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Looking for a needle in a haystack?

THE CHALLENGE:

SHOULD WE RELY ON SURVEILLANCE?
IF SO: WHEN, WHERE, HOW MUCH?
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Zeros can be.
Ambiguous
Excess

Naughty
or

Everywhere




PLANTbiosecurity




PLANTbiosecurity




PLANTbiosecurity




PLANTbiosecurity




i CRCPLANTbiosecurity

Sampling
process

— Observed Data

Bayesian hierarchical models
provide a natural framework

Exchangeability c¢f Independence

Royle & Dozario (2008, Hierarchical modelling & inference in Ecology)



The logical vs perceptual nuances of claims about pest status

AREA FREEDOM
LEGAL LOGICAL CHALLENGE




Maintaining trade agreements

The pest is not known to occur
The pest is known to occur
The pest is known not to occur

Which statement(s) are strong (in terms of evidence?)

Which statement corresponds best to “Area Freedom”?
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Defining what you (really) need ...
not necessarily what is easiest to compute

LOGICAL CHALLENGE
GETTING THE QUESTION RIGHT




A logical perspective

Assume you know pest status & the evidence you would get
OR For a given piece of evidence, the plausible pest status
‘ 10,100
m2
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A logical perspective

Assume you know pest status &

OR For a given piece of evidence,

the evidence you would get
the plausible pest status

X: What D: What
area is D: Of these area is X: Of this,
infested how many o howmuchis
(m?)? are Setectetil i festad (m?)?
detected?
[ ] —
Detect 5 Gettl ng 5 Infest
TPR=0.05 . . =
100 it right: Detect PRV
Infested g 8
TPR, TNR 3 Healthy
PPV, NPV N
10,1200 ’ 10,1200 —
m Detect 3 m 95 Sick
10,000 | No Detect
Healthy 9,997 miss 100% 9,997

TNR=.997 healthy

NPV~0.99
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A logical perspective

Assume you know pest status & the evidence you would get
OR For a given piece of evidence, the plausible pest status
X: What D: What
areais D: Of these area is X: Of this,
infested how many o howmuchis
(m?)? are sl e (m?)?
detected?
- )
Detect 5 Gettl ng 5 Infest
100 It wrong: | Detect
Infested : - 8 ( ‘
Miss 95 FNR, FPR 3 Healthy
FNR=0.95 PPE NPE PPE=3/8
—
10,1200 ’ 1o,1zoo —
m Detect 3 m 95 Sick
FPR=.003 NPE~0.01
10,000 | No Detect
Healthy 0997 miss 10,092
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Bayes Theorem:
A Bridge between logical perspectives

Pr(Y | X)Pr(X)

Bayes Theorem tells us: Pr(X 1Y) =
Y Pr(Y 1 X,)Pr(X,)
k

Thus: PPV= I'PR7w NPV= TNR(1-)

FPR(1-m)+TPRx FNRmx+TNR(1-m)

Equations: just another way of seeing  Expressing Bayes
the rules for the decision tree Theorem for Inference




The logical challenge here:
TNR or NPV

What does Area freedom mean?

TNR: When the pest is absent, 99.7%
How often is it not reported?

NPV: When the pest is not reported,
How often does that mean it’s absent? 99%

What errors can we make about Area freedom?

FNR: When the pest is present, 95%
How often is it not reported?

NPE: When the pest is not reported,
How often does that mean it’s really present? 1%
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Significance is the FNR of hypotheses

The chance of rejecting the null hypothesis when it is true

Invited Paper:

THE INSIGNIFICANCE OF STATISTICAL SIGNIFICANCE TESTING

DOUGLAS H. JOHNSON," U.S. Geological Survey, Biological Resources Division, Northern Prairie Wildlife Research Center,
Jamestown, ND 58401, USA

Abstract: Despite their wide use in scientific journals such as The Journal of Wildlife Management, statistical
hypothesis tests add very little value to the products of research. Indeed, they frequently confuse the inter-
pretation of data. This paper describes how statistical hypothesis tests are often viewed, and then contrasts
that interpretation with the correct one. I discuss the arbitrariness of P-values, conclusions that the null hy-
pothesis is true, power analysis, and distinctions between statistical and biological significance. Statistical hy-
pothesis testing, in which the null hypothesis about the properties of a population is almost always known a
priori to be false, is contrasted with scientific hypothesis testing, which examines a credible null hypothesis
about phenomena in nature. More meaningful alternatives are briefly outlined, including estimation and con-
fidence intervals for determining the importance of factors, decision theory for guiding actions in the face of
uncertainty, and Bayesian approaches to hypothesis testing and other statistical practices.

JOURNAL OF WILDLIFE MANAGEMENT 63(3):763-772
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Sifting the evidence—what’s wrong with significance tests?

Jonathan A C Sterne, George Davey Smith

The findings of medical research are often met with
considerable scepticism, even when they have appar-
ently come from studies with sound methodologies that
have been subjected to appropriate statistical analysis.
This is perhaps particularly the case with respect to
epidemiological findings that suggest that some aspect
of everyday life is bad for people. Indeed, one recent
popular history, the medical journalist James Le Fanu’s
The Rise and Fall of Modern Medicine, went so far as to
suggest that the solution to medicine’s ills would be the
closure of all departments of epidemiology.'

One contributory factor is that the medical litera-
ture shows a strong tendency to accentuate the
positive; positive outcomes are more likely to be
reported than null results”” By this means alone a
host of purely chance findings will be published, as by
conventional reasoning examining 20 associations will
produce one result that is “significant at P=0.05" by
chance alone. If only positive findings are published
then they may be mistakenly considered to be of
importance rather than being the necessary chance
results produced by the application of criteria for
meaningfulness based on statistical significance. As
many studies contain long questionnaires collecting
information on hundreds of variables, and measure a
wide range of potential outcomes, several false
positive findings are virtually guaranteed. The high
volume and often contradictory nature’ of medical
research findings, however, is not only because of
publication bias. A more fundamental problem is
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BM] VOLUME 322 27 JANUARY 2001 bmj.com

Summary points

P values, or significance levels, measure the
strength of the evidence against the null
hypothesis; the smaller the P value, the stronger
the evidence against the null hypothesis

An arbitrary division of results, into “significant”
or “non-significant” according to the P value, was
not the intention of the founders of statistical
inference

A P value of 0.05 need not provide strong
evidence against the null hypothesis, but it is
reasonable to say that P <0.001 does. In the
results sections of papers the precise P value
should be presented, without reference to
arbitrary thresholds

Results of medical research should not be
reported as “significant” or “non-significant” but
should be interpreted in the context of the type of
study and other available evidence. Bias or
confounding should always be considered for
findings with low P values

To stop the discrediting of medical research by
chance findings we need more powerful studies

The trouble
with
significance




When the data don’t tell you about some/all of the parameters
in the model...

Ask the experts!

MATHEMATICAL CHALLENGE
NOT ENOUGH DATA




Bayesian Learning
A focus on data ... the prior is a silent partner

7(01x) % f(x160)7,(0)

Parameter
estimates and
plausible range
of values

Expressing Bayes
T Data ) The.or.em for Baygsian
statistical modelling

(uncertainty
due to

\_ sampling) )
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Bayes & Price (1763, Philosophical Transactions of the Royal Society of London)



Bayesian Learning
A focus on data ... the prior is a silent partner

(@ lx)x f(x10)m,(0)
: WAR@ O

“Ignoring” the prior presumes it is (locally) uniform
(on the scale of the parameter in the likelihood).

Omitting this presumption, leads to the widespread
\_‘Inversion Fallacy” where Pr(A|B) is mistaken for Pr(B|A) /

‘ Uniform priors in Box & Tiao (1982, B Inf Stat Analysis);
CRCPLANTbiosecurity

Inversion fallacy in Low-Choy & Wilson (2009, IASE)



Bayesian Learning
A focus on updating ... the prior is an active partner
Implies investment in >1 study!

a(@lx)x f(x10)m,(0)

What the
experts think re:

Parameter
parameters

estimates
adjusted to “ A
related data Related
information
N /
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The prior has impact with small data

(@) (@)
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The prior even has impact with big data

P

MVN mixture model with 10 components (regions) and 8 GIS attributes
(variables), with varying weight on prior knowledge:
“vaguely” informative (left), informative (middle), no data (right)

i:CPLANTb‘“e‘”’“V Low-Choy et al (2012, CS-BSMA) and Tuyl et al (2008, The Amer. Statistician)



Experts can integrate what is relevant from the literature and
their own field experience, in similar situations.

Make explicit what the current state of knowledge is...

MATHEMATICAL CHALLENGE
STRUCTURING THE MODEL




Relative risk that
pests enter or
establish in each
zone

Surveillance
Detectability data

using each
detection
method

(trap or person) '\)
Detection

TPR,
FPR

‘ Barrett+2010
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Potential prevalence
(risk that pests enter
or establish)

4 )
Susceptibility Realized
prevalence
- / Surveillance
@ Detectability data
>,
&) -
S E (on-farm) !
O ©
s
(7]

TPR, _\)
FPR for Detection

specified search
Strategy

‘ Low-Choy, Hammond et al (2011) MODSIM
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for (k in 1:nblocks) {
for (j in 1:nsections[k]) {
# number of infested plants in jth section, kth block
x[j, k] ~ dbin(lambda[j, k], Nplants.per.section[k])
lambdal[j, k] ~ dbeta(a.lambda, b.lambda)

# prob that any plant in section is the infested one
pinfest[j, k] <- x[j,k] / Nplants.per.section[k]

# probability of detecting each infested plant
pdetect[j k] <- pinfest[j k]*delta[k] + (1-pinfest[j, k])*phi[k]

# number of detections depends on the number inspected
ylij k] ~ dbin( pdetect[j, k], ninspect[k])

7

# true infestation in each block

xsum[k] <- sum(x[1:nsections[k], k])

# detection depends on TPR and FPR
delta[k] ~ dbeta(a.delta, b.delta)
phi[k] ~ dbeta(a.phi, b.phi)

7

# missed infestations across blocks

xtot <- sum(xsum/[1:nblocks])
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How do you capture expert knowledge on &, ¢ into a statistical
distribution?

PSYCHOLOGICAL
CHALLENGE




Defining what is being elicited

(Factors considered to affect the\
Chance of Reporting
\

-

Defining the Chance of
Reporting (CoR)

I Evidence I Detection

resourcing

f Skill and

\»
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If suspicious evidence is detected in the
field, whether it is reported to the next
level depends on:

Detection: whether the evidence was
detected — yes or no

Compelling Evidence: depends on

— the level of evidence detected (mild
symptoms or devastation)

— the level of awareness and
networking to evaluate the evidence —
little or substantial

Skill: of the observer — inexperienced
(low) or trained (moderate).
— NB It was considered unlikely to have

highly skilled observers undertaking
general surveillance.




Level of infestation Skill of inspector Likelihood of reporting =
Reporting

Mild symptoms, low | Inexperienced inspector 0-5% (80% plausible),
awareness, and low with best estimate 3%
level of networking [ \joderately experienced inspector 70-90% (90% plausible),

with best estimate 80%

Intermediate symptoms Depends on threshold for spraying a
few paddocks affected, and whether
visitors with relevant knowledge.

Devastation of crops, | Moderately experienced inspector 80-100% (95% plausible),
high level of with best estimate 95%
awareness and high Inexperienced inspector 10-20% (60% plausible),
level of networking with best estimate 15%

High awareness + high level of networking
Devastation of crops

(I) O.|25 O|.5 O.|75 ‘II

ModerateT

Blue scenario
» spreads plausibility .
(shorter)

over wider range of
values (fatter)

Skill

» very distinct from green Inexperienced
scenario

I I I I |
000 025 050 075 1.00

Mild symptoms .
low awareness + low level of networking

N\
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Level of infestation

Skill of inspector

Mild symptoms, low
awareness, and low

Inexperienced inspector

0-5% (80% plausible),
with best estimate 3%

level of networking

Moderately experienced inspector

70-90% (90% plausible),
with best estimate 80%

Intermediate symptoms

Depends on threshold for spraying a
few paddocks affected, and whether
visitors with relevant knowledge.

Devastation of crops,
high level of

Moderately experienced inspector

80-100% (95% plausible),
with best estimate 95%

awareness and high
level of networking

Inexperienced inspector

10-20% (60% plausible),
with best estimate 15%

Likelihood of reporting Re po rti n g

Translation into

statistical Encoded
Reporting factors Elicited information information Beta(a,b)
Best Plausibility | Target Target
Evidence Skill estimate Range of range quantiles | cprob* a b
Mild symptomes, Low 3% 0-5% 80% 0.1%, 5% .01-.81 1.66| 47.30
little aware and Moderate 80% 70-90% 90% 70%, 90% 05-95 | 3220| 7.84
networked
Devastation, highly Low 15% 10-20% 60% 10%, 20% .10-.70 6.40| 31.60
aware and Moderate 95% |  80-100% 95% 80%, 99.9% .04-.99 16.70 | 1.32
networked
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Level of infestation

Skill of inspector

Likelihood of reporting

Mild symptoms, low

awareness, and low
level of networking

Inexperienced inspector | 0-5% (80% sure), with best estimate 3%

Moderately experienced | 70-90% (90% sure), with best estimate 80%

inspector

Devastation of crops,
high level of awareness
and high level of
networking

Moderately experienced | 80-100% (95% sure), with best estimate 95%

inspector

Inexperienced inspector | 10-20% (60% sure), with best estimate 15%

1.0

Encoded plausibility
04 0.6 0.8
|

0.2

0.0

CRCPLANTbiosecurity

Reporting

inexperienced observer, little evidence

— inexperienced observer, substantial evidence
trained observer, little evidence

— trained observer, substantial evidence

elicited plausible lower and upper bound
elicited best estimate
encoded mode




The mathematics
Use a Bayesian hierarchical model for
surveillance given the pest process

The logic
A Bayesian posterior probability gives
NPV for Area Freedom

The psychology
Encoding expert knowledge & uncertainty
to inform subjective priors in
the Bayesian framework



Combining expert knowledge

Albert |, Donnet S, Guihenneuc-Joyaux C, Low-Choy S, Mengersen K, Rousseau J (2012). Combining expert opinions in prior
elicitation, with discussion, Bayesian Analysis, 7(3):5602—532, http://wwwquteduau/e-prints

Encoding expert knowledge, methods & software

Fisher R, O’Leary R, Low-Choy S, Mengersen K, Caley J (2012). A software tool for elicitation of expert knowledge about species
richness or similar counts, Environmental Modelling & Software, 3:1-14

Johnson S, Low-Choy S, Mengersen K (2012) “Integrating Bayesian networks and Geographic information systems”, Integ Environ
Assess Mgmt, 8(3): 473-9.

Low Choy S, Murray J, James A, Mengersen K (2010) Indirect elicitation from ecological experts: from methods and software to
habitat modelling and rock-wallabies in O’Hagan A, West M (eds) Oxford Handbook Appl. Bayesian Analysis, OUP:UK, pp 511-544.
Low-Choy S, James A, Murray J, Mengersen K (2012) Elicitator: a user-friendly, interactive tool to support the elicitation of expert
knowledge. In Perera AH, Drew CA, Johnson CJ (eds) Expert Knowledge & Its Applications in Landscape Ecology. Springer, NY.
Low-Choy S (2013b). Priors: Silent or active partners in Bayesian inference? In C. Alston, Mengersen, K, and Pettitt, A. N, editors,
Case Studies in Bayesian Statistical Modelling & Analysis, pp30-65. John Wiley & Sons, Inc: London.

Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, McBride M, Mengersen K. (2012) Eliciting Expert Knowledge in
Conservation Science, Conservation Biology, 26(1): 29-38.

O’Leary R, Fisher R, Low-Choy S, Mengersen K, Caley MJ (2011) What is an expert? In Chan, F. et al (eds) Proceedings
MODSIM2011, wwwmssanzorgau/modsim2011/e9/oleary.pdf

Search effort and detectability

Falk M, O’Leary RA, Nayak MK, Collins PJ, Low-Choy S (submitted) A Bayesian Hurdle Model for Analysis of an Insect Resistance
Monitoring Database.

Low-Choy S, Daglish G, Ridley A, Burrill P. (submitted) “Bayesian adjustment of sampling biases for small intensive surveys on farm
management practices relevant to biosecurity”

Low-Choy S, Hammond N, Penrose L, Anderson C, Taylor S (2011). In Chan et al (eds) Proceedings MODSIM 2011,
www.mssanz.org.au/modsim2011/E16/low_choy.pdf

Low-Choy S, Slattery J, Falk M, Taylor S. (2012b). Eliciting expert knowledge on general surveillance: parameterizing design and
evaluation of general surveillance for early detection of exemplar pests. Part 1: Methodology. Technical report, CRNNPB

Low-Choy S (submitted). Looking for plant pests: when is 600 samples enough? Quantitative methods for Designing Surveillance in
Plant Biosecurity
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What are the benefits of a Bayesian approach?

SOME RESULTS




Surveillance is like Battleships

You need more effort (for field-detection) of ships in a bigger area

o
23 / £ N= 300
0 0
A 8 _ — N=600
T ® o — N=1200
Qo o ©
IRy S
S - S o |
o s
oN——T——T T T T

00 02 04 06 08 1.0 0.00 0.04 0.08
TPR & FPR X'

Figure : First sampling occasion. Effect of changing the number of blocks
searched, with no detections, on detectability parameters.
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Surveillance is like Battleships

We learn by looking, and we don’t learn by not looking

2 Section number in Block 1: 200 plants/section
5 - = 1: detected nothing §: not searched
T o_| 2: not searched = T:not searched
13 - 3: not searched = 8: not searched
£ :_ 4: not searched = 9 not searched
& S: not searched =~ 10: not searched
o - ==
T T T T
0.06 0.08
2 Section number in Block 2 : 100 plants/section
5 - = 1: detected nothing 8: not searched
."_5 e | 2: detected nothing = 7: not searched
Qo 3: not searchc—d ~ 8. not searched
2 4 4: not searche = 8. not searched
~ & S: not =arch-—" =~ 10: not searched
o —
T T
0.06 0.08
2
- Section number in Block 3 : S0 plants/section
i = 1: detected nothing 8. nots ~=arch=o
T 24 2: detected nothing = 7: not searche
‘g’ = 3: detected nothing = 8&: not searche
s 4: detected nothing = 9: nctsearchea
P S: not searched = 10: not searched
T T T
0.00 0.02 0.0< 0.06 0.08
24
:" Section number in Block 4 : 50 plants/section
"'5_ b5 - 1. detected nothing
5 2+
7]
(=]
2 &

\~

CRCPLANTbiosecurity



Surveillance is like Battleships

but ships grow, and our knowledge grows

Plausibility

o
AN—
o

(o]
~—
o

o
~—
o

0.|00

LI Time 1
B Time?2

10 15 20 25

30

After 4 weeks, typical scenario (40 blocks searched
 the mean infested #plants doubles (5.97—12.08)
*05% sure infested #plants >doubles (17—46)

Can harness Bayesian cycle of learning to adapt
as information gained & knowledge refined.
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Surveillance is like Battleships

Looking harder is more effective

Effective threshold on number of undetected infested plants, for moderate skill inspectors

0 1 2 3 4 5 6 8 10 15 20 30 40 50 60
I l l l l l l l l l I I l l l

0.99
0.95

0.90
0.80 +
0.70
0.60 —
0.50 — Sampling intensity

0404 . —— 1in 10 sampling
1in 5 sampling

redibility: effective area freedom for zero detections

0.30 & 1in 3 sampling
D20 © — 1in 2 sampling

@ — complete sampling
0.10
0.00
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Sampling performance

6f. Sample 600 of 9K plants

1.0

L] 0 = . = = e = e s -
B H Performance indicators
c ® O sensitivity (TPR = 1-FNR)
Vo il O specificity (TNR = 1-FPR) B
5 O positive predictive value (PPV)
g B negative predictive value (NPV)
»n ©_| -
D 2 7a. Sample 600 of 3K
o
= | - - - - - - - plants- |
5 5 . = P
o © Performance indicators
3 H - O sensitivity (TPR = 1-FNR)
3 ™~ HH H H o o] H O specificity (TNR = 1-FPR) —
0o o 5 O positive predictive value (PPV)
H = H negative predictive value (NPV)
B 3§ o] n
o_| 5 O
o —
| | I 1 I S
o 1 2 3 4 54 HH
: 5 O] B
Threshold for effective pi % H H H H H H H H H
8 i
o | -
0O o H
o_| H | u] O - - L
o

| | | | | | | | | | |
0 1 2 3 - S 6 7 8 9 10

Threshold for effective presence vs area freedom
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