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Nonlinear Position Control for Hover and

Automatic Landing of UAVs
Xilin Yang, Matt Garratt and Hemanshu Pota

Abstract

This paper presents a disturbance attenuation controller for horizontal position stabilization for hover

and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing

deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase,

a nonlinear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a

gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect

are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine

helicopter verifies performance of the proposed horizontal position controller.The proposed controller not

only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response

when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement

and can be applied to ship/RUAV landing systems.

I. INTRODUCTION

RUAVs are suitable for a variety of applications such as surveillance and reconnaissance, search and

rescue, oceanographic studies and volcano observation, etc. There is also a growing desire to operate

a RUAV from ships at sea which introduces new challenges owing to the adverse turbulence over the

flight deck and the ship motion through waves. Operational flexibility, including vertical take-off and

landing capability, hover at a desired height, longitudinal and lateral manoeuvre, makes the RUAV an

indispensable platform to perform such operations.

The main challenge in fulfilling maritime landing tasks results from the complicated aerodynamic

environment, which consists of wave-excited movement of the ship deck and turbulent gusts. The gusts
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mainly come from the ship airwake, which is governed by a variety of factors composing the geometry of

the ship superstructure, the intensity and relative direction of the natural wind and free-stream turbulence

[1]. The RUAV hovering over a ship deck operates in a partial ground effect condition where both

the magnitude of the rotor flow and the inflow distribution over the rotor disk vary greatly [2]. This

phenomenon results in a considerable change in the aerodynamic loading of the rotor system, which

may affect the RUAV control margins, autopilot workload and power margins [3]. Therefore, dynamic

performance of the RUAV is deteriorated and pure feedback driven controllers fail to stabilize the position

response. This difficulty justifies the need for a controller with gust-attenuation properties. In addition,

for an automatic landing, the descent trajectory of the RUAV deviates greatly from the desired trajectory

when strong gusts occur. This necessitates rapid and accurate tracking performance to avoid missing the

landing deck. Therefore, fast position response is another requirement for the controller design to achieve

a safe landing.

Helicopter control in a turbulent environment has received attention in some papers. Cheviron et al. [4]

proposed a robust guidance and control scheme for an autonomous helicopter in the presence of wind

gusts. In [4], a high-gain observer was used to reconstruct the unknown inputs, and time derivative of the

inputs were assumed to be uniformly bounded. The controller in [4] was designed based on the robust

backstepping technique. Martini et al. [5] addressed the problem of the control of a model-scale helicopter

under wind gusts. The disturbances in their paper were purely vertical wind gusts with typical levels less

than 1ms−1. Also, they presented an active disturbance-rejection control strategy where system states

were constructed using a nonlinear state observer. Robust control of helicopters has also been discussed

in a number of papers. Civita et al. [6] have succeeded in implementing an H∞ loop-shaping controller

on a Yamaha R-50 helicopter. It was reported that tracking performance was improved using this design

approach. Yang et al. [7] designed 6-DOF H∞ controllers for the helicopter hover control. The design

procedure was decoupled and controllers were divided into two groups with one for translational motion

and the other for rotational motion. They also extended the design methodology in the presence of

parameter uncertainties [8], [9].In [10], an H∞ flight control system was designed to improve helicopter

stability, maneuverability and agility. The linear H∞ design approach was applied to a linearized model of

the helicopter dynamics, and its performance was evaluated in simulations when constraints on actuators

were taken into account.

The present research is part of efforts devoted to developing a feasible procedure for landing a RUAV

on moving platforms in rough seas. In a previous paper [11], a feedback-feedforward controller has

been designed to achieve height control of the RUAV in a gusty environment, and flight tests have been
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conducted to confirm its performance. In this work, our objective is to design a controller with disturbance

attenuation properties and rapid horizontal position tracking performance. The underlying significance

is that the gust effect on the trajectory following capability of the RUAV can be greatly reduced, and

the landing deck can be accurately tracked. This work begins with establishing a nonlinear model which

captures dynamics of the RUAV during landing operations. This nonlinear model considers high-order

system dynamics and applies them to the process of controller design. Thus, the effects of unmodeled

high-order dynamics which a linear controller cannot handle can be greatly reduced using the proposed

controller based on the nonlinear model. The nonlinear H∞ controller is developed to achieve gust

attenuation and fast horizontal position tracking performance.The computational burden of this controller

is small as it only needs to solve the Riccati equation once and uses the solution to iteratively compute

the controller gain matrices. The H∞ controller employs the optimal control gains for the first-order

dynamics by solving the Riccati equation as well as control gains dealing with high-order dynamics.

Thus it outperforms the traditional PID controllers. Also, the H∞ controller can directly compute control

gains without the need to calculate control gains for inner and outer loops separately on a trial and

error basis. Simulation results demonstrate that the proposed controller can effectively attenuate gust

disturbance and achieve rapid and accurate position tracking when gusts occur.

II. A REVIEW OF THE NONLINEAR H∞ CONTROLLER DESIGN

Consider a nonlinear system described as follows:

ẋ = f(x) + g1(x)ω + g2(x)Uc (1)

zm = h(x) + l(x)Uc (2)

where x ∈ Rn is system state, ω ∈ Rm1 disturbance, and Uc ∈ Rm2 control inputs. zm ∈ Rr is a penalty

variable. Functions f(x), g1(x), g2(x), h(x) and l(x) are smooth functions defined in a neighborhood Ue

of the origin in Rn. It is assumed that f(0) = 0, h(0) = 0. The following assumptions are also made,

hT (x)l(x) = 0 lT (x)l(x) = Rh (3)

where Rh is a nonsingular constant matrix, and is chosen to be symmetric to facilitate controller design.

The state feedback control law Uc = k(x) is a locally defined smooth function satisfying k(0) = 0.

The nonlinear state feedback controller used for stabilization of RUAV horizontal motion is based on

the control approach described in [12; 13; 14], which has the disturbance attenuation capability described

as follows
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∫ Te

0
zTm(s)zm(s)ds ≤ γ2h

∫ Te

0
ωT (s)ω(s)ds (4)

with the attenuation factor satisfying 0 < γh < 1. The attenuation factor γh shows to what extent effect

of the disturbance ω on the penalty variable zm can be attenuated. Thus, the inequality (4) can be used

as a measure of the disturbance attenuation capability of the controller.

The controller design problem is reduced to finding a state feedback law Uc and a positive semi-definite

function V (x) to satisfy the following inequality

Vx(f(x) + g1(x)ω + g2(x)Uc) +
1

2
∥ h(x) + l(x)Uc ∥2 −γ2h ∥ ω ∥2≤ 0 (5)

Here, Vx denotes the Jacobian matrix of V (x).

In [12; 14], a Taylor series approach to finding the state feedback controller is proposed. This approach

employs the Hamiltonian function in the form of

H(x, Vx, ω, Uc) = Vx(f(x) + g1(x)ω + g2(x)Uc) +
1

2
(∥h(x) + l(x)Uc∥2 − γ2h∥ω∥2) (6)

and the function V (x) takes the following form

V (x) =
1

2
xT P̄ x+

∞∑
k=3

P̄kx
[k] (7)

where x[k] = [xk1, x
k−1
1 x2, · · · , xk−2

1 x22, x
k−2
1 x2x3, · · · , xkn]T , k ≥ 1. The key to the H∞ controller is to

derive an explicit procedure to obtain the matrix P̄ and row vector P̄k such that V (x) consists of a

quadratic term and a nonlinear part which employs the power of components of system states.

Due to the orthogonal relationship between h(x) and l(x) shown in Eq. (3), the Hamiltonian function

is converted to the following form,

H(x, Vx, ω, Uc) = Vxf(x) +
1

2
hT (x)h(x) +

[
Vxg1 Vxg2

] ω

Uc

+
1

2

 ω

Uc

T R̄
 ω

Uc

 (8)

where

R̄ =

 −γ2hI 0

0 Rh

 (9)

Let (α1, α2)
T = (ω,Uc)

T and make

∂H(x, Vx, α1, α2)

∂α1
= 0

∂H(x, Vx, α1, α2)

∂α2
= 0 (10)
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Then it can be obtained that α1

α2

 =

 α1(x, Vx)

α2(x, Vx)

 =

 1

γ2h
gT1 V

T
x

−R−1
h gT2 V

T
x

 (11)

and the following equation is satisfied if V (x) takes the form of Eq. (7) [14]

H(x, Vx, α1, α2) = Vxf(x) +
1

2
hT (x)h(x) +

1

2
Vx(

g1g
T
1

γ2h
− g2R

−1
h gT2 )V

T
x = 0 (12)

Then the Hamiltonian function H(x, Vx, ω, Uc) turns out to be [13]

H(x, Vx, ω, Uc) = −γ2h∥ω − α1(x, Vx)∥2 + ∥Uc − α2(x, Vx)∥2 (13)

It is seen from Eq. (13) that the control law [14]

Uc = α2(x, Vx) = −R−1
h gT2 V

T
x (14)

leads to H(x, Vx, ω, Uc) ≤ 0. Therefore, disturbance attenuation capability of the H∞ controller is

guaranteed.In the following sections, the explicit form of Uc for stabilization of RUAV horizontal motion

will be derived. This involves an iterative procedure to compute matrix P̄ and row vectors P̄k, k =

3, 4, · · · .

III. A NONLINEAR H∞ POSITION CONTROLLER

A. Modeling of Helicopter Dynamics

The design of a disturbance attenuation controller depends greatly on the choice of typical working

conditions expected and tractability of the control problem associated with the resultant control plants.

Usually, hover state is a typical working condition, and stabilization of the hover state is a prerequisite

for an automatic landing. Therefore, the control plant is established for the hover condition, where main

rotor thrust Tmr and tail rotor thrust Ttr are constant. This is achieved using the feedback-feedforward

controller for height control. A complete helicopter dynamic model can be found in [15], and the dynamic
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model under investigation is

ẋb = u+ d1 (15)

ẏb = v + d2 (16)

u̇ = rcv − qwc +
Xh

Ma
− g sin θ + d3 (17)

v̇ = −rcu+ pwc +
Yh
Ma

+ g cos θ sin(ϕ+ ϕ0) + d4 (18)

ṗ = k1pq + k2qrc + k3Lh + k4Nh + d5 (19)

q̇ = k5prc + k6(r
2
c − p2) + k7Mh + d6 (20)

ϕ̇ = p+ (q sin(ϕ+ ϕ0) + rc cos(ϕ+ ϕ0)) tan θ + d7 (21)

θ̇ = q cos(ϕ+ ϕ0)− rc sin(ϕ+ ϕ0) + d8 (22)

Here, (xb, yb) are horizontal positions, (u, v, wc) and (p, q, rc) are linear and angular velocities with the

subscript c indicating that the yaw rate rc and vertical velocity wc are obtained from onboard sensors

(inertial measurement unit and GPS). Control inputs are longitudinal flapping a1 and lateral flapping b1,

and disturbance input is d(·). The roll and pitch are denoted by ϕ and θ, and the offset ϕ0 is added to

establish the desired equilibrium point. The parameters k(·) are listed as follows

ξ = IxxIzz − I2xz k1 =
Ixz(Ixx − Iyy + Izz)

ξ

k2 =
Izz(Iyy − Izz)− I2xz

ξ
k3 =

Izz
ξ

k4 =
Ixz
ξ

k5 =
Izz − Ixx
Iyy

k6 =
Ixz
Iyy

k7 =
1

Iyy

where Ixx, Iyy, Izz and Ixz are moments of inertia and product of inertia. External forces (Xh, Yh, Zh)

and moments (Lh,Mh, Nh) acting on the RUAV take the form of

Xh = Tmra1 (23)

Yh = Tmrb1 + Ttr (24)

Zh = −Tmr (25)

Lh = kβb1 + TmrDmzb1 + TtrDtz (26)

Mh = (−kβ − TmrDmz)a1 (27)

Nh =
Pmr
Ω

+ TmrDmxb1 + TtrDtx (28)
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where kβ is the center-spring rotor stiffness, Ω the main rotor angular speed, and Pmr the main rotor

power. Geometry parameters of the Vario helicopter Dmz, Dtz, Dmx and Dtx are listed in Table II.

The main rotor flapping dynamics are described by

ȧ1 = −q − a1
τf

+
1

τf
(
∂a1
∂u

u+Alonδlon) (29)

ḃ1 = −p− b1
τf

+
1

τf
(
∂b1
∂v

v +Blatδlat) (30)

where τf = 16
γΩ is main rotor time constant with γ denoting the lock number. Alon and Blat are effective

steady-state longitudinal and lateral gains, δlon and δlat are longitudinal cyclic and lateral cyclic. The

Dihedral effect is

∂a1
∂u

=
2

ΩR

(
8CT
ασ

+

√
CT
2

)
(31)

∂b1
∂v

= − 2

ΩR

(
8CT
ασ

+

√
CT
2

)
(32)

where R is main rotor radius, α lift curve slope, σ the solidity ratio, and CT thrust coefficient.

Remark 1 The main rotor thrust Tmr and tail rotor thrust Ttr are considered to be constant as heave mo-

tion and yaw motion are stabilized using the existing feedback-feedforward controller and PD controller.

Thus, dynamic equations for żb, ẇc and ṙc are neglected.

Remark 2 The constant offset ϕ0 is added to the system dynamics to establish the desired equilibrium

point for rolling motion. This enables zero initial condition and facilitates the control design.

Remark 3 For helicopters flying at low speeds, control forces and moments are mainly generated by the

main rotor and the tail rotor. Forces and moments from fuselage, empennage and vertical fin are very

small and they can be neglected.

Remark 4 Control inputs in the controller design process are set to be longitudinal flapping and lateral

flapping. They will be converted later into longitudinal cyclic and lateral cyclic for implementation.

The following vectors are defined for the controller design,

x = [xb, yb, u, v, p, q, ϕ, θ]
T ∈ R8

ω = [d1, d2, d3, d4, d5, d6, d7, d8]
T ∈ R8

Uc = [a1, b1]
T ∈ R2

September 27, 2013 DRAFT
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RUAV attitudes are very small (ϕ, ϕ0, θ, ψ < 5o) in normal flight. Using small angle approximation,

the trigonometric functions can be simplified

sin θ ≈ θ, cos θ ≈ 1, tan θ ≈ θ, sin(ϕ+ ϕ0) ≈ ϕ+ ϕ0, cos(ϕ+ ϕ0) ≈ 1

and helicopter dynamics in horizontal plane can be written in a compact form

ẋ = f(x) + g1(x)ω + g2(x)Uc (33)

zm = h(x) + l(x)Uc (34)

where

f(x) =



u

v

rcv − qwc +
Tmra1

Ma
− gθ

−rcu+ pwc +
Tmrb1+Ttr

Ma
+ g(ϕ+ ϕ0)

k1pq + k2qrc + k3(kβb1 + TmrDmzb1 + TtrDtz) + k4(
Pmr

Ω + TmrDmxb1 + TtrDtx)

k5prc + k6(r
2
c − p2) + k7(−kβ − TmrDmz)a1

p+ (q(ϕ+ ϕ0) + rc)θ

q − rc(ϕ+ ϕ0)



(35)

g1(x) = I8 (36)

g2(x) =

 0 0 Tmr

Ma
0 0 b1 0 0

0 0 0 Tmr

Ma
b2 0 0 0

T (37)

with

b1 = k7(−kβ − TmrDmz), b2 = k3kβ + k3TmrDmz + k4TmrDmx (38)

The constant matrices h(x) and l(x) are given by the expressions

h(x) =



x1

δ · x2
. . .

δ · x8

0 · · · · · · 0

0 · · · · · · 0


10×8

l(x) =

 O8×2

I2


10×2

(39)

where δ is a non-negative real number for making the controller design trade-off. Dimensions of the

system model are n = 8, m1 = 8 and m2 = 2.
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IV. NONLINEAR H∞ POSITION CONTROL OF THE RUAV

The design approach begins with Taylor series expansion of the nonlinear functions in Eq. (35)-(37),

f(x) =

∞∑
i=1

Aix
(i) = A1x+ f [2+](x) (40)

h(x) =

∞∑
i=1

Cix
(i) = C1x+ h[2+](x) (41)

g1(x) = B1 + g
[1+]
1 (x) (42)

g2(x) = B2 + g
[1+]
2 (x) (43)

where f [2+](x), h[2+](x), g
[1+]
1 (x) and g[1+]

2 (x) are high-order expansions.

For the RUAV model Eq.(15)-(22), f(x) has a third-order expansion, and the three terms A1, A2 and A3

are written as follows

A1 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 rc 0 −wc 0 −g

0 0 −rc 0 wc 0 g 0

0 0 0 0 k1q k1p+ k2rc 0 0

0 0 0 0 k5rc − 2k6p 0 0 0

0 0 0 0 1 (ϕ+ ϕ0)θ qθ q(ϕ+ ϕ0)

0 0 0 0 0 1 −rc 0


8×8

where A2 ∈ R8×64 and A3 ∈ R8×512 are large sparse matrices with a small number of non-zero values.

The non-zero elements with their indices are listed below

A2(5, 38) = k1 A2(5, 45) = k1

A2(6, 37) = −2k6 A2(7, 47) = θ

A2(7, 48) = ϕ+ ϕ0 A2(7, 54) = θ

A2(7, 56) = q A2(7, 62) = ϕ+ ϕ0

A2(7, 63) = q

A3(7, 376) = 1 A3(7, 383) = 1

A3(7, 432) = 1 A3(7, 446) = 1

A3(7, 495) = 1 A3(7, 502) = 1

and Ai = 0 for i > 3.
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The functions g1(x) and g2(x) can be expanded to the first-order (g[1+]
1 (x) = 0, g

[1+]
2 (x) = 0),

B1 = B0
1 = [B11, . . . , B18] = I8 (44)

B2 = B0
2 = [B21, B22] (45)

where

B21 =
[
0 0 Tmr

Ma
0 0 b1 0 0

]T
(46)

B22 =
[
0 0 0 Tmr

Ma
b2 0 0 0

]T
(47)

Also, the matrix C1 ∈ R10×8 is a large matrix with a few non-zero elements and the high-order terms

h[2+](x) = 0. These non-zero elements with their indices are

C1(1, 1) = 1, C1(j, j) = 0.1, j = 2, · · · , 8. (48)

Here, the trade-off factor is chosen to be δ = 0.1.

A. Linear Part of the H∞ Controller

The linear part of the H∞ controller can be treated as a linear quadratic regulator problem, and only

first-order system dynamics are used. The solution P̄ can be obtained after solving the algebraic Riccati

equation described by

HT
pxP̄ + P̄Hpx + P̄HppP̄ +Hxx = 0 (49)

with the following definitions

Hpx = A1, Hxx = CT1 C1, Hpp =
B1B

T
1

γ2h
−B2R

−1
h BT

2 (50)

The solution P̄ is required to construct the controller.

Eq. (49) can be rearranged into standard H∞-like Riccati equation form (Rh = I2)

AT1 P̄ + P̄A1 − P̄
[
B1 B2

] −γ2hIm1
Om1×m2

Om2×m1
Im2

−1  BT
1

BT
2

 P̄ + CT1 C1 = 0 (51)

where m1 = 8,m2 = 2 and γh is the attenuation factor. Since the system model is controllable and

observable, the unique positive semi-definite matrix P̄ exists [16].

B. Nonlinear Part of the H∞ Controller

The nonlinear part of the H∞ controller involves iterative computation of several intermediate matrices.

The resultant controller weighting matrices aim to deal with high-order dynamics of the helicopter.
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1) Notation and Definitions: The following notations and definitions are introduced to facilitate the

controller design

x(0) = 1 x(1) = x x(i) = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
i factor

, i = 2, 3, · · · (52)

where ⊗ is the Kronecker product. Constant matrices Mk and Nk can be used to set up the relationship

between x(k) and x[k]

x[k] =Mkx
(k) x(k) = Nkx

[k] (53)

where Mk ∈ RC(nx,k)×nk
x and Nk ∈ Rnk

x×C(nx,k) satisfy

MkNk = I [k]nx
(54)

Here, I [k]nx is an identity matrix of dimension

C(nx, k) := Cknx+k−1 =

∏k
i=1(nx + k − i)

k!
(55)

The number of states is nx = 8.

We adopt the following operator row(A) which maps n by m matrix A = (a)ij to a 1 by mn row

vector

row(A) = [a11, a12, · · · , a1m, · · · , an1, · · · , anm] (56)

Also, for any integers i ≥ 1, k ≥ i, and row vector P̄ ∗
k of dimension nkx, there exists a matrix

P̄ ik ∈ Rnx×nk−1
x determined by P̄ ∗

k such that

P̄ ∗
k (x

(i−1) ⊗ Inx
⊗ x(k−i)) = (P̄ ikx

(k−1))T (57)

where P̄ ∗
k is partitioned to a 1 by nix block matrix taking the form

P̄ ∗
k =

[
P1 · · · 11︸ ︷︷ ︸

i tuple

· · ·P1 · · · 1nx︸ ︷︷ ︸
i tuple

· · ·Pnx · · ·nx1︸ ︷︷ ︸
i tuple

Pnx · · ·nxnx︸ ︷︷ ︸
i tuple

]
(58)

in which Pj1,··· ,ji , 1 ≤ j1, · · · , ji ≤ nx is a row vector of dimension nk−ix . The resultant matrix P̄ ik is

given by

P̄ ik =



P1 · · · 11︸ ︷︷ ︸
i tuple

P1 · · · 21︸ ︷︷ ︸
i tuple

· · · Pnx · · ·nx1︸ ︷︷ ︸
i tuple

P1 · · · 12︸ ︷︷ ︸
i tuple

P1 · · · 22︸ ︷︷ ︸
i tuple

· · · Pnx · · ·nx2︸ ︷︷ ︸
i tuple

...
...

...
...

P1 · · · 1nx︸ ︷︷ ︸
i tuple

P1 · · · 2nx︸ ︷︷ ︸
i tuple

· · · Pnx · · ·nxnx︸ ︷︷ ︸
i tuple


September 27, 2013 DRAFT



12

The controller design process is as follows [12]. Let S2 = P̄ , and the following intermediate matrices

are computed

W 2
ij = row(S2B

1
ij); i = 1, 2; j = 1, ..., 8 (59)

Y 1
11 = BT

11S
T
2 = BT

11P̄ (60)

E3 = row(P̄A2) (61)

F3 =

2∑
l=1

(CTl C3−l) = 0 (62)

I13 =

2∑
l=2

8∑
j=1

row((W l
1j)

TY 3−l
1j ) (63)

I23 =

2∑
j=1

row((W 2
2j)

TY 1
2j) (64)

Then,

H3 = −(E3 +
F3 − 2I23

2
+
I13
γ2h

)N3 = −E3N3 (65)

M3 = x[3](x(3))−1 N3 = x(3)(x[3])−1 (66)

Also, the intermediate matrix U3 is

U3 =M3[

3∑
i=1

I
(i−1)
8 ⊗ T̄ ⊗ I

(3−i)
8 ]N3 (67)

=M3[T̄ ⊗ I
(2)
8 + I

(1)
8 ⊗ T̄ ⊗ I

(1)
8 + I

(2)
8 ⊗ T̄ ]N3 (68)

where

T̄ = Hpx +HppP̄ (69)

Then

P̄3 = H3U
−1
3 P̄ ∗

3 = P̄3M3 S3 =

3∑
i=1

(P̄ i3)
T ∈ R64×8 (70)

The next step is to compute P̄4, which is P̄4 = H4U
−1
4 . The following intermediate matrices are
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calculated

E4 =

3∑
l=2

row(SlA5−l) = row(P̄A3) + row(S3A2) (71)

F4 =

3∑
l=1

row(CTl C4−l) = 0 (72)

Z4 = row(S3HppS
T
3 ) (73)

W 3
ij =

3∑
l=2

row(SlB
4−l
ij ) = row(S2B

2
ij) + row(S3B

2
ij) (74)

I14 =

3∑
l=2

8∑
j=1

row((W l
1j)

TY 4−l
1j ) (75)

G1
4 =

2∑
l=2

8∑
j=1

row((W l
1j)

TW 4−l
ij ) (76)

I24 =

3∑
l=2

2∑
j=1

row((W l
2j)

TY 4−l
2j ) (77)

G2
4 =

8∑
j=1

row((W 2
2j)

TW 2
2j) (78)

M4 = x[4](x(4))−1 ∈ R330×4096 (79)

N4 = x(4)(x[4])−1 ∈ R4096×330 (80)

Afterwards,

H4 = −1

2
(Z4 + 2E4)N4 (81)

The U4 can be computed as

U4 =M4[

4∑
i=1

I
(i−1)
8 ⊗ T̄ ⊗ I

(4−i)
8 ]N4

=M4[T̄ ⊗ I
(3)
8 + I

(1)
8 ⊗ T̄ ⊗ I

(2)
8 + I

(2)
8 ⊗ T̄ ⊗ I

(1)
8 + I

(3)
8 T̄ ]N4 (82)

Afterwards,

P̄4 = H4U
−1
4 P̄ ∗

4 = P̄4M4 S4 =

4∑
i=1

(P̄ i4)
T ∈ R512×8 (83)

The H∞ controller takes the following form

Uc = (−R−1
h BT

2 P̄ )x+ (−R−1
h

 BT
21S

T
3

BT
22S

T
3

N2)x
[2] + (−R−1

h

 BT
21S

T
4

BT
22S

T
4

N3)x
[3] (84)
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Here, intermediate matrices N2 and N3 are computed by Eq. (53), which are given by

N2 = x(2)(x[2])−1 N3 = x(3)(x[3])−1 (85)

The key to this controller is to compute P̄3 and P̄4 (as shown in Eq. (70) and Eq. (83)), which are

required to calculate S3 and S4 so that the nonlinear controller can be constructed. In the considered

application, owing to the fact that system dynamics can only be expanded to the third-order, the proposed

controller only contains state components up to the third-order and is described by Eq. (84) in terms of

x, x[2] and x[3]. The controller in Eq. (84) satisfies the disturbance attenuation property given in Eq. (4).

For proof, interested readers can refer to [12; 14].

V. SIMULATION RESULTS

A. Performance Evaluation of the H∞ Controller

In this section, performance of the H∞ controller is evaluated using parameters of the Vario helicopter

shown in Table II. To make the results more applicable, servo dynamics are taken into account. Also,

synchronization assessment is performed by adding pure lag into the closed-loop simulation. Furthermore,

disturbance attenuation capability of the H∞ controller is examined in a gusty environment and compared

with a PID controller.

The longitudinal and lateral flapping commands given in Eq. (84) need to be converted into longitudinal

and lateral cyclic for implementation. For the Vario helicopter, as the flapping reacts instantaneously, the

longitudinal and lateral cyclic can be calculated using a closed-form linear solution given the desired

flapping angles ades1 and bdes1 generated by the H∞ controller, i.e.,

δlon = qτf − ades1 − ∂a1
∂u

u (86)

δlat = −pτf − bdes1 +
∂b1
∂v

v (87)

PID controllers have been widely applied due to their simplicity and effectiveness. In the considered

application, height and yaw motion are stabilized using the feedforward and PD controllers. For the inner

loop (roll and pitch) dynamics, two PD controllers are employed. Once control of inner loop is achieved,

PID controllers are tuned for position and velocity (outer loop) control with the integral of the error

signal eliminating undesired offsets.

The coupling effects between the inner loop and the outer loop of the helicopter dynamics make it

challenging to tune PID control gains to achieve satisfactory responses. Simulations suggest that PID

gains should be tuned separately. The strategy is to firstly tune control gains for altitude and yaw motion.
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Fig. 1. Horizontal gusts used to test H∞ controller

TABLE I

CONTROL GAINS FOR PID CONTROLLERS

kp ki kd

Altitude–PD 0.4 0 0.05

Yaw–PD 0.8 0 1.05

Roll–PD −0.9 0 −0.5

Pitch–PD 0.5 0 0.1

Longitudinal–PD −0.1 0 −0.1

Lateral–PID 0.05 0.005 0.2

Then, control of roll and pitch in the inner loop can be accomplished by repeating the same procedure.

Afterwards, control gains in the outer loop are tuned while control gains in the inner loop are frozen. In

the simulation, six PID controllers with the form

UPID = kp +
ki
s
+ kds (88)

are selected with five PD controllers for altitude, yaw, roll, pitch and longitudinal position. A PID

controller is used to remove offsets in lateral position.

To obtain the proper PID control gains, we empirically choose a group of gains which satisfy perfor-
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Fig. 2. Helicopter position response using PID controller and H∞ controller
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Fig. 3. Helicopter velocity response using PID controller and H∞ controller
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mance specifications such as settling time (< 40s) and steady-state error (< %5 of reference signal). The

integral of squared errors

Je = Jin + Jout =

∫ T

0
[e2z(t) + e2ψ(t) + e2θ(t) + e2ϕ(t)]dt+

∫ T

0
[e2x(t) + e2y(t)]dt (89)

provides a principle to choose the proper control gains. Here, Jin and Jout are integral of square errors

of inner and outer loops, separately. Symbols ez, eψ, eθ, eϕ, ex, ey are attitude and position errors. The

proper PID control gains are selected such that they can reduce Je greatly while exhibiting satisfactory

transient response. Table I lists the suitable gains for comparison purposes.

For the H∞ controller, exogenous disturbances are simulated using the Dryden gust model, as shown

in Fig. 1. It is assumed that δ = 0.2 and attenuation factor γh = 6. It takes 35.9s to compute the controller

weighting matrices.

The horizontal position responses are shown in Fig. 2. It is noticed that positions xb and yb settle

faster to the desired values (xb = 0, yb = 0) from initial positions (xb = 0.2m, yb = 0.2m) when the

H∞ controller is applied. The faster responses are the outcome of the rapid velocity responses depicted

in Fig. 3. It takes more than 25s for the PID controller to attenuate gust effect to an acceptable level, and

the oscillations in position cannot be damped completely. Control variables are shown in Fig. 4-5. The

longitudinal cyclic using the H∞ controller approaches that of the PID controller after 3s. It is indicated in

Fig. 5 that the H∞ controller results in less oscillations in the lateral cyclic. Also, longitudinal and lateral

cyclic are subject to larger transient response when the H∞ controller is used. Thus for implementation

of the H∞ controller, more energy is required during the transient phase.

Several quantitative specification indices are employed to evaluate performance of the PID and the

H∞ controller, which consist of the maximum error ξ, the standard deviation σ and the overshoot λ. The

index ξ is used to check the maximum error, σ aims to evaluate the deviation from the desired value, and

λ is to assess the transient responses when different controllers are employed. The definitions of these

specifications are listed as follows:

ξ = max
i

|X(i)−Xd| (90)

σ =

√√√√ 1

N

N∑
i=1

[X(i)−Xd]2 (91)

λ = |Xp −X∞
X∞

| (92)

Here, symbol X is the state to be evaluated (longitudinal position xb or lateral position yb), Xd desired

state, Xp peak value of state, and X∞ stable value of state. The number of states is denoted by N .
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Fig. 4. Longitudinal cyclic commands using PID controller and H∞ controller

To acquire a reliable performance evaluation of the PID and the H∞ controllers, numerous simulations

have been carried out for possible oncoming gusts, and performance of different controllers is illustrated

in Fig. 6 for longitudinal position and Fig. 7 for lateral position. Here, 100 simulations were implemented

with the sampling time of 0.5 ms, and desired positions were set to be (xb, yb) = (10, 10). It is seen that

both the maximum errors and standard deviation are much smaller when the H∞ controller is applied. The

proposed controller also keeps the overshoot at a small level and improves transient responses of helicopter

position. The H∞ controller employs optimal control gains by solving the Riccati equation as well as

control gains dealing with high-order dynamics of the helicopter. Thus, it exhibits consistently better

performance than the PID controller in a gusty environment. Another advantage of the H∞ controller

over the PID controller is the direct computation of control gains. It removes the need to compute control

gains for inner and outer loops separately on the trial and error basis, which takes much effort to find

the proper control gains.

B. Robustness Evaluation of the H∞ Controller

In this section, robustness of the H∞ controller is tested in consideration of servo dynamics and

pure lag effect. It has been identified experimentally that servo dynamics can be approximated using

the first-order transfer function with time constant τs [17; 18]. We tested the upper limit of τs that the
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Fig. 5. Lateral cyclic commands using PID controller and H∞ controller

H∞ controller can tolerate. For the Vario helicopter, simulations show that the upper limit turns out

to be 60ms. In practice, performance of the controller is also affected by synchronization issues. This

is essentially due to the fact that pure lags exist because sensor data arrive at different times. This is

caused by transmitting, decoding and waiting until the next control update cycle. Therefore, a group of

signals are required to wait for certain time in order to generate control commands in conjunction with

other signals of late arrival. Pure lags are unavoidable when a controller is to be applied in practice. The

simulations reveal that the H∞ controller can tolerate a pure lag up to 30ms. Although servo dynamics

and pure lag effect are not considered when designing the H∞ controller, the upper bounds from the

simulations provide a clue on the requirement of implementing our controller.

VI. CONCLUSION

In this paper, a disturbance attenuation position controller is developed for RUAVs operating in a gusty

environment. The horizontal positions are stabilized via a nonlinear state-feedback H∞ controller. Perfor-

mance of the proposed controller is evaluated through simulations in consideration of servo dynamics and

pure lags. Comparative studies show that our controller can settle positions of the RUAV more rapidly

than a PID controller in a gusty environment. Future work will focus on conducting flight tests of the

H∞ controller on the Vario helicopter.
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Fig. 6. Comparison of longitudinal positions xb using PID controller and H∞ controller
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TABLE II

PARAMETERS OF THE VARIO HELICOPTER

Parameters Value

amr: Main rotor blade 2D lift curve slope 5.7

Al: Lateral cyclic to main rotor pitch ratio −0.17 rad/ms

Bl: Longitudinal cyclic to main rotor pitch ratio −0.19 rad/ms

Cl: Longitudinal cyclic to flybar pitch ratio −1.58 rad/ms

Dl: Lateral cyclic to flybar pitch ratio −1.02 rad/ms

cmr: Main rotor blade chord 0.076 m

ctr: Tail rotor blade chord 0.043 m

CD0 : Profile drag coefficient 0.012

Dmx: Horizontal distance between main rotor and y−axis 0.036 m

Dmy: Sideways distance between main rotor and x−axis −0.0029 m

Dmz: Vertical distance between main rotor and horizontal plane −0.3321 m

Dtx: Horizontal distance between tail rotor and y−axis −1.4440 m

Dty: Sideways distance between tail rotor and x−axis −0.0029 m

Dtz: Vertical distance between tail rotor and horizontal plane 1.1379 m

Ixx: Moment of inertia about x−axis 12.3 kgm2

Iyy: Moment of inertia about y−axis 18.7 kgm2

Izz: Moment of inertia about z−axis 6.6 kgm2

Ixz: Product of inertia 0

kind: Induced power correction factor 1.2

Ks: Flybar to main rotor pitch mixing ratio 0.8

kβ : center-spring rotor stiffness 1165.7 N/m

Ma: All-up weight 27.738 kg

Nb: Number of main rotor blades 3

Rb: Main rotor radius 1.25 m

SX
fus: Fuselage equivalent flat plate area in x−direction −0.036 m2

SY
fus: Fuselage equivalent flat plate area in y−direction 0.0029 m2

SZ
fus: Fuselage equivalent flat plate area in z−direction −0.6379 m2

κb: Profile drag power correction factor 4.7

Ω: Main rotor angular velocity 89.01 rad/sec

Ωtr: Tail rotor angular velocity 481.55 rad/sec
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