Bettoli 2005),  

Though more recent work has focused on survival to adulthood (Diana and Wahl 2008, Buynak 

and Mitchell 1999, Wahl and Stein 1993). 

Despite high initial survival, stocked fish often represent only a small proportion of the 

population as adults (Diana and Wahl 2008, Buynak and Mitchell 1999).  The reasons for the 

poor survival between introduction and adulthood often remain unclear, but does suggest that 

stocked fish are less equipped for long-term survival than wild fish (Buynak and Mitchell 1999).  

If the longterm goal of stocking includes increasing the population of the stocked species, 

success depends not just on survival to adulthood, but also on long-term reproductive abilities 

(Currens and Busack 1995, Waples and Do 1994).  However, understanding how stocked fish 

contribute to the reproductive output of the populations into which they are stocked has received 

little attention. 

If poor survival of stocked fish is tied to their ability to obtain resources or exploit 

preferred habitats (Donovan et al. 1997, Szendrey and Wahl 1996), then those fish that do 

survive to adulthood may exhibit poorer reproductive output compared to their wild counterparts.  

Furthermore, hatchery rearing conditions (high density, disease treatments, water quality issues), 

may also affect the development of reproductive organs (Huntingford 2004) or modify the 

behavior of fish in such a way that it could affect reproductive ability of adults (Berejikian et al 

1997, Jonsson and Jonsson 2006).  For example, stocked Atlantic salmon females have been 

found to deposit fewer eggs, display fewer courtship behaviors, spend less time breeding, and 

have lower survival of eggs than wild fish (Jonsson 1997).  Likewise, stocked male Atlantic 

salmon have lower success at mate acquisition than their wild counterparts (Jonsson 1997).  As 

stocked fish become part of the adult population, it is important to understand the reproductive 

abilities of these fish in order to determine how stocking affects long-term population dynamics.  

Largemouth bass are stocked regularly into lakes and reservoirs throughout their range 

and are often used to supplement naturally reproducing populations (Boxrucker 1986, Maceina et 

al. 1988, Buynak et al. 1999).  Previous work examining success of stocked fish to adulthood 

have found that survival is often lower than wild fish (Diana and Wahl 2008, Buynak and 

Mitchell 1999).  Although it is assumed that increases in the standing stock of populations are 

the direct result of stocking efforts, little data exist to either refute or support that idea for 

largemouth bass.  If the stocking does indeed increase the standing stock of adult largemouth 
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bass, it also remains unclear how those increases effect reproduction and recruitment in 

subsequent generations. 

Largemouth bass likely home to natal areas to spawn (Ridgway et al. 1991, Waters and 

Noble 2004), and it is possible that introduced fish may not compete successfully with resident 

fish for optimal spawning sites or may simply make poor choices in selecting nesting sites.  

Under either of these scenarios, the level of reproductive success of stocked bass would be lower 

than that of resident bass.  To justify continued stocking efforts for largemouth bass in Illinois, it 

is important to determine the actual contribution that stocked fish make to bass populations.  The 

objective of this job is to compare the survival and reproductive success of stocked bass to 

resident populations.  In this way, we can assess the costs and benefits of the bass stocking 

program in a long-term timeframe. 

 

 

PROCEDURES:   
 

Largemouth bass to be stocked in each selected study lake were those produced at the 

Little Grassy Hatchery bred specifically to be fixed for the MDH-B2B2 genotype as a genetic tag 

and were stocked into target lakes.  Prior to stocking, a sample of naturally produced largemouth 

bass were collected from each study lake and analyzed to determine the inherent background 

frequency of the MDH-B2 locus.  Six study lakes were stocked and sampled; Lake Shelbyville 

and Forbes Lake beginning in 1998, and Walton Park, Murphysboro, McLeansboro, Sam Parr in 

1999.  Samples of fish from the hatchery rearing ponds were sampled, and protein 

electrophoretic analysis (Philipp et al., 1979) was used to confirm that these fish had the MDH 

B2B2 genotype.  Stocking continued in all lakes through 2005.  Preliminary sampling of 

largemouth bass began in 2002 and continued through 2010.  Clips on fish were noted to 

determine the survival of stocked fish from initial stocking through reproductive ages.  One 

hundred YOY largemouth bass per lake were collected starting in 2002, when the earliest 

stocked fish should have begun reaching maturity.  Young-of-year from the six lakes were 

sampled by boat electrofishing in each year to determine if the frequency of the MDH B2 allele 

had increased through reproduction of the stocked fish.  These sampling efforts were used to 

document the contribution of stocked fish to the reproductive population. 

To determine if stocked fish survived to adulthood in these lakes we ran an analysis of 

variance on the proportion of stocked fish in the population immediately after stocking versus the 

average proportion of stocked fish in the population in the years following the stocking.  

Correlation analysis was used to determine if measured variables were important in influencing 

the change in MDH B2 allele frequency across years in the study lakes.  McCleansboro Lake 

was excluded from the analysis due to high initial MDH B2 allele frequencies that made 

detection of changes in the frequency difficult.  Among the factors examined were proportion of 

B2B2 adults in the population, lake size and adult largemouth bass catch per unit effort (CPUE) 

(see Job 101.4 for electrofishing sampling methodology).   

Finally, to determine if B2B2 adults were contributing to reproduction in proportion to 

their presence in the population, observed MDH B2 allele frequency was regressed against 

predicted frequency.  To estimate the predicted MDH B2 allele frequency of naturally spawned 

young-of-year from adult fish, we calculated the total frequency of the MDH B2 allele in the 

adult population.  The proportion of natural adult largemouth bass was multiplied by the 

background MDH B2 allele frequency for those fish and was added to the proportion of B2B2 
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adults in the population.  If stocked fish are contributing to reproduction equal to their proportion 

in the population, the slope of the regression of actual and predicted MDH B2 allele frequencies 

in young-of-year fish should equal 1.  Deviations from 1 indicate either lower or greater 

contribution than expected.   

 

 

FINDINGS:   
 

In previous reports, largemouth bass fingerlings stocked into each lake were verified to 

be 100% MDH B2B2 genotype with the exception of one stocking in 2001.  In that case, a 

correction factor was used to analyze those samples.  The background frequencies of the MDH 

B2 allele were determined in each lake (Table 3-1).  The higher frequency of the MDH B2 allele 

from McLeansboro is problematic and this lake was eliminated from other analysis.  Stocked fish 

survived to maturity with the proportion of stocked fish remaining unchanged between initial 

stocking and adults (no P<0.14). The lakes varied greatly in the change in the MDH-B2 allele 

frequencies (Figure 3-1), with Walton Park showing the greatest change followed by Sam Parr 

and Lake Murphysboro.  Forbes Lake and Lake Shelbyville showed only minor influence of 

stocked fish contributing to the reproducing population.  Correlation analysis found that the 

proportion of the adult largemouth bass that were from stocked fish was strongly related to the 

frequency of the MDH B2 allele for that year class of YOY (Pearson r = 0.65, P = 0.0006).  Thus 

it appears that stocked largemouth bass that survive to maturity do contribute to reproduction.   

Lake size showing a significant negative relationship with the change in the frequency of 

the MDH B2 allele (Pearson r = 0.91, P = 0.03). In this segment we examined the effect of 

density of adult largemouth bass on success of stocked fish reproduction.  Higher densities of 

adult largemouth could reduce the success of stocked fish reproduction and potentially suppress 

the change in frequency of the MDH B2 allele.  However, the CPUE of adults was not related to 

the change in the frequency of the MDH B2 allele (no P<0.4 Figure 3-2).   

Stocked B2B2 adult largemouth bass appear to reproduce as effectively as natural 

largemouth bass if they survive to maturity.  The slope of the regression of predicted vs. actual 

MDH B2 allele frequency based on the proportion of B2B2 adults was 0.72 and was not 

significantly different from 1 (F1,28=3.54, P=0.07; Figure 3-3).  Therefore, it appears that the 

most important factor affecting the contribution of stocked fish to a population is the number of 

individuals surviving to become reproductive adults. 

 

 

RECOMMENDATIONS:   
 

Stocked fish contributed to the spawning population in some of the study lakes.  Genetic 

frequencies from YOY spawned from largemouth bass stocked with the MDH B2 allele 

increased very little in two of the study lakes (Forbes Lake and Lake Shelbyville).  Forbes Lake 

and Lake Shelbyville are much larger than the other lakes, which may influence the effectiveness 

of stocking programs in these lakes.  Stocked fish appear to have made significant contributions 

to three of the smaller lakes, Lake Murphysboro, Sam Parr Lake and Walton Park. 

While data suggests that lake size may be an important factor influencing the success of a 

stocking program, other factors may be involved as well.  Overall adult largemouth bass density 

could potentially affect the success of stocked largemouth bass reproduction by diluting the 
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effect on stocked fish that survived to adulthood or by affecting the ability of stocked fish to 

secure good nesting sites.  However, our data indicate that CPUE of adult fish in a population 

does not affect the contribution to reproduction of stocked fish.  Prey availability can possibly 

affect stocked largemouth bass condition differently than wild largemouth bass and will be 

examined in future reports.  In addition, other factors that affect the success of stocked bass 

reproductive contribution may be similar to factors being examined under Job 101.2 that can 

influence the survival of stocked largemouth bass in different lakes.  In particular factors that 

affect the early survival and proportion of stocked largemouth bass that reach sexual maturity are 

very important.  Once stocked largemouth bass do reach sexual maturity, they appear to make 

comparable contributions to reproduction as natural adult largemouth bass.  From these data it 

appears that stocking largemouth bass will make the greatest contribution in small lakes when 

natural reproduction by resident largemouth bass is low. 
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Job 101.4.  Evaluating factors that influence largemouth bass recruitment in Illinois. 

 

OBJECTIVE: To determine important mechanisms affecting largemouth bass recruitment in 

Illinois impoundments and develop recruitment indices for management. 

 

 

INTRODUCTION: 

 

Recruitment in fish populations is a process driven by growth and mortality during the 

earliest life stages (Hjort 1914; Houde 1987).  Most fish species produce many thousands of 

offspring in a reproductive season and a large majority of these offspring die before they reach 

the end of their first year of life.  Sometimes this early mortality is episodic, involving large 

numbers of individuals dying simultaneously, and at other times, high mortality rates occur 

throughout the first growing season of life (Houde 1989).  Even slight differences in mortality 

rates can result in large variation in year class strength between populations and years.  Parkos 

and Wahl (2002) provided a conceptual model of largemouth bass recruitment that accounted for 

the importance of parental care to survival of the earliest life stages (embryo and larva) of 

largemouth bass.  Events that can interfere with parental care of developing offspring, such as 

extreme weather events and removal of nesting males by angling (Kramer and Smith 1962; 

Philipp et al. 1997), were hypothesized to have the potential to negatively affect overall year 

class strength.  Parkos and Wahl (2002) concluded that for some populations and cohorts, 

processes operating during the earliest developmental stages of YOY largemouth bass (i.e., 

survival of embryos and larvae) have a larger effect on overall recruitment strength than patterns 

of mortality occurring towards the end of the first year of life (i.e., first summer and winter 

survival of juveniles).   

Aquatic vegetation is a habitat feature that influences the abiotic and biotic conditions 

that determine largemouth bass recruitment strength.  Aquatic vegetation is often an important 

habitat feature for age-0 fishes and recruitment (Wright 1990; McRae and Diana 2005).  Aquatic 

vegetation can benefit fish by decreasing turbidity, providing substrate for spawning, increasing 

structure for avoiding predators, and acting as habitat for important prey (Savino and Stein 1982; 

Carpenter and Lodge 1986; Scheffer et al. 1993).  Previous examinations of the effects of aquatic 

vegetation on largemouth bass growth and recruitment have been mixed.  Whether or not aquatic 

vegetation has a positive or negative effect on YOY largemouth bass is likely to be dependent on 

the level of vegetation coverage.  Too much vegetation will negatively influence YOY 

largemouth bass foraging efficiency and subsequent growth (Anderson 1984; Caliteux et al. 

1996; Sammons et al. 2003), while a moderate amount of coverage could positively affect YOY 

survival (Miranda and Pugh 1997).  Any benefits provided will also vary by the type of structure 

offered by different vegetation species (Havens et al. 2005).  In this job, we are evaluating the 

role of vegetation by relating densities and types with largemouth bass recruitment. 

Woody debris may also provide some of the same benefits offered by aquatic vegetation. 

Studies have shown a potential for higher overwinter survival of young-of-year largemouth bass 

with increasing available woody brush habitat when predators are present (Miranda and Hubbard 

1994).  In reservoirs, higher centrarchid abundance was associated with coarse woody habitat 

(Barwick 2004) and removal of coarse woody habitat has also been shown to cause reduced 

growth rates in largemouth bass and a shift to eating more terrestrial prey (Sass et al. 2006). 

Numerous studies have demonstrated that complex wood substrate provides habitat for 
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macroinvertebrates (O’Connor 1991; France 1996; Smokorowski et al. 2006). These available 

food resources concentrate prey fish and in turn provides forage for largemouth bass increasing 

their foraging success (Hickey and Kohler 2004). All these previous data suggest that woody 

habitat provides an integral component of multiple trophic levels in many aquatic ecosystems. 

We are conducting management experiments where vegetation and woody habitat are 

manipulated (e.g. plantings and removals, varying density and presence versus absence) to 

examine changes in largemouth bass growth and survival at the lake scale.  

Spatial heterogeneity in physical littoral habitat has been shown to influence many 

population and community characteristics of fish assemblages within lake ecosystems.  Studies 

focused on largemouth bass have shown littoral habitat to be an important determinant of age-0 

fish distribution and these studies generally have found that largemouth bass prefer structurally 

complex habitats in the form of woody cover, leaf pack, coarse substrates and aquatic vegetation 

(Annett et al. 1996; Irwin et al. 1997).  Laboratory and field studies have shown that complex 

physical habitat provides a refuge from predation for juvenile fishes while simultaneously 

increasing prey resources (Savino and Stein 1982; Miranda and Pugh 1997).  While previous 

research has identified influences of habitat variability on population dynamics of largemouth 

bass (Meals and Miranda 1991) the majority of studies have been conducted on spatial scales 

that incorporate multiple habitat patches which has made it difficult to discern how fish use 

qualitatively different microhabitats (Summerfelt 1993; Annett et al. 1996).  In addition, specific 

differences in the biotic communities among microhabitats (e.g. macroinvertebrates, 

zooplankton) within the littoral zone have not received considerable attention.  In this segment 

we are sampling 3 common and distinct shoreline microhabitats including vegetated shorelines, 

shorelines with laydown coarse woody debris, and bare shorelines across two Illinois lakes to 

examine microhabitat associations of fish communities and invertebrates.   This work is intended 

to identify the degree to which fish and invertebrate communities can be distinguished based on 

microhabitat associations and also will aid in the identification of patterns in abundance of food 

web components that may be important to age-0 largemouth bass. 

Another potential factor influencing largemouth bass recruitment is dam escapement.  

Escapement from reservoirs generally increases by four times in the spring and summer when 

water levels are high (Paller et al.  2006).  The increase in escapement coincides with the time 

when largemouth bass are reproducing and may impact recruitment.  In addition, this potential 

influence might be greater on smaller lakes where fish have a higher probability of being in close 

proximity to the discharge over the dam.  Therefore, it may be possible to develop an index of 

watershed to lake acreage that could be used to predict potential lakes where escapement could 

be a concern.   

 

 

PROCEDURES:  
 

Vegetation Management Experiment 

 In this segment, we continued a multiple lake experiment to evaluate different vegetation 

management strategies.  We identified 11 lakes and divided them into three treatments based on 

management objectives.  Treatments include management to increase vegetation, management to 

reduce vegetation, and control treatments where vegetation will not be manipulated.  

Management to increase vegetation has continued on Dolan Lake and Lake Paradise.  Dolan 

Lake was drawn down in winter of 2006-2007 and treated with rotenone in an attempt to remove 
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carp and gizzard shad and expose the seed bank to promote vegetation growth.  Successful 

reduction or removal of carp coupled with establishing new vegetated areas should increase 

overall vegetated cover in Dolan Lake.   

In this segment, we continued to evaluate a large vegetation planting effort in Lake 

Paradise through cooperation with Illinois District Biologist Mike Mounce and the City of 

Mattoon Water Department.  Exclosures were constructed in 2008 using varying designs to 

reduce loss of vegetation from carp and turtles.  Exclosures were constructed using varying 

lengths of PVC coated wire fencing.  Fencing was shaped into a cylinder and closed using cable 

ties.  Lengths of rebar were driven into the substrate and attached to the fencing cylinders using 

heavy duty wire ties to secure the exclosure in place.  After attachment to the rebar, the cage was 

driven into the substrate an additional 50 to 100 mm (depending upon substrate) to seat the 

exclosure and ensure no fish passage under the fencing.   Exclosures were utilized in two 

plantings in 2008.  The first planting occurred in early June and was designed to test the success 

of three different exclosure types for planting of wild celery and sago pondweed tubers.  One 

replicate included a large exclosure, four small dispersed exclosures and four small clustered 

exclosures.  Large exclosures were constructed of 6.1 m of fencing creating an exclosure with a 

2.0 m diameter (area = 3.0 m
2
).  Small exclosures were constructed from 3.0 m of fencing 

creating an exclosure with a 1.0 m diameter (area = 0.7 m
2 

approximately ¼ the size of large 

exclosures).  Wild celery were planted using small bags of cheese cloth weighted with pea gravel 

with 5 tubers in each bag.  Large exclosures were planted with 26 bags of wild celery and small 

exclosures with 6.5 bags per exclosure.  Sago pondweed tubers were planted in a similar manner 

with 7 tubers in each bag.  Large exclosures were planted with 31 bags of sago pondweed and 

small exclosures were planted with 8 bags.  Ten replicates were planted with wild celery and 9 

replicates were planted with sago pondweed.   

The second planting in 2008 occurred in late June and was designed to test the success of 

chara, coontail, and American pondweed.  These species were planted three stems in a cluster at 

1 foot spacing throughout an exclosure.  One replicate consisted of two large exclosures and four 

small exclosures.  Three replicates were planted for each vegetation type.  For all treatments, 

planting location was along low sloping shoreline, with adequate sunlight, and shorelines 

protected from southern wind in order to promote successful establishment and growth of aquatic 

vegetation.   

Exclosures were visited in summer 2008-2010 to evaluate planting success.  Each 

exclosure was divided into 4 quadrates.  Each quadrate was visually assessed for percent cover of 

planted vegetation.  We supplemented the initial plantings by adding American pondweed and 

wild celery in cages where there was no survival from previous plantings in July 2009.  

American Pondweed was planted in 11 large cages and 20 small dispersed cages and wild celery 

was planted in 12 large cages and 33 small dispersed or clustered cages.  These cages were 

revisited and scored for vegetation in summer of 2009 and 2010.  At this time, cages that were 

initially planted and had plant survival were revisited and scored for percent cover.  In 2010, 

cages were scored for presence of vegetation in late July.  Five cages that have had consistent 

survival of American pondweed were expanded to 9.14 m perimeters (2.9 m diameter).  An 

additional 5 cages were replanted with American pondweed.  All cages will be scored in summer 

of 2011 and the subsequent 2 years. 

A subsample of exclosures were sampled for fish, macroinvertebrates and biomass of 

vegetation in summer of each year.  Fish were collected using a backpack electrofisher (250 V 

DC, 6 Amps).  A 1 meter circle was electrofished around each exclosure and then the interior of 
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the exclosure was sampled.  All fish were identified to species, measured for total length and 

released.  Benthic invertebrates were collected using a modified stovepipe sampler.  The benthos 

was sieved through a 250- m sieve bucket and preserved in ETOH and rose bengal.  

Invertebrates were sorted, identified, and measured at the lab.  Vegetation was collected if it was 

sampled in the modified stovepipe sampler.  All vegetation was identified to species and 

weighed.  We will monitor the success of the different exclosure designs and vegetation types by 

assessing vegetation in July and August in future segments. 

We have been monitoring two lakes as part of the vegetation removal treatment.  

Stillwater Lake and Airport Lake have high vegetation densities and are in need of treatment to 

remove vegetation.  Monitoring of pre vegetation management began in previous segments and 

continued in this segment.  Treatment for vegetation began in the spring of 2010.  Sonar was 

applied to Stillwater with the intention of completely removing Eurasian milfoil from the lake as 

well as other vegetation which has become overabundant.  Eurasian milfoil is the dominant 

vegetation type and is invasive in Illinois.  Airport Lake was treated in 2010 with Reward two 

times, once in the spring and once in July.  Reward is being applied to reduce the vegetation lake 

wide and was targeted to remove Eurasian milfoil which had begun to establish in the lake.  We 

will monitor changes in largemouth bass populations and prey organisms throughout and 

following the treatment period.  Control lakes will be used to compare changes in largemouth 

bass populations to lakes where vegetation is being manipulated to determine the effects of 

vegetation management. Control lakes include 3 levels of vegetation (high, medium, and low) 

based on percent cover. 

In this segment, we continued field sampling of the 11 lakes including seven for control 

conditions, two for rehabilitation conditions and two for the vegetation removal.  Largemouth 

bass populations, vegetation, prey resources, and fish communities were monitored.  Three AC 

electrofishing transects were sampled on two dates in the spring and two in the fall at each lake.  

All fish were identified to species and measured for total length.  Largemouth bass were also 

weighed and scales were taken for age and growth estimation.  Benthic invertebrates were 

sampled two times annually in June and August at six sites using a stovepipe sampler.  

Zooplankton, larval fish and seine samples were performed bimonthly on 8 lakes and monthly on 

the remaining 5 lakes.  Larval fish were collected using a 0.5 m diameter plankton push net with 

a 500um mesh and a 1:5 width to length ratio.  Larval pushes were sampled for 5 minutes and 

total water sampled was measured using a torpedo flow meter mounted in the center of the net.  

Zooplankton was sampled using vertical tows at 4 inshore and 4 offshore locations at each lake 

using 0.5 m diameter plankton net with 63 um mesh and a 1:3 width to length ratio.  All samples 

were preserved and brought to the laboratory where they were identified and counted.  Seine 

samples were taken at 4 shoreline locations on each lake using a 1.2 x 9.1 m seine with a 1.2 x 

1.2 m bag.  The width, length, and depth of each transect were recorded to determine the volume 

of water seined.  All fish collected were identified to species and a minimum of 50 individuals 

were measured for total length and additional fish were counted. 

Lakes were mapped for vegetation in June and August using GPS mapping techniques. In 

this segment, GPS was used to trace the vegetated edge and waypoints to identify transitions in 

types and densities of vegetated areas.  GPS data was then converted into GIS layers and 

digitized in ArcGIS 9.1.  Once areas of homogenous vegetation were identified, density and 

mass of each species was measured.  Ten rings of 0.5 m diameter were distributed throughout the 

different vegetated areas.  All vegetation in a ring was removed (excluding the root mass), 

separated and identified to species and weighed.  The mass of each vegetation type in a ring was 
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used as a representative sample for the vegetated area.  These rings will be used to estimate 

densities and biomass of each vegetation type present.  GIS tools were then used to calculate 

vegetated area and vegetated perimeter of the lake.  Vegetation rings were used to assign 

densities and mass of each vegetation type to polygons of homogenous vegetation.   

 

Vegetation and Woody Habitat Enclosures 

 

In this segment we continue to examine patterns in abundance of yoy largemouth bass, 

other fish species, and associated biotic communities including zooplankton and 

macroinvertebrates among three common lakeshore habitat types in two Illinois lakes.  During 

August 2009 and again in August 2010 three replicate vegetated, wooded and open shoreline 

sites were randomly selected in Lincoln Trail Lake and Lake Paradise.  At each site, a block net 

(100 X 3.04 m) was used to enclose an area of shoreline (mean area ± SE = 48.5 ± 1.7 m
2
) during 

sampling.  Within vegetated sites three 0.5 m diameter circular quadrats were sampled for 

species identify, stem density and standing biomass of macrophytes.  Benthic macroinvertebrates 

were sampled from littoral sediments using a modified stovepipe sampler as described in 

previous sections.  Three zooplankton samples were collected in each site using a 9.5 cm 

diameter tube sampler (mean volume ± SE = 9.7 ± 0.07 liters).  Each of the three subsamples 

was pooled by passage through a 64-μm-mesh filter.  Storage and processing of zooplankton and 

invertebrate samples was as described in previous sections.  In addition to zooplankton and 

benthic macroinvertebrate samples the macroinvertebrate communities associated with the 

surface of coarse woody habitat were sampled from wooded sites. Woody debris was sampled 

for macroinvertebrates by first enclosing individual branch segments (N = 3 per site) in a 64 μm 

mesh bag and clipping the segment using a hedge clipper.  Samples were then lifted from the 

water invertebrates were removed using a soft nylon brush held over a pan. Fish communities 

were sampled via three passes within the enclosed area using a backpack DC electrofisher.  All 

collected fish were identified to species and measured for total length. Community data sets 

including fish species densities, macroinvertebrate densities, and zooplankton densities 

expressed as individuals per square meter (fish and macroinvertebrates) or per liter (zooplankton) 

were pooled across years and analyzed using correspondence analysis to examine the degree to 

which habitats could be distinguished based on the density of each taxa found.  This approach 

allowed for a test of the degree to which each habitat could be distinguished based on its biotic 

community and also served as a data reduction step by identifying important taxa for further 

analysis.  Data from each lake was analyzed separately due to known differences in community 

composition. Individual taxa were included in discriminant functions derived from 

correspondence analysis by using a stepwise selection procedure and all groups with a p-value 

<0.10 were included in final functions. When discriminant functions indicated significant effects 

of individual taxa these were further examined using univariate ANOVAs blocked by year to test 

for differences among habitat types. When a significant univariate ANOVA was found fisher’s 

protected lsd was used to separate means and determine specific differences among habitats.   

 

Dam Escapement 

 

In order to access dam escapement by largemouth bass we sampled downstream 

of the dam on two reservoirs, Ridge Lake and Forbes Lake via backpack electrofishing. 



 

 17 

To sample fish escapement from Forbes Lake, we set up three transects in the Lost Fork River 

approximately 0.5 miles downstream of the dam on Forbes lake. Each transect was electrofished 

moving in an upstream direction towards the dam. All fish collected in each transect were 

counted and measured to the nearest millimeter (TL). The dorsal caudal fin on all fish was 

clipped in order to identify fish recaptured in future surveys. The volume of water coming over 

the dam was also measured, as well as any peak volume that occurred between sampling periods.  

In addition, rainfall was recorded at the Sam Parr Biological station located approximately 1 mile 

downstream of the dam.  Downstream area of the Ridge Lake dam was sampled in a similar 

manner in 2008. A 200 m stretch of the stream was sampled via electrofishing in an upstream 

direction and in one transect.  Starting in the spring of 2010, all fish escaping over the spillway 

were collected in 12 m X 6 m catch basin with a 2.54 cm mesh gate.  The catch basin was seined 

at regular intervals or after a major rainfall event and the fish collected were measured and 

checked for pit tags.  Rainfall data was collected from the Eastern Illinois University rainfall 

gauge approximately 5 miles to the North.  The total rainfall that fell between sampling dates 

was calculated and divided by the number of days in order to compare precipitation to 

escapement. 

 

 

FINDINGS: 

 

Vegetation Management Experiment 

 

In this segment, the effort to increase vegetation and evaluate vegetation plantings 

continued on  Lake Paradise.  We expanded five cages that contained American pondweed 

consistently over the last three years to attempt to increase the area vegetated.  Five additional 

small cages were also planted.  These cages will be evaluated for survival in the next segment.  

All cages planted in 2008 and 2009 were scored for density of surviving vegetation.  Cages 

planted with American pondweed had the greatest percent cover throughout the 3 years 

following planting (Table 4-1: A).  All other vegetation planted in 2008 had no survival through 

2010 with the exception of one cage planted with wild celery.  Mean plant cover of cages in 

2009 was  lower than those planted in 2008 after 1 and 2 years.  This may be due to planting 

location as all cages planted in 2009 were cages with no survival in 2008.  American pondweed 

planted in 2009 again had the greatest mean plant cover of vegetation types planted (Table 4-1: 

B).  When examined together, we observed similar results for vegetation planted in Lake 

Paradise across years.  Cages were determined successful if they had any vegetation surviving 

from the previous year.  Cages were over 50% successful for all vegetation types in the first fall 

following planting with the exception of Chara (Figure 4-1).  After the first winter all vegetation 

types decreased in success and only American pondweed had any significant survival after the 

first winter.  Mean vegetation cover ranged from 0 to 50% in successful cages across all 

vegetation types (Figure 4-2).  When the cages were successful, American pondweed and wild 

celery had similar densities of vegetation.  It is difficult to evaluate chara, coontail, and sago 

pondweed because the number of successful cages is very low and the mean density is based on 

very few number of cages.   

We also examined the influence of cage size on survival of vegetation.  All sizes of cages 

had high success through the fall following planting (Figure 4-3).  The small clustered cages had 

no overwinter survival of vegetation and there was no vegetation present in the evaluations in the 
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second or third year following planting.  The dispersed small and the large enclosures 

experienced similar success in the second and third year and decreased through time.  There were 

similar densities of plants in all three cage sizes when they were successful (Figure 4-4).  Cage 

size does not appear to affect the density of plants in successful cages.  Vegetation in the large 

cages did not differ from the small dispersed cages in success or density.  Because the large 

cages cover a much bigger area, they did achieve larger vegetated plots. 

In addition to evaluating the vegetation in the enclosures we examined the density of fish 

and benthic invertebrates associated with vegetated and non-vegetated enclosures.  The density 

of fish collected from vegetated cages was slightly higher than non-vegetated cages (Table 4-2).  

The density of fish varied with plant type, but the sample sizes were low for sago pondweed, 

coontail and wild celery.  Fish density was highest in wild celery followed by American 

pondweed.  The highest density was observed in a single cage with sago pondweed, but this was 

the only cage due to low survival of sago pondweed.  Species richness was much higher in 

vegetated cages (12 species) than in non-vegetated cages (7 species).  The only largemouth bass 

that were observed were associated with cages that contained vegetation.  Density of 

invertebrates was higher in the vegetated cages than non-vegetated cages (Table 4-2 B) due 

primarily to the very high density of chironomids found in cages containing vegetation.  

Invertebrate density varied by vegetation species with the highest being associated with sago 

pondweed, followed by wild celery and American pondweed.  In general, prey fish and 

invertebrates appear to be found in greater density in the vegetated cages and the vegetation 

plantings may produce preferred habitat for young-of-year fish.   

We evaluated the rehabilitation effort at Dolan Lake by examining the catch rates of 

gizzard shad and common carp, the fish targeted in rotenone treatments.  CPUE of gizzard shad 

from electrofishing dropped from 35.3 fish/hour in 2005 to 2.0 fish/hour in 2008 and 1.6 

fish/hour in 2009.  In 2010, gizzard shad abundance had increased to 4.1 fish/hour, which is 

lower than densities before the drawdown, but are increasing each year and we expect the 

numbers to continue to increase.  The density of gizzard shad in larval fish samples was low 

compared to other lakes with gizzard shad, but reproduction is occurring in Dolan Lake. 

 CPUE for common carp in Dolan Lake dropped from 0.8 in 2005 to 0.0 in 2008 and 

2009.  No common carp were sampled in electrofishing efforts in spring or fall of 2010.  

Although carp numbers were not high in electrofishing samples prior to the drawdown, we have 

not observed carp in any sample since the rehabilitation effort.  In addition, larval carp were not 

observed in any of the monthly sampling in Dolan Lake.  Decreases in gizzard shad and carp 

densities should allow water quality changes and reduce feeding and uprooting of vegetation 

allowing the density of plants to increase.  Before the drawdown and rotenone treatment, Dolan 

had a mean of 1.4% of the surface area and 5.7% of the perimeter vegetated from 2002 through 

2005.  In 2007, 76% of Lake Dolan’s shoreline contained vegetation.  Vegetated shoreline 

increased to 93% in 2008 providing evidence that vegetation may be increasing.  In 2010, the 

mean percent shoreline that was vegetated was intermediate at 83% and has continued to be 

much higher than in pretreatment assessments.  In Dolan Lake in 2010, the CPUE of largemouth 

bass over 200mm was the highest in all lakes sampled as part of this job (58.8 fish/hour).  

However the CPUE of young-of year fish in the fall was among the lowest (6.8 fish/hour).  The 

largemouth bass population was intentionally reduced and restocked as part of the 2007-2008 

drawdown.  There is a substantial spawning population at Dolan Lake and we expect that 

recruitment should increase in Dolan Lake.  The increase in vegetation should allow for adequate 
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habitat for newly spawned fish.  We will continue to monitor Dolan Lake in order to evaluate 

long-term changes in largemouth bass populations. 

In this segment, we continued to monitor 11 lakes to examine the role of vegetation in 

determining largemouth bass recruitment.  Vegetative cover ranged from 0-100% in the study 

lakes (Table 4-3).  Lake vegetation has varied among lakes across years, but lakes maintained 

their high, medium or low vegetation designation throughout the pre-treatment time period 

(2007-2009).  In 2010 Airport Lake and Stillwater  were treated chemically to remove 

vegetation.  The treatment in Airport Lake occurred shortly following our spring vegetation 

assessment.  The vegetation was reduced immediately following treatment, but the lake was 

highly vegetated by the fall assessment and no long term change in vegetation density was 

observed.  Stillwater Lake was treated prior to the spring vegetation assessment and the 

vegetation had already begun to decrease.  The density of vegetation in Stillwater Lake was very 

low when assessed in the fall and had dropped from 100% in 2007 through 2009 to only 1% of 

the total lake area.  We will continue to follow vegetation changes in these two lakes and 

evaluate changes in largemouth bass recruitment in the spring and fall sampling.  Percent of the 

lake area that was vegetated continued to be significantly correlated with the perimeter of the 

shore that is vegetated (Spring: r = 0.92; P < 0.0001; Fall: r = 0.94; P < 0.0001). Both vegetated 

area and perimeter were also significantly correlated from the spring to the fall for both percent 

vegetated area (r = 0.96; P < 0.0001) and vegetated perimeter (r = 0.99; P < 0.001).   

We also continued to monitor larval, juvenile, and adult fish communities as well as 

zooplankton and benthic macroinvertebrates to assess the effect of aquatic vegetation.  CPUE 

was calculated from electrofishing samples for young-of-year largemouth bass (< 200 mm), adult 

largemouth bass (> 200 mm), and all bluegill (Table 4-4).  Mean annual density was also 

calculated for total zooplankton, total benthos, and total larval fish as well as larval bluegill and 

gizzard shad.  These variables were then examined for correlation with the vegetated area and 

perimeter of each lake.  Young-of year (yoy) largemouth bass CPUE from electrofishing was not 

significantly correlated with any measure of vegetation density in the 11 research lakes in 2010 

(p > 0.05).  These results differed from 2009 where the CPUE of yoy largemouth bass was 

significantly correlated with percent of the lake perimeter that was vegetated in both the spring (r 

= 0.79; P = 0.004) and the fall (r = 0.65; P = 0.03).  The only factor that was significantly 

correlated with vegetation density in 2010 was the density of larval gizzard shad (r = 0.93; P < 

0.0001).  The CPUE of adult largemouth bass was significantly correlated with the mean density 

of larval fish (r = 0.73; P = 0.01) as well as larval bluegill density (r = 0.76; P = 0.007).  In order 

to evaluate differences in largemouth bass recruitment related to varying vegetation densities, we 

separated the 11 study lakes into categories based on the proportion of the lake area and 

perimeter that was vegetated in 2010.  The categories were low (n=3; 0-10%), medium (n=4; 20-

80%), and high (n = 4; 90-100%).  We performed an ANOVA to determine if there as a 

significant difference in yoy largemouth bass cpue from fall electrofishing among groups.  Yoy 

largemouth bass densities were lowest in low vegetation lakes, followed by medium density and 

the highest in high density vegetation lakes (Figure 4-5).  These differences however were not 

significant (F = 0.13; P = 0.88).  We will continue to monitor vegetation densities, largemouth 

bass populations, fish assemblages, prey resources and lake characteristics in control and 

vegetation treatment lakes including addition and removal. 
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Vegetation and Woody Habitat Enclosures 

 

Fish Communities 

 Correspondence analysis indicated that fish community composition was a significant 

predictor of habitat types in Lincoln Trail Lake (Pillai’s Trace = 1.27; df = 12, 22; P < 0.01).  

Further examination of discriminant functions indicated that a combination of species densities 

including bluegill, warmouth sunfish, yellow bullhead, and redear sunfish and crayfish density 

could correctly classify 89% of sites.  Univariate tests indicated that bluegill (ANOVA; F2,14 = 

7.9; P <0.01) and warmouth sunfish densities differed significantly among habitats (ANOVA; 

F2,14 = 3.6; P = 0.05).  Post hoc tests for bluegill indicated that vegetated areas had significantly 

higher bluegill densities than open shorelines (P = 0.03) whereas wooded enclosures had 

intermediate densities (Figure 4-6 A).  Post hoc tests for warmouth sunfish indicated that this 

species was significantly more abundant in wooded and vegetated sites than open shorelines (all 

P <0.05) while vegetated and wooded shorelines had similar warmouth densities (Figure 4-6 B).   

In Lake Paradise discriminant analysis indicated that fish community composition was 

not a strong predictor of habitat types (Pillai’s Trace =0.25; df = 2,15; P = 0.11).  Examination of 

ordination plots indicated that white crappie density was the only important factor suggested by 

discriminant analysis. Subsequent univariate tests indicated a marginally significant overall 

effect of habitat type on density of white crappie (ANOVA; F2,14 = 3.1; P = 0.07).  Post hoc 

comparisons indicated that white crappie density was significantly higher in wooded habitats 

than in either open or vegetated sites (all P < 0.05; Figure 4-6 C).    

 

Zooplankton Communities 

In Lincoln Trail Lake correspondence analysis indicated that habitat types could be 

distinguished based on zooplankton communities ((Pillai’s Trace = 1.11; df = 10,24; P = 0.01).  

A discriminant function that included densities of cyclopoid copepods, as well as organisms of 

the families bosminidae, sididae and chydoridae could correctly classify 88% of habitat types. 

Univariate tests across habitat types for these taxa indicated significant differences in the density 

of cyclopoid copepods (ANOVA; F2,14 =3.55; P = 0.05) and chydorids (ANOVA;  F2,14 =4.71; P 

= 0.02).  Post hoc tests comparing cyclopoid densities between habitat types revealed that 

cyclopoid copepods were significantly more abundant in vegetated habitats than in open habitats 

(P <0.03) with wooded habitats being intermediate (Figure 4-7 A).  Post hoc tests on densities of 

chydorids between habitat types indicated that these organisms were significantly more abundant 

in vegetated habitats than either open or wooded sites (all P < 0.03; Figure 4-7 B). 

In Lake Paradise correspondence analysis indicated that habitat types could be 

distinguished based on zooplankton communities (Pillai’s Trace = 0.55; df = 4,30; P = 0.04). A 

discriminant function that included densities of sididae and harpacticoid copepods could 

correctly classify 61% of sites by habitat.  Univariate comparisons of sididae densities between 

habitats indicated that densities of these organsisms differed between habitats (ANOVA; F2,14 = 

3.48; P = 0.05).  Post hoc tests revealed that sididae were more abundant in vegetated habitats 

than in open habitats (P = 0.02) with wooded habitats being intermediate (Figure 4-7 C).  

 

Macroinvertebrate Communities 

Macroinvertebrate communities were significant predictors of habitat types in Lincoln 

Trail Lake ((Pillai’s Trace = 0.64; df = 6,40; P = 0.01). A discriminant function incorporating 

densities of pelecoptera and trichoptera could correctly classify 50% of sites to habitat type.  
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Univariate comparisons of pelecopteran densities across habitat types indicated that there was a 

marginally significant difference among habitat types (ANOVA; F2,14  = 2.6; P = 0.08).  Post hoc 

tests revealed that pelecopterans were significantly more abundant in vegetated sites than on 

wood surfaces or wooded sediments (all P <0.05) with and open sites being intermediate (Figure 

4-8 A).  Univariate comparisons indicated that trichopteran densities also differed among habitat 

types (ANOVA; F2,14  = 4.1; P = 0.04).  Post hoc tests revealed that trichopterans were more 

abundant on wood surfaces than on any of the other habitats (all P <0.05; Figure 4-8 B).  

Similar to Lincoln Trail Lake macroinvertebrate communities were a strong predictor of 

habitat types in Lake Paradise ((Pillai’s Trace = 1.1; df = 12,57; P < 0.01). A discriminant 

function including densities of chironomidae, dipteran pupae, ephemeropterans, and nematoda 

correctly classified 66% of habitat types.  Univariate comparisons between habitats for these taxa 

indicated significant differences for chironomidae (ANOVA; F3,19  =  6.57; P <0.01); dipteran 

pupae (ANOVA; F3,19  = 5.18 ; P <0.01) and nematoda densities (ANOVA; F3,19 = 3.15; P = 

0.04).  Post hoc tests revealed that chironomid densities were significantly higher on wood 

surfaces than in all other habitats (all P < 0.02; Figure 4-8 C).  Post hoc tests for dipteran pupae 

indicated that these organisms were more abundant in wooded sediments than all other habitat 

types (all P <0.05; Figure 4-8 D).  Similarly post hoc tests on the density of nematodes found 

that these organisms were also more abundant in wooded sediment than in other habitats (all P < 

0.05; Figure 4-8 E).      

 

Dam Escapement 

 

Preliminary data collected thus far suggests largemouth bass escapement in Forbes Lake 

is affected by precipitation and ultimately the amount of water exiting the spillway.  The average 

number of largemouth bass that are sampled in Lost Fork appears to be related to the average 

precipitation for the month (Figure 4-9).  As expected, adult largemouth bass collected in the 

stream appear to peak in spring and decline in the summer, whereas young of year largemouth 

bass appear later in the spring and summer (Table 4-5).  However, it is important to note that 

largemouth bass sampling in Lost Fork represents only relative numbers of largemouth bass 

between sampling dates.  The data from Ridge Lakes allows for a better estimate of the total 

numbers of largemouth bass exiting that lake.  Early indications from this expanding data set are 

that the number of bass escaping Ridge Lake are low (Figure 4-10).  In the 10 continuous months 

of sampling in 2010 and 2011, only 4 adult sized largemouth bass were collected in the Ridge 

Lake catch basin.  Small numbers of young of year largemouth bass were also present in the 

catch basin in May and June (Table 4-5).  The timing of escapement does not appear to be 

associated with rainfall (Figure 4-10), nor does timing appear to be associated with time of year.  

Thus early data indicates that large numbers of adult and young of year largemouth bass are not 

being lost from this lake population due to dam escapement. 

 

 

RECOMMENDATIONS:   

 

Additional information on the role of aquatic vegetation to largemouth bass recruitment 

has been identified as an important goal for management in Illinois.  There are a number of 

potential management strategies for manipulating vegetation that are of interest to managers in 

Illinois, including chemical treatment to reduce overabundant vegetation and/or nuisance 
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vegetation (e.g. Eurasian milfoil) and habitat restoration to increase vegetation where it is 

lacking.  We have continued a multi lake experiment examining lakes with a range of vegetation 

densities and have been measuring recruitment of largemouth bass in those systems.  We have 

begun to treat vegetation in Stillwater and Airport Lakes and will continue to monitor changes of 

vegetation for several years.  Vegetation removal in these lakes has been accomplished primarily 

through chemical treatments appropriate to reduce the dominant problem vegetation.  We will 

monitor the vegetation in these lakes and evaluate the success of the removal process.  We will 

continue to monitor fish exclusion fences and transplanted vegetation at Lake Paradise and 

assess if increases in vegetation are observed.  We will supplement the plantings from initial 

years with additional plantings of American pondweed in 2011.  Results thus far suggest 

American pondweed as the species with the highest survival rate and future planting efforts in 

Lake Paradise will focus on this species.  Large cages were shown to produce both larger 

continuous areas of plants and a greater survival rate of plants inside an enclosure.  We 

recommend the use of larger cages when attempting to establish vegetation in a lake.  There is a 

higher potential for large cages to pull away from the substrate, allowing turtles, carp and other 

animals to enter the cage and feed on the plants and extra effort should be spent when 

constructing these cages to ensure they are seated well into the substrate.  In the next segment we 

will continue to expand the size of a number of both small and large cages where plants are 

established to attempt to spread the vegetation previously planted.  We will also move cages that 

have had poor success and attempt to focus planting in areas of the lake where vegetation has 

survived successfully.  During the next several years, we will monitor the lake-wide implications 

of these vegetation enhancement efforts.  In Dolan Lake, the water level was drawn down in an 

attempt to eliminate carp and gizzard shad.  We expect through the removal of these fish and the 

exposing of the seed bank, that vegetation will increase in this lake.  Initial measurements of carp 

and gizzard shad indicate the fish removal efforts have successfully reduced their numbers.  

However, gizzard shad numbers have increased since the initial treatment and even though they 

are low, larval fish have been observed in samples and are increasing in number each year.  

Vegetation at Dolan Lake has increased since the drawdown and fish removal.  We will continue 

to monitor control and treatment lakes and relate changes in largemouth bass recruitment, 

growth, and abundance to management practices.  We will evaluate largemouth bass recruitment, 

abundance and growth in lakes with varying vegetation densities in order to identify critical 

levels of vegetation to target for management. 

Previous research in reservoir ecosystems has documented significant effects of littoral 

habitat on relative abundance and distribution of juvenile and age-0 fishes however a majority of 

these studies have been conducted on systems with little vegetative or other complex habitat 

structure (Meals and Miranda 1991; Irwin et al. 1997).  While we did not find significant 

differences in age-0 largemouth bass densities among the microhabitat types sampled in our 

enclosure surveys, we did find significant differences in the community composition and 

abundance of potentially important prey items (juvenile sunfishes, caddisflies, chironomids, 

stonefiles and cyclopoid copepods).  Increases in abundance of potential invertebrate and fish 

prey in vegetated and wooded sites supports the idea that these habitats are important sources of 

littoral productivity.  Differences in fish and invertebrate community structure may influence the 

foraging success and relative energetic value of different habitats to age-0 largemouth bass and 

other juvenile fishes.  In the future we plan to design controlled experiments evaluating the 

potential influence of differences in community structure among habitats on the feeding 



 

 23 

performance of age-0 largemouth bass.  These experiments will help to draw links between 

habitat heterogeneity, biotic community structure and energetics of age-0 fishes. 

The assessment of dam escapement is in the early stages of implementation and 

evaluation and more data is needed to draw conclusions about the effect of escapement on 

largemouth bass populations and recruitment.  Early indications suggest that escapement is not a 

major factor affecting largemouth bass populations and recruitment.  However, differences 

between the two lakes sampled and their apparent link to precipitation may indicate that other 

factors (i.e. drainage size, lake size, spillway type, etc.) may affect the timing and numbers of 

largemouth bass lost due to escapement.   Additional data still needs to be collected to determine 

if the trends observed thus far represent real patterns.  Data will continue to be collected from 

both sites in future reports in order to build a large enough database to be able to answer 

questions about escapement effects on largemouth bass populations in a more rigorous manner.   
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Job 101.5  Assessing the impact of angling on bass reproductive success, recruitment, and 

population size structure. 

 

OBJECTIVE:  To assess the level of angling for nesting bass in Illinois and to determine its 

impact on reproductive success and annual recruitment, as well as to determine how much long 

term exploitation of Illinois bass has changed the size structure of those populations. 

 

INTRODUCTION:  
 

The growth in the popularity of competitive angling events targeting black bass has been 

substantial in the United States over the last 40 years with exceptional growth occurring in the 

past decade.  Highlighting this recent growth, about 18,000 events were estimated to occur in 

North America in 2000 whereas over 32,000 were estimated to occur in 2005 in the United 

States alone (Kerr and Kamke 2003; Schramm and Hunt 2007).  Although tournament rules 

require the release of captured bass following the conclusion of the “weigh-in,” high mortality 

(>50%) has been reported during tournaments within the last 10 years (Neal and Lopez-Clayton 

2001; Gilliland 2002; Wilde et al. 2002a), necessitating investigations into strategies to minimize 

mortality during these events.  Mortality can be capture-related (i.e. hooking mortality) but can 

also be due to the collective impact of several sub-lethal stressors incurred by bass throughout 

the tournament process (Kwak and Henry 1995) such as the disturbances sustained during 

livewell confinement or the weighing procedure.  In addition, the sub-lethal physiological 

disturbances incurred by bass that ultimately survive the tournament process can negatively 

impact growth (Wendelaar Bonga 1997) and fitness (Schreck et al. 2001; Ostrand et al. 2004) 

and increase susceptibility to disease (Pickering and Pottinger 1989).  Clearly, identifying factors 

that influence the sub-lethal and lethal consequences of tournaments on largemouth bass and 

potential avenues to mitigate these impacts is important for the sustainable use of bass fisheries.     

Removal of spawning males by angling has been shown to reduce the reproductive 

success of an individual largemouth bass, often causing brood reduction and nest abandonment 

(Philipp et al. 1997). However, the population-level impact of reduced reproductive success of 

some individuals is unclear. In the spring, male largemouth bass (Micropterus salmoides) build 

solitary, highly visible (depending on water clarity) saucer-shaped nests in the substrate in order 

to court and spawn with females (Kramer and Smith 1962; Pflieger 1966; Coble 1975). Once 

spawning is completed, females leave the nesting area and the male remains to provide all 

parental care of the developing offspring, a period that may last four or more weeks (Ridgway 

1988; Cooke et al. 2002). While male bass are providing parental care for their broods, they are 

extremely aggressive (Ridgway 1988; Cooke et al. 2002) and, therefore, highly vulnerable to 

many angling tactics (Neves 1975; Kieffer et al. 1995). Even though this vulnerability has never 

been assessed accurately, many fisheries management agencies have invoked closed fishing 

periods, catch-and-release regulations, and various length and harvest limit scenarios in an effort 

to enhance or promote bass reproduction and recruitment (see Schramm et al. 1995). We are 

assessing the relationship between nesting success and recruitment in Lincoln Trail Lake. In 

addition, we are also directly testing the effect of angling on recruitment through manipulative 

pond experiments. The strategy of maximizing reproductive success by protecting successful 

spawning bass from angling assumes that there is a positive relationship between reproductive 

success and recruitment, which has not been specifically determined. Also, density-dependent 
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interactions in young-of-the-year largemouth bass may cause populations to compensate for the 

lost reproductive success of some individuals. 

 Exploring recruitment in a controlled setting allows us to isolate and test different 

mechanisms regulating survival. In order to further explore the effects of angling largemouth 

bass during the spawning period, we completed one pond experiment and began an additional 

pond experiment during this segment.  In the first experiment, we assessed the effects of 

removing the earliest broods in a population as those have been shown to have the greatest effect 

on recruitment.  There is potential for angling to have a large influence on largemouth bass 

populations.  In particular, competitive tournament fishing for black bass has grown rapidly over 

the past several years.  Previous work has shown high levels of mortality associated with these 

tournaments in other parts of the United States, but tournament procedures continue to improve.  

In previous segments, we evaluated the effects of small club style tournaments for largemouth 

bass.  Mortality at small, club-style tournaments at Evergreen Lake was low, and never exceeded 

5%.  The low mortality and relatively mild physiological disturbances incurred by largemouth 

bass during club events suggests that these types of tournaments can have minimal impacts on 

fish compared to larger tournaments if proper care is taken.  We also identified nest 

abandonment rates for fish exposed to tournament angling, catch and release angling and no 

angling controls.  We found almost all fish exposed to tournaments abandoned their nests after 

24 hours and 33% abandoned after catch-and release-angling.  In pond experiments we saw 

similar abandonment of the nest.  When nests were guarded from predators using screens, fish 

were less likely to abandon the nest upon return, possibly due to reduced predation on eggs and 

reduction in brood on a nest.  We also reported that increased distance of release from the nest 

and time off the nest both increased abandonment rates.  We also monitored largemouth bass 

tournaments during the spawning period and post spawn to determine if nesting bass were 

targeted.  We did not observe a shift in the sex of fish depending on season although a large 

number of ripe and running fish were angled in springtime tournaments.  Thus far we have 

shown effects of tournaments on largemouth bass at the individual level, but the influences of 

tournament angling on lake wide  recruitment are unknown.  Therefore, we also initiated a 

second pond experiment to directly examine the population consequences of tournament angling 

during the spawning season.  In addition we conducted spring largemouth bass tournaments at 

Ridge Lake in order to examine the effects on tournament angling on largemouth bass 

recruitment at the lake level.  These pond and lake experiments will allow us to further evaluate 

the potential effects of spring tournament angling on largemouth bass recruitment. 

Despite low mortality and stress associated with small tournaments, there can be 

substantial mortality and sub lethal stress associated with large scale tournaments with extensive 

weigh-in procedures (Wilde 1998; Allen et. al 2004; Suski et. al 2003; Suski et. al 2004).  Due to 

the stress and mortality associated with these large tournaments, we continued to evaluate the use 

of paper tournaments to reduce potential negative effects.  Paper tournaments allow anglers to 

release fish shortly after they are caught and in the same vicinity as their capture as well as 

remove the stress associated with livewell confinement and weigh-in procedures.  Little is known 

about how varying tournament angling pressure can influence the life history traits of largemouth 

bass populations.  Therefore, we are also evaluating the long term influence of tournament 

activities on populations of largemouth bass.  Our objective is to quantify tournament pressure 

for a number of lakes and examine differences in largemouth bass populations in lakes with 

varying tournament pressure.   
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PROCEDURES 

 

Nest observations 

 

Snorkeling surveys were used to assess bass spawning activity, nest site selection by 

males, aggressiveness of males guarding a nest, and the level of nest predation in Lincoln Trail 

Lake. Snorkel surveys commenced on April 13
th

, 2011.  Six transects have been monitored for 

several years. Each located nest was given a nest tag and an egg score (1-5). The water depth of 

the nest was recorded as well as the developmental stage of the offspring. A visual length 

estimate of the guarding male was noted as well as the presence or absence of a hook wound. 

The number of predators in the nest was recorded, as well as their size and amount of time spent 

in the nest. Habitat within a 4m x 4m quadrant around the nest was mapped, making note of 

substrate, cover and potential nest predators. We also assessed the available habitat within each 

transect to determine if largemouth bass were exhibiting any substrate selectivity for specific 

nesting sites. Transects were snorkeled perpendicular to the shoreline and substrate was 

quantified at 5-meter intervals. At each interval, 5 point estimates were visually assessed for 

dominant substrate along each transect from 2m of depth to the shore. These data were used to 

estimate the proportion of each substrate type available within each snorkeling transect and 

compared to the substrate at each nesting site.  

 

Influence of Spring Tournaments on Reproduction  

 

Tournament angling for largemouth bass has been shown to cause nest abandonment for 

fish angled off the nest.  However the population level effects of nests abandonment have not 

been examined.  In this segment we continued an experiment at Ridge Lake examining the 

effects of tournament-style angling of nesting largemouth bass in a population previously 

unexploited during the spawning season.  Ridge Lake has a controlled creel operated by the 

Illinois Natural History Survey.  The lake has traditionally been closed to fishing until mid-May 

and no tournaments have been conducted at Ridge Lake prior to the beginning of this 

experiment.  In the early spring of 2007 and 2010, seven angling tournaments were conducted 

during the spawning season (April 22 - May 22, 2007; April 17 – May 17, 2010) on Ridge Lake, 

prior to the opening of the regular public angling season.  During each tournament, anglers 

fished  for four hours targeting largemouth bass.  All fish caught were brought back to the dock, 

measured for total length, weighed, and scales were collected.  The fish were then kept in a 

lakeside pen for 2 hours following the tournament when they were released back into the lake.  

Recruitment of largemouth bass was measured as the relative CPUE from fall electrofishing 

samples and mean density of young-of-year largemouth bass collected in seines in late August 

and early September.  Additionally, a complete creel census has been conducted on Ridge Lake 

during the open angling season of each year.  Prey resources were also monitored at Ridge Lake 

throughout the season (zooplankton, larval fish, seine, benthos cores, and water quality; see job 

101.4 for methods).  We will monitor largemouth bass populations and prey resources in Ridge 

Lake through both tournament and non-tournament years and examine the relationship between 

spring angling tournaments and lake wide recruitment.  No tournaments were conducted in 2006, 

2008 and 2009 and these years will be used as a comparison with the years where tournaments 

were conducted. 
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We are currently conducting a manipulative pond experiment aimed at assessing the 

direct effect of tournament angling during the spawning period on recruitment.  Most research 

has focused on the effects that angling treatments have on success of an individual bass, but the 

cumulative impact on recruitment is still relatively unknown.  Also, willingness of individual 

fish to strike a lure and other behavioral factors have yet to be considered when testing angling 

effects on population recruitment.  To address these questions, we have designed a two-year 

experiment simulating the effects of tournament angling on adult largemouth bass. 

In both 2010 and 2011, eight 1-acre ponds were stocked with natural densities of adult 

largemouth bass (12 females and 10 males), adult bluegills (15 females and 15 males), and 

juvenile bluegills (approximately 2,200).  Each year, ponds were randomly designated as 

treatment or controls.  During the spawning season, treatment ponds were subjected to 

tournament-style angling, with each receiving four angler hours per week.  To simulate 

tournament practices, caught bass were then weighed, measured, and held in a livewell for four 

hours before being released.  Snorkelers monitored bass nests in all ponds to assess nest success 

and to determine abandonment due to the treatment.  

Ponds were also sampled throughout the spring and summer for several variables that 

could potentially effect recruitment, including abundance of zooplankton, benthic invertebrates, 

and vegetation.  Abiotic factors such as water transparency, nutrient content, and temperature 

were also monitored for the duration of the experiment.  We ended the experiments in the fall, 

when each pond was drained and all juvenile largemouth bass were counted and weighed. 

 

Long-Term Effects of Tournaments 

 

 We began to evaluate how long-term harvest and varying tournament pressure has 

impacted the population abundance and size structure of largemouth bass populations through 

selection-driven changes in life history traits.  Electrofishing transects were performed in twelve 

lakes in the spring of 2010 and all largemouth bass were collected, measured for total length and 

weighed.  Lakes were categorized as high tournament pressure, low pressure, or no tournament 

pressure lakes.  Scales were collected from each largemouth bass and were aged by two 

independent readers to determine mean length at age for fish in each lake.  In spring 

electrofishing samples, sex was determined when possible as well as maturity status (mature or 

immature) and spawning status (ripe, running, or spent).  Largemouth bass were collected from 

each lake for size ranges that were too small to determine sex and maturity status in the field and 

returned to the laboratory.  Tournament pressure was determined for lakes where we could 

identify all tournament activity on a lake.  We have coordinated with DNR biologists, lake 

managers and tournament organizers to obtain records of all tournaments conducted on a number 

of lakes.  We also worked with tournament organizers and lake managers to obtain tournament 

results and weigh-in data for all tournaments conducted.  When all weigh-in results were not 

available, we estimated weigh-in results using similar tournaments from the same lake.  We will 

examine the intensity of tournament activity at each lake and evaluate the abundance and size 

structure of the associated largemouth bass population. 
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FINDINGS:   

 

Nest Observations 

 

Snorkeling was initiated in Lincoln Trail on April 13, 2011.  A total of 14 fish were 

observed on the nest.  The secchi depth was 1.8m and water clarity was sufficient to identify 

nests, although not ideal.  Following the initial snorkeling effort, there were high levels of 

precipitation and storms which greatly reduced water clarity in Lincoln Trail.  We returned to 

lake for future snorkeling on April 21 and the secchi depth had decreased to 0.8 m and water 

clarity was not sufficient to snorkel.  The lake was assessed on 2 additional dates (April 28, 2011 

and May 3, 2011) and water clarity continued to limit the visibility in Lincoln Trail making nest 

identification not feasible.  We will continue to perform snorkeling transects in future segments. 

 

Influence of Spring Tournaments on Reproduction  

 

 Tournaments were conducted in the spring of 2010 on Ridge Lake from April 17 to May 

17 while largemouth bass spawning was occurring.  A total of 7 tournaments were conducted and 

the average angler hours per tournament was 22.3 hours (Table 5-1).  The anglers caught 167 

fish totaling 180.9 pounds.  Recent population estimates at Ridge Lake averaged 311 largemouth 

bass implying a large portion of the spawning fish were captured in the tournament and that the 

spring tournament angling is affecting a majority of the population.  Tournament data from 2010 

added to previous tournament data from  the 2007 spawning season and fish populations and 

prey resources were compared to non-tournament years in 2006, 2008, and 2009 (Table 5-2).  

Recruitment was assessed as CPUE of young-of-year largemouth bass from fall electrofishing.  

There was no significant difference between tournament and non-tournament years for CPUE of 

young-of-year largemouth bass (F = 0.01; P = 0.93),  CPUE of largemouth bass greater than 200 

mm (F = 0.02; P = 0.89) or CPUE of bluegill (F = 0.30; P = 0.62) from fall electrofishing 

samples (Figure 5-1).  We also observed no significant differences in prey resources in 

tournament and non-tournament years (P > 0.05 for larval fish, zooplankton, and benthos 

densities).  These results are based on only a few years of tournament  and non-tournament 

fishing data and any interpretation should be made cautiously until additional data are collected.  

It is difficult to detect differences with a low number of repetitions.  These preliminary results 

suggest that spring tournaments may not adversely affect reproduction.  We plan to conduct 

tournaments in the spring of 2012 and no tournaments were conducted in the spring of 2011 to 

add to these data.  Future segments will allow further evaluation of the influence of tournaments 

during the largemouth bass spawning season.   

 Our initial results from pond experiments indicate that tournament angling does seem to 

have an effect on largemouth bass recruitment in experimental ponds. Zooplankton densities 

during the spring and early summer are also a key driver to overall recruitment (Figure 5-2), 

while the other measured variables proved to be less important. After zooplankton abundance in 

May and June were taken into account, there was a moderately significant effect of the treatment 

on total numbers of young-of-year bass (p value = 0.06; Figure 5-3), and a very significant effect 

on young-of-year juvenile bass biomass (p value = 0.02; Figure 5-4). The number of recruits in 

the fall averaged 1,917 for control ponds, and declined to 1,488 for ponds subjected to the 

angling treatment. The more pronounced effect on young-of-year biomass (control average = 

23,131g, treatment average = 8,231g) was partially due to a shift in the size distribution of 
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treatment ponds to a population with smaller individuals. While there was no significant 

differences in the number of small individuals (<110mm) between control and treatment ponds 

(p value = 0.96, Figure 5-5), treatment ponds lacked the many large individuals (>110 mm) that 

were present in control ponds (p value = 0.20; Figure 5-6). This could be due to the abandonment 

of some early nests in treatment ponds due to simulated tournament angling, causing there to be 

less early-hatched fish in treatment ponds. These results also support our findings in previous 

segments that the first individuals hatched during a spawning season are the most likely to 

contribute to end-of-the-year recruitment. The shift in size distribution could also be partly 

explained by cannibalism of early-hatched fish on later hatched cohorts.  

In the next segment, we will include data from both years of the study to strengthen the power of 

the experiment. We will also include age data on seined individuals from the summer to test for a 

shift in average hatch dates between treatments. Also, a more complete analysis of the effects of 

the abiotic and biotic variables will be included, and their relative importance compared to that 

of the treatment will be assessed. 

 

Long-Term Effects of Harvest 

 

In this segment, we continued to collect information on tournament activity from 9 lakes 

with varying tournament pressure.  All tournament activity was recorded for each lake and 

tournament results are used to evaluate the tournament pressure, catch rates, and angler success 

(Table 5-2).  In addition we identified 5 lakes where no largemouth bass tournaments occur and 

use these lakes as a control to compare largemouth bass populations across varying tournament 

pressure.  Tournament pressure was calculated as angler hours per acre and varied from 0 to 21.6 

hours/acre.  The mean number of participants across tournament lakes was 33.5 anglers and the 

average tournament was 6.8 hours long.  When examining only the lakes with tournaments, lake 

size was significantly correlated with the number of anglers per tournament (r = 0.80; P = 0.009).  

Larger lakes tended to have larger tournaments with a higher number of participants.  Despite 

having larger tournaments, the size of the lake was not significantly correlated with total 

tournament pressure on a per area basis (angler hours per acre; r = -0.09; P = 0.77) or the number 

of tournaments (r = 0.31; P = 0.29).  Catch rate measured as fish caught per angler was not 

significantly correlated with tournament pressure (r = 0.27; P = 0.49).  No relationships existed 

between catch rate and the number of tournaments, length of tournaments, and number of anglers 

in a tournament (P > 0.05).  Lakes with the highest number of tournaments had the lowest mean 

weight per fish caught (r = -0.68; P = 0.04; Figure 5-7).  Catch per unit effort from spring 

electrofishing samples of all largemouth bass, young-of-year largemouth bass, and largemouth 

bass greater than 14 inches was not significantly correlated with tournament pressure (P > 0.05; 

Figure 5-8).  CPUE of largemouth bass greater than 14 inches was significantly correlated to lake 

size (r = 0.82; P = 0.001) and the mean number of fish weighed in at a tournament (r = 0.58; P = 

0.048).  As expected, the total number of fish weighed in is also significantly correlated with 

lake size (r =0.75; P = 0.02).  Angler catch rates were related to the abundance of fish in 

electrofishing transects and was higher on larger lakes.  We did not detect any changes in 

abundance or size structure of largemouth bass vulnerable to tournament angling or production 

of young-of-year fish related to tournament pressure.  However, these data are preliminary and 

are based on two years of data.  We will continue to collect tournament and largemouth bass 

population data on these lakes and add additional lakes to this analysis to further understand the 

influence of tournaments on largemouth bass populations. 
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RECOMMENDATIONS: 

  

Largemouth bass tournament angling continues to be popular and we have continued to 

evaluate the effects of these tournaments on fish populations and recruitment.  In previous 

segments, we have demonstrated that largemouth bass can be targeted during nest guarding and 

that these angled fish are likely to abandon the nest.  Thus far, we have been able to assess 

spawning activity and assess recruitment during seven years at Lincoln Trail Lake. Monitoring 

has allowed us to determine the duration of spawning as well as the relative number of nests 

formed each week.  In the next segment we will monitor nesting at Lincoln Trail and continue to 

evaluate nesting frequency, vulnerability to angling, nest guarding behavior, and predation of 

eggs and larvae on  the nest.  We will collect otoliths from young-of-year largemouth bass in the 

fall to determine the survival of fish from individual cohorts and relate them to nest frequency in 

the spring to determine if there is differential survival.  We will continue to evaluate these factors 

in future segments and address their importance in determining recruitment. 

In this segment we have continued to evaluate largemouth bass tournaments and their 

procedures and assess how they affect fish populations.  Preliminary results from the experiment 

at Ridge Lake has not shown any evidence in reduction in recruitment of young-of-year 

largemouth bass due to springtime tournaments or changes in adult populations.  To assess the 

effects of angling practices and tournaments on largemouth bass reproduction and recruitment 

we will continue experiments initiated at Ridge Lake.  Experimental angling tournaments were 

conducted on Ridge Lake in 2007 and 2010.  We will conduct a third season of tournament 

angling in the spring of 2012 providing assessment of  3 years of largemouth bass recruitment in 

years with tournament angling to compare to 3 years of non-tournament angling. 

Pond experiments provide evidence of how angling largemouth bass during the spawning 

season can impact young-of-year bass and reduce the size of the year class. Initial pond 

experiments suggest that tournament angling during the spawning months does have an impact 

on recruitment dynamics that need to be confirmed in lakes. These results suggest that protecting 

spawning largemouth bass may helpful in some situations where largemouth bass recruitment is 

low. However, it should also be noted that prey resources, specifically early-summer 

zooplankton abundance, were the main driving force in determining young-of-year bass 

abundance. We will combine these initial results with those from the second year in subsequent 

reports. 

We will continue to evaluate how varying tournament pressure and angler harvest has 

impacted the size structure and abundance of largemouth bass populations through 

selection-driven changes in life history traits.  We will continue to sample lakes with varying 

tournament pressure for largemouth bass.  In this segment we evaluated tournament pressure on 

9 lakes where we can identify all tournament activity.  We will continue to monitor tournament 

activity at these lakes as well as compile weigh-in results.  These data will allow us to further 

examine the relationships between tournaments and fish populations and determine if they can 

influence fish populations.  We will also incorporate creel data in order to assess fishing pressure 

on these lakes and relate them to largemouth bass size structure.  In addition we will incorporate 

FAS data from DNR biologist electrofishing sampling to supplement INHS electrofishing data.  

We will continue to determine sex and ages of largemouth bass in lakes with varying fishing 

exploitation.  We will examine how angling activities influence sex specific characteristics such 

as growth, longevity, and age of maturity.  Using this data, we will be able to make predictions 
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about how angling will affect recruitment of largemouth bass and adult populations.  This will 

allow us to identify the potential impacts of tournaments and harvest to life history 

characteristics in largemouth bass populations. 
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Job 101.6.  Evaluating the impact of spawning refuges, habitat manipulations, harvest 

regulations and other management strategies on largemouth bass recruitment in Illinois. 

 

OBJECTIVE:  To develop a model to evaluate the effects of various angling scenarios and 

pressures on Illinois bass recruitment and size structure.  To evaluate the effects of fish refuges 

on Illinois bass recruitment and size structure. 

 

INTRODUCTION: 

 

Refuges 

 

Largemouth bass can be vulnerable to anglers during spawning and reproductive success 

may depend on the level of angling stress the fish undergoes during this period.  This has sparked 

a recent controversy among anglers as to whether or not bed fishing (angling fish off the nest) is 

detrimental to bass populations.  Our recent research (Job 101.5, previous segments) suggests 

that angling largemouth bass off nests can cause nest abandonment, which results in the failure 

of the nest to produce offspring.  Many states have implemented closed seasons or spawning 

refuges, which are closed to fishing in an attempt to alleviate this problem.  It is unclear if these 

management techniques are appropriate for Illinois reservoirs.   

Clinton Lake is an approximately 2000-hectare lake that is operated as both a power plant 

cooling lake and a recreational lake.  In the fall of 2001, a portion of the lake adjacent to the 

Clinton Lake Power Plant was permanently closed to boaters and anglers.  This closed area 

serves as a refuge for largemouth bass from angling.  Otter Lake is a 310-hectare lake that 

operates as a water supply and recreational lake.   Jeffrey Pontnack (District 14/15 Fisheries 

Biologist) and Dennis Ross (General Manager of Otter Lake Water Commission) proposed 

closing two large bays to fishing and boating, providing a spawning and fishing refuge for 

largemouth bass and other fish species.  The two bays were closed to fishing in summer of 2010.  

The refuges may be beneficial to largemouth bass, by increasing spawning success and 

decreasing fishing mortality. We are using these lakes to evaluate the success of refuges in 

increasing the density and size structure of the largemouth bass populations.   

 

Harvest Regulations 

 

There are many potential harvest regulation strategies that can be used to help manage 

bass populations, including size limits, closed seasons, and spawning refuges.  Each of them can 

have a different impact on the population, either by affecting size structure or density.  Some 

regulations have the potential to impact recruitment more than others, but right now, we cannot 

make accurate predictions.  Increasing the quality of angler catch or harvest rates are common 

rationales for harvest regulations (Paukert et al. 2007).  However, compilation of 91 studies 

using minimum-length limits and slot-length limits concluded that most studies were conducted 

over too short a period and did not include creel data to document if a regulation increased angler 

catch rates (Wilde 1997).  Many regulation decisions are not influenced by information available 

on black bass biology (Paukert et al. 2007).  There is a need for further research examining the 

effects of angling regulations (Novinger 1984; Wilde 1997; Paukert et al. 2007). 

In this job, we are examining the use of closed seasons and refuges in two lakes and 

comparing largemouth bass recruitment and densities before and after implementation of the 
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refuge.  We are also evaluating current regulations used in Illinois largemouth bass management 

in order to determine the effects on population size structure and density as well as angler catch 

rates. 

 

 

PROCEDURES: 

 

Refuges 

 

Population abundance and size structure of largemouth bass are being assessed in Otter 

and Clinton Lake using spring and fall electrofishing and seining.  The Clinton Lake refuge was 

closed in 2001 and samples were taken both before and now after implementation of the refuge.  

Samples collected on Clinton during 1999 – 2001 represent pre-refuge and 2002 to present 

represent post-refuge.  In this segment, post refuge electrofishing transects and seines hauls were 

performed in Clinton Lake during the spring and fall of 2010 and the spring of 2011.  Two, thirty 

minute electrofishing transects and two seine hauls were performed inside the refuge on each 

sampling date.  Two transects were also electrofished and seined outside of the refuge.  Sites 

outside of the refuge were located adjacent to and at approximately 2 lake kilometers from the 

refuge.  Seining was conducted using a 9.2-m bag seine pulled along the shoreline at fixed 

transects.  In addition to Clinton Lake, in the summer of 2010, two refuges were closed to fishing 

in Otter Lake by running a buoy line with a no fishing marker attached.  In this segment, we 

began the first year of post-refuge sampling in Otter Lake because the buoy lines were put in 

place after largemouth bass spawning was complete.  One 30 minute electrofishing transect and 

one seine haul were conducted in each refuge location.  In addition, three control sites were 

sampled (1 electrofishing transect and 1 seine haul in each) within the lake.  One reference 

location is located near each proposed refuge, and the final reference location at the midpoint 

between the refuge sites.  Fish were identified to species and total length was recorded.  All fish 

were counted and up to 50 fish were measured for each species.  All largemouth and smallmouth 

bass collected inside refuge sites were given an upper caudal fin clip in order to determine if fish 

in the refuge move into adjacent areas of the lake. Catch per unit effort (CPUE) was then 

calculated as the number of fish per hour of electrofishing and number per square meter area 

seined. 

 

Harvest Regulations 

 

Largemouth bass angling regulations in Illinois Lakes are also being evaluated.  In 

previous segments, regulations on lakes with largemouth bass population data from Job 4, 

(including recruitment, abundance and size structure) and FAS data from 2007 were used for 

initial analyses.  In this segment we have included additional years of data (2000-2007) from 

lakes with differing regulations identified from the FAS database.  Data collected through IDNR 

fall surveys were compiled.  The FAS data base was reduced to the lakes that were sampled in 

the fall at some point from 2000-2007 using AC shoreline electrofishing and had regulations 

posted in the IDNR Fisheries Bulletin.  The lakes were categorized by their existing regulations 

into eight categories, Bag by Size (Bag limit above and below a specified size), Catch-and 

Release (no harvest allowed), Standard (14” length limit, 6 fish creel), Lowered Bag (14” length 

limit, <6 fish bag limit), Raised Length (>14” length limit, 6 fish bag limit), Raised Length/Low 



 

 34 

Bag (>14” length limit, <6 fish bag limit), No Length (No minimum size limit), and Slot (no fish 

harvest slot).  These lakes were then compared across regulation type for differences in CPUE of 

young-of-year largemouth bass, CPUE of largemouth bass greater than 14 inches, and 

proportional stock density (PSD) with stock size being 200 mm and quality size being 300 mm.  

In addition we determined the number of memorable (510 mm and larger) sized fish in 

electrofishing samples. 

 

 

FINDINGS:   

 

Refuges 

 

Mean CPUE for largemouth bass in Clinton Lake from 1999 through 2001 was 26 fish 

per hour of electrofishing.  This is in the lower range of our study lakes, which have a range of 

CPUE from 15.2 to 83.3 fish per hour.  As a result, there is the potential for an increase in 

abundance of largemouth bass in Clinton Lake from the establishment of the refuge.  Sampling at 

sites inside the refuge in 2002 through 2011 yielded a much higher CPUE than sites outside the 

refuge (Table 6-1).  In addition, CPUE was greater inside the refuge after closing than samples 

taken before the refuge was closed.  This suggests that bass numbers are increasing in the refuge 

potentially due to the elimination of fishing pressure.  Young- of-year largemouth bass densities 

have also increased inside the refuge.  CPUE of young-of-year largemouth bass has fluctuated in 

the refuge sites but has increased since 2007 (Table 6-1A).  The CPUE of young-of-year 

largemouth bass has decreased in the control sites since 2001.  Densities of largemouth bass in 

seines is also the highest in the refuge sites and has increased after the refuge was closed (Table 

6-2A).  Despite the increase in adult and young-of-year largemouth bass in the refuge sites, there 

is no evidence of the benefits of the refuge extending into the remainder of the lake.   Continued 

assessment of young-of-year bass will be used to assess if the refuge is enhancing natural 

recruitment in Clinton Lake.  No clipped fish were observed in electrofishing or seine samples 

taken outside of the refuge.  This implies that there is little or no movement of fish from the 

refuge to the open portion of the lake.  We will continue to assess the potential lake-wide effects 

the refuge may have as a tool for managing bass populations in future segments. 

We began monitoring refuge and continued monitoring reference sites in Otter Lake 

during this segment.  The spring of 2011 was the first spawning season since the two refuges 

were closed to fishing and boating.  In the spring and fall of 2007- 2010, we observed similar 

catch rates of adult and young-of-year largemouth bass in electrofishing samples in the refuge 

sites compared to the control sites (Table 6-1).  The proposed refuge sites appear to be in areas 

with good largemouth bass abundance and closing these areas to fishing has the potential to 

increase recruitment.  Spring electrofishing CPUE of largemouth bass in 2011 was lower than 

the mean pre-refuge conditions in both the refuge and control sites.  Similar trends were 

observed in density of largemouth bass from seine hauls in the control  and refuge sites (Table 6-

2B).  We would not expect large changes in the largemouth bass community in the first spring 

following implementation of a refuge and any conclusions from the data would be premature.  

We will continue to assess if limiting disturbance of these fish during nesting may increase 

spawning success and yield larger year classes.  Effects of a refuge may be easier to detect on 

Otter Lake than on Clinton due to its smaller size and the refuges will be further evaluated in 

future segments. 
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Harvest Regulations 

 

In this segment we summarized 6 additional years of FAS data to expand the previous 

analysis of regulations.  We calculated CPUE from fall electrofishing in all lakes reported in the 

FAS database from 2000-2007 resulting in catch rates for 429 lakes.  Regulation data was then 

compiled from the Illinois Department of Natural Resources (IDNR) fishing regulations guide 

for these same lakes.  The resulting database was 218 lakes that had both electrofishing data and 

regulation data available.  Regulations were grouped into 8 categories;  Catch and Release (n = 

1), Bag by Size (n = 1), Standard (n = 50), Lowered Bag (n = 20), Raised Length (n = 26), 

Raised Length and Lowered Bag (n = 65), No Length (n = 37), and Slot (n = 18).  Largemouth 

bass populations in lakes with slot limits differed the most from populations with other 

regulations.  Mean CPUE of largemouth bass from electrofishing was significantly different 

among regulation types (F = 3.38; P = 0.006) with slot limits being the highest and significantly 

greater than all regulation types except No Length regulation lakes (Figure 6-1).  There was also 

significant differences in the CPUE of young-of-year largemouth bass (F = 3.67; P = 0.003) with 

Slot Limits being significantly higher than Raised Length, Standard, and Raised Length Lowered 

Bag lakes ( Figure 6-2).  CPUE of memorable fish was low in all lakes (0.19 to 0.88) but there 

were significant differences among regulation types (F = 5.09; P = 0.0002).  Again slot limit 

lakes had the highest CPUE of memorable fish and was significantly greater than all regulation 

types except Standard.  PSD was also different among lakes (F = 2.41; P = 0.04) but only 

between Slot Limit lakes and Standard regulation lakes (P < 0.05).  The Slot limit lakes had the 

lowest PSD of all regulation types due primarily to the high number of smaller fish in these lakes 

rather than a lack of larger fish.   

 

 

 

RECOMMENDATIONS:  

  

 There are many potential harvest regulation strategies that can be used to manage bass 

populations, including size and creel limits, closed seasons, and spawning refuges.  Each of 

them, either singly or collectively, can have a different impact on the population, either by 

affecting size structure and/or abundance.  Some regulations have the potential to impact 

recruitment more than others, but right now, we cannot make accurate predictions.  Other 

management options include habitat, prey, and predator manipulations.  Thus far we have been 

evaluating a spawning /fishing refuge on Clinton and Otter Lakes.  We plan to continue our 

evaluation in Otter Lake by conducting seine hauls in the spring and fall at sites within the refuge 

and sites on the main lake to estimate the abundance of young-of-year largemouth bass.  We will 

also conduct electrofishing transects in the spring and fall within the refuge and on the main lake 

to monitor adult largemouth bass populations.  Data will be compared after the refuges were 

initiated to those from the same sites during the years preceding the implementation of the 

refuges.  Bass captured in both seine hauls and electrofishing transects inside the refuges will 

also be marked with a caudal fin clip.  All bass collected will be examined for existing clips in 

order to determine if bass in the refuge are moving into the main lake.  These studies will 

provide information regarding the value of fishing refuges for increasing largemouth bass 

recruitment. 
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Adaptive management experiments to evaluate habitat manipulations, including 

vegetation and the role of woody debris (described in Job 4) are also being evaluated as part of 

this job.  Management experiments are manipulating vegetation (e.g. plantings and removals) to 

examine changes in largemouth bass growth and survival.  The experiment includes control 

lakes, as well as treatment lakes to either increase or decrease the density of aquatic vegetation. 

These experiments will be used to make management recommendations regarding vegetation and 

woody habitat in order to increase largemouth bass recruitment.  

We will continue to develop and analyze a large database of lakes with differing 

regulations.  We will use FAS data collected by IDNR district biologists as well as creel data to 

determine if regulations are having the desired effect on largemouth bass populations, as well as 

angler behaviors.  These combined datasets offer nearly twenty years of creel survey and 

population assessment data collected under project F-69-R.  Our analysis thus far shows that 

lakes with slot limits have the most differences from other regulation types.  It is unclear if this is 

a result of the regulation, or reason the regulation was implemented.  Usually a slot limit is 

implemented when there is a need to protect fish in a critical size range to allow them to grow 

into the upper slot.  However, it also allows for harvest of small size fish and can be 

implemented to encourage harvest of smaller size classes when their density is high enough that 

the population could be limited by resources.  In future segments, we will examine time series 

data to determine changes in populations as regulations are implemented.  If possible, data before 

and after regulation changes will be examined and the length of time a regulation has been 

implemented will be evaluated.  We will also utilize creel data that is available to determine the 

level of harvest associated with each regulation and if harvest rates are high enough to induce 

changes in fish populations. 

In future segments we will continue to incorporate lakes with FAS data and INHS 

sampling to develop a long term database of lakes with fish community data and creel sampling. 

The number and frequency of lakes where angling creels were performed will limit the number 

of lakes that can be included in this aspect of the study.  We will create an extensive database 

that can be used to examine differences in electrofishing catch, and a reduced database including 

creel data.  We will contact DNR district biologists and determine when regulations were 

initiated and use creel and FAS data to compare catch rates of anglers, CPUE from electrofishing 

and size structure of largemouth bass in these lakes before and after the regulation were put in 

effect.  In doing so, we hope to better understand the value of differing management regulations 

on lakes throughout Illinois. These data can then be used to guide future discussions about 

various management experiments that might be implemented. 
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Job 101.7.   Analysis and reporting. 

 

OBJECTIVE:  To prepare annual and final reports summarizing information and develop 

management guidelines for largemouth bass in Illinois. 

 

PROCEDURES and FINDINGS:  Data collected in Jobs 101.1-101.6 were analyzed to 

develop guidelines for largemouth bass regarding stocking and management techniques 

throughout Illinois. 
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Table 2-1.  Cost of producing fish for three lakes in Illinois stocked for 5 years with both intensively reared and extensively reared 

fish.  Extensively reared fish were produced in ponds and fed zooplankton and fathead minnows, whereas intensively reared fish were 

produced in raceways and fed pelleted diet.  Mean total stocking cost is calculated as the cost per fish multiplied by the mean number 

of fish stocked into the lake.  Total Cost per CPUE is calculated as the total stocking cost of stocking divided by the CPUE (#/hr.) 

from electrofishing in the 1
st
, 2

nd
, and 3

rd
 fall following stocking. 

 

 

 

Lake 

Lake 

Area 

(acres) 

Rearing 

Method 

Hatchery 

Cost / Fish 

Rearing Pond 

Cost / Fish 

Total Cost 

per Stocked 

Fish 

Mean Total 

Stocking 

Cost 

Total Cost per CPUE 

1st Fall 2nd Fall 3rd Fall 

Jacksonville 476 Extensive $0.03  $0.48  $0.51  $3,095 $900 $2,579 $4,486 

Shelbyville 11,100 Extensive $0.03  $0.48  $0.51  $7,758 $2,255 $6,465 $11,244 

Walton Park 30 Extensive $0.05  $0.55  $0.60  $375 $109 $313 $543 

     
Mean $3,743 $1,088 $3,119 $5,424 

          

Jacksonville 476 Intensive $0.15  NA $0.15  $638 $759 $1,821 $1,875 

Shelbyville 11,100 Intensive $0.15  NA $0.15  $1,322 $1,574 $3,777 $3,888 

Walton Park 30 Intensive $0.15  NA $0.15  $94 $112 $268 $276 

          Mean $684 $815 $1,955 $2,013 
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Table 2-2.  Stocking information for four lakes stocked with largemouth bass both at the boat 

ramp and dispersed into habitat throughout the lake.  CPUE is catch per hour from electrofishing 

transects conducted in the fall after stocking and the subsequent spring. 

 

 

 

Lake 
Stocking 

Date 

Boat Ramp Stocking  Dispersed Stocking 

# 

Stocked 

Fall 

CPUE 

Spring 

CPUE   

# 

Stocked 

Fall 

CPUE 

Spring 

CPUE 

Charleston 8/15/2008 3500 2.0 0  3500 2.0 0.4 

 8/25/2009 3500 0.8 0  3500 0 0.7 

 9/2/2010 3500 1.3 0  3500 1.3 0 

         

Homer 8/16/2007 1400 0 0  1400 0.3 0 

 8/24/2009 1000 0 0  1000 0.3 0 

 8/26/2010 1000 1.7 0  1000 0 0.7 

         

Mingo 8/16/2007 3400 0.7 0  3400 2.0 0 

 8/14/2008 2150 5.7 0  2150 3.7 0.7 

 8/24/2009 2125 0 0  2125 0.3 0 

 8/26/2010 2125 1.3 0  2125 0.3 0 

         

Otter 8/15/2007 7650 0 0  7650 0 0 

 8/13/2008 11400 0.8 0   11400 0.2 0 

  8/25/2009 7650 0.4 0  7650 0 0 

 8/25/2010 7650 0.9 1.7  7650 0.4 0 

         

Mean Total  1.1 0.1   0.8 0.2 
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Table 3-1: Background frequencies (pre-stocking) of largemouth bass MDH B2:B2 genotype 

determined from Little Grassy Fish Hatchery and six lakes in Illinois prior to stocking for 6-7 

years from 1998 to 2005.     

 

 

Lake 
N   Allele Frequency 

1:1 1:2 2:2   1 2 

Forbes 81 49 28  0.67 0.33 

McClean 23 34 32  0.45 0.55 

Murphy 80 12 6  0.88 0.12 

Sam Parr 75 16 10  0.82 0.18 

Shelby 158 45 8  0.86 0.14 

Walton 66 11 8   0.84 0.16  
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Table 4-1:  Mean percent cover for each species of vegetation planted in Lake Paradise in June 

and July of 2008 (A.) and July of 2009 (B.).  Percent cover was visually assessed in each of three 

sizes of enclosure (large, small dispersed, and small clustered). 

 

 

A.  Planted in 2008 

Vegetation  Planted Size 
Number 

Planted 

Percent Cover 

2008 2009 2010 

American Pondweed Large 6 78 5 34 

American Pondweed Small 12 61 2 12 

Chara Large 6 1 0 0 

Chara Small 12 0 0 0 

Chara Clustered 4 0 0 0 

Coontail Large 7 16 1 0 

Coontail Small 16 3 0 0 

Coontail Clustered 4 0 0 0 

Sago Large 4 23 0 0 

Sago Small 34 12 6 0 

Sago Clustered 16 12 0 0 

Wild Celery Large 13 22 1 0 

Wild Celery Small 59 14 1 1 

Wild Celery Clustered 52 15 1 0 

 

 

B.  Planted in 2009 

Veg Planted Size Number 
Percent Cover 

2009 2010 

American Pondweed Large 11 19 6 

American Pondweed Small 20 11 17 

Wild Celery Large 12 4 3 

Wild Celery Small 33 4 5 
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Table 4-2:  Density of fish from backpack electrofishing and density of invertebrates from 

stovepipe core samples associated with vegetation enclosures planted in Lake Paradise in 2008 

and 2009. 

 

 

 

Vegetation N Density (#/m2) 

Fish 

American Pondweed 21 0.71 

Coontail 1 0.80 

Sago 1 2.55 

Wild Celery 6 0.94 

   

All vegetated cages 29 0.82 

No Vegeation 26 0.70 

   

Benthic Invertebrates 

American Pondweed 12 22672 

Sago 1 44012 

Wild Celery 9 35250 

   

All vegetated cages 22 28788 

No Vegetation 9 17610 
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Table 4-3:  Data from spring and fall vegetation assessments on 11 Illinois lakes.  Vegetation on each lake was mapped using GPS to 

estimate the area and perimeter of the vegetated area of the lake.  Percent vegetated area and perimeter are the proportion of the entire 

lake.  Dashes indicate data still being analyzed. 

 

 

  

Lake Type 

Lake 

Area 

(m
2
) 

Lake  
Perimeter 

(m) 

Area Vegetated   Percent of Lake Vegetated 

Spring 
 

Fall 
 

Spring 
 

Fall 

Area 

(m
2
) 

Perimeter 

(m) 
  

Area 

(m
2
) 

Perimeter 

(m) 
  

Area 

(%) 

Perimeter 

(%) 
  

Area 

(%) 

Perimeter  

(%) 

Airport Removal 89246 1171 95794 1171 
 

89246 1174 
 

100 100 
 

100 100 

Stillwater Removal 89363 2215 19802 2232 
 

1113 226 
 

22 100 
 

1 10 

               

Dolan Drawdown 302869 5335 59698 4384 
 

78241 4504 
 

20 82 
 

26 84 

Paradise Planted 706098 7287 17495 2428 
 

82980 4244 
 

2 33 
 

12 58 

               

Forbes Control 2056612 29364 281242 26983 
 

276949 23424 
 

14 92 
 

13 80 

Lincoln Control 584546 10033 135213 9599 
 

143317 9753 
 

23 96 
 

25 97 

LOTW Control 103090 2259 1030 114 
 

197 88 
 

1 5 
 

0 4 

Pierce Control 647830 6406 145780 5703 
 

143431 5934 
 

23 89 
 

22 93 

Ridge Control 44013 1132 16893 1195 
 

20680 1484 
 

38 100 
 

47 100 

Walnut Control 215810 9396 2865 586 
 

5248 589 
 

1 6 
 

2 6 

Woods Control 127217 3241 0 0   0 0   0 0   0 0 
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Table 4-4:  CPUE for young-of-year and adult largemouth bass in 11 lakes with varying vegetation densities (see Table 4-3).  In 

addition, mean larval fish, zooplankton, and benthic macroinvertebrate density for each lake from spring, summer and fall samples. 

 

 

Lake Type 

Fall Electrofishing CPUE (#/hr)   Larval Fish Density (#/m3) 
Mean Total 

Zooplankton 

Density (#/L) 

Mean Total 

Benthos 

Density (#/m
2
) 

YOY 

LMB 

(<200mm) 

BLG 
LMB 

>200mm 
  Shad Lepomis Total 

Airport Removal 9.0 152.7 6.2 
 

0.0 0.3 0.3 491 13833 

Stillwater Removal 69.0 66.7 14.3 
 

0.0 5.8 7.0 66 6118 

           

Dolan Drawdown 6.8 104.0 58.8 
 

0.2 12.3 12.4 
 

7779 

Paradise Planted 14.7 100.0 36.0 
 

1.3 3.4 4.7 210 7171 

           

Forbes Control 11.0 100.7 20.2 
 

3.8 2.6 6.7 
 

2493 

Lincoln Control 72.3 100.0 34.7 
 

0.0 6.9 6.9 295 9742 

LOTW Control 12.8 94.0 20.0 
 

0.6 3.2 4.3 124 12872 

Pierce Control 30.7 67.0 21.0 
 

0.1 0.3 0.4 23 11565 

Ridge Control 18.1 66.0 15.6 
 

0.0 3.4 3.4 135 10066 

Walnut Point Control 48.0 58.7 19.3 
 

0.0 3.5 3.6 911 11217 

Woods Control 6.4 161.0 13.6   0.4 5.6 6.1 294 19997 
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Table 4-5:  Numbers of young of year largemouth bass found in the streams below the dams of 

both Forbes Lake and Ridge Lake by month. 

 

Lake April May June July-Oct. 

YOY 

Forbes 0 3 2 32 

Ridge 0 8 26 0 

Age 1+ 

Forbes 5 6 2 1 

Ridge 2 0 0 2 
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Table 5-1:  The total number of boats, fish caught, and weight for tournaments conducted in the 

spring of 2010. 

 

Date Number of Boats Total # of Fish Total Weight (lbs) 

4/17/10 9 26 25.8 

4/21/10 5 27 29.1 

4/25/10 4 17 20.1 

4/28/10 6 24 29.2 

4/30/10 6 27 31.2 

5/5/10 3 21 21.8 

5/17/10 6 25 23.7 

Total 39 167 180.9 
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Table 5-2:  Lake characteristics of Ridge Lake in years with springtime tournaments and years 

with no tournaments. 

 

Year Type 

Mean Fall Electrofishing CPUE (#/hour) Larval Fish 

Density 

(#/L) 

Zooplankton 

Density 

(#/L) 

Benthos 

Density 

(#/m2) 
YOY LMB 

(<200mm) 
BLG LMB >200mm 

2010 Tournament 18.1 66 15.6 3.4 135.1 10065.59 

2009 No Tourn. 52.5 80.6 19.2 9.2 1150.7 5127.31 

2008 No Tourn. 39.2 96.8 49.9 0.11 458.8 11502.06 

2007 Tournament 59.2 67.2 52.3 1.15 399.4 7563.53 

2006 No Tourn. 29.1 50.8 41 0.5 352.2 3859.86 



 

 60 

Table 5-3:  Mean tournament pressure for 2009 and 2010 on nine lakes located throughout Illinois.  Tournament participation and 

catch rates were obtained from organizers of events on each of the lakes. 

 

Lake Size (acres) 

Mean 

Number of 

Tournaments 

Mean 

Number of 

Participants 

Mean 

Hours 

Fished 

Mean # of Fish 

Weighed in 

Mean 

Weight 

(lbs.) 

Mean 

Annual 

Angler 

Hours 

Angler 

hours per 

acre 

Bloomington 635 14.0 33.6 5.4 32.0 2.7 2540 4.0 

Clinton 5000 25.0 54 9.3 47.2 3.1 12555 2.5 

Coffeen 1100 49.0 27.4 7.4 53.1 2.1 9935 9.0 

Evergreen 886 15.5 28.6 5.4 28.9 3.4 2394 2.7 

Forbes 525 41.0 27.6 5.8 19.1 2.2 6563 12.5 

Mattoon 1050 8.5 23.8 4.9 17.2 2.4 991 0.9 

Mill Creek 811 94.0 28.7 6.5 47.6 1.9 17536 21.6 

Sangchris 2165 48.0 28.5 8.0 58.5 1.8 10944 5.1 

Shelbyville 11100 45.0 49.2 8.1 79.2 2.1 17933 1.6 
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Table 5-4:  Catch per unit effort on lakes with and without tournaments in Illinois from spring 

electrofishing transects for all largemouth bass (Total), young-of-year largemouth bass (YOY), 

largemouth bass over 14 inches, and memorable largemouth bass.  PSD is the proportion of stock 

density for each lake.  Lakes were separated into None, Low and High based on the level of 

tournament activity. 

 

Lake Tournament Pressure Total YOY Over14 Memorable PSD 

Bloomington Medium 11.4 4.0 2.0 0.7 27.3 

Charleston None 11.0 0.7 3.0 0.3 83.9 

Clinton Low 13.8 1.0 5.1 0.0 56.0 

Evergreen Low 19.3 5.3 5.3 0.0 57.1 

Forbes High 20.0 0.7 4.7 0.7 46.6 

Lincoln None 27.2 9.6 0.4 0.0 18.2 

LOTW None 18.7 1.4 7.5 0.0 67.6 

Mattoon Low 21.3 0.0 6.0 0.7 71.9 

Mill Creek High 12.7 6.0 0.0 0.0 50.0 

Shelbyville Low 43.7 4.7 16.0 0.0 69.2 

Walnut None 14.0 7.7 1.7 0.3 52.6 

Woods None 7.7 1.0 2.3 0.0 60.0 
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Table 6-1:  Catch per unit effort (#/hour) of largemouth bass and young-of-year largemouth bass 

in spring and fall electrofishing on Clinton Lake (A) and Otter Lake (B). Refuge sites were 

located in areas of the lake closed to fishing and boating and control sites were located outside of 

the closed areas. 

A. Clinton Lake 
           

Year 

Control Sites   Refuge Sites 

Total LMB CPUE 
 

YOY LMB CPUE 
 

Total LMB CPUE 
 

YOY LMB CPUE 

Spring Fall   Spring Fall   Spring Fall   Spring Fall 

Pre Refuge 

1999 19.8 23.3 
 

10.6 10.4 
 

56.0 24.0 
 

32.0 12.0 

2000 32.4 5.5 
 

16.9 4.0 
 

18.0 0.0 
 

8.0 0.0 

2001 26.0 48.7 
 

6.0 30.7 
 

10.0 22.0 
 

0.0 8.0 

Pre Refuge Mean 26.1 25.8 
 

11.2 15.0 
 

28.0 15.3 
 

13.3 6.7 

Post Refuge 

2002 8.3 29.0 
 

1.0 17.3 
 

NA NA 
 

NA NA 

2003 21.5 23.8 
 

5.5 6.0 
 

NA 87.5 
 

NA 12.0 

2004 20.7 28.3 
 

2.5 7.0 
 

42.0 146.0 
 

9.0 16.0 

2005 25.1 18.3 
 

1.9 4.3 
 

32.0 25.0 
 

0.0 8.0 

2006 13.9 16.5 
 

1.4 3.4 
 

48.0 98.0 
 

8.0 32.0 

2007 12.7 32.7 
 

4.0 6.0 
 

90.0 88.0 
 

14.0 12.0 

2008 36.5 36.0 
 

6.3 4.3 
 

76.0 220.0 
 

0.0 18.0 

2009 15.0 29.2 
 

0.0 9.8 
 

75.0 98.0 
 

5.0 18.0 

2010 13.0 5.0 
 

2.0 2.0 
 

14.6 78.0 
 

0.0 22.0 

2011 16.0 NA 
 

2.0 NA 
 

86.0 NA 
 

6.0 NA 

Post Refuge Mean 18.3 24.3   2.7 6.7   58.8 105.1   5.3 17.3 

            

            
B.  Otter Lake 

           

Year 

Control Sites   Refuge Sites 

Total LMB CPUE   YOY LMB CPUE 
 

Total LMB CPUE   YOY LMB CPUE 

Spring Fall   Spring Fall   Spring Fall   Spring Fall 

Pre Refuge 

2007 NA 43.6 
 

NA 11.8 
 

NA 69.0 
 

NA 33.0 

2008 25.8 45.5 
 

1.0 16.8 
 

14.9 23.0 
 

0.0 0.0 

2009 28.8 55.0 
 

4.5 16.8 
 

23.0 51.9 
 

5.0 8.3 

2010 35.5 31.5 
 

7.3 7.6 
 

26.0 34.0 
 

12.0 6.0 

Pre Refuge Mean 30.0 43.9 
 

4.3 13.2 
 

21.3 44.5 
 

5.7 11.8 

Post Refuge 

2011 19.9 NA   1.7 NA   9.2 NA   1.5 NA 
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Table 6-2:  Density of fish from seine hauls performed in refuge (n=2) and control sites (n=2) on 

Clinton Lake (A) and Otter Lake (B).  Density is reported for all fish (Total), largemouth bass 

(LMB), bluegill (BLG), and gizzard shad (GZS). 

 

A.  Clinton Lake 
         

Year 
Control Seine Density (#/m2)   Refuge Seine Density (#/m2) 

Total LMB BLG GZS   Total LMB BLG GZS 

Pre Refuge 

1999 0.37 0.02 0.12 0.25 
 

0.35 0.03 0.04 0.11 

2000 0.34 0.01 0.05 0.05 
 

0.25 0.01 0.04 0.28 

2001 0.36 0.01 0.09 0.06 
 

0.38 0.03 0.07 0.10 

Pre Refuge Mean 0.35 0.01 0.09 0.12 
 

0.33 0.02 0.05 0.16 

Post Refuge 

2002 0.43 0.02 0.08 0.09 
 

0.44 0.05 0.25 0.11 

2003 0.75 0.12 0.12 0.26 
 

1.11 0.02 0.26 0.11 

2004 0.64 0.04 0.13 0.34 
 

0.34 0.03 0.04 0.02 

2005 0.41 0.12 0.11 0.05 
 

0.65 0.19 0.14 0.05 

2006 0.21 0.03 0.06 0.02 
 

0.54 0.09 0.30 0.08 

2007 0.48 0.01 0.10 0.06 
 

0.48 0.03 0.07 0.03 

2009 0.41 0.00 0.01 0.21 
 

0.22 0.00 0.05 0.13 

2010 0.20 0.00 0.04 0.00 
 

0.20 0.03 0.03 0.00 

2011 0.14 0.00 0.00 0.00 
 

1.33 0.29 0.00 0.00 

Post Refuge Mean 0.41 0.04 0.07 0.11   0.59 0.08 0.13 0.06 

          

          

          
B. Otter Lake 

         

Year 
Control Seine Density (#/m2)   Refuge Seine Density (#/m2) 

Total LMB BLG GZS   Total LMB BLG GZS 

Pre Refuge 

2007 0.14 0.03 0.17 0.00 
 

0.23 0.02 0.21 0.00 

2008 0.27 0.02 0.28 0.00 
 

0.10 0.00 0.13 0.00 

2009 0.06 0.00 0.08 0.00 
 

0.29 0.27 0.15 0.00 

2010 0.10 0.02 0.09 0.00 
 

0.05 0.00 0.05 0.00 

Pre Refuge Mean 0.14 0.02 0.15 0.00 
 

0.17 0.07 0.14 0.00 

Post Refuge 

2011 0.02 0.00 0.02 0.00   0.05 0.01 0.03 0.01 
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Figure 2-1:  Mean CPUE of intensive and extensive fish collected in AC electrofishing samples 

following stocking.  Samples were collected in the fall following stocking and each spring and 

fall for 5 years thereafter.  The stars indicate time periods where there were significant 

differences in CPUE of intensively and extensively reared fish.  
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Figure 2-2:  Mean length of intensive, extensive, and wild fish collected in AC electrofishing 

samples in the months following stocking.  Samples were collected in the fall following stocking 

and each spring and fall for 5 years thereafter. 
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Figure 3-1:  Frequency of the B2 allele in the five study lakes previous to stocking and in 2002-

2007 during which stocked bass were expected to be contributing to reproductive population. 
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Figure 3-2:  Change in B2 allele frequency against natural adult largemouth bass catch per unit 

effort for the five study lakes for each year between 2002 and 2007. 
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Figure 3-3:  Regression of actual and predicted B2 allele frequency based on stocked adult fish 

for five study lakes for each year from 2002-2007. 
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Figure 4-1:  The percent of cages that were planted in 2008 and 2009 that had vegetation 

surviving through the 1
st
, 2

nd
, and third summer following planting.  A cage was considered 

vegetated if it had any of the vegetation type planted present.  Cages are separated into categories 

based on the species of vegetation planted.  
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Figure 4-2:  Percent cover of vegetation in cages that were vegetated in the 1
st
, 2

nd
 and 3

rd
 

summers following planting.  Percent cover was visually assessed in annually in August for three 

years following planting.  
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Figure 4-3:  The percent of cages that were planted in 2008 and 2009 that had vegetation 

surviving through the 1
st
, 2

nd
, and third summer following planting.  A cage was considered 

vegetated if it had any presence of the vegetation type planted.  Cages are separated into 

categories based on the size and orientation.  
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Figure 4-4:  Percent cover of vegetation in cages that were vegetated in the 1
st
, 2

nd
 and 3

rd
 

summers following planting.  Percent cover was visually assessed in annually in August for three 

years following planting and compared among size and orientation of the cage. 
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Figure 4-5:  Mean CPUE of young-of-year largemouth bass (YOY LMB) from fall electrofishing 

samples in 11 lakes in Illinois separated into 3 categories based on the density of vegetation 

present.  Error bars represent the standard error.
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Figure 4-6:  Mean densities of bluegills (panel A), and warmouth sunfish (panel B) in Lincoln 

Trail Lake and white crappie in Lake Paradise (panel C) sampled from vegetated, wooded and 

open shorelines during August of 2009 and 2010. Each bar represents an average of three sites of 

each category from each lake for two years (total N = 6 samples per habitat type). Lower case 

letters indicate significant differences between habitat types.
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Figure 4-7: Mean densities of cyclopoida (panel A), and chydoridae (panel B) sampled in 

Lincoln Trail Lake and sididae sampled in Lake Paradise sampled from vegetated, wooded and 

open shorelines during August of 2009 and 2010. Each bar represents an average of three sites of 

each category from each lake for two years (total N = 6 samples per habitat type). Lower case 

letters indicate significant differences between habitat types. 
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Figure 4-8. Mean density of macroinvertebrates of the family pelecoptera (panel A) and 

Trichoptera (Panel B) in Lincoln Trail Lake and mean density of chironomidae (panel C), 

dipteran pupae (panel D) and nematoda (panel E) in Lake paradise sampled from open sediment, 

vegetated sediment, wooded sediment and coarse woody debris surfaces sampled during August 

of 2009-2010.  Each bar represents an average of three sites of each category from each lake for 

two years (total N = 6 samples per habitat type). Lower case letters indicate significant 

differences among habitat types.
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Figure 4-9:  Average number of young of year and age 1+  largemouth bass collected by 

backpack electrofishing and rainfall by month in the Lost Fork stream below Forbes Lake. 
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Figure 4-10:  Total numbers of adult largemouth bass collected in the catch basin below the dam 

at Ridge lake during each sampling date related to precipitation.  Rainfall rates are the 

precipitation per day during the sampling period as measured at the Eastern Illinois University 

rain gauge in Charleston, IL. 
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Figure 5-1:  Catch per unit effort from fall electrofishing from Ridge Lake in 2006 through 2010 

for young-of-year (YOY LMB), adult largemouth bass (LMB > 200mm), and bluegill (BLG).  

Values are for years where fishing was closed in the spring (2006, 2008, and 2009; No 

Tournament) and years where spring tournaments were conducted (2007 and 2010; Tournamnet).  

Error bars represent the standard error. 
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Figure 5-2: Comparison of zooplankton densities measured in the early summer of 2010 and the 

total number of young-of-year largemouth bass found in each pond, regardless of treatment. 

Zooplankton lacking sufficient size to be used as bass prey (rotifers and nauplii) were omitted. 
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Figure 5-3: Average number of young-of-year largemouth bass present in the fall of 2010 from 

control ponds versus those receiving simulated tournament angling during the spawning season 

(p value = 0.06). 
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Figure 5-4: Average biomass (g) of young-of-year largemouth bass present in the fall of 2010 

from control ponds versus those receiving simulated tournament angling during the spawning 

season (p value = 0.02). 
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Figure 5-5: Size distribution of young-of-year largemouth bass from control and treatment 

ponds. The number of fish under 105 mm did not differ between controls and treatments (p value 

= 0.96). 
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Figure 5-6: Size distribution of young-of-year largemouth bass larger than 110 mm from control 

and treatment ponds. More fish above this length were found in the control ponds, but did not 

differ significantly from the treatments (p value = 0.20). 
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Figure 5-7:  Mean weight of fish caught in tournaments in 2009 and 2010 in Illinois as a function 

of the number of tournaments on lakes with known tournament activity. 
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Figure 5-8:  Catch per unit effort of young-of-year largemouth bass from spring electrofishing in 

lakes with varying tournament pressure.  Tournament pressure is expressed as angler hours per 

acre based on the annual number of anglers and length of tournaments in 2009 and 2010. 
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Figure 6-1:  Catch per unit effort of all largemouth bass from fall electrofishing in 218 lakes in 

Illinois sampled from 2000 to 2007 in 6 different regulation categories.  Letters indicate bars that 

are not significantly different (P > 0.05).  Error bars represent the standard error.  
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Figure 6-2:  Catch per unit effort of young of year largemouth bass from fall electrofishing in 

218 lakes in Illinois sampled from 2000 to 2007 in 6 different regulation categories.  Letters 

indicate bars that are not significantly different (P > 0.05).   
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Figure 6-3:  Catch per unit effort of memorable sized largemouth bass from fall electrofishing in 

218 lakes in Illinois sampled from 2000 to 2007 in 6 different regulation categories.  Letters 

indicate bars that are not significantly different (P > 0.05).   
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