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Bayesian modelling of surveillance 
and proof of freedom 

The mathematical, logical & psychological challenges 



THE CHALLENGE: 
SHOULD WE RELY ON SURVEILLANCE?  
IF SO: WHEN, WHERE, HOW MUCH? 

Looking for a needle in a haystack? 
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Dec 2010 

Zeros can be: 
Ambiguous 

Excess 
Naughty 

or 
Everywhere 
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Sampling + Biological  
process       process  

  
→ Observed Data 

 
Bayesian hierarchical models 
provide a natural framework 

 
Exchangeability cf Independence 

 
Royle & Dozario (2008, Hierarchical modelling & inference in Ecology) 



AREA FREEDOM 
LEGAL LOGICAL CHALLENGE 

The logical vs perceptual nuances of claims about pest status  
 



Maintaining trade agreements 

The pest is not known to occur 
The pest is known to occur 

The pest is known not to occur 
 

Which statement(s) are weak? (In terms of evidence?) 
Which statement(s) are strong (in terms of evidence?) 

 
Which statement corresponds best to “Area Freedom”? 



LOGICAL CHALLENGE 
GETTING THE QUESTION RIGHT 

Defining what you (really) need …  
not necessarily what is easiest to compute 
 



A logical perspective 
Assume you know pest status & deduce the evidence you would get 

OR For a given piece of evidence, infer the plausible pest status 
D: Of these 
how many 

are 
detected? 

X: What 
area is 

infested 
(m2)? 

10,000  
Healthy 

100 
Infested 

Detect 5 

 
Miss 95 

 
Detect 3 

 
9,997 miss 

 

10,100 
m2 

X: Of this, 
how much is 
infested (m2)? 

D: What 
area is 

detected? 
 

No Detect  
10,092 

Detect 
8 

5 Infest 

 
3 Healthy 

 
95 

Infested 
9,997 

healthy 

 

10,100 
m2 



A logical perspective 
Assume you know pest status & deduce the evidence you would get 

OR For a given piece of evidence, infer the plausible pest status 
D: Of these 
how many 

are 
detected? 

X: What 
area is 

infested 
(m2)? 

10,000  
Healthy 

100 
Infested 

Detect 5 
TPR=0.05  
Miss 95 

 
Detect 3 

 
9,997 miss 
TNR=.997 

10,100 
m2 

X: Of this, 
how much is 
infested (m2)? 

D: What 
area is 

detected? 
 

No Detect  
10,092 

Detect 
8 

5 Infest 
PPV=5/8 

 3 Healthy 

 
95 Sick 

9,997 
healthy 

NPV~0.99 

10,100 
m2 

Getting 
it right: 
TPR, TNR 
PPV, NPV 



A logical perspective 
Assume you know pest status & deduce the evidence you would get 

OR For a given piece of evidence, infer the plausible pest status 
D: Of these 
how many 

are 
detected? 

X: What 
area is 

infested 
(m2)? 

10,000  
Healthy 

100 
Infested 

Detect 5 
TPR=0.05  
Miss 95 

FNR=0.95 

Detect 3 
FPR=.003 
9,997 miss 
TNR=.997 

10,100 
m2 

X: Of this, 
how much is 
infested (m2)? 

D: What 
area is 

detected? 
 

No Detect  
10,092 

Detect 
8 

5 Infest 
PPV=5/8 

 3 Healthy 
PPE=3/8 
95 Sick 

NPE~0.01 

9,997 
healthy 

NPV~0.99 

10,100 
m2 

Getting 
it wrong: 

FNR, FPR 
PPE, NPE 



Bayes Theorem: 
A Bridge between logical perspectives 

Bayes Theorem tells us:  Pr(X |Y ) = Pr(Y | X)Pr(X)
Pr(Y | Xk )Pr(Xk )

k
∑

Thus: PPV= TPRπ
FPR(1−π )+TPRπ

NPV= TNR(1−π )
FNRπ +TNR(1−π )

Equations: just another way of seeing 
the rules for the decision tree 

Expressing Bayes 
Theorem for Inference 



The logical challenge here: 
TNR or NPV 

What does Area freedom mean? 
TNR: When the pest is absent,  

 How often is it not reported? 
NPV: When the pest is not reported,  

 How often does that mean it’s absent? 
 
What errors can we make about Area freedom? 
FNR: When the pest is present, 

 How often is it not reported? 
NPE: When the pest is not reported, 

 How often does that mean it’s really present? 

 
99.7% 
 
99% 

 
95% 
 
1% 



Significance is the FNR of hypotheses 
The chance of rejecting the null hypothesis when it is true 

Invited Paper: 

THE INSIGNIFICANCE OF STATISTICAL SIGNIFICANCE TESTING 
DOUGLAS H. JOHNSON,' U.S. Geological Survey, Biological Resources Division, Northern Prairie Wildlife Research Center, 

Jarnestown, ND 58401, USA 

Abstract: Despite their wide use in scientific journals such as The Jotirnul of\Vildlfe ,\/lanagernent, statistical 
hypothesis tests add very little value to the products of research. Indeed, they frequently confuse the inter- 
pretation of data. This paper describes how statistical hypothesis tests are often viewed, and then contrasts 
that interpretation with the correct one. I discuss the arbitrariness of P-values, conclusions that the null hy- 
pothesis is true, power analysis, and distinctions between statistical and biological significance. Statistical hy- 
pothesis testing, in which the null hypothesis about the properties of a population is almost always known a 
priori to be false, is contrasted with scientific hypothesis testing, which examines a credible null hypothesis 
about phenomena in nature. More meaningful alternatives are briefly outlined, including estimation and con- 
fidence intewals for determining the importance of factors, decision theory for guiding actions in the face of 
uncertain$, and Bayesian approaches to hypothesis testing and other statistical practices. 

JOURNAL OF WILDLIFE MANAGEMENT 63(3):763-772 

Key words: Bayesian approaches, confidence interval, null h!pothesis, P-value, power analysis, scientific h!-- 
pothesis test, statistical hypothesis test. 

Statistical testing of hypotheses in the wildlife WHAT IS STATISTICAL HYPOTHESIS 
field has increased dramatically in recent years. TESTING? 
Even more recent is an emphasis on power Four basic steps constitute statistical hypoth- analysis associated with hypothesis testing (The 
Wildlife Society 1995). While this trend was oc- esis testing. First, one develops a null hypothesis 

curring, statistical hypothesis testing was being about some phenomenon or parameter. This null 

deemphasized in some other disciplines. As an hypothesis is generally the opposite of the re-

example, the American Psychological Associa- search hypothesis, whch is what the investigator 
tion seriously debated a ban on presenting re- truly believes and wants to demonstrate. Re- 
sults of such tests in the Association's scientific search hypotheses may be generated either in- 
journals. That proposal was rejected, not be- ductively, from a study of observations already 
cause it lacked merit, but due to its appearance made, or deductively, deriving from theory. Next, 
of censorship (Meehl 1997). data are collected that bear on the issue, typically 

The issue was highlighted at the 1998 annual by an experiment or by sampling. (Null hypoth- 
conference of The Wildlife Society, in Buffalo, eses often are developed after the data are in 
New York, where the Biometrics Working hand and have been rummaged through, but 
Group sponsored a half-day symposium on that's another topic.) A statistical test of the null 
Evaluating the Role of Hypothesis Testing- hypothesis then is conducted, which generates a 
Power Analvsis in Wildlife Science. S~eakers at P-value. Finally, the question of what that value 
that session who addressed statistical hypothesis means relative to the null hypothesis is consid- 
testing were virtually unanimous in their opin- ered. Several interpretations of P often are made. 
ion that the tool was overused, misused, and Sometimes P is viewed as the probability that 
often inappropriate. the results obtained were due to chance. Small 

My objectives are to briefly describe statisti- values are taken to indicate that the results were 
cal hypothesis testing, discuss common but in- not jnst a happenstance. A large value of P, say 
correct interpretations of resulting P-values, for a test that (J. = 0, would suggest that the 
mention some shortcomings of hypothesis test- mean a actually recorded was due to chance, 
ing, indicate why hypothesis testing is conduct- and p. could be assumed to be zero (Schmidt 
ed, and outline some alternatives. and Hunter 1997). 

Other times, 1-P is considered the reliability 
E-mail: douglaskjohnson@nbs.gov of the result; that is, the probability of getting- 



The trouble 
with  

significance 

Sifting the evidence—what’s wrong with significance tests?
Jonathan A C Sterne, George Davey Smith

The findings of medical research are often met with
considerable scepticism, even when they have appar-
ently come from studies with sound methodologies that
have been subjected to appropriate statistical analysis.
This is perhaps particularly the case with respect to
epidemiological findings that suggest that some aspect
of everyday life is bad for people. Indeed, one recent
popular history, the medical journalist James Le Fanu’s
The Rise and Fall of Modern Medicine, went so far as to
suggest that the solution to medicine’s ills would be the
closure of all departments of epidemiology.1

One contributory factor is that the medical litera-
ture shows a strong tendency to accentuate the
positive; positive outcomes are more likely to be
reported than null results.2–4 By this means alone a
host of purely chance findings will be published, as by
conventional reasoning examining 20 associations will
produce one result that is “significant at P = 0.05” by
chance alone. If only positive findings are published
then they may be mistakenly considered to be of
importance rather than being the necessary chance
results produced by the application of criteria for
meaningfulness based on statistical significance. As
many studies contain long questionnaires collecting
information on hundreds of variables, and measure a
wide range of potential outcomes, several false
positive findings are virtually guaranteed. The high
volume and often contradictory nature5 of medical
research findings, however, is not only because of
publication bias. A more fundamental problem is
the widespread misunderstanding of the nature of
statistical significance.

In this paper we consider how the practice of
significance testing emerged; an arbitrary division of
results as “significant” or “non-significant” (according
to the commonly used threshold of P = 0.05) was not
the intention of the founders of statistical inference. P
values need to be much smaller than 0.05 before they
can be considered to provide strong evidence against
the null hypothesis; this implies that more powerful
studies are needed. Reporting of medical research
should continue to move from the idea that results are
significant or non-significant to the interpretation of
findings in the context of the type of study and other
available evidence. Editors of medical journals are in
an excellent position to encourage such changes, and
we conclude with proposed guidelines for reporting
and interpretation.

P values and significance testing—a brief
history
The confusion that exists in today’s practice of hypoth-
esis testing dates back to a controversy that raged
between the founders of statistical inference more than
60 years ago.6–8 The idea of significance testing was
introduced by R A Fisher. Suppose we want to evaluate
whether a new drug improves survival after myocardial
infarction. We study a group of patients treated with
the new drug and a comparable group treated with

placebo and find that mortality in the group treated
with the new drug is half that in the group treated with
placebo. This is encouraging but could it be a chance
finding? We examine the question by calculating a P
value: the probability of getting at least a twofold
difference in survival rates if the drug really has no
effect on survival.

Fisher saw the P value as an index measuring the
strength of evidence against the null hypothesis (in our
example, the hypothesis that the drug does not affect
survival rates). He advocated P < 0.05 (5% significance)
as a standard level for concluding that there is evidence
against the hypothesis tested, though not as an absolute
rule. “If P is between 0.1 and 0.9 there is certainly no rea-
son to suspect the hypothesis tested. If it is below 0.02 it
is strongly indicated that the hypothesis fails to account
for the whole of the facts. We shall not often be astray if
we draw a conventional line at 0.05. . . .”9 Importantly,
Fisher argued strongly that interpretation of the P value
was ultimately for the researcher. For example, a P value
of around 0.05 might lead to neither belief nor disbelief
in the null hypothesis but to a decision to perform
another experiment.

Dislike of the subjective interpretation inherent in
this approach led Neyman and Pearson to propose
what they called “hypothesis tests,” which were
designed to replace the subjective view of the strength
of evidence against the null hypothesis provided by the

Summary points

P values, or significance levels, measure the
strength of the evidence against the null
hypothesis; the smaller the P value, the stronger
the evidence against the null hypothesis

An arbitrary division of results, into “significant”
or “non-significant” according to the P value, was
not the intention of the founders of statistical
inference

A P value of 0.05 need not provide strong
evidence against the null hypothesis, but it is
reasonable to say that P < 0.001 does. In the
results sections of papers the precise P value
should be presented, without reference to
arbitrary thresholds

Results of medical research should not be
reported as “significant” or “non-significant” but
should be interpreted in the context of the type of
study and other available evidence. Bias or
confounding should always be considered for
findings with low P values

To stop the discrediting of medical research by
chance findings we need more powerful studies

Education and debate

Department of
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Jonathan A C
Sterne
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medical statistics
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MATHEMATICAL CHALLENGE 
NOT ENOUGH DATA 

When the data don’t tell you about some/all of the parameters 
in the model… 
Ask the experts! 
 



Bayesian Learning 
A focus on data … the prior is a silent partner 

π (θ | x)∝ f (x |θ )π 0 (θ )

Data 
(uncertainty 

due to 
sampling) 

Parameter 
estimates and 

plausible range 
of values 

Bayes & Price (1763, Philosophical Transactions of the Royal Society of London) 

Expressing Bayes 
Theorem for Bayesian 
statistical modelling 



Bayesian Learning 
A focus on data … the prior is a silent partner 

π (θ | x)∝ f (x |θ )π 0 (θ )

WARNING 
“Ignoring” the prior presumes it is (locally) uniform  

(on the scale of the parameter in the likelihood). 
 

Omitting this presumption, leads to the widespread 
“Inversion Fallacy” where Pr(A|B) is mistaken for Pr(B|A) 

Uniform priors in Box & Tiao (1982, B Inf Stat Analysis);  
Inversion fallacy in Low-Choy & Wilson (2009, IASE) 



Bayesian Learning 
A focus on updating … the prior is an active partner 

Implies investment in >1 study! 

π (θ | x)∝ f (x |θ )π 0 (θ )

What the 
experts think re: 

parameters  

Related 
information 

Parameter 
estimates 

adjusted to 
related data 

Low Choy et al (2012, CS-BSMA) 



The prior has impact with small data 
Priors: Silent or Active Partners of Bayesian Inference? 51
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Figure 3.5 Case study 2. Reference priors for probabilities (left), and the corresponding
posteriors (right) when observed data comprise zero detections from 100 independent
samples.

interpreted as a sampling weight for presence:

1

3
π

/(
1

3
π +

9

10
(1− π)

)
=

10π

27− 17π
.

This simple model shows that the prior estimate of prevalence π will always exceed
the posterior estimate that takes into account zero detections (Fig. 3.4). For example,
a prior estimate of 60% prevalence is scaled down to an estimate of just under 40%
when nothing is detected.

Impact of objective priors when data comprise no detections.

Several priors (Tuyl et al. 2008) are shown on the left of Fig. 3.5. The impact of
these priors on the posterior is compared, when the observed data comprise zero
detections from 100 independent samples (right, Fig. 3.5). The Bayes-Laplace prior
and Zellner’s maximal information prior provide nearly identical posteriors, on the
range of θ ∈ [0, 0.10], despite clear differences in the priors. With no detections, the
Haldane and Bayes-Laplace priors place highest posterior density on a probability
of zero, whereas the Jeffreys prior leads to a conclusion that the most likely value is
0.0098, which is very close to 1 in 100. Under Jeffreys prior, there is zero posterior
chance assigned to 0%, and higher posterior plausibility assigned to values over 4%,
with the 95% highest probability density interval extending from 5 in 10,000 to 4.53
in 100.

3.4.3 Mixture model likelihood: Bioregionalisation
Delineation of ecoregions can be viewed as an unsupervised classification problem.
Prior information can be incorporated through a Bayesian model-based approach,

For more details: Low-Choy et al (2012, CS-BSMA) and Tuyl et al (2008, Amer. Statistician) 

Binomial with zero detections in 100 samples 



The prior even has impact with big data 

  Low-Choy et al (2012, CS-BSMA) and Tuyl et al (2008, The Amer. Statistician) 

MVN mixture model with 10 components (regions) and 8 GIS attributes 
(variables), with varying weight on prior knowledge:  

“vaguely” informative (left), informative (middle), no data (right)   



MATHEMATICAL CHALLENGE 
STRUCTURING THE MODEL 

Experts can integrate what is relevant from the literature and 
their own field experience, in similar situations. 
 
Make explicit what the current state of knowledge is… 
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pests enter or 

establish in each 
zone 

Detection 

Surveillance 
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method  
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TPR, 
FPR 

Barrett+2010 



Susceptibility 

Potential prevalence  
(risk that pests enter 
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Low-Choy, Hammond et al (2011) MODSIM 
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 for (k in 1:nblocks) { 
  for (j in 1:nsections[k]) { 
   # number of infested plants in jth section, kth block 
   x[j,k] ~ dbin(lambda[j,k], Nplants.per.section[k]) 
   lambda[j,k] ~ dbeta(a.lambda, b.lambda) 

 
   # prob that any plant in section is the infested one 
   pinfest[j,k] <- x[j,k] / Nplants.per.section[k] 

 
   # probability of detecting each infested plant 
   pdetect[j,k] <- pinfest[j,k]*delta[k] + (1-pinfest[j,k])*phi[k] 

 
   # number of detections depends on the number inspected 
   y[j,k] ~ dbin( pdetect[j,k], ninspect[k]) 
  } 
  # true infestation in each block 
  xsum[k] <- sum(x[1:nsections[k],k]) 

 
  # detection depends on TPR and FPR 
  delta[k] ~ dbeta(a.delta, b.delta) 
  phi[k] ~ dbeta(a.phi, b.phi) 
 } 
 # missed infestations across blocks 
 xtot <- sum(xsum[1:nblocks]) 



PSYCHOLOGICAL 
CHALLENGE 

How do you capture expert knowledge on δ, φ into a statistical 
distribution? 
 



Defining what is being elicited 

Factors considered to affect the 
Chance of Reporting 

D
et
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Defining the Chance of 
Reporting (CoR) 

Pr(Report | Detection, Compelling 
evidence,  

Skill of observer) 
Probability that  

suspicious evidence,  
consistent with RWA damage,  

is reported;  
given whether it is detected, how 
compelling it is (to the observer & 
their networks), and the skill of the 

observer. 

If suspicious evidence is detected in the 
field, whether it is reported to the next 
level depends on: 
Detection: whether the evidence was 

detected – yes or no 
Compelling Evidence: depends on 

–  the level of evidence detected (mild 
symptoms or devastation)  

–  the level of awareness and 
networking to evaluate the evidence – 
little or substantial  

Skill: of the observer – inexperienced 
(low) or trained (moderate).  

–  NB It was considered unlikely to have 
highly skilled observers undertaking 
general surveillance. 
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Reporting Level	  of	  infesta-on	   Skill	  of	  inspector	   Likelihood	  of	  repor-ng	  
Mild	  symptoms,	  low	  
awareness,	  and	  low	  
level	  of	  networking	  

Inexperienced	  inspector	   0-‐5%	  (80%	  plausible),	  	  
with	  best	  esCmate	  3%	  

Moderately	  experienced	  inspector	   70-‐90%	  (90%	  plausible),	  	  
with	  best	  esCmate	  80%	  

Intermediate	  symptoms	   Depends	  on	  threshold	  for	  spraying	  a	  
few	  paddocks	  affected,	  and	  whether	  
visitors	  with	  relevant	  knowledge.	  

DevastaCon	  of	  crops,	  
high	  level	  of	  
awareness	  and	  high	  
level	  of	  networking	  

Moderately	  experienced	  inspector	   80-‐100%	  (95%	  plausible),	  	  
with	  best	  esCmate	  95%	  

Inexperienced	  inspector	   10-‐20%	  (60%	  plausible),	  	  
with	  best	  esCmate	  15%	  

32 

Pr(inspector reports to the next level given confidence, skills and detected)

S
ki

ll

Inexperienced

Moderate

0.00 0.25 0.50 0.75 1.00
Mild symptoms

low awareness + low level of networking

0 0.25 0.5 0.75 1
Devastation of crops

High awareness + high level of networking

Pr(observer reports evidence of a pest infestation, given whether detected, level of evidence, skill)  

Blue scenario 
•  spreads plausibility 

(shorter)  
over wider range of 
values (fatter) 

•  very distinct from green 
scenario 



Reporting 

33 

Repor-ng	  factors	   Elicited	  informa-on	  

Transla-on	  into	  
sta-s-cal	  
informa-on	  

Encoded	  
Beta(a,b)	  

Evidence	   Skill	  
Best	  

esCmate	   Range	  
Plausibility	  
of	  range	  

Target	  
quanCles	  

Target	  
cprob*	   a	   b	  

Mild	  symptoms,	  
liUle	  aware	  and	  
networked	  

Low	   3%	   0-‐5%	   80%	   0.1%,	  5%	   .01-‐.81	   1.66	   47.30	  
Moderate	   80%	   70-‐90%	   90%	   70%,	  90%	   .05-‐.95	   32.20	   7.84	  

DevastaCon,	  highly	  
aware	  and	  
networked	  

Low	   15%	   10-‐20%	   60%	   10%,	  20%	   .10-‐.70	   6.40	   31.60	  
Moderate	   95%	   80-‐100%	   95%	   80%,	  99.9%	   .04-‐.99	   16.70	   1.32	  

Level	  of	  infesta-on	   Skill	  of	  inspector	   Likelihood	  of	  repor-ng	  
Mild	  symptoms,	  low	  
awareness,	  and	  low	  
level	  of	  networking	  

Inexperienced	  inspector	   0-‐5%	  (80%	  plausible),	  	  
with	  best	  esCmate	  3%	  

Moderately	  experienced	  inspector	   70-‐90%	  (90%	  plausible),	  	  
with	  best	  esCmate	  80%	  

Intermediate	  symptoms	   Depends	  on	  threshold	  for	  spraying	  a	  
few	  paddocks	  affected,	  and	  whether	  
visitors	  with	  relevant	  knowledge.	  

DevastaCon	  of	  crops,	  
high	  level	  of	  
awareness	  and	  high	  
level	  of	  networking	  

Moderately	  experienced	  inspector	   80-‐100%	  (95%	  plausible),	  	  
with	  best	  esCmate	  95%	  

Inexperienced	  inspector	   10-‐20%	  (60%	  plausible),	  	  
with	  best	  esCmate	  15%	  



Reporting Level	  of	  infesta-on	   Skill	  of	  inspector	   Likelihood	  of	  repor-ng	  
Mild	  symptoms,	  low	  
awareness,	  and	  low	  
level	  of	  networking	  

Inexperienced	  inspector	   0-‐5%	  (80%	  sure),	  with	  best	  esCmate	  3%	  

Moderately	  experienced	  
inspector	  

70-‐90%	  (90%	  sure),	  with	  best	  esCmate	  80%	  

DevastaCon	  of	  crops,	  
high	  level	  of	  awareness	  
and	  high	  level	  of	  
networking	  

Moderately	  experienced	  
inspector	  

80-‐100%	  (95%	  sure),	  with	  best	  esCmate	  95%	  

Inexperienced	  inspector	   10-‐20%	  (60%	  sure),	  with	  best	  esCmate	  15%	  
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myelectricsheep “Detail of Mark Rothko, Untitled, 1964” downloaded from 
Flickr 

The mathematics 
Use a Bayesian hierarchical model for 
surveillance given the pest process  

 
The logic 

A Bayesian posterior probability gives  
NPV for Area Freedom 

 
The psychology 

Encoding expert knowledge & uncertainty 
to inform subjective priors in  

the Bayesian framework  
 
 



Combining expert knowledge 
Albert I, Donnet S, Guihenneuc-Joyaux C, Low-Choy S, Mengersen K, Rousseau J (2012). Combining expert opinions in prior 
elicitation, with discussion, Bayesian Analysis, 7(3):502–532, http://wwwquteduau/e-prints  
Encoding expert knowledge, methods & software 
Fisher R, O’Leary R, Low-Choy S, Mengersen K, Caley J (2012). A software tool for elicitation of expert knowledge about species 
richness or similar counts, Environmental Modelling & Software, 3:1-14 
Johnson S, Low-Choy S, Mengersen K (2012) “Integrating Bayesian networks and Geographic information systems”, Integ Environ 
Assess Mgmt, 8(3): 473-9. 
Low Choy S, Murray J, James A, Mengersen K (2010) Indirect elicitation from ecological experts: from methods and software to 
habitat modelling and rock-wallabies in O’Hagan A, West M (eds) Oxford Handbook Appl. Bayesian Analysis, OUP:UK, pp 511-544. 
Low-Choy S, James A, Murray J, Mengersen K (2012) Elicitator: a user-friendly, interactive tool to support the elicitation of expert 
knowledge. In Perera AH, Drew CA, Johnson CJ (eds) Expert Knowledge & Its Applications in Landscape Ecology. Springer, NY. 
Low-Choy S (2013b). Priors: Silent or active partners in Bayesian inference? In C. Alston, Mengersen, K, and Pettitt, A. N, editors, 
Case Studies in Bayesian Statistical Modelling & Analysis, pp30–65. John Wiley & Sons, Inc: London. 
Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, McBride M, Mengersen K. (2012) Eliciting Expert Knowledge in 
Conservation Science, Conservation Biology, 26(1): 29-38. 
O’Leary R, Fisher R, Low-Choy S, Mengersen K, Caley MJ (2011) What is an expert?  In Chan, F. et al (eds) Proceedings 
MODSIM2011, wwwmssanzorgau/modsim2011/e9/oleary.pdf  
Search effort and detectability 
Falk M, O’Leary RA, Nayak MK, Collins PJ, Low-Choy S (submitted) A Bayesian Hurdle Model for Analysis of an Insect Resistance 
Monitoring Database. 
Low-Choy S, Daglish G, Ridley A, Burrill P. (submitted)  “Bayesian adjustment of sampling biases for small intensive surveys on farm 
management practices relevant to biosecurity” 
Low-Choy S, Hammond N, Penrose L, Anderson C, Taylor S (2011). In Chan et al (eds) Proceedings MODSIM 2011, 
www.mssanz.org.au/modsim2011/E16/low_choy.pdf  
Low-Choy S, Slattery J, Falk M, Taylor S. (2012b). Eliciting expert knowledge on general surveillance: parameterizing design and 
evaluation of general surveillance for early detection of exemplar pests. Part 1: Methodology. Technical report, CRNNPB 
Low-Choy S (submitted). Looking for plant pests: when is 600 samples enough? Quantitative methods for Designing Surveillance in 
Plant Biosecurity 

•  Donnelly, P.: What jurors need to know about statistics http://www.youtube.com/watch?v=kLmzxmRcUTo  



SOME RESULTS 

What are the benefits of a Bayesian approach? 
 



Surveillance is like Battleships 
You need more effort (for field-detection) of ships in a bigger area 

 
 
 

 

 

 

 

 

 

 

 

 

Figure : First sampling occasion. Effect of changing the number of blocks 
searched, with no detections, on detectability parameters. 
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Surveillance is like Battleships 
We learn by looking, and we don’t learn by not looking 

 



Surveillance is like Battleships  
but ships grow, and our knowledge grows 
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After 4 weeks, typical scenario (40 blocks searched 
•  the mean infested #plants doubles (5.97→12.08) 
• 95% sure infested #plants >doubles (17→46) 

Can harness Bayesian cycle of learning to adapt 
as information gained & knowledge refined. 



Surveillance is like Battleships 
Looking harder is more effective 

 



Sampling performance 

6f. Sample 600 of 9K plants 

7a. Sample 600 of 3K 
plants 


