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Abstract
In this paper, we introduce an application of matrix factorization to produce corpus-derived, distribu-
tional models of semantics that demonstrate cognitive plausibility. We find that word representations
learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse,
effective, and highly interpretable. To the best of our knowledge, this is the first approach which
yields semantic representation of words satisfying these three desirable properties. Though extensive
experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority
of semantic models learned by NNSE over other state-of-the-art baselines.

Keywords: distributional semantics, sparse coding, neuro-semantics, vector-space models, inter-
pretability, word embeddings.
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1 Introduction
State-of-the-art distributional models of semantics, also termed vector-space models or word em-
beddings, derive word-representations in an unsupervised fashion from large corpora. They are
primarily based on observed co-occurrence patterns, but are typically subsequently reduced in
dimensionality using techniques such as Clustering, Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), or Singular Value Decomposition (SVD). They have proven effective as components of a
wide range of NLP applications, and in the modelling of cognitive operations such as judgements
of word similarity (Sahlgren, 2006; Turney and Pantel, 2010; Baroni and Lenci, 2010), and the
brain activity elicited by particular concepts (Mitchell et al., 2008). However, with few exceptions
(e.g. Baroni et al., 2010), the representations they derive from corpora are lacking in cognitive
plausibility.

For instance, one of the SVD-based models described in this paper models similarity very success-
fully, revealing the set of words mango, plum, cranberry, blueberry, melon as the cosine-distance
nearest neighbours of pear. However, the latent SVD dimension for which pear has its largest
weighting is hard to interpret – its most strongly positively associated tokens are action, records,
government, record, search, and negatively associated tokens are sound, need, s, species, award. In
addition, the representation of pear is a dense vector of small positive or negative values on several
hundred dimensions which are also active for words of all types and domains, whether semantically
similar (e.g., other living things, and concrete objects) or dissimilar (e.g., abstract nominals, and
function and content words of other parts-of-speech).

Certain cognitive arguments against such a representation are based on economy of storage (see
Schunn, 1999; Murphy, 2004; Griffiths et al., 2007 for broader discussion on this point). A-priori
it seems unlikely that the same compact set of features are sufficient and necessary to describe all
semantic domains of a full adult vocabulary. Some very specific words may need more detailed
descriptions (i.e., more properties) and generic words less. Properties are restricted to particular
classes of concepts – limbs to animals, functions to manipulable artefacts, wheels to vehicles – and
even within restricted semantic domains some features can be very specific to certain concepts, such
as screens to electronic devices, antennae to insects and stripes to certain kinds of animal. It would
also be uneconomical for people to store all negative properties of a concept, such as the fact that
dogs do not have wheels, or that airplanes are not used for communication. And indeed in feature
norming exercises (Garrard et al., 2001; McRae et al., 2005; Vinson and Vigliocco, 2008) where
participants are asked to list the properties of a word, the aggregate descriptions are typically limited
to approximately 10-20 characteristics for a given concrete concept, with limited overlap in features
across semantic domain. So, for cognitive plausibility, we claim that a feature set should have three
characteristics: it should only store positive facts; it should have a wide range of feature types, to
cover all semantic domains in the typical mental lexicon; and only a small number of these should
be active to describe each word/concept.

In the context of distributional models of semantics, these characteristics correspond to a non-
negative and sparse embedding of lexical meaning. Of course, a raw co-occurrence matrix (whether
based on local structural features, or document-region features) or certain derived measures such
as positive pointwise mutual information (PPMI) will also be sparse and non-negative, but they
lack the discovery of effective synonymy in the latent features of a dimensionality-reduced matrix.
As a result, in this paper, we propose to apply sparse matrix factorization, with a constraint of
non-negativity on the word-latent matrix.

In this paper, we introduce a new application of matrix factorization to produce a corpus-derived
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distributional model of semantics with these desirable characteristics. We find that such word
representations are effective in tasks of interest, are sparse, and are also interpretable, when learned
by Non-Negative Sparse Embedding (NNSE) – a variation on Non-Negative Sparse Coding, which
is a matrix factorization technique previously studied in the machine learning community (Hoyer,
2002; Mairal et al., 2010). To the best of our knowledge, this is the first approach whose output
embeddings satisfy all these three desirable properties. We first compare its performance against
a wide range of word-embedding methods (including LDA, SVD-based models, and Collobert &
Weston’s 2008 method) using a suite of behavioural benchmarks that are based on human judgements
of lexical similarity. On these tasks the SVD and NNSE models have a decisive advantage, and
we follow with an exploration of optimal dimensionality, also on a neurosemantics task (Mitchell
et al., 2008). While both SVD and NNSE models have similar peak performance, their dependence
on dimensionality is opposed: small numbers of features are optimal for SVD models, and large
numbers of feature dimensions are optimal for NNSE models.

We then go on to explore the reasons for these differences, but examining the degree of sparsity
seen in the SVD and NNSE models considered, and how easily each dimensional feature can be
interpreted, using crowd-sourced judgements (Boyd-Graber et al., 2009). Here, the advantages of
the NNSE models are very clear.

The paper is organized as follows: in Section 2, we breifly review the SVD and NNSE matrix
factorization methods. Section 3 describes the main experiments, which evaluate various word
embedding models in terms of felicity on human conceptual tasks, their degree of sparsity, and their
ease of interpretability. In Section 4 we review related work, and then in Section 5, we conclude
with a discussion of this new model’s relation to other such models, and add some suggestions for
further work.

2 Methods

Let X = [x1,x2, . . .xn] ∈ Rm×n be the input representation, where m is the number of words and n
is the number of input dimensions (derived from corpus co-occurrence patterns). Each element X i, j

represents the value of the j th dimension for the i th word. We are interested in embedding the m
words in a k dimensional space, where k < n usually. In other words, we are interested in estimating
matrix A∈ Rm×k, where the i th row, Ai,:, represents the new embedding for the i th word.

Although we compare many different word embedding techniques in our experiments, we describe
below the two techniques, Singular Value Decomposition (SVD) and Non-Negative Sparse Em-
bedding (NNSE), which we found to be most effective in our evaluation tasks (see, Section 3). In
addition to task performance, we find that the embeddings learned by NNSE are also sparse and
interpretable, two critical properties which are missing from the embeddings learned by SVD.

2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a matrix factorization technique which identifies the
dimensions within each model with the greatest explanatory power, and which also has the effect of
combining similar dimensions (such as synonyms, inflectional variants, topically similar documents)
into common components, and discarding more noisy dimensions in the data. Given our input
matrix X ∈ Rm×n, SVD performs the following decomposition:

X = USV T (1)

1935



where q = min(m, n), U ∈ Rm×q, S is a q× q a diagonal matrix with sorted (largest to smallest)
singular values on its diagonal, and V ∈ Rn×s. From this decomposition, we get our required
embedding A as follows:

r = min(q, k)
A = U(:, [1 : r])

Please note that when X is centered, SVD and Principal Components Analysis (PCA) yield the same
embedding. Latent Semantic Analysis (LSA) (Deerwester et al., 1990), a very popular technique
used in Information Retrieval, performs SVD on a word by document matrix. We note that in our
case, the matrix X is not restricted to be a word-document matrix.

In order to perform SVD on large and sparse X , we use the Implicitly Restarted Arnoldi method
(Lehoucq et al., 1998; Jones et al., 2001). We refer the interested reader to these references for more
details on the algorithm.

2.2 Non-Negative Sparse Embedding (NNSE)
In this section, we describe the Non-Negative Sparse Embedding (NNSE) method, a variation on
Non-Negative Sparse Coding (NNSC), which is a matrix factorization technique previously studied
in the machine learning community (Hoyer, 2002; Mairal et al., 2010). Given our input matrix X ,
NNSE returns a sparse embedding for the words in X (each word’s input representation corresponds
to a row in X ). NNSE achieves this by solving the following optimization problem:

arg min
A∈Rm×k ,D∈Rk×n

m∑
i=1

�
||X i,: − Ai,: × D||2 +λ||Ai,:||1

�
(2)

where, Di,:D
T
i,: ≤ 1, ∀1≤ i ≤ k

Ai, j ≥ 0, ∀1≤ i ≤ m, ∀1≤ j ≤ k

where D ∈ Rk×n is a dictionary with k entries, λ ∈ R is a hyperparameter, and ||Ai,:||1 =
∑k

j=1 |Ai, j |
is the l1 regularization of the i th row of A. The goal here is to decompose the input matrix X into
two matrices, A and D, subject to the constraints that the length of the dictionary entries (rows of
D) are upper bounded by 1, the rows of A are sparse, and that entries in A are all non-negative (i.e.,
Ai, j ≥ 0). Unlike NNSC, NNSE does not impose a constraint of non-negativity on D.

Alternatively, this can also be thought of as a mixture model, with the A providing mixing proportion
over the dictionary entries in D. This problem is also known as basis pursuit (Chen et al., 2001).
The NNSE formulation can also be equivalently posed as a matrix factorization problem, and in this
respect, both SVD and NNSE are different types of matrix decomposition algorithms.

We note that the NNSE objective is not convex with respect to the coefficients A and dictionary
D. However, it is convex with respect to each variable when the others are kept fixed. We use the
online algorithm in Mairal et al. (2010) to solve the NNSE optimization problem shown above.
We refer the reader to Section 3 of Mairal et al. (2010) for details on the algorithm. The online
algorithm is guaranteed to convergence, and it returns the non-negative sparse embedding matrix
A (along with the dictionary D), whose i th rows is the new embedding for the for the word whose
input representation is given by the i th row of matrix X . We note that overcomplete decomposition,
i.e., k > n, is possible in case of NNSE. For all experiments in this paper, we set λ = 0.05 and
implement NNSE using the SPAMS package1.

1SPAMS Package: http://spams-devel.gforge.inria.fr/
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3 Experiments
In this section we try to answer two main questions: what broad categories of word embedding
methods are most effective in modelling cognition; and which of the well-performing models are
more cognitively plausible. Several of the models evaluated were already available, and were
adopted from Ratinov et al. (2010) (Collobert & Weston, HLBL), and from Řehůřek and Sojka
(2010) (LDA topic model based on the English Wikipedia).

The SVD and sparse non-negative models on which we concentrate, were constructed from scratch,
based on both LSA-style word-document co-occurrence counts (i.e., word-region features) and
HAL-style word-dependency co-occurrence counts (i.e., word-collocate features). Counts were
computed from a large English web-corpus, Clueweb (Callan and Hoy, 2009), over a fixed 40,000
word vocabulary. These were the most frequent word-forms found in the American National Corpus
(Nancy Ide and Keith Suderman, 2006) summing to 97% of its token count, and should approximate
the scale and composition of the vocabulary of a university-educated speaker of English (Nation and
Waring, 1997).

The dependency counts were taken from a 16 billion word portion of Clueweb, extracted with the
Malt parser, which achieves accuracies of 85% when deriving labelled dependencies on English text
(Hall et al., 2007). The features extracted are pairs of dependency relation and lexeme, corresponding
to each edge linked to a target word of interest (e.g., the word coach might have the dependency
features successful_adj, fires_obj, hires_subj). This kind of model (Lin, 1998; Padó and Lapata,
2007; Baroni and Lenci, 2010) can be viewed as a more linguistically informed variant of flat window
models (e.g., HAL, Lund et al., 1995) or directional models (Schütze and Pedersen, 1993; Bullinaria
and Levy, 2007; Murphy et al., 2012). As is common with such models, a co-occurrence frequency
cut-off (of 20 – see Bullinaria and Levy, 2007 for a systematic evaluation of this parameter) was
used to reduce the dimensionality of the frequency matrix, and to discard noisy counts.

The document co-occurrence counts were taken from 10 million documents of Clueweb. The
document model can be viewed as a variant of LSA (Deerwester et al., 1990; Landauer and Dumais,
1997), with differences in the frequency normalisation procedure. A frequency cut-off of 2 was
used, so all counts of 1 were discarded (Bradford, 2008).

All models we constructed used positive pointwise-mutual-information (3,4) as an association
measure to normalize the observed co-occurrence frequency p(w, f ) for the varying frequency of
the target word p(w) and its features p( f ). PPMI up-weights co-occurrences between rare words,
yielding positive values for collocations that are more common than would be expected by chance,
and discards negative values that represent patterns of co-occurrences that are rarer than one would
expect by chance (i.e., if word distributions were independent). It has been shown to perform
well generally, with both word- and document-level statistics, in raw and dimensionality reduced
forms (Bullinaria and Levy, 2007; Turney and Pantel, 2010). The previous frequency cut-off is also
important here, as PMI is positively biased towards hapax co-occurrences.

PPMIw f =

¨
PMIw f if PMIw f > 0

0 otherwise
(3)

PMIw f = log
�

p(w, f )
p(w)p( f )

�
(4)

The SVD matrix factorisation was first computed separately on the dependency co-occurrence matrix,
and on the document co-occurrence matrix, with an output for each of 1000 latent dimensions. For
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Figure 1: Behavioral evaluation of range of model types, with number of dimensions in parentheses
(see Section 3.1.1 for more details).

this step we used Python/Scipy implementation of the Implicitly Restarted Arnoldi method (Lehoucq
et al., 1998; Jones et al., 2001) which was coherent with the PPMI normalization used, since a zero
value represented both negative target-feature associations, and those that were not observed or fell
below the frequency cut-off. The combined SVD model was computed using conventional SVD on
the 2000-dimensional concatenation of the output of the previous step – that is the two left singular
vectors from the dependency and document models respectively.

While in principle it would be possible to produce the NNSE models directly on the co-occurrence
data, here we chose to do this by using the SVD left-singular vectors as a stand-in for the full
data. In other words, this is our input representation matrix X ∈ Rm×n with m= 35560 words and
n= 2000 input dimensions. Using these lower-noise approximate intermediate matrices reduces
the computational task dramatically.

In the rest of this section, we evaluate the following. How effective are the different representations,
and different dimensionalities, in various extrinsic evaluation tasks (Section 3.1)? How sparse are
the SVD and NNSE representations (Section 3.2)? And how interpretable are these representations
(Section 3.3)? All the NNSE representations used in the experiments in this section will be available
at http://www.cs.cmu.edu/~bmurphy/NNSE/.

3.1 Evaluating Model Performance

3.1.1 Behavioral Experiments

The cognitive plausibility of computational models of word meaning has typically been tested using
behavioural benchmarks, such as emulating elicited judgements of pairwise similarity or of category
membership (Lund and Burgess, 1996; Rapp, 2003; Sahlgren, 2006).

Here we used five such tests. The two categorization tests were the Battig (Battig and Montague,
1969) test-set consisting of 82 nouns, each assigned to one of 10 concrete classes; and the AAMP
(Almuhareb and Poesio, 2004) test-set containing 402 nouns in a range of 21 concrete and abstract
classes from WordNet (Miller et al., 1990). Both these tests were performed with the Cluto clustering
package (Karypis, 2003) and cosine distances, and success was measured as percentage purity over
clusters based on their plurality class. Two sets of similarity judgements were used: the Rubenstein
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Figure 2: Behavioral evaluation of SVD models with range of dimensionality (see Section 3.1.1 for
more details).

and Goodenough (1965) set of 65 concrete word pairs, and the strict-similarity subset of 203 pairs
(Agirre et al., 2009) selected from the WordSim353 test-set (Finkelstein et al., 2002). Performance
was evaluated with the Spearman correlation between the aggregate human judgements and pairwise
cosine distances between word vectors in the model in question. Finally the TOEFL benchmark
(Landauer and Dumais, 1997) consists of aggregate records from an examination task for learners of
English, who have to identify a synonym among a set of distractors. Performance was measured
as the percentage correct over 80 questions, if the cosine-distance of the target-synonym pair was
smaller than the distance between the target and any of the distractor words.

For the NNSE and SVD models constructed here, an initial dimension setting of 300 was chosen, as
this is in the middle range of those typically used in the literature. Where there was a choice with
the other models we used the largest dimensionality available. For each of these two dimensionality
reduction techniques, one model was constructed on the basis of document co-occurrences only
(labelled “Doc” in the Figure 1), one using dependency co-occurrences only (“Dep”), and one using
both sets of features combined (“Doc+Dep”).

From Ratinov et al. (2010) we took both the Collobert & Weston model (200 unscaled dimensions)
and the HLBL model (100 scaled dimensions).2 The LDA model was the default implementation
included with the Gensim package (Řehůřek and Sojka, 2010): an incremental algorithm based on
Hoffman et al. (2010), over the English Wikipedia, using TF-IDF adjusted co-occurrences.

As in clear from Figure 1 the SVD and NNSE models out-perform the other embeddings, though
we cannot exclude that these models would be competitive with other parameter settings than those
available, such as with a larger source corpus, or a different number of explanatory dimensions.
Among the SVD and NNSE models, those based on dependency and combined (dependency and
document) co-occurrences perform similarly well, and seem to have some advantage over document
co-occurrences alone. And at this dimensionality setting SVD and NNSE seem similarly successful.
As a result, in the subsequent analyses we concentrate on the combined SVD and combined NNSE
models.

2These proved most effective among the scaling/dimensionality settings available at
http://metaoptimize.com/projects/wordreprs/.
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Figure 3: Behavioural evaluation of NNSE models with range of dimensionality (see Section 3.1.1
for more details).

We next examined how the choice of dimensionality affects the chosen SVD model (i.e., using both
document and dependency co-occurrences) as evaluated with these behavioural tasks. As can be
seen in Figure 2 performance peaks around the 200-300 dimension mark. In some tasks there is a
fall-off in performance for higher dimensionalities, presumably as later dimensions are more noisy
and/or irrelevant to these unsupervised tasks.

Finally we consider the effect of dimensionality for the NNSE models. In Figure 3 we see a very
different pattern. For low dimensionalities it dramatically under-performs the SVD models, but at
larger scales it continues to have an upward trend, peaking at similar levels.

In summary, these experiments demonstrate that NNSE and SVD models have similar peak perfor-
mance, but with very different demands for dimensionality. NNSE needs at least 1000 dimensions to
perform well, which may be understandable given that these dimensions must adequately describe
all 40,000 words in the vocabulary used, and each word has on average 50 features active. The
SVD model has very good performance at a dimensionality in the low hundreds, since it can pack
information much more densely into a given number of features, and performance falls off as more
noisy or irrelevant dimensions are added.

3.1.2 Neurosemantic Decoding Experiments

Mitchell et al. (2008) introduced a new task in neurosemantic decoding – using models of semantics
to learn the mapping between concepts and the neural activity which they elicit during neuroimaging
experiments. The dataset used here is that described in detail in Mitchell et al. (2008) and released
publicly3 in conjunction with the NAACL 2010 Workshop on Computational Neurolinguistics
(Murphy et al., 2010). The Functional MRI (fMRI) data is from 9 participants while they performed
a property generation task for each of 60 everyday concrete concepts: 5 exemplars of each of 12
semantic classes (mammals, body parts, buildings, building parts, clothes, furniture, insects, kitchen
utensils, miscellaneous functional artifacts, work tools, vegetables, and vehicles). Each concept was
presented six times and the resulting data-points were averaged to yield a single brain image for
each concept, made up of approximately 20 thousand features (each a three-dimensional pixel, or
“voxel”).

3http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
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Figure 4: Neural activity test of NNSE and SVD models at range of dimensionalities (see Sec-
tion 3.1.2 for details).

As in Mitchell et al. (2008), a linear regression model was used to learn the mapping from semantic
features to brain activity levels. For each participant and selected fMRI feature we train a model to
learn its activation as a regularised linear combination of the semantic features:

f = Cβ +λ||β ||2 (5)

where f is the vector of activations of a specific fMRI feature for different concepts, the matrix C
contains the values of the semantic features for those concepts, β is the vector of weights we must
learn for each of those (corpus-derived) features, and λ tunes the degree of regularisation.

The linear model was estimated with a least squared errors method and L2 regularisation, selecting
the lambda parameter from the range 0.0001 to 5000 using Generalized Cross-Validation (see Hastie
et al., 2011, p.244). The activation of each fMRI voxel in response to a new concept that was not
in the training data was predicted by a β-weighted sum of the values on each semantic dimension,
building a picture of expected the global neural activity response for an arbitrary concept. Again
following Mitchell et al. (2008) we use a leave-2-out paradigm in which a linear model for each
neural feature is trained in turn on all concepts minus 2, having selected the 500 most stable voxels
in the training set using the same correlational measure across stimulus presentations. For each of
the 2 left-out concepts, we predict the global neural activation pattern, as just described. We then try
to correctly match the predicted and observed activations, by measuring the cosine distance between
the model-generated estimate of fMRI activity and the that observed in the experiment. If the sum
of the matched cosine distances is lower than the sum of the mismatched distances, we consider the
prediction successful – otherwise as failed.

As can be seen in Figure 3.1.2 the peak performance of both combined SVD and combined NNSE
models are close to identical. Again we see an upward trend for the NNSE model. However in the
SVD model there is no fall-off for larger dimension sizes, which can be attributed to the supervised
nature of this test – the feature selection and regularisation stages in the construction of the linear
models should be able to ignore or down-weight noisy or irrelevant features. It should also be noted
that the signal/noise ratio in brain data is quite low, and this test may be subject to a performance
ceiling (see Levy and Bullinaria, 2012; Murphy et al., 2012).
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SVD300 NNSE50 NNSE300 NNSE1000

Sparsity level (% of zeros) 0 81.94 90.39 99.95
Average number of words per dimension 35560.0 6422.4 3418.5 1818.2
Average number of dimensions per word 300.0 9.0 28.8 51.1

Table 1: Comparison of sparsity level of SVD and NNSE models, the top 2 performing represen-
tations in Section 3.1. Compared to the dense (non-sparse) SVD representation, NNSE results in
significantly sparser embeddings than SVD.

3.2 Evaluating Level of Sparsity
In this section, we evaluate the sparsity of NNSE relative to the dense representations of SVD.
The degree of sparsity in these two top-performing representations (Section 3.1) are compared in
Table 1, for SVD at k = 300, and for NNSE with k = 50, 300, 1000. Given one such representation
A∈ Rn×m, where Ai,: is the new embedding for the i th word, sparsity level measures the fraction of
zero entries in this matrix out of the total n×m entries. Average number of words per dimension
measures the average number of non-zero entries for each column of A, where each column
corresponds to one dimension. Average number of dimensions per word computes the average
number of non-zero entries for each row of A, where each row is a representation for one word, as
already mentioned above. We note that since SVD is a dense representation, varying k in this case is
not going to result in changes in the level of sparsity and values of the other two metrics compared
in Table 1. Hence, in Table 1, we only present the results for SVD300 for reference.

From Table 1, based on the sparsity level measurements, we observe that NNSE results in signifi-
cantly sparser representations compared to the dense representation learned by SVD. We observe
that as k increases, NNSE estimates even sparser representations. This might possibly be due to
the fact that with a small number of available dimensions (e.g., k = 50), each dimension is used to
represent multiple latent concepts, resulting in non-zeros values for larger number of entries in each
column and thereby in the full matrix A. In other words, each dimension acts as a mixture of latent
concepts. However, we note that even at such settings (i.e., k = 50), NNSE achieves high sparsity
levels (81.9%) compared to the dense SVD.

From Table 1, we observe that as k increases, the average number of words per dimension decreases,
from 6422.4 with k = 50 to 1818.2 with k = 1000, i.e., each dimension becomes sparser as the
number of available dimensions increases. This may be due to the fact, with smaller k (e.g., k = 50),
NNSE has to compress the input data X into a smaller number of dimensions, resulting in coarser
granularity for each dimension.

Finally, from Table 1, we observe that as k increases, NNSE uses a larger number of dimensions per
word, but even then, the resulting embeddings are significantly sparser compared to SVD, where
each word is represented using all available k dimensions.

3.3 Evaluating Interpretability
In the previous two sections, we evaluated performance of various word embeddings in different
external tasks, and also the level of sparsity in these representations. Based on the performance
evaluations, we found SVD and NNSE to be the most effective. In this section, we evaluate how
interpretable these representations are. In other words, we would like to measure how coherent
each of the dimensions of these representation are, i.e., given a representation A, we would like to
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Figure 5: Comparison of interpretability of representations learned by SVD and NNSE for varying
number of dimensions, k. Following (Boyd-Graber et al., 2009), word intrusion detection precision
is used as the evaluation metric (higher precision implies higher interpretability). We observe that
across all values of dimensions k, NNSE results in significantly more interpretable representations
than SVD. See Section 3.3 for details.

determine how coherent each column (dimension) of A is.

Word Intrusion Detection Task: Following (Boyd-Graber et al., 2009), we use precision on a word
intrusion detection task as the measure of coherence. The evaluation proceeds as follows: given a
dimension (column) A:, j , we first reverse-sort the words based on membership values of those words
in the column (i.e., Ai, j , ∀1≤ i ≤ n). Next, we create a set consisting of the top 5 words from this
ranked list, and also one word from the bottom half of this list, which is also present in the top 10th
percentile of some other column in A. Thus, cardinality of this set is 6. The last word added from the
bottom half is called an intruder. The goal is then to evaluate whether human subjects can identify
this intruder word in a random ordering of the set. This process is repeated for each dimension, and
the resulting precision is computed. This precision is used as the evaluation metric. Please note that
we can compute precision in this setting as we know the true identity of the intruder word, it is just
that this identity is hidden from the human evaluator. The idea behind this test is that if the current
dimension is coherent, and thereby interpretable, then the human evaluator will be easily able to
pick out the intruder word, thereby resulting in higher precision (higher is better). Example of such
a set constructed from a dimension of the NNSE1000 is shown below,

{bathroom, closet, attic, balcony, quickly, toilet}

where quickly is the intruder, as the rest of the words form a coherent set listing different parts of a
house. Following (Boyd-Graber et al., 2009), this evaluation scheme is also known as reading tea
leaves, where it was used to measure coherence of probabilistic topic models.

We use Amazon Mechanical Turk (MTurk)4 to get human judgements in the word intrusion detection
task. Given an embedding matrix A∈ Rm×k, we constructed n intruder sets as described above, one
for each for the k dimensions. For k > 300, we randomly selected 300 dimensions for evaluation.

4http://mturk.amazon.com
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Model Top 5 Words (per dimension)

SVD300

well, long, if, year, watch
plan, engine, e, rock, very
get, no, features, music, via
features, by, links, free, down
works, sound, video, building, section

NNSE1000

inhibitor, inhibitors, antagonists, receptors, inhibition
bristol, thames, southampton, brighton, poole
delhi, india, bombay, chennai, madras
pundits, forecasters, proponents, commentators, observers
nosy, averse, leery, unsympathetic, snotty

Table 2: Examples of top 5 words for 5 randomly chosen dimensions from each of SVD300 and
NNSE1000. We observe that the dimensions in NNSE1000 are much more semantically coherent (and
thereby interpretable) compared to those in SVD300.

Detecting the intruding word in each such set was presented as a separate decision point, called
Human Intelligence Task (HIT). Each HIT was evaluated by 3 different workers (turkers), and a
compensation of $0.01 was provided for each feedback. Majority voting over the three responses
was used as the final decision on a given set (HIT).

Discussion: Experimental results comparing precision of the SVD and NNSE representations on the
word intrusion task for different value of k are presented in Figure 5. From this figure, we observe
that, for all values of k, representations learned by NNSE are considerably more interpretable
compared to those estimated by SVD. We find that interpretability for both of them peak at k = 300.

For qualitative comparison, top 5 words from 5 randomly selected dimensions each of SVD300 and
NNSE1000 are presented in Table 2. From this, we get further anecdotal evidence about the higher
interpretability of NNSE compared to SVD.

4 Related Work
Corpus-derived models of semantics have been extensively studied in the NLP and machine learning
communities (Collobert and Weston, 2008; Ratinov et al., 2010; Turney and Pantel, 2010; Socher
et al., 2011; Huang et al., 2012). Additionally, dimensionality reduction techniques such as SVD,
and topic distributions learned by probabilistic topic models such LDA (Blei et al., 2003) can also
be used to induce word embeddings. Although the embeddings learned by these methods have many
overlapping properties, to the best of our knowledge, none of these previous proposals satisfy the
three desirable properties: effective in practice, sparse, and interpretable. We find that Non-Negative
Sparse Encoding (NNSE), a variation on a matrix factorization technique previously studied in the
machine learning community, can result in semantic models which satisfy all three properties listed
above.

In terms of interpretability, the NNSE is dramatically more effective than equivalent SVD models,
and is comparable with LDA models evaluated in Boyd-Graber et al. (2009). In this context, it is
interesting to compare it to another sparse interpretable model based on corpus co-occurrences, such
as Strudel (Baroni et al., 2010). One major difference is that Strudel explicitly extracts descriptive
properties, and that it does not involve a latent dimension discovery step. This has the advantage that
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Weight Top Words (per weighted dimension)
0.69 bike, mtb, bikes, harley, motorcycle, davidson, bicycle, cycling, biker, giro
0.35 canoe, raft, scooter, kayak, skateboard, bicycle, tractor, lawnmower, wheelchair
0.15 sedan, dealership, dealerships, dealer, convertible, camry, minivan, pickup, corolla
0.10 attorney, malpractice, lawyer, attorneys, lawyers, wrongful, litigation, injury, accident
0.08 earnhardt, speedway, irl, indy, racing, schumacher, mclaren, nascar, roush, race

Table 3: Examples of top 5 weighted dimensions in NNSE for the token motorbike, where each
dimension is characterised by its top words.

Weight Top Words (per weighted dimension)
0.84 raspberry, peach, pear, mango, melon, strawberry, banana, berry, cranberry, citrus
0.25 peaches, apricots, pears, cherries, blueberries, figs, oranges, plums, raspberries
0.10 birch, fir, spruce, pine, elm, mahogany, aspen, cypress, willow, cedar
0.08 kreme, pillsbury, falafel, brownie, pretzel, pesto, horseradish, oreo, guacamole, pita
0.07 patties, slices, cubes, tacos, wedges, chunks, enchiladas, burritos, fajitas, tortillas

Table 4: Examples of top 5 weighted dimensions in NNSE for the token pear, where each dimension
is characterised by its top words.

it can model human tasks that directly involve properties and their types, such as the feature norming
exercises mentioned earlier (which our NNSE model is not capable of currently). Conversely, it has
a disadvantage in that it does not address the ubiquitous synonymy and polysemy among property
labels. For example, the Strudel representation for motorbike has the properties (ordered by their
strength of association): ride, rider, sidecar, park, road, helmet, collision, vehicle, car, moped.

The corresponding representation in NNSE is dominated by the five dimensions listed in Table 3.
For each dimension we show the words that characterize its meaning, and the magnitude of its
contribution to motorbike. These seem to describe the following respective classes which may
correspond to topical usages of the word: (motor)cycling; leisure vehicles; vehicle sales; accidents
and litigation; and racing. The corresponding listing for pear in Table 4, also exhibits some different
senses of the word, covering fruit, food more generally, and trees.

Overall, we find that NNSE model is an alternative coding of the information stored in the SVD
model. These models differ however in how that information is distributed across dimensions. The
SVD model, as expected, is maximally compact, compressing as much information as possible
into the minimum number of dimensions, but yielding individual dimensions that are very hard
to interpret. The NNSE model is equally effective in modeling human judgements and brain
activity elicited during lexical semantic tasks, but has a sparse structure which closely matches some
common assumptions in cognitive science about conceptual representations.

5 Conclusion
In this paper, we propose the novel application of Non-Negative Sparse Embedding (NNSE), a
variation on a constrained matrix factorization technique previously studied in the machine learning
community (Hoyer, 2002; Mairal et al., 2010), to learn corpus-derived semantic models (word
embeddings). To the best of our knowledge, this is the first approach which learns embeddings
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which are effective in practice, sparse, and interpretable – a desirable list of properties which was
not achievable by previously proposed methods.

There are still many ways in which we can extend and improve this new embedding method. First
of all, we would like to test it as a component of core NLP tasks, such as chunking, named-entity-
recognition, and parsing. We also plan to compare the individual NNSE dimensions to other
benchmarks that explicitly cover categories and properties, such as feature norms, WordNet, and
other collections of human judgements such as the 20Q data (Palatucci et al., 2009). Finally, we
plan to look more closely at the relative contributions of different sources of input representations,
such as dependency and document co-occurrences that underlie the current model, to examine the
relationship between topical and attributional meanings that they correspond to.
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