1 Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit

- 2 (Oyu Tolgoi, Mongolia)
- 3
- A. Dolgopolova^{a*}, R. Seltmann^a, R. Armstrong^a, E. Belousova^b, R.J. Pankhurst^c and I. 4
- Kavalieris^d 5
- 6
- ^a NHM. Department of Earth Sciences. CERCAMS. London SW7 5BD. UK^b 7
- ^bAustralian Research Council Centre of Excellence for Core to Crust Fluid Systems 8
- GEMOC, Macquarie University, NSW, 2109 Australia 9
- ^cBGS. Keyworth. Nottingham NG12 5GG. UK 10
- ^dOyu Tolgoi LLC, Ulaanbaatar 14240, Mongolia 11
- 12

Abstract 13

Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are 14 presented for a representative sample suite of Late Devonian to Early Carboniferous 15 16 plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in the South Gobi, Mongolia. Sr and Nd isotopes (whole-17 rock) show restricted ranges of initial compositions, with positive ENdt mainly 18 between +3.4 and +7.4 and $({}^{87}\text{Sr}/{}^{86}\text{Sr})$ t predominantly between 0.7037 and 0.7045 19 reflecting magma generation from a relatively uniform juvenile lithophile-element 20 depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-21 averaged range of EHft values of +11.6 to +14.5. Depleted-mantle model ages of 420-22 23 830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, 24 a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial 25 compositions: ²⁰⁶Pb/²⁰⁴Pb 17.40-17.94, ²⁰⁷Pb/²⁰⁴Pb 15.43-15.49 and ²⁰⁸Pb/²⁰⁴Pb 37.25-26 37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle 27 component. All four isotopic systems suggest that the magmas from which the large 28 Ovu Tolgoi porphyry system was generated originated predominantly from juvenile 29 material within the subduction-related setting of the Gurvansaihan terrane. 30 31

Keywords: Hugo Dummett, Oyu Tolgoi, Mongolia, juvenile, Sr-Nd-Hf-Pb isotopes 32

* Corresponding author. Address: Natural History Museum, Department of Earth
Sciences, Cromwell Road, London SW7 5BD, U.K. *E-mail*: allad@nhm.ac.uk. Tel.:
+44 207 9426009. Fax: +44 207 9426012.

36

37 **1. Introduction**

38

The Hugo Dummett copper-gold deposit is a part of the giant Oyu Tolgoi 39 porphyry district in South Gobi of Mongolia (Fig. 1). The district is situated within 40 41 the Central Asian Orogenic Belt (CAOB), one of the largest orogens on Earth (Khain et al., 2003; Kröner et al., 2007). The CAOB (or the Altaid Tectonic Collage, Şengör 42 et al., 1993) is a prime example of accretionary orogeny and represents a complex 43 pattern of Neoproterozoic to Mesozoic orogenic belts; it consists of mobile belts and 44 microcontinental blocks (Badarch et al., 2002; Buchan et al., 2002; Kovalenko et al., 45 2004; Kröner et al., 2007; Windley et al., 2007; Xiao et al., 2008, 2009). It stretches 46 for 5000 km across Asia from the Siberian Craton and the Tarim and North China 47 48 Craton.

Accretionary orogens constitute major sites of continental growth and 49 50 mineralisation; they form at sites of subduction of oceanic lithosphere and consist of accretionary wedges containing material accreted from the downgoing plate and 51 52 eroded from the upper plate, island arcs, ophiolites, oceanic plateaux, old continental blocks, metamorphic rocks and syn- and post-orogenic granitoids. Continental growth 53 54 involves the addition of mantle-derived (juvenile) material to the crust (Jahn et al., 55 2000, 2004; Kröner et al., 2007; Cawood & Buchan, 2007). Arc magmatism within accretionary orogens is invoked as the major source of this material although 56 extensive recycling of older continental crust may also be involved, for example in the 57 Famatinian (Ordovician) arc of western South America (Pankhurst et al., 1998). 58 Within the CAOB recent studies of detrital and xenocrystic zircon ages revealed that 59 in some terranes the Precambrian crust has played an important role in the generation 60 of the younger crust, through remelting and magmatism (Safonova et al., 2010; Rojas-61 Agramonte et al., 2011). 62

The Oyu Tolgoi group of deposits represent a typical porphyry system formed in an island-arc setting (Khashgerel et al., 2006). Majority of porphyry deposits are formed in association with subduction-related magmas (Richards, 2003). During the Paleozoic, southern Mongolia grew through the accretion of island arc, subduction,

related magmatic arcs and continental blocks. Geochemical constraints of the origin
and evolution of Paleozoic magmatic arcs in the Oyu Tolgoi district using whole-rock
Nd and Pb isotopes confirmed derivation of magma from a depleted mantle source in
an intra-oceanic volcanic arc (Wainwright et al., 2011).

71 Whole-rock Sr, Nd, Pb and zircon Hf isotopic compositions were measured in 20 whole-rock samples from Late Devonian to Early Carboniferous intrusions and 72 their volcanic host rocks in order to infer their geotectonic setting, evaluate 73 mechanisms of crustal generation, define the composition of mantle sources, and to 74 75 estimate the role of juvenile crust in the Oyu Tolgoi and nearby areas. New SHRIMP zircon ages, which will be reported in full elsewhere (Seltmann et al., in prep.), were 76 obtained for most of the same samples to provide constraints on the timing of 77 magmatism of the Hugo Dummett deposit and adjacent areas with respect to Cu-Au 78 mineralisation. 79

80

81 **2. Geological setting**

82

The Oyu Tolgoi deposits are situated 650 km south of Mongolian capital 83 84 Ulaanbaatar and were discovered in 1997 by BHP Billiton. The Oyu Tolgoi property comprises six main exploration prospects of Hugo Dummett (North and South), 85 86 Central Oyu, South and Southwest Oyu, Heruga North and Heruga (Kavalieris et al., 2011). The geology of the six main Oyu Tolgoi deposits was summarized by Perello 87 et al. (2001), Kirwin et al. (2005), Kavalieris and Wainwright (2005) and Khashgerel 88 (2006, 2008). With measured and indicated resources currently amounting to 1,387 89 Mt at 1.33% Cu and 0.47 g/t Au, and inferred resource of 2,367 Mt at 0.78% Cu and 90 0.33 g/t Au (Kavalieris et al., 2011), it now comprises the largest group of Paleozoic 91 92 porphyry deposits in the world.

The deposits occur in a mid Palaeozoic calc-alkaline island arc, consisting of metasediments and island arc basalts resting on an early Palaeozoic ophiolite complex (Fig. 2). Late Devonian porphyry Cu-Au deposits occur in a 22 km NNE-trending zone and are related to quartz monzodiorite intrusions emplaced in augite basalt lavas (Khashgerel et al., 2008). The Oyu Tolgoi Cu-Au porphyries are located in the Devonian Gurvansaihan terrane of Badarch (2002), which hosts many other South Gobi porphyry deposits.

100 The Oyu Tolgoi lithology consists of massive porphyritic augite basalt overlain by dacitic and andesitic ash flow tuff, green to red siltstone, conglomerate, 101 carbonaceous shale and intercalated auto-brecciated basaltic lava and tuff. The nearest 102 large outcropping felsic intrusion occurs about 3 km NW of the drilled area. Within 103 the mineralised area, Late Devonian porphyritic quartz monzodiorite and granodiorite 104 occur as dykes. Quartz monzodiorite bears hornblende, biotite and plagioclase; 105 granodiorite has biotite, plagioclase and a distinctive brown aphanitic groundmass 106 (Kirwin et al., 2005; Kavalieris and Wainwright, 2005). 107

108 This study focuses mainly on the Hugo Dummett deposits (Fig. 3) that in plan view extend for over 3 km from SW to NE. The geology, alteration and mineralisation 109 are similar at Hugo Dummett North and Hugo Dummett South (Khashgerel, 2006). 110 Both deposits are hosted mainly by quartz monzodiorite (Kavalieris et al., 2011). The 111 high-grade (>2.5% Cu) sulphide mineralization is associated with intense quartz 112 veining and is comprised of bornite, chalcocite and chalcopyrite, with the dominance 113 of bornite. Pyrite, enargite, tetrahedrite-tennantite occur in subordinate amounts, 114 mainly in the Hugo Dummett South. The advanced argillic alteration within the tuffs 115 is accompanied by alunite, pyrophyllite, diaspore, dickite, topaz, zunyite and fluorite 116 117 (Khashgerel et al., 2008). The sulphides exhibit a zonation from a bornite-dominated core to chalcopyrite and pyrite. Au (ppm) : Cu (%) ratios throughout much of the 118 119 deposit are 1:10, but in strongly quartz-veined monzodiorite intrusions and adjacent host rocks encountered at Hugo Dummett North, this increases up to 1:1. 120

121

```
122 Figures 1-3.
```

123

124 **3. Samples**

125

Table 1 lists 20 drill core samples of Late Devonian to Early Carboniferous plutonic and volcanic rocks (stratigraphic zones D_3 to C_1) from within and around the Oyu Tolgoi Exploration Block (OTEB) chosen for this study; sample locations are shown in Figures 4 and 5. Four sub-samples were taken at different depths from two drill holes of OTD514 and OTD976. Stratigraphic column for samples collected from volcanic host rocks and intrusions is shown in Fig. 6. Appendix 1 includes a detailed mineralogical description for each of the studied samples.

Plutonic samples were chosen from the Hugo Dummett North and South, Oyu 138 Tolgoi Central and Oyu Tolgoi SW to allow comparison between the main deposits. 139 140 141 Table 1. Figure 4. 142 Figure 5. 143 Figure 6. 144 145 146 4. Analytical procedures 147 148 Whole rock analyses of major and trace elements were obtained at Activation Laboratories Ltd. (Actlabs), Ontario, Canada. Samples were prepared using a lithium 149 150 metaborate / tetraborate fusion method. 0.25 g sample aliquot is digested with HClO₄-HNO₃-HCl-HF at 200°C to fuming and is then diluted with aqua regia. Each batch 151 152 contained a method reagent blank, certified reference material, and 17% replicates. Samples were mixed with a flux of lithium metaborate and lithium tetraborate and 153 fused in an induction furnace. The molten melt was immediately poured into a 154 solution of 5% nitric acid containing an internal standard, and mixed continuously 155 until completely dissolved (~30 minutes). The samples and method reagent blank 156 were then analysed for major oxides and trace elements on a combination 157 simultaneous/sequential Thermo Jarrell-Ash ENVIRO II ICP. For the ICP analysis, 158 reagent blanks with and without the lithium borate flux were analysed, as well as the 159 method reagent blank. Interference correction verification standards were analysed. 160 Calibration was performed using multiple USGS and CANMET certified reference 161 materials, including: GXR-1, GXR-2, WMG-1, NIST-694, NIST-696, NIST-1633b, 162 DNC-1, BIR-1, KC-1A, CCU-1C, FK-N, LKSD-3, MAG-1, SY-3, W-2a, JSD-3, and 163 CTA-AC-1. Two of the standards were used during the analysis for every group of ten 164 samples. The sample solution was also spiked with internal standards and was further 165 diluted and introduced into a Perkin Elmer SCIEX ELAN 6000 ICP/MS using a 166

Four samples were collected from outside of the OTEB (Fig. 4). These

include: (1) a medium-grained granodiorite immediately to the north from the OTEB,

(2) a dacite and (3) a quartz monzodiorite from Cu-Au mineralised intrusions 10kms

to the NNE at the Ulan Khud prospect, and (4) a basalt from the Ulan Uul prospect

located 24 km WSW from the OTEB.

133

134

135

136

137

167 proprietary sample introduction methodology. Further details of the analytical

168 method, including detection limits for each element, may be found at:

169 <u>http://www.actlabs.com/page.aspx?page=522&app=226&cat1=549&tp=12&lk=no&</u>
170 menu=64

171

Sr-Nd-Pb isotopes were measured in the ALS Laboratory Group, Sweden. 0.2 172 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of 173 nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were 174 175 prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure 176 was repeated two times. Two separate aliquots of the 0.2 g digest were used. One 177 aliquot was used for Sr and Pb column separation, where the residue was taken up in 178 70% HNO₃. The second aliquot was dissolved in 1 M HCl and used for Nd separation. 179 Eichrom columns were used for element separation procedure. After purification, 180 each element fraction was dried and re-dissolved in 5% HNO₃, ready for isotope 181 182 analyses. The well-established element separation procedures for Sr can be found in Rodushkuin et al. (2007) and for Pb in Quétel et al. (2009). The isotopic analyses 183 184 were performed using Neptune multi-collector ICP-MS (Thermo Fisher Scientific, Bremen, Germany) in high resolution mode (slit width of 16 µm). Element 185 186 concentrations in measurement solutions for MC-ICP-MS were adjusted to required concentrations (200 ppb for Sr, 100 ppb for Pb and Nd) by dilution. Tl spike at 50 ppb 187 was added to Pb measurement solutions for on-line mass-bias correction. Certified 188 reference material of international standard NBS 981 for Pb, NBS 987 for Sr and 189 Merck Nd were used to bracket the samples during the measurements. The error on 190 the measured isotope ratios was estimated using the long-term reproducibility of 191 repeated measurements over the time of investigation. Distilled Milli-Q water 192 (Millipore Milli-Q) was used for preparation of all measurement solutions including 193 standards, samples and procedural blanks, and solutions for the separation. 194

195

Hf isotope analyses were carried out at the Geochemical Analysis Unit of the
GEMOC Key Centre in the Department of Earth and Planetary Sciences, Macquarie
University, Australia. These analyses were performed on zircons grains dated
previously by SHRIMP-II at VSEGEI, St Petersburg (Table 1). The analytical spots
for the analyses were located to overlap the SHRIMP pits to avoid as far as possible

any discrepancy between the U-Pb age data and Hf-isotopic data due to any withingrain age zoning or variation. It should be noted that the zircon recovery from sample
OTD388 was inadequate to define an age of crystallization, and that none of the
basalts yielded zircon that could be related to crystallization of the volcanic rock.

Ages for these samples were assumed as indicated in Table 1.

Hf-isotope analyses were carried out *in situ* with a New Wave UP 213nm
laser-ablation microprobe, attached to a Nu Plasma multi-collector ICPMS. Typical
ablation times were 80-120 s, resulting in pits 40-60 µm deep. The methodology and
analyses of standard solutions and standard zircons are described by Griffin et al.
(2000).

For this work we analysed masses 172, 175, 176, 177, 178, 179 and 180 simultaneously in Faraday cups; all analyses were carried out in static-collection mode. Data were normalized to 179 Hf/ 177 Hf=0.7325, using an exponential correction for mass bias. Initial setup of the instrument is done using a 1 ppm solution of JMC475 Hf, which typically yields a total Hf beam of $10-14 \times 10^{-11}$ A.

Interference of ¹⁷⁶Lu on ¹⁷⁶Hf is corrected by measuring the intensity of the 216 interference-free ¹⁷⁵Lu isotope and using ¹⁷⁶Lu/¹⁷⁵Lu=0.02669 (DeBievre and Taylor, 217 1993) to calculate ¹⁷⁶Lu/¹⁷⁷Hf. Similarly, the interference of ¹⁷⁶Yb on ¹⁷⁶Hf has been 218 corrected by measuring the interference-free ¹⁷²Yb isotope and using ¹⁷⁶Yb/¹⁷²Yb to 219 calculate ¹⁷⁶Yb/¹⁷⁷Hf. The appropriate value of ¹⁷⁶Yb/¹⁷²Yb was determined by 220 spiking the JMC475 Hf standard with Yb, and finding the value of 176 Yb/ 172 Yb 221 (0.587) required to yield the value of 176 Hf/ 177 Hf obtained on the pure Hf solution 222 (Griffin et al., 2004). The accuracy of the Yb and Lu corrections has been 223 demonstrated by repeated analysis of standard zircons with a range in 176 Yb/ 177 Hf and 224 ¹⁷⁶Lu/¹⁷⁷Hf (Griffin et al., 2004; Pearson et al., 2008). 225

For the calculation of EHf values, we have adopted the chondritic values of 226 Blichert-Toft et al. (1997). To calculate model ages (TDM) based on a depleted-227 mantle source, we have adopted a model with a present-day 176 Hf/ 177 Hf of 0.28325 228 equivalent to average MORB and ${}^{176}Lu/{}^{177}Hf = 0.0384$ (Griffin et al., 2000). ε Hf 229 values and model ages used in the figures were calculated using a decay constant for 230 ¹⁷⁶Lu of 1.865 x 10⁻¹¹yr-1(Scherer et al., 2001). Single-stage TDM ages, which are 231 calculated using the measured ¹⁷⁶Lu/¹⁷⁷Hf of the zircon can only give the minimum 232 age for the source material of the magma from which the zircon crystallised. We 233 therefore also calculated a two-stage "crustal" model age for each zircon (T_{DM}^{C}) , 234

235	which assumes that its parental magma was produced from an average continental
236	crust ($^{176}Lu/^{177}Hf = 0.015$) that originally was derived from depleted mantle. This is
237	equivalent to the calculation of T_{DM}^* from the Sm-Nd data.
238	
239	5. Results
240	
241	5.1. Major and trace elements
242	
243	Whole-rock analytical results are listed in Table 2 and mantle-normalised multi-
244	element plots are shown in Fig. 7. The latter show negative spikes for Ta, Nb and Ti
245	for all rock types and positive spikes for Rb, Ba, Hf and Zr for all except the basalts,
246	both of which are characteristic of subduction-related magmatism.
247	
248	Table 2
249	Figure 7
250	
251	5.2. Rare earth elements
252	
253	Chondrite-normalised REE plots are shown in Fig. 8. All show slight-to-moderate
254	light REE enrichment (La_N/Yb_N ranging from 2.4 to 15), with a slight relative
255	depletion of the middle REE, possibly due to hornblende fractionation. Eu anomalies
256	are negligible, except for the strong positive anomaly noted in one granodiorite (EGD
257	001) suggesting plagioclase accumulation.
258	
259	Figure 8
260	
261	5.3. Sr-Nd isotope systematics
262	
263	Whole-rock samples were analysed for Sr and Nd isotope compositions (Table
264	3). Sm, Nd, Rb, and Sr concentration data from the geochemical analyses and U–Pb
265	ages (Table 1) were used to calculate isotope compositions at the time of
266	crystallization as a constraint on petrogenesis and as tracers for the crustal section
267	through which each was emplaced. Sr-Nd analytical data are reported in Table 3. ENdt

values calculated as *per mil* deviations from the model compositions of a chondritic 268 uniform reservoir (CHUR) at the estimated age, T_{DM} is the estimated age of 269 extraction from depleted mantle according to the one-stage crustal pre-history 270 assumed by DePaolo (1988), and T_{DM}* according to the two-stage model of DePaolo 271 et al. (1991). The precision of parent/daughter ratios derived from the geochemical 272 data is relatively low. This restricts the precision of calculated initial ⁸⁷Sr/⁸⁶Sr and 273 143 Nd/ 144 Nd ratios, which are reported here with fewer decimal places than usual. 274 Nevertheless, errors of as much as $\pm 10\%$ in Rb/Sr would lead to an uncertainty of less 275 than 0.001 in initial ⁸⁷Sr/⁸⁶Sr in the majority of the cases, and is only significantly 276 higher for a few samples with ⁸⁷Rb/⁸⁶Sr ratios greater than about 3. In the case of the 277 Nd isotope data a 10% error in Sm/Nd leads to an uncertainty of about 0.6 to 0.8 in 278 ɛNdt. The conclusions and interpretations reached are independent of these 279 uncertainties. 280

Initial ⁸⁷Sr/⁸⁶Sr ratios in whole-rock samples mostly fall in a restricted range of 281 0.7036 to 0.7045, with only three exceptions. A dacite from Hugo Dummett North 282 (OTD 1218) has an elevated value of 0.7087, which could indicate contamination due 283 to alteration of this ash-flow tuff sample. Two of the quartz monzodiorites from 284 OTD514 with high Rb/Sr ratios have calculated initial ⁸⁷Sr/⁸⁶Sr ratios below 0.703, 285 one of which is unrealistically low; these have been discounted in view of probably 286 erroneous over-correction as explained above. Most of the other quartz monzodiorite 287 samples have ⁸⁷Rb/⁸⁶Sr ratios <0.5, with corresponding uncertainties in their initial 288 87 Sr/ 86 Sr ratios of less than 0.0003. ϵ Ndt values vary from +1.5 to +7.4, with 19 of the 289 20 falling in the even more restricted range of +3.4 to +7.4. The dacite with the high 290 $(^{87}\text{Sr}/^{86}\text{Sr})$ t has an ϵ Ndt value of +4.5, strongly indicating that the Rb-Sr system was 291 disturbed but that the Sm-Nd data is more meaningful. Regardless of the uncertainty 292 293 of 0.6–0.8, it is safe to conclude that all ENdt values were significantly positive at the time of crystallization. Co-variation between the Sr and Nd isotope parameters is 294 shown in Fig. 9, differentiated according to the rock types. Positive ENdt and low 295 ⁸⁷Sr/⁸⁶Sr indicate a major contribution from long-term lithophile element depleted 296 sources such as the mantle or juvenile crustal rocks with only a short residence time 297 before magma genesis. These characteristics are in accordance with generation of 298 these samples in an island arc setting of the Gurvansaihan terrane. 299

The late Palaeozoic depleted mantle would have had ϵ Nd values about +7 (as 300 opposed to about +9 today), so that the slightly lower ε Ndt of many of the samples 301 would permit a minor crustal contribution as well, either in the source or through 302 contamination during magma ascent and crystallization. Normal crustal contents of 303 Sm and Nd are higher than in basaltic magmas so that the present day isotopic 304 compositions will largely be dominated by the crustal contribution. The approximate 305 age of such crust may be estimated from the Nd model ages (T_{DM} and T_{DM}* in Table 306 3, which typically have uncertainties of 50–100 Ma due to limitations in the analytical 307 308 data and model parameters). 309 310 Table 3 Figure 9 311 312 5.4. *Hf isotope systematics* 313 314 The results of the Lu-Hf isotope analyses of U-Pb dated zircon grains are 315 given in Table 4. Only results for zircons clearly related to the crystallization of the 316 parent rocks, both plutonic and dacitic, are reported, as indicated in Table 1. All 102 317 analyses (discounting two for grains that gave anomalous U-Pb ages) yield EHft 318 319 values that are strongly positive (+10.3 to +16.1); averaged values for each sample range from +11.6 (OTD258(82.5)) to +14.5 (OTD514(1405.85-1410.15)). 320 Considering that the standard deviation for sample mean is around one epsilon unit, 321 the results are essentially uniform at the 2-sigma level. 322 323 Table 4 324 325 326 5.5. Pb isotope systematics 327 Table 5 shows the results of the Pb isotope analyses. The studied whole-rock 328 samples exhibit a present-day range of ²⁰⁶Pb/²⁰⁴Pb 17.773-19.058, ²⁰⁷Pb/²⁰⁴Pb 15.445-329 15.544 and ²⁰⁸Pb/²⁰⁴Pb 37.456-38.489. Initial compositions were calculated using 330 U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with a probable 331 precision limit of about 10%, which for these sample leads to uncertainties in the 332

333	initial ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ and ${}^{207}\text{Pb}/{}^{204}\text{Pb}$ ratios of, on average, ± 0.05 . As in the case of the
334	initial Sr and Nd isotopic compositions in Table 3, the justification of the calculations,
335	as well as the assumption of essentially closed system behaviour, is demonstrated by
336	the relative uniformity of the results: in the present case the initial 206 Pb/ 204 Pb,
337	²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb ratios fall within the reasonably narrow ranges of 17.40-
338	17.94, 15.43-15.49 and 37.25-37.64 respectively. Moreover, discounting the four
339	samples for which the age corrections are highest, initial 206 Pb/ 204 Pb for the felsic
340	rocks has an even narrower range of 17.64-17.88, and for the basalts an
341	indistinguishable range of 17.67-17.94.
342	
343	Table 5
344	
345	6. Discussion and conclusions
346	
347	6.1 Effects of alteration
348	
349	The state of alteration of many of the samples analysed in this study (see
350	Appendix 1 and loss-on ignition figures in Table 2) was unavoidable due to its
351	pervasive nature within the drill cores, but an important question arises as to how this
352	may be reflected in the results. Large-ion lithophile (LIL) elements are notoriously
353	liable to redistribution during hydrothermal alterations; this is especially true of K and
354	Rb, but also to a lesser extent of Sr and LREE. We do not think that such mobility has
355	significantly affected the data and the conclusions reached for the following reasons.
356	First, apart from a few cases identified above, the Sr and Nd isotope compositions
357	calculated for the time of igneous emplacement are quite consistent array (initial
358	87 Sr/ 86 Sr 0.7038–0.7045 for both felsic and basaltic rocks; ϵ Ndt mostly +3.2 to +7.2).
359	As noted above, there is some inverse co-variation, but all the data fall comfortably
360	within the "mantle array" in the depleted-source field of the 87 Sr/ 86 Srt plot (Fig. 9);
361	this could reflect either variations in the source region, or relatively minor degrees of
362	contamination of the most LIL-depleted examples. There is no evidence for massive
363	contamination with crustal radiogenic Sr, for example. Moreover, Khashgerel et al.
364	(2008) show empirically that the argillic alteration at the Hugo Dummett deposit tends
365	to reduce both K/Sr (and hence Rb/Sr) and Sm/Nd ratios, which would result in

apparently too high calculated initial ⁸⁷Sr/⁸⁶Sr (noticeably so for the most Rb-rich 366 samples) as well as too high ENdt. There is clearly no evidence for such normally-co-367 variant behaviour. The strongest argument however is that the Sr and Nd isotope data 368 yield conclusions as to a LIL-depleted source that are fully consistent with the 369 evidence of Hf isotopes in zircon (average sample ε Hf_t +11.6 to +14.5); igneous 370 zircon is highly resistant to chemical alteration and should preserve magmatic 371 compositions. This is our main conclusion, but even if it were admitted that the Sr, Nd 372 and Pb isotope systems were the product of complete equilibration with hydrothermal 373 374 solutions, these would necessarily have also originated within the same magmatic system, and the alteration must have occurred very soon after igneous crystallization 375 376 for all four isotope systems to record and maintain the same signature.

377

378 6.2 Indications of juvenile magmatism

379

In Fig. 10, ENdt is plotted against the emplacement age of each sample and 380 381 model trend lines show the variation in time for depleted mantle (DM) and for 'average crust' extracted from the mantle at 1000 and 540 Ma (corresponding to the 382 383 lower chronological boundaries of Neoproterozoic and Phanerozoic time). The granodiorite, monzodiorite and dacite samples plot largely within the predicted 384 385 composition of early Phanerozoic crust: their model ages are little older than their mostly Late Devonian emplacement ages (420-830 Ma), confirming genesis within a 386 relatively immature island arc system. Since the Nd model ages for the basalts are not 387 considered meaningful, direct derivation of the felsic magmas from crust older than 388 late Neoproterozoic can be ruled out, although a small contribution from such old 389 material could have been mixed with dominantly juvenile magmas in the arc system. 390

391

392 Figure 10

393

Fig. 11a shows the relationship between U-Pb ages and the initial Hf isotope compositions of the individual zircon grains. All the data plot close to the estimated composition of the mid Palaeozoic depleted mantle and indicate that the parental magmas were predominantly derived from such a source, with little or no older continental crust being involved in magma genesis. This is reinforced by the T_{DM}^{C}

ages (Table 3), which range from 320 to 720 Ma, with a strong maximum close to 500
Ma (Fig. 11b). This suggests that most of these felsic igneous rocks were derived by
reworking of the Early Paleozoic or younger juvenile crust that grew by the addition
of magmas derived from depleted mantle.

403

404 Figures 11 a, b

405

406 Pb isotopes also indicate a source with mantle-like U-Pb ratios, relatively
407 uncontaminated by more radiogenic Pb (Fig. 12 a, b). The basalts and dacites plot
408 closest to the estimated composition of the Devonian MORB source, whereas the
409 plutonic igneous rocks have slightly less radiogenic Pb, consistent with a small crustal
410 component.

411

412 Figures 12 a, b

413

414 Nd-Hf isotope mapping of South Gobi in the frame of the CERCAMS Altaids project is shown on Fig. 13. Some published data (square symbols) are also plotted. 415 416 The map shows Nd and Hf isotope signatures of granitoid samples collected by the Altaids team from hosting and surrounding terranes of the Oyu Tolgoi porphyry 417 418 district. All Oyu Tolgoi samples of this study are also plotted on the map, allowing comparison of their Nd-Hf isotope signatures with other samples from the region. It is 419 420 clear that the majority of samples within the South Gobi area (i.e. to the north from the North China Craton), including the Oyu Tolgoi samples of this study, exhibit 421 422 dominant juvenile signatures, indicating their origin within the extensive intra-oceanic volcanic environment. 423

424 The positive initial Hf isotope values reported from the OTEB in conjunction with low apparent degrees of crustal contamination are paralleled in data reported 425 from other significant porphyry-style deposits world wide, e.g., El Teniente, Chile 426 (total average EHf 7.4±1.2, Muñoz et al, 2012), Mount Leyshon Igneous Complex, 427 Australia (range of median EHf 3.2 to 4.5, Murgulov et al, 2008), Gangdese porphyry 428 copper belt, Southern Tibet belt (EHf 1.8 to 9.2, Li et al, 2011), and Yulong porphyry 429 system (EHf 4.6 to 6.9, Hou et al, 2011). This suggests that juvenile sources, 430 regardless of tectonic setting play a significant role in the generation of fertile 431

432 magmas required for porphyry-Cu style mineralization. As illustrated by Peytcheva et

433	al. (2009) and van Dongen et al. (2010), a juvenile EHf zircon signature alone is not
434	always a sufficient indicator of magma fertility and should be assessed in conjunction
435	with other regional petrological and structural data.
436	
437	Figure 13
438	
439	Acknowledgements
440	
441	Ivanhoe Mines Mongolia is thanked for its continuous support and for providing
442	samples for this study. Douglas Kirwin is especially thanked for support and
443	inspiration. Assistance of D. Konopelko, S. Sergeev and S. Petrov with SHRIMP U-
444	Pb zircon geochronology is highly acknowledged. This is contribution XXX from the
445	ARC Centre of Excellence for Core to Crust Fluid Systems
446	(http://www.ccfs.mq.edu.au) and YYY in the GEMOC Key Centre
447	(http://www.gemoc.mq.edu.au). The Hf analytical data were obtained using
448	instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS,
449	industry partners and Macquarie University. This is a contribution to IGCP-592
450	sponsored by UNESCO-IUGS.

453	References

Badarch, G., Cunningham, W.D. & Windley, B.F., 2002. A new terrane subdivision
for Mongolia: implications for the Phanerozoic crustal growth of Central Asia.

456 Journal of Asian Earth Sciences 21, 87–110.

457 Buchan, C., Pfänder, J., Kröner, A., Brewer, T., Tomurtogoo, O., Tomurhuu, D.,

458 Cunningham, D. & Windley, B. 2002. Timing of accretion and collisional

deformation in the Central Asian Orogenic Belt: implications of granite

- geochronology in the Bayankhongor ophiolite zone. Chemical Geology, 192, 23–
- 461 45.

479

- 462 Blichert-Toft, J., Chauvel, C. & Albarède F. 1997. Separation of Hf and Lu for high-
- 463 precision isotope analysis of rock samples by magnetic sector-multiple collector

464 ICP-MS. Contribution to Mineralogy and Petrology, 127, 248-260.

465 Cawood, P.A. & Buchan C. 2007. Linking accretionary orogenesis with

- 466 supercontinent assembly. Earth-Science Reviews, 82, 3–4, 217-256.
- 467 DeBievre P, Taylor PDP (1993) Table of the isotopic composition of the elements. Int.
 468 Journal of Mass Spectrometry and Ion Processes 123, 149.
- 469 DePaolo, D.J., 1981. Nd isotopes in the Colorado Front Range and crust-mantle
 470 evolution in the Proterozoic. Nature 291, 193-196.

471 DePaolo, D.J., 1988. Age dependence of the composition of continental crust as
472 determined from Nd isotopic variations in igneous rocks. Earth and Planetary
473 Science Letters 59, 263-271.

474 DePaolo, D.J., A.M. Linn & G. Schubert, 1991. The Continental crustal age

- distribution: methods of determining mantle separation ages from Sm-Nd isotopic
- data and application to the southwestern U.S. Journal of Geophysical Research 96,
 2071-2088.

van Dongen, M., Weinberg, R.F., Tomkins, A.G., Armstrong, R.A.& Woodhead, J.D.,

2010. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid

- formation of the Ok Tedi porphyry Cu–Au deposit, Papua New Guinea. Lithos
 114, 282-292.
- 482 Griffin W. L., Pearson N. J., Belousova E. A., Jackson S. R., van Achterbergh E.,

483 O'Reilly S. Y. & Shee S. R., 2000. The Hf isotope composition of cratonic mantle:

- 484 LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et
- 485 Cosmochimica Acta 64, 133-147.

- Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O'Reilly S.Y. (2004) Archean
 crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence
 from detrital zircons. Precambrian Research 131, 231-282.
- 489 Helo, C., Hegner, E., Kroener, A., Badarch, G., Tomurtogoo, O., Windley, B.F.,
- 490 Dulski, P., 2006. Geochemical signature of Paleozoic accretionary complexes of the
- 491 Central Asian Orogenic Belt in South Mongolia: constraints on arc environments
- 492 and crustal growth. Chemical Geology 227, 236–257.
- Hou, Z., Zhang, H., Pan, X. & Yang, Z. 2011. Porphyry Cu (-Mo-Au) deposits related
 to melting of thickened mafic lower crust: Examples from the eastern Tethyan
 metallogenic domain. Ore Geology Reviews 39, 21-45.
- Jahn, B.M., Wu, F. & Chen, B., 2000. Massive granitoid generation in Central Asia:
 Nd isotope evidence and implication for continental growth in the Phanerozoic.
 Episodes 23, 82–92.
- 499 Jahn, B.M., Capdevila, R., Liu, D.Y., Vernon, A. & Badarch, G., 2004. Sources of
- 500 Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia:
- Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal
 growth: Journal of Asian Earth Sciences, 23, 629–653.
- Kavalieris, I., 2005. Notes on 21 samples for zircon U-Pb geochronology from the
 Oyu Tolgoi Project, South Gobi Desert, Mongolia. Report Ivanhoe Mines
- 505 Mongolia, 48 pp.
- Kavalieris, I., Rinchin, O., Gombojav, J., Gombosuren, N., Crane, D., Orssich, C. &
 Khashgerel, B.-E., 2011. Characteristics of the Oyu Tolgoi porphyry deposits,
- South Gobi, Mongolia. Abstract volume, 11th SGA Biennial Meeting, Antofagasta,
 Chile, September 26 29, 2011, A111.
- 510 Kavalieris, I. & Wainwright, A., 2005. Wholerock geochemistry of Late Devonian
- 511 island arc intrusive suites from Oyu Tolgoi. IOGD Guidebook Series, 11:169–174.
- 512 Khain, E.V., Bibikova, E.V., Salnikova, E.B., Kröner, A., Gibsher, A.S., Didenko,
- A.N., Degtyarev, K.E. & Fedotova, A.A., 2003. The Palaeo-Asian ocean in the
- 514 Neoproterozoic and early Paleozoic: New geochronologic data and palaeotectonic
- reconstructions: Precambrian Research 122, 329–358.
- 516 Khashgerel, B.-E., Rye, R.O., Hedenquist, J.W. & Kavalieris, I., 2006. Geology and
- ⁵¹⁷ reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu–Au system,
- 518 South Gobi, Mongolia. Economic Geology 101, 503–522.

519	Khashgerel, BE., Kavalieris, I. & Hayashi, K., 2008. Mineralogy, textures, and
520	whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry
521	Cu–Au deposit, Oyu Tolgoi mineral district, Mongolia. Mineralium Deposita 43,
522	913–932.
523	Kirwin, D. J., Forster, C.N., Kavalieris, I., Crane, D., Orssich, C., Panther, C.,
524	Garamjav, D., Munkhbat, T.O. & Niislelkhuu, G., 2005. The Oyu Tolgoi Copper-
525	Gold Porphyry Deposits, South Gobi, Mongolia: in Seltmann R, Gerel O and
526	Kirwin D J, (Eds.), 2005 Geodynamics and Metallogeny of Mongolia with a
527	Special Emphasis on Copper and Gold Deposits: SEG-IAGOD Field Trip, 14-16
528	August 2005, 8th Biennial SGA Meeting; CERCAMS/NHM, London, IAGOD
529	Guidebook Series 11, 155-168.
530	Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K.,
531	Salnikova, E.B. & Larin, A.M., 2004. Isotope provinces, mechanism of generation
532	and sources of the continental crust in the Central Asian mobile belt: Geological
533	and isotopic evidence: Journal of Asian Earth Sciences 23, 605-627.
534	Kröner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.B.,
535	Grushka, S., Khain, E.V., Demoux, A. & Wingate, M.T.D., 2007. Accretionary
536	growth and crust-formation in the Central Asian Orogenic Belt and comparison
537	with the Arabian–Nubian shield. Geological Society of America, Memoirs 200:
538	181-209.
539	Li, JX., Qin, KZh., Li, GM., Xiao, B., Chen, L. & Zhao, JX., 2011. Post-
540	collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,
541	southern Tibet: Melting of thickened juvenile arc lower crust. Lithos 126, 265-277.
542	McDonough, W.F. & Sun, S.S., 1995. The composition of the Earth. Chemical
543	Geology 120 (3–4), 223–253.
544	Muñoz, M., Charrier, R., Fanning, C.M., Maksaev, V. & Deckart, K., 2012. Zircon
545	trace element and O-Hf isotope analyses of mineralized intrusions from El
546	Teniente ore deposit, Chilean Andes: constraints on the source and magmatic
547	evolution of porphyry Cu-Mo related magmas. Journal of Petrology 53 (6), 1091-
548	1122.
549	Murgulov, V., O'Reilly, S.Y., Griffin, W.L. & Blevin, Ph.L., 2008. Magma sources
550	and gold mineralisation in the Mount Leyshon and Tuckers Igneous Complexes,
551	Queensland, Australia: U-Pb and Hf isotope evidence. Lithos 101, 281–307.

552	Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. &
553	Fanning, C.M., 1998. The Famatinian magmatic arc in the southern Sierras
554	Pampeanas. In Pankhurst, R.J. & Rapela, C.W. (eds). The Proto-Andean Margin
555	of Gondwana. Special Publication of the Geological Society, London 142, 343-
556	367.
557	Pearson, N.J., Griffin, W.L. & O'Reilly S.Y., 2008. Mass fractionation correction in
558	laser ablation-multiple collector ICP-MS: implications for overlap corrections and
559	precise and accurate in situ isotope ratio measurement. In P. Sylvester (Ed.),
560	Laser-Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding
561	Issues. Mineralogical Association of Canada Short Course 40 Vancouver, B.C., pp.
562	93-116.
563	Perello, J., Cox, D., Garamjav, D., Sanjdorj, S., Diakov, S., Schissel, D., Munkhbat,
564	TO. & Oyun, G., 2001. Oyu Tolgoi, Mongolia; Siluro-Devonian porphyry Cu-
565	Au–(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite
566	blanket. Economic Geology 96, 1407–1428.
567	Peytcheva, I., von Quadt., A., Neubauer, F., Frank, M., Nedialkov., R., Heinrich, C. &
568	Strashimirov, S. 2009. U-Pb dating, Hf-isotope characteristics and trace-REE-
569	patterns of zircons from Medet porphyry copper deposit, Bulgaria: implications
570	for timing, duration and sources of ore-bearing magmatism. Mineralogy and
571	Petrology 96, 19-41.
572	Quétel, C.R., Ponzevera, E., Rodushkin, I., Gerdes, A., Williams, A. & Woodhead, J.,
573	2009. Measuring 0.01‰ to 0.1‰ isotopic variations by MC-ICPMS –testing
574	limits for the first time with Pb δ -iCRMs. Journal of Analytical Atomic
575	Spectrometry, 24, 407-412.
576	Richards, J.P., 2003. Tectono-magmatic precursors for geophysical data over a copper
577	gold porphyry Cu-(Mo-Au) deposit formation: Economic Geology 98, 1515–1533.
578	Rodushkin, I., Bergman, T., Douglas, G., Engström, E., Sörlin, D. & Baxter, D.C.,
579	2007. Authentication of Kalix (N.E. Sweden) vendace caviar using inductively
580	coupled plasma-based analytical techniques: Evaluation of different approaches.
581	Analytica Chimica Acta 583, 310–318.
582	Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu,
583	D. & Sun, M., 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to
584	Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal
585	fragments in the Central Asian Orogenic Belt. Gondwana Research 19: 751-763.

586	Safonova, I., Maruyama, S., Hirata, T., Kon, Y. & Shuji Rino, S., 2010. LA ICP MS
587	U-Pb ages of detrital zircons from Russia largest rivers: Implications for major
588	granitoid events in Eurasia and global episodes of supercontinent formation.
589	Journal of Geodynamics 50, 134–153.
590	Seltmann, R. & Porter, T.M., 2005. The porphyry Cu-Au/Mo deposits of Central
591	Eurasia: 1. Tectonic, geologic and metallogenic setting and significant deposits.
592	In: Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits: A Global
593	Perspective, vol. 2. PGC Publishing, Adelaide, 467–512.
594	Seltmann et al. Bipolar ages from zonal ongrowth of zircon at the Hugo Dummett Cu-
595	Au porphyry deposit (Oyu Tolgoi, Mongolia), Ore Geology Reviews, in prep.
596	Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic
597	collage and Paleozoic crustal growth in Eurasia: Nature 364, 299–307.
598	Scherer E., Munker C. & Mezger K., 2001. Calibration of the Lutetium-Hafnium
599	clock. Science 293, 683-687.
600	Stacey, J.S. & Kramers, J.D., 1975. Approximation of terrestrial lead isotope
601	evolution by a two stage model. Earth and Planetary Science Letters 26 207–221.
602	Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
603	basalts: implications for mantel composition and processes. In: Saunders, A.D.,
604	Norry, M.J. (Eds.), Magmatism in ocean basins: Geological Society of London,
605	Special Publication, 42, pp. 313–342.
606	Taylor, S.R. & McLennan, S.M., 1985. The Continental Crust: its Composition and
607	Evolution. Blackwell Scientific Publications.
608	Wainwright, A. J., Tosdal, R. M., Wooden, J.L., Mazdab, F.K. & Friedman, R.M.,
609	2011. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution
610	of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern
611	Mongolia, Gondwana Research 19, 764–787.
612	Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A. & Badarch, G., 2007. Tectonic
613	models for accretion of the Central Asian Orogenic Belt. Journal of the Geological
614	Society 164, 31–47.
615	Xiao, W.J., Pirajno, F. & Seltmann, R., 2008. Geodynamics and metallogeny of the
616	Altaid orogen. Journal of Asian Earth Sciences 32, 77-81.
617	Xiao, W., Windley, B.F., Huang, B.C., Han, C.M., Yuan, C., Chen, H.L., Sun, M.,
618	Sun, S. & Li, J.L., 2009. End-Permian to mid-Triassic termination of the
619	accretionary processes of the southern Altaids: implications for the geodynamic

- 620 evolution, Phanerozoic continental growth, and metallogeny of Central Asia.
- 621 International Journal of the Earth Sciences 98 (6), 1189–1217.
- Zartman, R.E., Doe, B.R., 1981. Plumbotectonics; the model. Tectonophysics 75,
- 623 135–162.
- 624
- 625
- 626 Appendix 1

627	Figure	Captions
-----	--------	----------

020	
629	Figure 1. Tectonic setting of the Oyu Tolgoi porphyry Cu-Au deposits, Mongolia.
630	The upper diagram illustrates the location of the Oyu Tolgoi deposit and the
631	Gurvansayhan Terrane within the tectonic framework of Mongolia. After Kirwin et al.
632	(2005), Ivanhoe Mines (2005), Wainwright et al. (2004) and references cited therein,
633	Perello et al. (2001) and references cited therein (after Seltmann and Porter, 2005).
634	
635	Figure 2. Regional geological setting of the Oyu Tolgoi porphyry Cu-Au deposits,
636	Mongolia. The figure represents the outcrop geology surrounding the Oyu Tolgoi
637	group of deposits. Sources same as in Fig. 1 (from Seltmann and Porter, 2005).
638	
639	Figure 3. District scale geological setting of the Oyu Tolgoi porphyry Cu-Au
640	deposits, Mongolia. The plan shows the interpreted solid sub-crop geology in the
641	immediate vicinity of the deposits. Sources same as in Fig. 1 (from Seltmann and
642	Porter, 2005).
643	
644	Figure 4. General sample location map, showing pluton-sized intrusions.
645	
646	Figure 5. Simplified geology of the Oyu Tolgoi Exploration Block and drill hole
647	locations of samples included in this study.
648	
649	Figure 6. Stratigraphy and location of samples included in this study (after Kavalieris,
650	2005).
651 652	Figure 7. Mantle-normalized multi-element diagram of the bulk rock samples from
653	the study area (primitive mantle values are taken from McDonough and Sun, 1995).
654	
655	Figure 8. Chondrite-normalized REE patterns of samples from the Oyu Tolgoi
656	exploration block and adjacent areas; chondrite values taken from Sun and
657	McDonough (1989).

Figure 9. Co-variation between the Sr and Nd parameters. The Nd data are considered
more robust and show that all samples were derived from un-evolved sources typical
of primitive island arcs.

662

663 **Figure 10.** εNd plotted versus the emplacement age of each body.

664

Figures 11 a, b. Results of zircon Hf isotope measurements for felsic igneous rocks from Oyu Tolgoi. a) Initial ¹⁷⁶Hf/¹⁷⁷Hf plotted against U-Pb age for individual zircon grains; compared to model lines for the evolution of deplted mantle and a chondritic reservoir (CHUR); b) Relative probability plot for the two-stage crustal residence ages calculated for each analysed spot.

670

671 **Figures 12 a, b.** Initial 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb and 208 Pb/ 204 Pb vs. 206 Pb/ 204 Pb plots

showing results for plutonic and volcanic rocks from Oyu Tolgoi and surrounding

areas. LC, lower crust; CC, continental crust; UC, upper crust; OR, orogene; M,

674 mantle (from Zartman and Doe, 1981).

675

676

677 **Figure 13.** εHf and εNd data plotted for the South Gobi area (compilation of the

678 CERCAMS Altaids project) and samples of this study.

679 *Note:* strongly crustal: ε Hf <-5, ε Nd(t) <-7; crustal: ε Hf -5 to 0, ε Nd(t) -7 to -2;

680 mixed: ε Hf 0 to +5, ε Nd(t) -2 to 0; juvenile: ε Hf +5 to +10, ε Nd(t) 0 to +5; strongly

681 juvenile: ε Hf >+10, ε Nd(t) >+5.

682

683

685	Table and Appendix Captions
686	
687	
688	Table 1 . Sample list with U-Pb zircon ages of samples from the study area
689	(Kavalieris, 2005; Seltmann et al., in preparation).
690	
691 692 693	Table 2. Whole rock geochemical data for samples from the Oyu Tolgoi exploration block and adjacent areas.
694 695 696 697 698	Table 3. Sm and Nd isotope data for samples from the Oyu Tolgoi exploration block and adjacent areas.
699 700 701	Table 4. Lu-Hf isotope analyses of U–Pb dated zircon grains.
702	Table 5. Pb isotope data for samples from the Oyu Tolgoi exploration block and
703	adjacent areas.
704	
705	Appendix 1. Mineralogical description of studied samples.
706 707 708	

1	Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit		
2	(Oyu Tolgoi, Mongolia)		
3			
4	A. Dolgopolova ^{a*} , R. Seltmann ^a , R. Armstrong ^a , E. Belousova ^b , R.J. Pankhurst ^c ,		
5	and I. Kavalieris ^d and D. Kirwin ^d		
6			
7	"NHM, <u>Department of Earth Sciences</u> , CERCAMS, London SW7 5BD, UK	C	
8	[•] <u>Australian Research Council Centre of Excellence for Core to Crust Fluid Systems</u>	$\langle $	Formatted: Font: Times New Roman, 12 pt, Italic, Font color: Auto
9	GEMOC, Macquarie University, NSW, 2109 Australia		Formatted: Font: Times New Roman,
10	^c BGS, Keyworth, Nottingham NG12 5GG, UK	C	
11	^d Oyu Tolgoi LLC, Ulaanbaatar 14240, Mongolia		
12			
13	Abstract		
14	Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are		
15	presented for a representative sample suite of Late Devonian to Early Carboniferous		
16	plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi		
17	porphyry Cu-Au district in the South Gobi, Mongolia. Sr and Nd isotopes (whole-		
18	rock) show restricted ranges of initial compositions, with positive ENdt mainly		
19	between +3.4 and +7.4 and $({}^{87}\text{Sr}/{}^{86}\text{Sr})$ t predominantly between 0.7037 and 0.7045		
20	reflecting magma generation formation from a relatively uniform juvenile lithophile-		
21	element depleted source. Previously dated zircons from the plutonic rocks exhibit a		
22	sample-averaged range of ϵ Hft values of +11.6 to +14.5. Depleted-mantle model ages		
23	of 420-830 (Nd) and 320-730 Ma (zircon Hf) limitpreclude the involvement of pre-		
24	Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline		
25	magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of		
26	unradiogenic initial compositions: ²⁰⁶ Pb/ ²⁰⁴ Pb 17.40-17.94, ²⁰⁷ Pb/ ²⁰⁴ Pb 15.43-15.49		
27	and ²⁰⁸ Pb/ ²⁰⁴ Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the		
28	dominance of a mantle component. All four isotopic systems suggest that the magmas		
29	from which the large Oyu Tolgoi porphyry system was generated originated		
30	predominantly from juvenile material within the subduction-related setting of the		
31	Gurvansaihan terrane.		
32			
33	Keywords: Hugo Dummett, Oyu Tolgoi, Mongolia, juvenile, Sr-Nd-Hf-Pb isotopes		

* Corresponding author. Address: Natural History Museum, Department of <u>Earth</u>
 <u>SciencesMineralogy</u>, Cromwell Road, London SW7 5BD, U.K. *E-mail*:
 allad@nhm.ac.uk. Tel.: +44 207 9426009. Fax: +44 207 9426012.

37

38 **1. Introduction**

39

40 The Hugo Dummett copper-gold deposit is a part of the giant Oyu Tolgoi porphyry district in South Gobi of Mongolia (Fig. 1). The district is situated within 41 the Central Asian Orogenic Belt (CAOB), one of the largest orogens on Earth (Khain 42 et al., 2003; Kröner et al., 2007). The CAOB (or the Altaid Tectonic Collage, Şengör 43 et al., 1993) is a prime example of accretionary orogeny and represents a complex 44 pattern of Neoproterozoic to Mesozoic orogenic belts; it consists of mobile belts and 45 microcontinental blocks (Badarch et al., 2002; Buchan et al., 2002; Kovalenko et al., 46 2004; Kröner et al., 2007; Windley et al., 2007; Xiao et al., 2008, 2009). It stretches 47 for 5000 km across Asia from the Siberian Craton and the Tarim and North China 48 Craton. 49

Accretionary orogens constitute major sites of continental growth and 50 mineralisation; they form at sites of subduction of oceanic lithosphere and consist of 51 accretionary wedges containing material accreted from the downgoing plate and 52 eroded from the upper plate, island arcs, ophiolites, oceanic plateaux, old continental 53 54 blocks, metamorphic rocks and syn- and post-orogenic granitoids. Continental growth 55 involves the addition of mantle-derived (juvenile) material to the crust (Jahn et al., 2000, 2004; Kröner et al., 2007; Cawood & Buchan, 2007). Arc magmatism within 56 accretionary orogens is invoked as the major source of this material although 57 extensive recycling of older continental crust may also be involved, for example in the 58 Famatinian (Ordovician) arc of western South America (Pankhurst et al., 1998). 59 60 Within the CAOB recent studies of detrital and xenocrystic zircon ages revealed that in some terranes the Precambrian crust has played an important role in the generation 61 of the younger crust, through remelting and magmatism (Safonova et al., 2010; Rojas-62 Agramonte et al., 2011). 63

The Oyu Tolgoi group of deposits represent a typical porphyry system formed
in an island-arc setting (Khashgerel et al., 2006). <u>Majority of Pp</u>orphyry deposits are
formed in association with subduction-related magmas (Richards, 2003). During the
Paleozoic, southern Mongolia grew through the accretion of island arc, subduction,

related magmatic arcs and continental blocks. Geochemical constraints of the origin

and evolution of Paleozoic magmatic arcs in the Oyu Tolgoi district using whole-rock

Nd and Pb isotopes confirmed derivation of magma from a depleted mantle source in

an intra-oceanic volcanic arc (Wainwright et al., 2011).

72 Whole-rock Sr, Nd, Pb and zircon Hf isotopic compositions were measured in 73 20 whole-rock samples from Late Devonian to Early Carboniferous intrusions and 74 their volcanic host host rocks hosting the intrusions in order to infer their geotectonic setting, evaluate mechanisms of crustal generation, define the composition of mantle 75 sources, and to estimate the role of juvenile crust in the Oyu Tolgoi and nearby areas. 76 New SHRIMP zircon ages, which will be reported in full elsewhere (Seltmann et al., 77 in prep.), were obtained for most of the same samples to provide constraints on the 78 timing of magmatism of the Hugo Dummett deposit and adjacent areas with respect to 79 80 Cu-Au mineralisation.

81

82 2. Geological setting

83

The Oyu Tolgoi deposits are situated 650 km south of Mongolian capital 84 85 Ulaanbaatar and were discovered in 1997 by BHP Billiton. The Oyu Tolgoi property comprises six main exploration prospects of Hugo Dummett (North and South), 86 Central Oyu, South and Southwest Oyu, Heruga North and Heruga (Kavalieris et al., 87 88 2011). The geology of the six main Oyu Tolgoi deposits was summarized by Perello et al. (2001), Kirwin et al. (2005), Kavalieris and Wainwright (2005) and Khashgerel 89 (2006, 2008). With measured and indicated resources currently amounting to 1,387 90 Mt at 1.33% Cu and 0.47 g/t Au, and inferred resource of 2,367 Mt at 0.78% Cu and 91 0.33 g/t Au (Kavalieris et al., 2011), it now comprises the largest group of Paleozoic 92 porphyry deposits in the world. 93 The deposits occur in a mid Palaeozoic calc-alkaline island arc, consisting of 94 metasediments and island arc basalts resting on an early Palaeozoic ophiolite complex 95 (Fig. 2). Late Devonian porphyry Cu-Au deposits occur in a 22 km NNE-trending 96 zone and are related to quartz monzodiorite intrusions emplaced in augite basalt lavas 97 (Khashgerel et al., 2008). The Cu-Au Oyu Tolgoi Cu-Au porphyries are located in the 98

Devonian Gurvansaihan terrane of Badarch (2002), which hosts many other South

100 Gobi porphyry deposits.

101 The Oyu Tolgoi lithology consists of massive porphyritic augite basalt overlain by dacitic and andesitic ash flow tuff, green to red siltstone, conglomerate, 102 carbonaceous shale and intercalated auto-brecciated basaltic lava and tuff. The nearest 103 large outcropping felsic intrusion occurs about 3 km NW of the drilled area. Within 104 105 the mineralised area, Late Devonian porphyritic quartz monzodiorite and granodiorite occur as dykes. Quartz monzodiorite bears hornblende, biotite and plagioclase; 106 107 granodiorite has biotite, plagioclase and a distinctive brown aphanitic groundmass (Kirwin et al., 2005; Kavalieris and Wainwright, 2005). 108

109 This study focuses mainly on the Hugo Dummett deposits (Fig. 3) that in plan 110 view extend for over 3 km from SW to NE. The geology, alteration and mineralisation are similar at Hugo Dummett North and Hugo Dummett South (Khashgerel, 2006). 111 Both deposits are hosted mainly by quartz monzodiorite (Kavalieris et al., 2011). The 112 high-grade (>2.5% Cu) sulphide mineralization is associated with intense quartz 113 veining and is comprised of bornite, chalcocite and chalcopyrite, with the dominance 114 of bornite. Pyrite, enargite, tetrahedrite-tennantite occur in subordinate amounts, 115 mainly in the Hugo Dummett South. The advanced argillic alteration within the tuffs 116 is accompanied by alunite, pyrophyllite, diaspore, dickite, topaz, zunyite and fluorite 117 118 (Khashgerel et al., 2008). The sulphides exhibit a zonation from a bornite-dominated 119 core to chalcopyrite and pyrite. Au (ppm) : Cu (%) ratios throughout much of the deposit are 1:10, but in strongly quartz-veined monzodiorite intrusions and adjacent 120 121 host rocks encountered at Hugo Dummett North, this increases up to 1:1. 122 Figures 1-3. 123 124 125 3. Samples 126 Table 1 lists 20 drill core samples of Late Devonian to Early Carboniferous 127 128 plutonic and volcanic rocks (stratigraphic zones D₃ to C₁) from within and around the Oyu Tolgoi Exploration Block (OTEB) chosen for this study; sample locations are 129

130 shown in Figures 4 and $\overline{5}$. Four sub-samples were taken at different depths from two

drill holes of OTD514 and OTD976. Stratigraphic column for samples collected from

- 132 volcanic host rocks and intrusions is shown in Fig. 6. <u>Appendix 1 includes a detailed</u>
- 133 <u>mineralogical description for each of the studied samples.</u>

134	Four samples were collected from outside of the OTEB (Fig. 4). These		
135	include: (1) a medium-grained granodiorite immediately to the north from the OTEB,		
136	(2) a dacite and (3) a quartz monzodiorite from Cu-Au mineralised intrusions 10kms		
137	to the NNE at the Ulan Khud prospect, and (4) a basalt from the Ulan Uul prospect		
138	located 24 km WSW from the OTEB.		
139	Plutonic samples were chosen from the Hugo Dummett North and South, Oyu		
140	Tolgoi Central and Oyu Tolgoi SW to allow comparison between the main deposits.		
141			
142	Table 1.		
143	Figure 4.		
144	Figure 5.		
145	Figure 6.		
146			
147	4. Analytical procedures		
148			
149	Whole rock analyseis of major and trace elements were obtained at Activation		Formatt
150	Laboratories Ltd. (ActlabsCTLABS) laboratory, (Ontario, Canada. Samples were		
151	prepared using) using a lithium metaborate / tetraborate fusion method. to digest the		
152	samples. 0.25 g sample aliquot is digested with HClO ₄ -HNO ₃ -HCl-HF at 200°C to		Formatt
153	fuming and is then diluted with aqua regia. 1 g of sample was digested with aqua regia	$\overline{\ }$	Formatt
154	and diluted to 250 ml volumetrically. Each batch contained a method reagent blank,		
155	certified reference material, and 17% replicates. Samples were mixed with a flux of		
156	lithium metaborate and lithium tetraborate and fused in an induction furnace. The		
157	molten melt was immediately poured into a solution of 5% nitric acid containing an		
158	internal standard, and mixed continuously until completely dissolved (~30 minutes).		
159	The samples and method reagent blank were then analysed for major oxides and trace		
160	elements on a combination simultaneous/sequential Thermo Jarrell-Ash ENVIRO II		
161	ICP. For the ICP analysis, reagent blanks with and without the lithium borate flux		
162	were analysed, as well as the method reagent blank. Interference correction		
163	verification standards were analysed. Calibration was performed using multiple USGS		
164	and CANMET certified reference materials, including: GXR-1, GXR-2, WMG-1,		
165	NIST-694, NIST-696, NIST-1633b, DNC-1, BIR-1, KC-1A, CCU-1C, FK-N, LKSD-		
166	3, MAG-1, SY-3, W-2a, JSD-3, and CTA-AC-1. Two of the standards were used		
167	during the analysis for every group of ten samples. The sample solution was also		

Formatted: Line spacing: 1.5 lines

Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt

168	spiked with internal standards and was further diluted and introduced into a Perkin
169	Elmer SCIEX ELAN 6000 ICP/MS using a proprietary sample introduction
170	methodology.
171	International reference materials for the metals of interest were digested at the
172	same time. The samples and standards were analysed on a Thermo Jarrell Ash
173	ENVIRO II simultaneous and sequential ICP, Varian Vista 735 ICP and Thermo 6500
174	ICP (ACTLABS Code 4B2). An in-lab standard (traceable to certified reference
175	materials) or certified reference materials were used for quality control. MoreFurther
176	details of the analytical methods, including detection limits for each element, may be
177	found at:
178	http://www.actlabs.com/page.aspx?page=522&app=226&cat1=549&tp=12&lk=no&
179	<u>menu=64</u>
180	
180 181	Sr-Nd-Pb isotopes were measured in the ALS Laboratory Group, Sweden. 0.2
180 181 182	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of
180 181 182 183	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were
180 181 182 183 184	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid,
180 181 182 183 184 185	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure
180 181 182 183 184 185 186	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One
180 181 182 183 184 185 186 187	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One aliquot was used for Sr and Pb column separation, where the residue was taken up in
180 181 182 183 184 185 186 187 188	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One aliquot was used for Sr and Pb column separation, where the residue was taken up in 70% HNO ₃ . The second aliquot was dissolved in 1 M HCl and used for Nd separation.
180 181 182 183 184 185 186 187 188 189	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One aliquot was used for Sr and Pb column separation, where the residue was taken up in 70% HNO ₃ . The second aliquot was dissolved in 1 M HCl and used for Nd separation. Eichrom columns were used for element separation procedure. After purification,
180 181 182 183 184 185 186 187 188 189 190	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One aliquot was used for Sr and Pb column separation, where the residue was taken up in 70% HNO ₃ . The second aliquot was dissolved in 1 M HCl and used for Nd separation. Eichrom columns were used for element separation procedure. After purification, each element fraction was dried and re-dissolved in 5% HNO ₃ , ready for isotope
180 181 182 183 184 185 186 187 188 189 190 191	<i>Sr-Nd-Pb isotopes</i> were measured in the ALS Laboratory Group, Sweden. 0.2 g of rock powder was digested in a mixture of 2 ml of hydrofluoric acid and 3 ml of nitric acid in Savillex Teflon closed vials at 160°C for 48 hours. All samples were prepared in duplicates. The digests were dried, dissolved in 3 ml of hydrochloric acid, heated in close vials at 160°C for one hour, and evaporated to dryness. This procedure was repeated two times. Two separate aliquots of the 0.2 g digest were used. One aliquot was used for Sr and Pb column separation, where the residue was taken up in 70% HNO ₃ . The second aliquot was dissolved in 1 M HCl and used for Nd separation. Eichrom columns were used for element separation procedure. After purification, each element fraction was dried and re-dissolved in 5% HNO ₃ , ready for isotope analyses. The well-established element separation procedures for Sr can be found in

193 were performed using Neptune multi-collector ICP-MS (Thermo Fisher Scientific,

194 Bremen, Germany) in high resolution mode (slit width of 16 µm). Element

195 concentrations in measurement solutions for MC-ICP-MS were adjusted to required

196 concentrations (200 ppb for Sr, 100 ppb for Pb and Nd) by dilution. Tl spike at 50 ppb

197 was added to Pb measurement solutions for on-line mass-bias correction. Certified

reference material of international standard NBS 981 for Pb, NBS 987 for Sr and

199 Merck Nd were used to bracket the samples during the measurements. The error on

200 the <u>measured</u> isotope ratios was estimated using the long-term reproducibility of

201 repeated measurements over the time of investigation. Distilled Milli-Q water

6

Formatted: Font: 12 pt

(Millipore Milli-Q) was used for preparation of all measurement solutions includingstandards, samples and procedural blanks, and solutions for the separation.

204Analytical data are reported in Table 2, together with cNdt values calculated as205*per mil* deviations from the contemporaneous model compositions of a chondritie206uniform reservoir (CHUR) using the determined or estimated age of each sample as in207Table 1. Estimated ages for the extraction of the parent material were also calculated208as follows: T_{DM} from depleted mantle according to the one stage crustal pre history209assumed by DePaolo (1988), T_{DM} * from depleted mantle according to the two stage210model of DePaolo et al. (1991).

211

Hf isotope analyses were carried out at the Geochemical Analysis Unit of the 212 GEMOC Key Centre in the Department of Earth and Planetary Sciences, Macquarie 213 University, Australia. These analyses were performed on zircons grains dated 214 previously by SHRIMP-II at VSEGEI, St Petersburg (Table 1). The analytical spots 215 216 for the analyses were located to overlap the SHRIMP pits to avoid as far as possible 217 any discrepancy between the U-Pb age data and Hf-isotopic data due to any withingrain age zoning or variation. It should be noted that the zircon recovery from sample 218 OTD388 was inadequate to define an age of crystallization, and that none of the 219 220 basalts yielded zircon that could be related to crystallization of the volcanic rock. Ages for these samples were assumed as indicated in Table 1. 221 Hf-isotope analyses were carried out in situ with a New Wave UP 213nm 222 223 laser-ablation microprobe, attached to a Nu Plasma multi-collector ICPMS. Typical ablation times were 80-120 s, resulting in pits 40-60 µm deep. The methodology and 224 225 analyses of standard solutions and standard zircons are described by Griffin et al. (2000).226 For this work we analysed masses 172, 175, 176, 177, 178, 179 and 180 227

For this work we analysed masses 172, 175, 176, 177, 178, 179 and 180 simultaneously in Faraday cups; all analyses were carried out in static-collection mode. Data were normalized to 179 Hf/ 177 Hf=0.7325, using an exponential correction for mass bias. Initial setup of the instrument is done using a 1 ppm solution of JMC475 Hf, which typically yields a total Hf beam of 10–14×10⁻¹¹ A.

Interference of ¹⁷⁶Lu on ¹⁷⁶Hf is corrected by measuring the intensity of the
interference-free ¹⁷⁵Lu isotope and using ¹⁷⁶Lu/¹⁷⁵Lu=0.02669 (DeBievre and Taylor,
1993) to calculate ¹⁷⁶Lu/¹⁷⁷Hf. Similarly, the interference of ¹⁷⁶Yb on ¹⁷⁶Hf has been

Formatted: Font: Not Italic
Formatted: Font: Not Italic

235	corrected by measuring the interference-free $^{172}\mathrm{Yb}$ isotope and using $^{176}\mathrm{Yb}/^{172}\mathrm{Yb}$ to		
236	calculate ${}^{176}\mathrm{Yb}/{}^{177}\mathrm{Hf}.$ The appropriate value of ${}^{176}\mathrm{Yb}/{}^{172}\mathrm{Yb}$ was determined by		
237	spiking the JMC475 Hf standard with Yb, and finding the value of 176 Yb/ 172 Yb		
238	(0.587) required to yield the value of $^{176}\text{Hf}/^{177}\text{Hf}$ obtained on the pure Hf solution		
239	(Griffin et al., 2004). The accuracy of the Yb and Lu corrections has been	F	orm
240	demonstrated by repeated analysis of standard zircons with a range in $^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ and		
241	¹⁷⁶ Lu/ ¹⁷⁷ Hf (Griffin et al., 2004; Pearson et al., 2008).	F	orm
242	For the calculation of EHf values, we have adopted the chondritic values of	F	orm
243	Blichert-Toft et al. (1997). To calculate model ages (TDM) based on a depleted-		
244	mantle source, we have adopted a model with a present-day ${}^{176}\text{Hf}/{}^{177}\text{Hf}$ of 0.28325		
245	equivalent to average MORB and $^{176}Lu/^{177}Hf = 0.0384$ (Griffin et al., 2000). ϵ Hf		
246	values and model ages used in the figures were calculated using a decay constant for		
247	¹⁷⁶ Lu of 1.865 x 10 ⁻¹¹ yr-1(Scherer et al., 2001). Single-stage TDM ages, which are		
248	calculated using the measured ${}^{176}Lu/{}^{177}Hf$ of the zircon can only give the minimum		
249	age for the source material of the magma from which the zircon crystallised. We		
250	therefore also calculated a two-stage "crustal" model age for each zircon (T_{DM}^{C}) ,		
251	which assumes that its parental magma was produced from an average continental		
252	crust (176 Lu/ 177 Hf = 0.015) that originally was derived from depleted mantle. This is		
253	equivalent to the <u>calculation</u> treatment of T_{DM}^* from the Sm-Nd data.		
254			
255	5. Results		
256			
257	5.1. Major and trace elements		
258			
259	Whole-rock analytical results are listed in Table 2 and mantle-normalised multi-		
260	element plots are shown in Fig. 7. The latter show negative spikes for Ta, Nb and Ti		
261	for all rock types and positive spikes for Rb, Ba, Hf and Zr for all except the basalts,		
262	both of which are characteristic of subduction-related magmatism.		
263			
264	Table 2		
265	Figure 7		
266			
267	5.2. Rare earth elements		
268			

Formatted: Font: Not Italic

Formatted: Font: Not Italic
Formatted: Font: Not Italic

269	Chondrite-normalised REE plots are shown in Fig. 8. All show slight-to-moderate
270	light REE enrichment (La _N /Yb _N ranging from 2.4 to 15), with a slight relative
271	depletion of the middle REE, possibly due to hornblende fractionation. Eu anomalies
272	are negligible, except for the strong positive anomaly noted in one granodiorite (EGD
273	001) suggesting plagioclase accumulation.
274	
275	Figure 8
276	
277	5.3. Sr-Nd isotope systematics
278	
279	Whole-rock samples were analysed for Sr and Nd isotope compositions (Table
280	3). Sm, Nd, Rb, and Sr concentration data from the geochemical analyses and U-Pb
281	ages (Table 1) were used to calculate isotope compositions at the time of
282	crystallization as a constraint on petrogenesis and as tracers for the crustal section
283	through which each was emplaced. Sr-Nd analytical data are reported in Table 3. ENdt
284	values calculated as per mil deviations from the model compositions of a chondritic
285	uniform reservoir (CHUR) at the estimated age, T _{DM} is the estimated age of
286	extraction from depleted mantle according to the one-stage crustal pre-history
287	assumed by DePaolo (1988), and T_{DM}^* according to the two-stage model of DePaolo
288	et al. (1991). The precision of parent/daughter ratios derived from the geochemical
289	data is relatively low. This restricts the precision of calculated initial ⁸⁷ Sr/ ⁸⁶ Sr and
290	¹⁴³ Nd/ ¹⁴⁴ Nd ratios, which are reported here with fewer decimal places than usual.
291	<u>Nevertheless</u> , errors of as much as $\pm 10\%$ in Rb/Sr would lead to an uncertainty of less
292	than 0.001 in initial ⁸⁷ Sr/ ⁸⁶ Sr in the majority of the cases, and is only significantly
293	higher for a few samples with ⁸⁷ Rb/ ⁸⁶ Sr ratios greater than about 3. In the case of the
294	Nd isotope data a 10% error in Sm/Nd leads to an uncertainty of about 0.6 to 0.8 in
295	ENdt. The conclusions and interpretations reached are independent of these
296	uncertainties.
297	Since the precision of the geochemical data is restricted, initial ⁸⁷ Sr/ ⁸⁶ Sr and
298	¹⁴³ Nd/ ¹⁴⁴ Nd ratios are rounded down to allow for uncertainty in the age corrections.
299	Initial ⁸⁷ Sr/ ⁸⁶ Sr ratios in whole-rock samples mostly fall in a restricted range of
300	0.7036 to 0.7045, with only three exceptions. A dacite from Hugo Dummett North
301	(OTD 1218) has an elevated value of 0.7087, which could indicate contamination due

302	to alteration of this ash-flow tuff sample. Two of the quartz monzodiorites from
303	OTD514 with high Rb/Sr ratios have calculated initial ⁸⁷ Sr/ ⁸⁶ Sr ratios below 0.703,
304	one of which is unrealistically low; these have been discounted in view of probably
305	erroneous over-correction as explained above. Most of the other quartz monzodiorite
306	samples have ⁸⁷ Rb/ ⁸⁶ Sr ratios <0.5, with corresponding uncertainties in their initial
307	$\frac{87}{\text{Sr}}$ sr ratios of less than 0.0003. ε Ndt values vary from +1.5 to +7.4, with 19 of the
308	20 falling in the even more restricted range of +3.4 to +7.4. The dacite with the high
309	(⁸⁷ Sr/ ⁸⁶ Sr)t has an ENdt value of +4.5, strongly indicating that the Rb-Sr system was
310	disturbed but that the Sm-Nd data is more meaningful. Regardless of the uncertainty
311	of 0.6–0.8, it is safe to conclude that all ENdt values were significantly positive at the
312	time of crystallization. whereas a nearby quartz monzodiorite has a low value of
313	0.7028 that may suggest a depleted mantle source. The value for quartz monzodiorite
314	OTD514-1 is unrealistically low and in view of the high Rb/Sr ratio of this sample it
315	is suggested that slight open-system behaviour has resulted in over-correction this
316	result is discounted. Corresponding cNdt values vary from +1.5 to +7.4, with 19 of the
317	20 falling in the even more restricted range of $+3.4$ to $+7.4$. The dacite with the high
318	(⁸⁷ Sr/ ⁸⁶ Sr)t has an cNdt value of +4.5, strongly indicating that the Rb Sr system was
319	disturbed and that the Sm Nd data is more meaningful.
320	Co-variation between the Sr and Nd isotope parameters is shown in Fig. 9,
321	differentiated according to the rock types. Positive ϵ Ndt and low 87 Sr/ 86 Sr indicate a
322	major contribution from long-term lithophile element depleted sources such as the
323	mantle or juvenile crustal rocks with only a short residence time before magma
324	genesis. These characteristics are in accordance with generation of these samples in an
325	island arc setting of the Gurvansaihan terrane.
326	The late Palaeozoic depleted mantle would have had ϵNd values about round
327	+7 (as opposed to <u>about</u> +9 today), so that the slightly lower ε Ndt of many of
328	the samples would permit a minor crustal contribution as well, either in the source or
329	through contamination during magma ascent and crystallization. Normal crustal
330	contents of Sm and Nd are higher than in basaltic magmas so that the present day
331	isotopic compositions will largely be dominated by the crustal contribution. The
332	approximate age of such crust may be estimated from the Nd model ages (T_{DM} and
333	T_{DM}^{*} in Table 3, which typically have uncertainties of 50–100 Ma due to limitations
334	in the analytical data and model parameters).

335	
336	Table 3
337	Figure 9
338	
339	5.4. Hf isotope systematics
340	
341	The results of the Lu-Hf isotope analyses of U-Pb dated zircon grains are
342	given in Table 4. Only results for zircons clearly related to the crystallization of the
343	parent rocks, both plutonic and dacitic, are reported, as indicated in Table 1. All 102
344	analyses (discounting two for grains that gave anomalous U-Pb ages) yield EHft
345	values that are strongly positive (+10.3 to +16.1); averaged values for each sample
346	range from +11.6 (OTD258(82.5)) to +14.5 (OTD514(1405.85-1410.15)).
347	Considering that the standard deviation for sample mean is around one epsilon unit,
348	the results are essentially uniform at the 2-sigma level effectively indistinguishable.
349	
350	Table 4
351	
352	5.5. Pb isotope systematics
353	
354	Table 5 shows the results of the Pb isotope analyses. The studied whole-rock
355	samples exhibit a narrow-present-day range of ²⁰⁶ Pb/ ²⁰⁴ Pb 17.773-19.058, ²⁰⁷ Pb/ ²⁰⁴ Pb
356	15.445-15.544 and ²⁰⁸ Pb/ ²⁰⁴ Pb 37.456-38.489. Initial compositions were calculated
357	
	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with a
358	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with a probable precision limit of about 10%, which for these sample leads to uncertainties
358 359	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with a probable precision limit of about 10%, which for these sample leads to uncertainties in the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case of
358 359 360	<u>using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with a</u> probable precision limit of about 10%, which for these sample leads to uncertainties in the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case of the initial Sr and Nd isotopic compositions in Table 3, the justification of the
358 359 360 361	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, is
 358 359 360 361 362 	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, isdemonstrated by the relative uniformity of the results: in the present case the initial
358 359 360 361 362 363	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, isdemonstrated by the relative uniformity of the results: in the present case the initial ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb ratios fall within the reasonably narrow ranges
 358 359 360 361 362 363 364 	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, isdemonstrated by the relative uniformity of the results: in the present case the initial ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb ratios fall within the reasonably narrow rangesof 17.40-17.94, 15.43-15.49 and 37.25-37.64 respectively. Moreover, discounting the
 358 359 360 361 362 363 364 365 	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, isdemonstrated by the relative uniformity of the results: in the present case the initial ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb ratios fall within the reasonably narrow rangesof 17.40-17.94, 15.43-15.49 and 37.25-37.64 respectively. Moreover, discounting thefour samples for which the age corrections are highest, initial ²⁰⁶ Pb/ ²⁰⁴ Pb for the felsic
 358 359 360 361 362 363 364 365 366 	using U/Pb and Th/Pb ratios taken from the geochemical data in Table 2, with aprobable precision limit of about 10%, which for these sample leads to uncertaintiesin the initial ²⁰⁶ Pb/ ²⁰⁴ Pb and ²⁰⁷ Pb/ ²⁰⁴ Pb ratios of, on average, ±0.05. As in the case ofthe initial Sr and Nd isotopic compositions in Table 3, the justification of thecalculations, as well as the assumption of essentially closed system behaviour, isdemonstrated by the relative uniformity of the results: in the present case the initial ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb ratios fall within the reasonably narrow rangesof 17.40-17.94, 15.43-15.49 and 37.25-37.64 respectively. Moreover, discounting thefour samples for which the age corrections are highest, initial ²⁰⁶ Pb/ ²⁰⁴ Pb for the felsicrocks has an even narrower range of 17.64-17.88, and for the basalts an

368	closed system behavior and using the geochemical analyses for U, Th and Pb	
369	concentrations yield even narrower ranges of 17.40 17.94, 15.43 15.49 and 37.25-	
370	37.64 respectively.	
371		
372	Table 5	
373		
374	6. Discussion and conclusions	
375		
376	6.1 Effects of alteration	
377		
378	The state of alteration of many of the samples analysed in this study (see	
379	Appendix 1 NEW TABLE and loss-on ignition figures in Table 2) was unavoidable	Formatted: Highlight
380	due to its pervasive nature within the drill cores, but an important question arises as to	
381	how this may be reflected in the results. Large-ion lithophile (LIL) elements are	
382	notoriously liable to redistribution during hydrothermal alterations; this is especially	
383	true of K and Rb, but also to a lesser extent of Sr and LREE. We do not think that	
384	such mobility has significantly affected the data and the conclusions reached for the	
385	following reasons. First, apart from a few cases identified above, the Sr and Nd	
386	isotope compositions calculated for the time of igneous emplacement are quite	
387	consistent array (initial ⁸⁷ Sr/ ⁸⁶ Sr 0.7038–0.7045 for both felsic and basaltic rocks;	
388	$\underline{\varepsilon}$ Ndt mostly +3.2 to +7.2). As noted abop ve, there is some inverse co-variation, but	
389	all the data fall comfortably within the "mantle array" in the depleted-source field of	
390	the 87 Sr/ 86 Srt plot (Fig. 9); this could reflect either variations in the source region, or a	
391	relatively minor degrees of contamination of the most LIL-depleted examples. There	
392	is no evidence for massive contamination with crustal radiogenic Sr, for example.	
393	Moreover, Khashgerel et al. (2008) show empirically that the argillic alteration at the	
394	Hugo Dummett deposit tends to reduce both K/Sr (and hence Rb/Sr) and Sm/Nd	
395	ratios, which would result in apparently too high calculated initial ⁸⁷ Sr/ ⁸⁶ Sr	
396	(noticeably so for the most Rb-rich samples) as well as too high ENdt. There is clearly	
397	no evidence for such normally-co-variant behaviour. The strongest argument however	
398	is that the Sr and Nd isotope data yield conclusions as to a LIL-depleted source that	
399	are fully consistent with the evidence of Hf isotopes in zircon (average sample ϵHf_t	
400	+11.6 to +14.5); igneous zircon is highly resistant to chemical alteration and should	

401	preserve magmatic compositions. This is our main conclusion, but even if it were	
402	admitted that the Sr, Nd and Pb isotope systems were the product of complete	
403	equilibration with hydrothermal solutions, these would necessarily have also	
404	originated within the same magmatic system, and the alteration must have occurred	
405	very soon after igneous crystallization for all four isotope systems to record and	
406	maintain the same signature.	
407		
408	<u>6.2 Indications of jJuvenile mMagmatism</u>	
409		
410	In Fig. 10, ε Ndt is plotted against the emplacement age of each sample and	
411	model trend lines show the variation in time for depleted mantle (DM) and for	
412	'average crust' extracted from the mantle at 1000 and 540 Ma (corresponding to the	
413	lower chronological boundaries of Neoproterozoic and Phanerozoic time). The	
414	granodiorite, monzodiorite and dacite samples plot largely within the predicted	
415	composition of early Phanerozoic crust: their model ages are little older than their	
416	mostly Late Devonian emplacement ages (420-830 Ma), confirming genesis within a	
417	relatively immature island arc system. Since the Nd model ages for the basalts are not	
418	considered meaningful, there is no evidence of crust older than late Neoproterozoic	
419	being involved in the arc system.direct derivation of the felsic magmas from crust	
420	older than late Neoproterozoic can be ruled out, although a small contribution from	
421	such old material could have been mixed with dominantly juvenile magmas in the arc	
422	system.	
423	•	Formatted: Indent: First line: 0 cm
424		
425		
426	Figure 10.	
427		
428	Fig. 11a shows the relationship between U-Pb ages and the initial Hf isotope	
429	compositions of the individual zircon grains. All the data plot close to the estimated	
430	composition of the mid Palaeozoic depleted mantle and indicate that the parental	
431	magmas were predominantly derived from such a source, with little or no older	
432	continental crust being involved in magma genesis. This is reinforced by the $T_{DM}{}^{C}$	
433	ages (Table 3), which range from 320 to 720 Ma, with a strong maximum close to 500	

Ma (Fig. 11b). This suggests that most of these felsic igneous rocks were derived by
reworking of the Early Paleozoic or younger juvenile crust that grew by the addition
of magmas derived from depleted mantle.

437

438 Figures 11 a, b.

439

Pb isotopes also indicate a source with mantle-like U-Pb ratios, relatively
uncontaminated by more radiogenic Pb (Fig. 12 a, b). The basalts and dacites plot
closest to the estimated composition of the Devonian MORB source, whereas the
plutonic igneous rocks have slightly less radiogenic Pb, consistent with a small crustal
component.

445

446 Figures 12 a, b.

447

Nd-Hf isotope mapping of South Gobi in the frame of the CERCAMS Altaids 448 project is shown on Fig. 13. Some published data (square symbols) are also plotted. 449 450 The map shows Nd and Hf isotope signatures of granitoid samples collected by the 451 Altaids team from hosting and surrounding terranes of the Oyu Tolgoi porphyry 452 district. All Oyu Tolgoi samples of this study are also plotted on the map, allowing comparison of their Nd-Hf isotope signatures with other samples from the region. It is 453 454 clear that the majority of samples within the South Gobi area (i.e. to the north from the North China Craton), including the Oyu Tolgoi samples of this study, exhibit 455 dominant juvenile signatures, indicating their origin within the extensive intra-oceanic 456 457 volcanic environment.

The positive initial Hf isotope values reported from the OTEB in conjunction 458 459 with low apparent degrees of crustal contamination are paralleled in data reported from other significant porphyry-style deposits world wide, e.g., El Teniente, Chile 460 (total average EHf 7.4±1.2, Muñoz et al, 2012), Mount Leyshon Igneous Complex, 461 Australia (range of median EHf 3.2 to 4.5, Murgulov et al, 2008), Gangdese porphyry 462 copper belt, Southern Tibet belt (EHf 1.8 to 9.2, Li et al, 2011), and Yulong porphyry 463 system (EHf 4.6 to 6.9, Hou et al, 2011). This suggests that juvenile sources, 464 465 regardless of tectonic setting play a significant role in the generation of fertile magmas required for porphyry-Cu style mineralization. As illustrated by Peytcheva et 466 467 al. (2009) and van Dongen et al. (2010), a juvenile EHf zircon signature alone is not

468	always a sufficient indicator of magma fertility and should be assessed in conjunction		
469	with other regional petrological and structural data.		
470			
471	Figure 13		
472			
473	Acknowledgements		
474			
475	Ivanhoe Mines Mongolia is thanked for its continuous support and for providing		Formatted: Normal, Line spacing: 1.5
476	samples for this study. Douglas Kirwin is especially thanked for support and		
477	inspiration. Assistance of D. Konopelko, S. Sergeev and S. Petrov with SHRIMP U-		
478	Pb zircon geochronology is highly acknowledged. This is a contribution to IGCP-592		
479	sponsored by UNESCO IUGS. This is contribution XXX from the ARC Centre of	_	Formatted: Font: 12 pt, Not Bold,
480	Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and YYY in		
481	the GEMOC Key Centre (http://www.gemoc.mq.edu.au), The Hf analytical data were		Formatted: Font: 12 pt, Font color:
482	obtained using instrumentation funded by DEST Systemic Infrastructure Grants, ARC	\bigvee	Formatted: Font: 12 pt, Not Bold,
483	LIEF, NCRIS, industry partners and Macquarie University, This is a contribution to		Font color: Auto
484	IGCP-592 sponsored by UNESCO-IUGS.	$\setminus \setminus$	Auto
485		$\left \right $	Formatted: Font: 12 pt, Not Bold, Font color: Auto
486			Formatted: Font: 12 pt, Font color:

Auto
Formatted: Font: 12 pt

References

488	Badarch, G., Cunningham, W.D. & Windley, B.F., 2002. A new terrane subdivision
489	for Mongolia: implications for the Phanerozoic crustal growth of Central Asia.
490	Journal of Asian Earth Sciences 21, 87–110.
491	Buchan, C., Pfänder, J., Kröner, A., Brewer, T., Tomurtogoo, O., Tomurhuu, D.,
492	Cunningham, D. & Windley, B. 2002. Timing of accretion and collisional
493	deformation in the Central Asian Orogenic Belt: implications of granite
494	geochronology in the Bayankhongor ophiolite zone. Chemical Geology, 192, 23-
495	45.
496	Blichert-Toft, J., Chauvel, C. & Albarède F. 1997. Separation of Hf and Lu for high-
497	precision isotope analysis of rock samples by magnetic sector-multiple collector
498	ICP-MS. Contribution to Mineralogy and Petrology, 127, 248-260.
499	Cawood, P.A. & Buchan C. 2007. Linking accretionary orogenesis with
500	supercontinent assembly. Earth-Science Reviews, 82, 3-4, 217-256.
501	DeBievre P, Taylor PDP (1993) Table of the isotopic composition of the elements. Int.
502	Journal of Mass Spectrometry and Ion Processes 123, 149.
503	DePaolo, D.J., 1981. Nd isotopes in the Colorado Front Range and crust-mantle
504	evolution in the Proterozoic. Nature 291, 193-196.
505	DePaolo, D.J., 1988. Age dependence of the composition of continental crust as
506	determined from Nd isotopic variations in igneous rocks. Earth and Planetary
507	Science Letters 59, 263-271.
508	DePaolo, D.J., A.M. Linn & G. Schubert, 1991. The Continental crustal age
509	distribution: methods of determining mantle separation ages from Sm-Nd isotopic
510	data and application to the southwestern U.S. Journal of Geophysical Research 96,
511	2071-2088.
512	van Dongen, M., Weinberg, R.F., Tomkins, A.G., Armstrong, R.A.& Woodhead, J.D.,
513	2010. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid
514	formation of the Ok Tedi porphyry Cu-Au deposit, Papua New Guinea. Lithos
515	114, 282-292.
516	Griffin W. L., Pearson N. J., Belousova E. A., Jackson S. R., van Achterbergh E.,
517	O'Reilly S. Y. & Shee S. R., 2000. The Hf isotope composition of cratonic mantle:
518	LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et

519 Cosmochimica Acta 64, 133-147.

520	Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O'Reilly S.Y. (2004) Archean
521	crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence
522	from detrital zircons. Precambrian Research 131, 231-282.
523	Helo, C., Hegner, E., Kroener, A., Badarch, G., Tomurtogoo, O., Windley, B.F.,
524	Dulski, P., 2006. Geochemical signature of Paleozoic accretionary complexes of the
525	Central Asian Orogenic Belt in South Mongolia: constraints on arc environments
526	and crustal growth. Chemical Geology 227, 236–257.
527	Hou, Z., Zhang, H., Pan, X. & Yang, Z. 2011. Porphyry Cu (-Mo-Au) deposits related
528	to melting of thickened mafic lower crust: Examples from the eastern Tethyan
529	metallogenic domain. Ore Geology Reviews 39, 21-45.
530	Jahn, B.M., Wu, F. & Chen, B., 2000. Massive granitoid generation in Central Asia:
531	Nd isotope evidence and implication for continental growth in the Phanerozoic.
532	Episodes 23, 82–92.
533	Jahn, B.M., Capdevila, R., Liu, D.Y., Vernon, A. & Badarch, G., 2004. Sources of
534	Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia:
535	Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal
536	growth: Journal of Asian Earth Sciences, 23, 629-653.
537	Kavalieris, I., 2005. Notes on 21 samples for zircon U-Pb geochronology from the
538	Oyu Tolgoi Project, South Gobi Desert, Mongolia. Report Ivanhoe Mines
539	Mongolia, 48 pp.
540	Kavalieris, I., Rinchin, O., Gombojav, J., Gombosuren, N., Crane, D., Orssich, C. &
541	Khashgerel, BE., 2011. Characteristics of the Oyu Tolgoi porphyry deposits,
542	South Gobi, Mongolia. Abstract volume, 11 th SGA Biennial Meeting, Antofagasta,
543	Chile, September 26 – 29, 2011, A111.
544	Kavalieris, I. & Wainwright, A., 2005. Wholerock geochemistry of Late Devonian
545	island arc intrusive suites from Oyu Tolgoi. IOGD Guidebook Series, 11:169–174.
546	Khain, E.V., Bibikova, E.V., Salnikova, E.B., Kröner, A., Gibsher, A.S., Didenko,
547	A.N., Degtyarev, K.E. & Fedotova, A.A., 2003. The Palaeo-Asian ocean in the
548	Neoproterozoic and early Paleozoic: New geochronologic data and palaeotectonic
549	reconstructions: Precambrian Research 122, 329–358.
550	Khashgerel, BE., Rye, R.O., Hedenquist, J.W. & Kavalieris, I., 2006. Geology and
551	reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system,
552	South Gobi, Mongolia. Economic Geology 101, 503–522.

553	Khashgerel, BE., Kavalieris, I. & Hayashi, K., 2008. Mineralogy, textures, and
554	whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry
555	Cu-Au deposit, Oyu Tolgoi mineral district, Mongolia. Mineralium Deposita 43,
556	913–932.
557	Kirwin, D. J., Forster, C.N., Kavalieris, I., Crane, D., Orssich, C., Panther, C.,
558	Garamjav, D., Munkhbat, T.O. & Niislelkhuu, G., 2005. The Oyu Tolgoi Copper-
559	Gold Porphyry Deposits, South Gobi, Mongolia: in Seltmann R, Gerel O and
560	Kirwin D J, (Eds.), 2005 Geodynamics and Metallogeny of Mongolia with a
561	Special Emphasis on Copper and Gold Deposits: SEG-IAGOD Field Trip, 14-16
562	August 2005, 8th Biennial SGA Meeting; CERCAMS/NHM, London, IAGOD
563	Guidebook Series 11, 155-168.
564	Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K.,
565	Salnikova, E.B. & Larin, A.M., 2004. Isotope provinces, mechanism of generation
566	and sources of the continental crust in the Central Asian mobile belt: Geological
567	and isotopic evidence: Journal of Asian Earth Sciences 23, 605-627.
568	Kröner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.B.,
569	Grushka, S., Khain, E.V., Demoux, A. & Wingate, M.T.D., 2007. Accretionary
570	growth and crust-formation in the Central Asian Orogenic Belt and comparison
571	with the Arabian-Nubian shield. Geological Society of America, Memoirs 200:
572	181-209.
573	Li, JX., Qin, KZh., Li, GM., Xiao, B., Chen, L. & Zhao, JX., 2011. Post-
574	collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,
575	southern Tibet: Melting of thickened juvenile arc lower crust. Lithos 126, 265-277.
576	McDonough, W.F. & Sun, S.S., 1995. The composition of the Earth. Chemical
577	Geology 120 (3–4), 223–253.
578	Muñoz, M., Charrier, R., Fanning, C.M., Maksaev, V. & Deckart, K., 2012. Zircon
579	trace element and O-Hf isotope analyses of mineralized intrusions from El
580	Teniente ore deposit, Chilean Andes: constraints on the source and magmatic
581	evolution of porphyry Cu-Mo related magmas. Journal of Petrology 53 (6), 1091-
582	1122.
583	Murgulov, V., O'Reilly, S.Y., Griffin, W.L. & Blevin, Ph.L., 2008. Magma sources
584	and gold mineralisation in the Mount Leyshon and Tuckers Igneous Complexes,
585	Queensland, Australia: U-Pb and Hf isotope evidence. Lithos 101, 281–307.

586	Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. &
587	Fanning, C.M., 1998. The Famatinian magmatic arc in the southern Sierras
588	Pampeanas. In Pankhurst, R.J. & Rapela, C.W. (eds). The Proto-Andean Margin
589	of Gondwana. Special Publication of the Geological Society, London 142, 343-
590	367.
591	Pearson, N.J., Griffin, W.L. & O'Reilly S.Y., 2008. Mass fractionation correction in
592	laser ablation-multiple collector ICP-MS: implications for overlap corrections and
593	precise and accurate in situ isotope ratio measurement. In P. Sylvester (Ed.),
594	Laser-Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding
595	Issues. Mineralogical Association of Canada Short Course 40 Vancouver, B.C., pp.
596	93-116.
597	Perello, J., Cox, D., Garamjav, D., Sanjdorj, S., Diakov, S., Schissel, D., Munkhbat,
598	TO. & Oyun, G., 2001. Oyu Tolgoi, Mongolia; Siluro-Devonian porphyry Cu-
599	Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite
600	blanket. Economic Geology 96, 1407–1428.
601	Peytcheva, I., von Quadt., A., Neubauer, F., Frank, M., Nedialkov., R., Heinrich, C. &
602	Strashimirov, S. 2009. U-Pb dating, Hf-isotope characteristics and trace-REE-
603	patterns of zircons from Medet porphyry copper deposit, Bulgaria: implications
604	for timing, duration and sources of ore-bearing magmatism. Mineralogy and
605	Petrology 96, 19-41.
606	Quétel, C.R., Ponzevera, E., Rodushkin, I., Gerdes, A., Williams, A. & Woodhead, J.,
607	2009. Measuring 0.01‰ to 0.1‰ isotopic variations by MC-ICPMS -testing
608	limits for the first time with Pb δ -iCRMs. Journal of Analytical Atomic
609	Spectrometry, 24, 407-412.
610	Richards, J.P., 2003. Tectono-magmatic precursors for geophysical data over a copper
611	gold porphyry Cu-(Mo-Au) deposit formation: Economic Geology 98, 1515–1533.
612	Rodushkin, I., Bergman, T., Douglas, G., Engström, E., Sörlin, D. & Baxter, D.C.,
613	2007. Authentication of Kalix (N.E. Sweden) vendace caviar using inductively
614	coupled plasma-based analytical techniques: Evaluation of different approaches.
615	Analytica Chimica Acta 583, 310–318.
616	Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu,
617	D. & Sun, M., 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to
618	Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal
619	fragments in the Central Asian Orogenic Belt. Gondwana Research 19: 751-763.

620	Safonova, I., Maruyama, S., Hirata, T., Kon, Y. & Shuji Rino, S., 2010. LA ICP MS
621	U-Pb ages of detrital zircons from Russia largest rivers: Implications for major
622	granitoid events in Eurasia and global episodes of supercontinent formation.
623	Journal of Geodynamics 50, 134–153.
624	Seltmann, R. & Porter, T.M., 2005. The porphyry Cu-Au/Mo deposits of Central
625	Eurasia: 1. Tectonic, geologic and metallogenic setting and significant deposits.
626	In: Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits: A Global
627	Perspective, vol. 2. PGC Publishing, Adelaide, 467–512.
628	Seltmann et al. Bipolar ages from zonal ongrowth of zircon at the Hugo Dummett Cu-
629	Au porphyry deposit (Oyu Tolgoi, Mongolia), Ore Geology Reviews, in prep.
630	Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic
631	collage and Paleozoic crustal growth in Eurasia: Nature 364, 299–307.
632	Scherer E., Munker C. & Mezger K., 2001. Calibration of the Lutetium-Hafnium
633	clock. Science 293, 683-687.
634	Stacey, J.S. & Kramers, J.D., 1975. Approximation of terrestrial lead isotope
635	evolution by a two stage model. Earth and Planetary Science Letters 26 207-221.
636	Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
637	basalts: implications for mantel composition and processes. In: Saunders, A.D.,
638	Norry, M.J. (Eds.), Magmatism in ocean basins: Geological Society of London,
639	Special Publication, 42, pp. 313–342.
640	Taylor, S.R. & McLennan, S.M., 1985. The Continental Crust: its Composition and
641	Evolution. Blackwell Scientific Publications.
642	Wainwright, A. J., Tosdal, R. M., Wooden, J.L., Mazdab, F.K. & Friedman, R.M.,
643	2011. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution
644	of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern
645	Mongolia, Gondwana Research 19, 764–787.
646	Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A. & Badarch, G., 2007. Tectonic
647	models for accretion of the Central Asian Orogenic Belt. Journal of the Geological
648	Society 164, 31–47.
649	Xiao, W.J., Pirajno, F. & Seltmann, R., 2008. Geodynamics and metallogeny of the
650	Altaid orogen. Journal of Asian Earth Sciences 32, 77-81.
651	Xiao, W., Windley, B.F., Huang, B.C., Han, C.M., Yuan, C., Chen, H.L., Sun, M.,
652	Sun, S. & Li, J.L., 2009. End-Permian to mid-Triassic termination of the

accretionary processes of the southern Altaids: implications for the geodynamic

- evolution, Phanerozoic continental growth, and metallogeny of Central Asia.
- International Journal of the Earth Sciences 98 (6), 1189–1217.
- 256 Zartman, R.E., Doe, B.R., 1981. Plumbotectonics; the model. Tectonophysics 75,
- 657 135–162.
- 658
- 659

660 **Appendix 1**

661 Figure Captions

662		
663	Figure 1. Tectonic setting of the Oyu Tolgoi porphyry Cu-Au deposits, Mongolia.	
664	The upper diagram illustrates the location of the Oyu Tolgoi deposit and the	
665	Gurvansayhan Terrane within the tectonic framework of Mongolia. After Kirwin et al.	
666	(2005), Ivanhoe Mines (2005), Wainwright et al. (2004) and references cited therein,	
667	Perello et al. (2001) and references cited therein (after Seltmann and & Porter, 2005).	 Formatted: Font: Not Italic
668		Formatted: Font: Not Italic
669	Figure 2. Regional geological setting of the Oyu Tolgoi porphyry Cu-Au deposits,	
670	Mongolia. The figure represents the outcrop geology surrounding the Oyu Tolgoi	
671	group of deposits. Sources same as in Fig. 1 (from Seltmann and Porter, 2005).	 Formatted: Font: Not Italic
672		Formatted: Font: Not Italic
673	Figure 3. District scale geological setting of the Oyu Tolgoi porphyry Cu-Au	
674	deposits, Mongolia. The plan shows the interpreted solid sub-crop geology in the	
675	immediate vicinity of the deposits. Sources same as in Fig. 1 (from Seltmann and &	Formatted: Font: Not Italic
676	Porter, 2005).	Formatted: Font: Not Italic
677		
678	Figure 4. General sample location map, showing pluton-sized intrusions.	
679		
680	Figure 5. Simplified geology of the Oyu Tolgoi Exploration Block and drill hole	
681	locations of samples included in this study.	
682		
683	Figure 6. Stratigraphy and location of samples included in this study (after Kavalieris,	 Formatted: Font: Not Italic
684	2005).	
685		
686	Figure 7. Mantle-normalized multi-element diagram of the bulk rock samples from	
687	the study area (primitive mantle values are taken from McDonough and Sun, 1995).	 Formatted: Font: Not Italic
688		
689	Figure 8. Chondrite-normalized REE patterns of samples from the Oyu Tolgoi	
690	exploration block and adjacent areas; chondrite values taken from Sun and	 Formatted: Font: Not Italic
691	McDonough (1989).	
692		

693	Figure 9. Co-variation between the Sr and Nd parameters. The Nd data are considered	
694	more robust and show that all samples were derived from un-evolved sources typical	
695	of primitive island arcs.	
696		
697	Figure 10. ENd plotted versus the emplacement age of each body.	
698		
699	Figures 11 a, b. Results of zircon Hf isotope measurements for felsic igneous rocks	
700	from Oyu Tolgoi. a) Initial ¹⁷⁶ Hf/ ¹⁷⁷ Hf plotted against U-Pb age for individual zircon	
701	grains; compared to model lines for the evolution of deplted mantle and a chondritic	
702	reservoir (CHUR); b) Relative probability plot for the two-stage crustal residence ages	
703	calculated for each analysed spot.	
704		
705	Figures 12 a, b. Initial ${}^{207}Pb/{}^{204}Pb$ vs. ${}^{206}Pb/{}^{204}Pb$ and ${}^{208}Pb/{}^{204}Pb$ vs. ${}^{206}Pb/{}^{204}Pb$ plots	
706	showing results for plutonic and volcanic rocks from Oyu Tolgoi and surrounding	
707	areas. LC, lower crust; CC, continental crust; UC, upper crust; OR, orogene; M,	Formatted: Font: Not Italic
708	mantle (from Zartman and Doe, 1981).	
709		
710 711	Figure 13. EHf and ENd data plotted for the South Gobi area (compilation of the	Formatted: Font: Not Italic
712	CERCAMS Altaids project) and samples of this study.	
713	<i>Note:</i> strongly crustal: ε Hf <-5. ε Nd(t) <-7: crustal: ε Hf -5 to 0. ε Nd(t) -7 to -2:	
714	mixed: ϵ Hf 0 to +5 ϵ Nd(t) -2 to 0: invenile: ϵ Hf +5 to +10 ϵ Nd(t) 0 to +5: strongly	
715	invente: $cHf >+10$ $cNd(t) >+5$	
716	$\frac{1}{10000000000000000000000000000000000$	
717		
, 1 /		

719	Table <u>and Appendix C</u> Captions		
720			
721			
722	Table 1. Sample list with U-Pb zircon ages of samples from the study area		
723	(Kavalieris, 2005; Seltmann et al., in preparation).		Formatted: Font: Not Italic
724			
725 726 727 728	Table 2. Whole rock geochemical data for samples from the Oyu Tolgoi exploration block and adjacent areas.		
728 729 730 731 732	Table 3. Sm and Nd isotope data for samples from the Oyu Tolgoi exploration block and adjacent areas.		
733 734 735	Table 4. Lu-Hf isotope analyses of U–Pb dated zircon grains.		
736	Table 5. Pb isotope data for samples from the Oyu Tolgoi exploration block and		
737	adjacent areas.		
738			
739	Appendix 1. Mineralogical description of studied samples.	_	Formatted: Font: Bold
740		\subset	Formatted: Font: Not Bold
741			Formatted: Font: Not Bold
742			

Permian to Triassic magmatic arc

Devonian to Carboniferous (to Permian) magmatic arc

Lower to Mid Palaeozoic turbidite basin

Ophiolites

Neoproterozoic to Lower Palaeozoic magmatic arc

Collage of terranes composed of Neoproterozoic to Lower Palaeozoic magmatic arc rocks, back- and forearc basins and accretinary wedges, shelf sediments, ophiolites and Mesoto Neoproterozoic metamorphics

Gurvansayhan Terrane

Major fault zone and sense of movement

Major thrust zone and sense of movement

Figure 1

Figgre 2

Carboniferous to Permian felsic intrusive rocks

Carboniferous layered pyroclastic, intrusive and

sedimentary rocks Devonian basaltic to intermediate

volcanic and volcaniclastic rocks

Location and name of blind or sub-cropping orebody

Fault, inferred fault and thrust

10 kilimetres

Finiguare 3

Late basalt dyke
 Carboniferous quartz-monzodiorite and
 granodiorite
 Undifferentiated Devonian to Carboniferous
 syn- to post-mineral intrusive rocks

Late rhyolite dyke

٨

Lsvs

Late Devonian to Lower Carboniferous Upper sedimentary-volcanic sequence

Basalt andesite tuff and overlying basaltic tuff, conglomerate, sandstone and coal

Mid to Late Devonian Lower sedimentaryvolcanic sequence

Dacitic to andesitic ash-flow tuffs

Undifferentiated andesitic and basaltic volcanoclastic rocks

v v

Augite basalt lava flows and breccias

High angle fault and thrust with sense of movement

Sub-crop and surface projection of ore deposit outline

Figure 4

Fig 5

Fig 6 Age	Unit	Stratigraphic code		Estimated thickness (m)		_	Description	Samples
		CS4					Rhyolitic ash flow tuff, buff tuffaceous sediments	
		CS3c_2		300		(Basaltic lava flows, minor intercalated breccia, tuff	OTD1220(552)
aisian-Visean	huadag Fm	CS3c_1		400			Basaltic lapillic tuff	
nrn	lan	CS3b		70			Basaltic andesite lava	
10	nst	CS2c		50			Volcanic sandstone, conglomerate Bioturbated siltstone and water laid tuff	
ate	Sai	CS2a		50-150			Carbonaceous siltstone, sandstone, conglomerate	
Ľ	0,	CS1		50-200			Andesitic ash flow tuff	
			~~~~~	h				
							Unknown sequence	
			Da4a_2	100+			Medium to fine basaltic volcanoclastics, minor breccia, siltstone	
Hugo	ott	DA4a	Da4a_3	100		(	Basaltic volcanic breccia with conspicuous green augite phenocrysts, calcite filled vesicles,— minor inte-rbedded green volcanic sandstone	OTD976B(552)
bangin			Da4a 4	50		(	Red and green coarse basaltic volcanoclastics,	OTD976B(266)
stration	anhy	DA4b		50			Red and green bedded siltstone	
Siraligi		Brtib						
		DA4c		100			Green massive sandstone, minor siltstone interbeds	
					_ :		Unknown sequence	
L L	dna	DA3a/3b		50-150/0-50			Carb shale-laminated silt-cong-sandstone	OTD404(399)
nia	50	DAZD		50-300		(		
Late Devo	agbayan (	DA2a		80-400		(	Dacitic ash flow tuff	<u>OT</u> D1218(1048)
	AI	DA1c		150			Basaltic volcanoclastics	
		DA1b		?			Augite basalt	OTD318(223)
								OTD976B(1382
		DA1a		?				



Figure 7









Figure 9



Figure 10



Figures 11a, b







Fig 13



Table 1
---------

			_	Coord	inates	²⁰⁶ Pb/ ²³⁸ U	
#	Sample Nr	Lithology	Age	Latitude	Longitude	age (Ma)	Note
1	EGD001(75)	Granodiorite	348	43.0515	106.8365	348 <u>+</u> 4	1
2	OTD514(1631.2-1631.7)	Biotite granodiorite	374	43.0458	106.8609	374 <u>+</u> 4	1
3	EGRDC066(172)	Dacite	374	43.1208	106.9055	374 <u>+</u> 12	2
4	OTD1218(1048-1048.8)	Dacite	361	43.0508	106.869	361 <u>+</u> 5	1
5	OTD404(399)	Dacite	362	43.0247	106.858	362 <u>+</u> 7	1
6	EGRCD073(120)	Quartz monzodiorite	361	43.1434	106.8999	361 <u>+</u> 4	1
7	OTRCD388(504)	Quartz monzodiorite	364	43.0324	106.8617	(362)	3
8	OTD258(82.5)	Quartz monzodiorite	359	43.017	106.8533	359 <u>+</u> 8	1
9	OTD343(1247)	Quartz monzodiorite	366	43.0295	106.8555	366 <u>+</u> 6	1
10	OTD514(1289.15-1293.7)	Quartz monzodiorite	364	43.0454	106.8622	364 <u>+</u> 6	1
11	OTD514(1405.85-1410.15)	Quartz monzodiorite	367	43.0562	106.8617	367 <u>+</u> 7	1
12	OTD514(2161.35)	Quartz monzodiorite	364	43.0465	106.8592	364 <u>+</u> 5	1
13	OTD786(150)	Quartz monzodiorite	376	43.0075	106.8452	376 <u>+</u> 4	1
15	OTD976B(266-267)	Basalt	362	43.049	106.8677	(362)	3
16	OTD976B(552)	Basalt	362	43.049	106.8672	(362)	3
17	0TB976B(772)	Basalt dyke	362	43.0489	106.8672	(362)	3
14	OTD976B(1382.5-1383.5)	Basalt	362	43.0488	106.8654	(362)	3
18	UUDO1A(590-593)	Basalt	362	42.9543	106.597	(362)	3
19	OTD1220(522)	Basalt	345	43.0404	106.8488	(345)	3
20	OTD318(223)	Basalt	362	43.0019	106.8345	(362)	3

1 – Preferred crystallisation age, 2 – minimum age, supported from other geological and geochronological

data, 3 – the estimated ages of the basalts are inferred from their stratigraphic position

and by comparison with the dated dacites; the age for OTRCD 388 is also assumed.

# Table 2

Element	Unit	EGD	OTD E	GRCD	OTD	OTD	EGRCD	OTRCD	OTD	OTD	OTD	OTD	OTD	OTD	OTD	OTD	OTD	OTD	UUD	OTD	OTD	OTD
		001(75)	514(1631) 0	66(172)	1218(1048)	404(399)	073(120)	388(504)	258(82)	343(1247)	514(1289)	514(1405)	514(2161)	786(150)	976B(266)	976B(552)	976B(772)	976B(1382)	001A(590)	1220(552)	318(223)	453(367)
SiO2	%	62.77	63.73	66.12	67.42	67.47	60.23	68.91	68.9	59.23	70.98	68.6	65.13	3 59.45	5 42.96	6 48.83	49.32	46.28	3 48.14	48.54	44.99	50.93
AI2O3	%	16.66	15.19	15.91	16.47	15.68	17.84	13.14	16.42	17.12	13.01	13.75	16.01	16.75	5 14.26	i 18.08	14.97	15.67	7 15.16	§ 13.43	15.7	15.65
Fe2O3(1)	%	4.86	3.8	3.61	3.83	3.3	5.8	3.98	4.38	7.91	2.94	3.35	2.91	4.77	11.6	6 8.73 0 0 0 0 0	10.59	11.6	5 9.72 D 0.440	2 10.35	12.53	10.14
MaO	% %	0.124	0.07	0.113	0.047	0.081	0.052	0.012	0.016	0.121	0.015	0.048	0.038	0.135 3 1.43	0.2 0.2	2 0.209	0.175	0.218	5 513	0.163 8 6.62	0.224	0.179
CaO	%	2 29	2.97	2.57	0.95	2.02	2 3 43	0.49	0.54	0.26	0.47	0.97	. 241	4 14	5 4.90 L C	5 3.70 5 3	9.76	3 43	3 675	5 0.02 5 11.26	10.40	4.74
Na2O	%	4.53	4.6	3.98	1.84	4.53	4.33	0.11	0.5	0.25	0.2	0.22	4.18	6.85	5 1.66	5.46	2.84	0.72	2 4.83	3 3.25	2.5	4.9
K2O	%	5.13	2.75	3.75	3.75	2.49	4.15	3.91	3.79	4.69	3.59	5.65	4.87	7 1.23	3 2.6	0.62	2.53	3.12	2 0.95	5 0.71	1.14	2.81
TiO2	%	0.439	0.472	0.439	0.444	0.323	0.556	0.807	0.396	0.533	0.193	0.331	0.305	5 0.479	) 1.64	0.771	0.743	1.138	3 1.431	0.669	1.032	2.346
P2O5	%	0.18	0.2	0.19	0.23	0.16	0.28	0.29	0.17	0.03	0.06	0.14	0.11	0.25	5 0.56	6 0.36	0.27	0.28	3 0.34	0.26	0.24	1.19
LOI	%	1.54	3.86	1.46	3.54	3.27	2.12	3.41	4.99	7.02	2.46	3.5	3.34	4.68	9.15	6.54	3.12	7.79	6.88	3 4.32	3.54	2.48
l otal	%	99.43	99.53	99.21	99.46	99.85	5 100.3	95.23	100.2	98.54	94.02	97.41	99.88	3 100.2	2 98.61	98.66	100.1	99.11	I 99.45	5 99.58	99.83	100.1
SC	ppm	8 2	1	0	6	4	+ / 2	13	5	0	ے 1 ہے	4			) 35 ) 3	) 17 ) 2	37	3		) 40 > っ	40	23
V	ppm	34	2 75	2 64	2 76	81	147	172	2 89	2 116	61	63	95	<u> </u>		, 243	296	333	<u> </u>	∠ ↓ 271	417	227
Cr	ppm	< 20	30	60	< 20	< 20	< 20	30	< 20	< 20	< 20	< 20	< 20	) < 20	) 30	) 30	90	90	) 490	) 180	80	< 20
Со	ppm	6	8	8	4	4	9	3	7	14	8	4	. 2	2 8	36	5 27	35	33	3 41	36	43	20
Ni	ppm	< 20	< 20	30	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	) < 20	) < 20	) < 20	20	< 20	200	) 30	40	< 20
Cu	ppm/%	40	50	100	110	60	4520	3.26%	210	1070	4.62%	2.82%	1360	) 130	) 120	50	340	650	) 50	) 130	200	40
Zn	ppm	70	80	110	70	50	40	60	120	260	100	90	50	) 90	) 120	) 100	90	250	) 110	) 80	150	140
Ga	ppm	20	20	19	18	18	3 20	11	23	20	13	15	18	3 17 - 25	20	) 20	17	18	3 17	/ 15	20	21
Ge	ppm	1.8	1.3	1.3	1.5	1.5	) 1.8 : 6	2.5	1.5	1.3	2 170	1.0	) 1.0 / 45	) 2.0 5 24	) 1.0 I 46	0.1 : 20	2.1	1.7	2.4	+ 2.5 7 40	21	1.4
Rh	ppm	< 5 166	< 5	, 80	95	56	, 0 ; 101	88	107	143	65	98	94	) 24 L 34	- 40 L 51	29	59	112	2 37 2 15	40 5 14	17	33 47
Sr	ppm	280	771	868	134	217	876	728	815	125	29	95	514	457	792	2 1185	694	83	- 10 3 516	544	592	1420
Y	ppm	31.7	10.4	11.8	16.5	9.5	25.2	13	21.7	21.3	4	9.1	14.4	17.5	5 24	18.8	18.5	23.8	3 26.2	2 18.4	20.1	29.5
Zr	ppm	597	139	141	135	73	3 170	41	133	145	77	122	105	5 103	3 170	68	58	54	4 203	3 51	37	245
Nb	ppm	15.6	7.7	8.3	6.9	3.1	7.7	3.6	7.3	7.3	2.4	6.2	5.6	6.4	32.8	3.6	4.5	2.7	7 8.6	6 3	2.3	12.6
Мо	ppm	< 2	< 2	< 2	< 2	< 2	41	8	2	48	13	8	73	3 < 2	2 <2	2 < 2	< 2	< 2	2 <2	2 < 2	< 2	< 2
Ag	ppm	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	11.3	1.3	< 0.5	5 < 0.5	5 < 0.5	5 < 0.5	< 0.5	< 0.5	5 0.5	5 < 0.5	< 0.5	< 0.5
in Sn	ppm	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	I < 0.1 I 1	< 0.1	< 0.1	< 0.1
Sh	nnm	77	79	20	11 6	15 1	81	2 8 9	11.5	69	37	62	. 84	L 11	77	· 117	97	92	1 92	2 10.8	1	95
Cs	ppm	3.2	2.2	2.8	4.7	3.2	2.3	0.8	2	3.7	1.7	2.3	1.8	3 2.3	6.1	9.8	0.5	8.3	3 1.5	<u> </u>	0.4	1
Ва	ppm	442	964	1080	174	134	829	335	926	723	147	443	971	244	683	3 239	396	176	5 512	2 302	307	1481
La	ppm	22.3	15	16	14.5	7.31	17.4	5.71	14.4	13.3	2.76	3.6	13.2	2 16.2	2 39.2	2 11.4	10.3	7.91	1 21	8.44	7.51	29.2
Ce	ppm	49.7	30.8	33	28.9	14.9	37	10.9	28.7	29.3	5.33	8.07	24.4	4 32	2 77.3	3 25.8	21.3	19	9 48.1	17.8	16.9	70.1
Pr	ppm	6.38	3.87	4.13	3.69	1.92	4.97	1.47	3.63	3.92	0.68	1.12	2.93	3 4.1	9.23	3.64	2.82	2.93	3 6.41	2.49	2.47	9.67
Nd	ppm	22.3	13.3	14.1	12.5	6.9	18.2	6.22	12.8	14.6	2.49	4.76	5 10.2 5 0.40	2 14.4		5 14.5 5 0.40	11.3	12.6	5 23.8 D E E E	3 10.2	11.2	36.6
Sm	ppm	5.08 10.1	2.72	2.94	2.73	0.571	) 4.27 1.32	0.651	3.04	3.40 1.12	0.54	1.20	0 73/	5 3.24 I 1.13	+ 0.40 2 2 2 2	) 3.40 / 1.31	∠.8 1.06	3.43	3 5.57 3 2.05		3.Z 1.23	7.88
Gd	nom	47	2 24	2 57	2 72	1.53	4 18	2 19	3 21	3.33	0.227	1.37	2 09	326	5 6 0.3	3 44	3.02	4.05	5 5.55	5 295	3.73	7.53
Tb	ppm	0.8	0.33	0.38	0.45	0.25	0.68	0.38	0.54	0.57	0.0	0.23	0.34	l 0.5	5 0.87	0.54	0.5	0.71	0.85	5 0.49	0.61	1.07
Dy	ppm	4.96	1.83	2.09	2.71	1.47	3.99	2.29	3.38	3.53	0.62	1.37	2.11	2.87	<b>′</b> 4.5	5 3.17	3	4.28	3 4.61	3.08	3.6	5.58
Ho	ppm	1.01	0.35	0.41	0.56	0.31	0.8	0.45	0.71	0.74	0.13	0.3	0.45	5 0.56	6 0.81	0.62	0.61	0.87	7 0.91	0.64	0.7	1.04
Er	ppm	3.09	0.99	1.2	1.71	0.96	5 2.42	1.3	2.17	2.27	0.38	0.97	1.43	3 1.68	3 2.15	5 1.81	1.76	2.51	1 2.58	3 1.96	2.04	2.86
Tm	ppm	0.483	0.146	0.168	0.263	0.147	0.363	0.186	0.327	0.344	0.058	0.149	0.225	0.255	5 0.29	0.265	0.259	0.358	3 0.369	0.285	0.296	0.384
Yb	ppm	3.32	0.9	1	1.75	1.01	2.37	1.15	2.15	2.21	0.4	0.98	1.5	5 1.71	1.76	5 1.66	1.64	2.24	4 2.25	5 1.78	1.85	2.26
LU	ppm	0.568	0.139	0.151	0.281	0.186	6 0.384	0.167	0.328	0.35	0.076	0.159	0.242	2 0.282	2 0.268	0.253	0.253	0.333		3 0.256	0.278	0.328
⊓i Ta	ppm	13.2 0.70	3.0 0 / 0	3.1 0.52	3.5 0 2 0	1.9	y 4.3 ; ∩⊿2	1.Z 0.12	3.0 0.12	3.8 0 11	2.1 0.2	3.3 حد ۱	ο <u>Ζ</u> ./ Ο 20	∠.8 ) ∩ 2/	) 4.4 L 1.07	י <u>2</u> 1 חוב	1.5 1.2	1.0 0.11	ס ס.1 ו חבי	1.5 0.14	1.3 0.00	5.5 0.7
W	ppm	< 0.5	4 1	1.8	1.39	< 0.5	, 0.42 j 4	3.4	< 0.42	0.44 4 8	0.2 1 R	3.4	. 3.8	, 0.34 } 2	2 < 0.5	< 0.10	< 0.24	< 0.1	5 < 0.5	5 < 0.14	0.09	< 0.5
TI	ppm	0.63	0.2	0.49	0.87	0.51	0.3	2.14	1.66	1.43	0.92	0.68	0.4	0.19	0.18	0.09	0.13	1.29	9 0.11	< 0.05	0.1	0.31
Pb	ppm	8	8	23	10	8	< 5	53	30	< 5	93	32	< 5	5 12	2 5	5 < 5	6	12	2 7	< 5	8	16
Bi	ppm	0.1	0.1	0.4	0.3	0.1	0.7	0.6	0.3	0.1	2.3	0.6	< 0.1	0.9	) < 0.1	0.1	0.1	0.1	I 0.2	2 < 0.1	< 0.1	< 0.1
Th	ppm	7.54	3.67	3.54	2.64	0.84	3.39	0.75	4.03	3.33	0.67	3.08	2.32	2 2.79	3.81	1.1	1.47	0.72	2 2.78	3 1.17	0.6	2.25
U	ppm	3.74	1.51	1.57	1.17	0.68	2	0.64	2.48	1.92	0.32	0.68	1.64	1.37	0.99	0.24	0.57	0.32	2 0.62	2 0.49	0.27	0.73

## Table 3

#	Sample Nr	Lithology	Age	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Ndt	εNdt	Tdm	Tdm*	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Srt
1	EGD001(75)	Granodiorite	348	0.13773	0.512789	0.51247	5.6	589	600	1.716	0.712480	0.7040
2	OTD514(1631.2-1631.7)	Biotite granodiorite	374	0.12364	0.512637	0.51233	3.5	739	822	0.225	0.705528	0.7043
3	EGRDC066(172)	Dacite	374	0.12606	0.512638	0.51233	3.4	756	831	0.267	0.705885	0.7045
4	OTD1218(1048-1048.8)	Dacite	361	0.13204	0.512715	0.51240	4.5	676	716	2.054	0.719224	0.7087
5	OTD404(399)	Dacite	362	0.14282	0.512804	0.51247	5.7	597	593	0.747	0.707855	0.7040
6	EGRCD073(120)	Quartz monzodiorite	361	0.14184	0.512814	0.51248	6.0	572	570	0.334	0.705754	0.7040
7	OTRCD388(504)	Quartz monzodiorite	364	0.16719	0.512890	0.51249	6.3	624	538	0.350	0.705627	0.7038
8	OTD258(82.5)	Quartz monzodiorite	359	0.14359	0.512796	0.51246	5.5	620	614	0.380	0.706051	0.7041
9	OTD343(1247)	Quartz monzodiorite	366	0.14328	0.512827	0.51248	6.2	557	550	3.314	0.720915	0.7036
10	OTD514(1289.15-1293.7)	Quartz monzodiorite	364	0.13111	0.512766	0.51245	5.5	585	615	6.496	0.725910	0.6922
11	OTD514(1405.85-1410.15)	Quartz monzodiorite	367	0.16004	0.512929	0.51254	7.4	457	423	2.988	0.718426	0.7028
12	OTD514(2161.35)	Quartz monzodiorite	364	0.12921	0.512773	0.51246	5.8	562	592	0.529	0.706611	0.7039
13	OTD786(150)	Quartz monzodiorite	376	0.13603	0.512791	0.51246	5.9	574	588	0.215	0.705068	0.7039
15	OTD976B(266-267)	Basalt	362	0.12359	0.512538	0.51225	1.4	892	998	0.186	0.705104	0.7041
16	OTD976B(552)	Basalt	362	0.14427	0.512814	0.51247	5.9	589	581	0.051	0.704155	0.7039
17	0TB976B(772)	Basalt dyke	362	0.14981	0.512776	0.51242	4.9	713	680	0.246	0.705530	0.7043
14	OTD976B(1382.5-1383.5)	Basalt	362	0.16459	0.512930	0.51254	7.2	489	441	3.910	0.723961	0.7038
18	UUDO1A(590-593)	Basalt	362	0.14149	0.512784	0.51245	5.4	626	628	0.084	0.704254	0.7038
19	OTD1220(522)	Basalt	345	0.15707	0.512801	0.51245	4.9	736	662	0.074	0.704478	0.7041
20	OTD318(223)	Basalt	362	0.17274	0.512830	0.51242	4.9	878	681	0.083	0.704528	0.7041

Sm, Nd, Rb and Sr contents taken from the geochemial analyses (Table 2). All ages in Ma

Tdm= one-stage (linear) DM age, essentially the same as DePaolo, Nature, 1981

Tdm*= variable crust Sm/Nd multistage after DePaolo, Linn and Schubert, JGR, 1991

Assumed parameters:

147Sm/144Nd CHUR= 0.1967; 143Nd/144Nd CHUR= 0.512638

147Sm/144Nd DM= 0.222; 143Nd/144Nd DM= 0.513114

Tableble 4Click here to download Table: Table 4 fin.docx

Sample Grain/Spot	Age Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 se	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf _t	eHft	2 se	T _{DM}	T _{DM} ^c
EGD001(75) C	Granodiorite									
#	358	0.282947	0.000028	0.001120	0.034039	0.282939	13.8	1.0	434	482
2-1	342	0.282975	0.000024	0.000962	0.026533	0.282969	14.5	0.8	392	425
2-2*	179	0.282973	0.000028	0.001950	0.062927	0.282966	10.8	1.0	406	536
3-1	348	0.282930	0.000034	0.001793	0.047955	0.282918	12.8	1.2	467	537
3-2	347	0.283004	0.000038	0.001556	0.045430	0.282994	15.5	1.3	357	365
4-1	367	0.282913	0.000022	0.001144	0.035847	0.282905	12.8	0.8	483	555
4-2	347	0.282941	0.000030	0.001384	0.039721	0.282932	13.3	1.1	446	506
5-1	343	0.283024	0.000028	0.001428	0.045250	0.283015	16.1	1.0	327	319
5-1	352	0.283006	0.000044	0.001949	0.064825	0.282993	15.6	1.5	358	363
6-1	337	0.282915	0.000024	0.000963	0.030032	0.282909	12.3	0.8	478	566
7-1	345	0.282943	0.000042	0.000720	0.022334	0.282938	13.5	1.5	435	493
8-1	351	0.282940	0.000030	0.001082	0.033313	0.282933	13.4	1.1	444	502
OTD514(1631	.2-1631.7) Bi	otite granodiorite								
1-1	371	0.282861	0.000018	0.000907	0.02096	0.282855	11.1	0.6	553	667
2-1*	514	0.282405	0.000019	0.000756	0.02226	0.282398	-1.9	0.7	1190	1610
3-1	362	0.282922	0.000026	0.001366	0.03158	0.282913	12.9	0.9	473	541
4-1	380	0.282896	0.000040	0.002061	0.03968	0.282881	12.2	1.4	520	601
5-1	368	0.282919	0.000019	0.001929	0.04516	0.282906	12.8	0.7	484	553
6-1	371	0.282898	0.000019	0.001588	0.04391	0.282887	12.2	0.7	510	594
7-1	395	0.282915	0.000020	0.000987	0.02624	0.282908	13.5	0.7	478	531
8-1	374	0.282899	0.000020	0.001372	0.03800	0.282889	12.4	0.7	506	586
EGRDC066(17	72) Dacite									
1-1	372	0.282920	0.000026	0.000988	0.027727	0.282913	13.2	0.9	471	533
2-1	374	0.282904	0.000018	0.000487	0.013837	0.282901	12.8	0.6	487	561
3-1	384	0.282898	0.000032	0.001593	0.040817	0.282887	12.5	1.1	510	586
4-1	353	0.282845	0.000028	0.001810	0.050008	0.282833	9.9	1.0	590	728
5-1	363	0.282887	0.000022	0.000973	0.027289	0.282880	11.8	0.8	518	614
6-1	363	0.282867	0.000032	0.001411	0.031149	0.282857	11.0	1.1	552	666
7-1	396	0.282890	0.000030	0.000967	0.026329	0.282883	12.6	1.1	513	587
8-1	406	0.282937	0.000030	0.001060	0.027155	0.282929	14.5	1.1	448	475
9-1	366	0.282940	0.000026	0.000638	0.017412	0.282936	13.8	0.9	438	486
10-1	346	0.282905	0.000019	0.000857	0.023267	0.282899	12.1	0.7	490	581
11-1	382	0.282900	0.000022	0.001242	0.026441	0.282891	12.6	0.8	503	577
12-1	374	0.282925	0.000032	0.001528	0.041416	0.282914	13.3	1.1	471	529
OTD1218(104	8-1048.8) Da	cite								
1-1	344	0.282929	0.000032	0.001473	0.045817	0.282920	12.8	1.1	464	537
2-1	367	0.282983	0.000032	0.003209	0.075023	0.282961	14.8	1.1	405	427
3-1	362	0.282911	0.000028	0.001954	0.044489	0.282898	12.4	1.0	496	575
4-1	356	0.282955	0.000028	0.001645	0.050147	0.282944	13.9	1.0	429	473
5-1	354	0.282961	0.000034	0.002700	0.085581	0.282943	13.8	1.2	432	477
6-1	373	0.282925	0.000034	0.001130	0.033764	0.282917	13.3	1.2	466	524
7-1	352	0.282858	0.000034	0.002238	0.062646	0.282843	10.3	1.2	578	706
8-1	373	0.282950	0.000024	0.002148	0.065627	0.282935	14.0	0.8	442	483

OTD404(39	9) Dacite									
1-1	363	0.282909	0.000026	0.001963	0.044372	0.282896	12.4	0.9	499	579
2-1	360	0.282930	0.000026	0.003299	0.081775	0.282908	12.7	0.9	487	553
3-1	363	0.282888	0.000044	0.002829	0.057074	0.282869	11.4	1.5	543	640
4-1	364	0.282894	0.000032	0.002757	0.062702	0.282875	11.7	1.1	533	625
5-1	372	0.282983	0.000050	0.002993	0.065397	0.282962	14.9	1.8	403	421
6-1	356	0.283015	0.000054	0.003417	0.074112	0.282992	15.6	1.9	359	363
7-1	352	0.282988	0.000040	0.001322	0.038620	0.282979	15.1	1.4	378	395
8-1	378	0.282980	0.000036	0.002852	0.068474	0.282960	15.0	1.3	406	423
EGRCD007	3 Quartz monzodi	orite						0.0		
1-1	360	0.282913	0.000026	0.000953	0.029113	0.282907	12.7	0.9	480	556
2-1	324	0.282946	0.000028	0.001335	0.039506	0.282938	13.0	1.0	438	508
3-1	358	0.282964	0.000028	0.001965	0.059567	0.282951	14.2	1.0	419	456
4-1	370	0.282994	0.000032	0.001739	0.051859	0.282982	15.6	1.1	373	377
5-1	363	0.282937	0.000032	0.001534	0.045024	0.282927	13.5	1.1	453	508
6-1	352	0.282947	0.000032	0.001654	0.051622	0.282936	13.5	1.1	440	494
7-1	355	0.282978	0.000020	0.001177	0.036740	0.282970	14.8	0.7	390	414
8-1	356	0.282957	0.000024	0.001339	0.041191	0.282948	14.1	0.8	422	464
9-1	364	0.282937	0.000026	0.001161	0.035237	0.282929	13.6	0.9	449	502
OTD258(82	.5) Quartz monzoo	liorite						0.0		
1-1	353	0.282898	0.000022	0.001232	0.03246	0.282890	11.9	0.8	505	599
2-1	352	0.282890	0.000040	0.001799	0.04676	0.282878	11.5	1.4	525	626
3-1	365	0.282887	0.000026	0.002004	0.05492	0.282873	11.6	0.9	532	629
4-1	357	0.282897	0.000026	0.001860	0.05147	0.282885	11.8	0.9	516	608
5-1	351	0.282893	0.000024	0.001020	0.02793	0.282886	11.8	0.8	510	608
6-1	362	0.282866	0.000024	0.001573	0.04569	0.282855	10.9	0.8	556	672
OTD343(12	47) Quartz monzo	diorite	0.000000							
1-1	360	0.282923	0.000022	0.002556	0.07513	0.282906	12.7	0.8	487	558
2-1	358	0.282962	0.000020	0.003954	0.12591	0.282936	13.7	0.7	446	491
3-1	369	0.282911	0.000022	0.001821	0.05564	0.282898	12.6	0.8	495	569
4-1	370	0.282930	0.000026	0.003684	0.10883	0.282904	12.8	0.9	492	554
5-1	348	0.282979	0.000032	0.003354	0.10021	0.282957	14.2	1.1	413	448
6-1	371	0.282983	0.000028	0.003270	0.10616	0.282960	14.8	1.0	406	426
7-1	382	0.282979	0.000022	0.002889	0.08800	0.282958	15.0	0.8	408	423
8-1	366	0.282883	0.000032	0.002368	0.06590	0.282867	11.4	1.1	543	643
OTD514(12	89.15-1293.7) Qua	artz monzodiorite								
1-1	353	0.282929	0.000028	0.000958	0.022392	0.282923	13.1	1.0	458	524
1-2	358	0.282941	0.000018	0.001539	0.041356	0.282931	13.5	0.6	448	502
2-1	364	0.282920	0.000022	0.002083	0.058041	0.282906	12.7	0.8	485	555
3-1	368	0.282972	0.000044	0.002070	0.048401	0.282958	14.7	1.5	409	434
4-1	368	0.282922	0.000024	0.000767	0.022203	0.282917	13.2	0.8	465	528
5-1	374	0.282939	0.000024	0.000981	0.027112	0.282932	13.9	0.8	444	489
6-1	357	0.282932	0.000050	0.001799	0.036867	0.282920	13.1	1.8	464	527
OTD514(14	05.85-1410.15) Q	uartz monzodiorite								
1-1	364	0.282999	0.000030	0.002793	0.089237	0.282980	15.4	1.1	377	386
2-1	362	0.282980	0.000040	0.001094	0.033263	0.282973	15.1	1.4	387	404
3-1	367	0.282933	0.000026	0.000682	0.021226	0.282928	13.6	0.9	449	502
4-1	367	0.282929	0.000028	0.001572	0.048052	0.282918	13.2	1.0	465	525
5-1	344	0.282967	0.000042	0.001273	0.040162	0.282959	14.2	1.5	407	447
6-1	367	0.283009	0.000030	0.001636	0.051386	0.282998	16.1	1.1	350	343
7-1	362	0.282948	0.000036	0.001699	0.053117	0.282936	13.8	1.3	439	486
8-1	351	0.282965	0.000028	0.000624	0.019083	0.282961	14.4	1.0	403	438

OTD514(2161.3	35) Quartz m	onzodiorite								
1-1C	353	0.283013	0.000050	0.001414	0.036070	0.283004	16.0	1.8	342	339
1-1R	353	0.282929	0.000028	0.001155	0.035493	0.282921	13.0	1.0	460	527
2-1	353	0.282918	0.000026	0.001005	0.030507	0.282911	12.7	0.9	474	550
3-1	352	0.282969	0.000028	0.001164	0.037105	0.282961	14.4	1.0	403	436
4-1	364	0.282942	0.000022	0.000937	0.028299	0.282936	13.8	0.8	439	487
5-1	361	0.282956	0.000034	0.001566	0.034624	0.282945	14.1	1.2	426	467
6-1	347	0.282935	0.000022	0.001611	0.053454	0.282925	13.0	0.8	457	523
OTD786(150) Q	Juartz monzo	odiorite								
1-1	391	0.282939	0.000038	0.001935	0.061221	0.282925	14.0	1.3	455	494
2-1	374	0.282948	0.000032	0.001148	0.037736	0.282940	14.2	1.1	433	471
2-2	368	0.282878	0.000028	0.000924	0.029004	0.282872	11.6	1.0	530	631
3-1	367	0.282989	0.000032	0.002367	0.072977	0.282973	15.2	1.1	387	400
4-1	358	0.282951	0.000024	0.001186	0.037768	0.282943	13.9	0.8	429	474
5-1	382	0.282883	0.000028	0.000967	0.029741	0.282876	12.1	1.0	523	611
6-1	388	0.282907	0.000026	0.000545	0.016929	0.282903	13.2	0.9	484	546
7-1	364	0.282939	0.000028	0.001228	0.039090	0.282931	13.6	1.0	447	499
9-1	367	0.282931	0.000026	0.001093	0.032077	0.282923	13.4	0.9	457	513
9-2	385	0.282941	0.000032	0.001480	0.047809	0.282930	14.1	1.1	447	486
10-1	372	0.282948	0.000046	0.000838	0.027386	0.282942	14.2	1.6	429	467

 176 Hf/ 177 Hf_t,  $\epsilon$ Hf and T_{DM} are calculated using the  206 Pb/ 238 U age of grain; ages in Ma.

 $T_{DM}^{C}$  (crustal) is calculated using a two-stage evolution assuming a mean ¹⁷⁶Lu/¹⁷⁷Hf ratio of crust = 0.015.

* Data rejected as ages are anomalous

### Table 5. Pb isotopes

#	Sample Nr	Lithology	Age	U	Th	U/Pb	Th/Pb	Pb	U/Th	²³⁸ U/ ²⁰⁴ Pb
1	EGD001(75)	Granodiorite	348	3.74	7.54	0.47	0.94	8	0.50	29.9
2	OTD514(1631.2-1631.7)	Biotite granodiorite	374	1.51	3.67	0.19	0.46	8	0.41	11.9
3	EGRDC066(172)	Dacite	374	1.57	3.54	0.07	0.15	23	0.44	4.3
4	OTD1218(1048-1048.8)	Dacite	361	1.17	2.64	0.12	0.26	10	0.44	7.3
5	OTD404(399)	Dacite	362	0.68	0.84	0.09	0.11	8	0.81	5.3
6	EGRCD073(120)	Quartz monzodiorite	361	2	3.39	0.40	0.68	5	0.59	25.4
7	OTRCD388(504)	Quartz monzodiorite	364	0.64	0.75	0.01	0.01	53	0.85	0.7
8	OTD258(82.5)	Quartz monzodiorite	359	2.48	4.03	0.08	0.13	30	0.62	5.1
9	OTD343(1247)	Quartz monzodiorite	366	1.92	3.33	0.38	0.67	5	0.58	24.4
10	OTD514(1289.15-1293.7)	Quartz monzodiorite	364	0.32	0.67	0.00	0.01	93	0.48	0.2
11	OTD514(1405.85-1410.15)	Quartz monzodiorite	367	0.68	3.08	0.02	0.10	32	0.22	1.3
12	OTD514(2161.35)	Quartz monzodiorite	364	1.64	2.32	0.33	0.46	5	0.71	20.8
13	OTD786(150)	Quartz monzodiorite	376	1.37	2.79	0.11	0.23	12	0.49	7.2
15	OTD976B(266-267)	Basalt	362	0.99	3.81	0.20	0.76	5	0.26	12.5
16	OTD976B(552)	Basalt	362	0.24	1.1	0.05	0.22	5	0.22	3.0
17	0TB976B(772)	Basalt dyke	362	0.57	1.47	0.10	0.25	6	0.39	6.0
14	OTD976B(1382.5-1383.5)	Basalt	362	0.32	0.72	0.03	0.06	12	0.44	1.7
18	UUDO1A(590-593)	Basalt	362	0.62	2.78	0.09	0.40	7	0.22	5.6
19	OTD1220(522)	Basalt	345	0.49	1.17	0.10	0.23	5	0.42	6.1
20	OTD318(223)	Basalt	362	0.27	0.6	0.03	0.08	8	0.45	2.1

Appendix 1

Sample	Mineral composition	Alteration
EGD001(75)	45% plagioclase, as large tabular crystals or small crystals intergrown	Epidote and fine sericite replacing plagioclase.
Granodiorite	with Kf	
	25% K-feldspar, generally intergrown with plagioclase	
	10% hornblende	
	7% biotite	
	12% quartz.	
	Accessories: zircon as large grains (0.2mm), and sphene in	
	hornblende	
OTD 514	40% plagioclase occurs in equant crystals, or as glomeroporphyritic	Ferromagnesian minerals are chlorite altered.
(1631.2-1631./) Biotita granodiorita	aggregates.	Plagioclase is albite, sericite and calcite altered.
Biotile granoulorite	5% quartz occurs as small resorbed phenocrysts	Groundmass alteration difficult to discern, and includes, albite,
	15% ferromagnesian minerals, biotite and hornblende in about equal	quartz, sericite and calcite.
	proportions.	
	Groundmass comprises fine felted laths of feldspar and quartz,	
	forming mosaic-like aggregates about 50 micron in diameter. These	
	aggregrates may include some microgranophyric intergrowths.	
	Accessories: Possible allanite as inclusion in quartz. No zircon	
ECDCD0(((172)))	observed.	
Dacite	Presumed to be of dacitic composition, due to the presence of quartz	Plagioclase phenocrysts are albitized, and have fine sericite
Duche	phenocrysts.	alteration. Ferromagnesian phases are altered to chlorite and iron
	40% plagloclase (altered to albhe and sericite)	oxides. Epidole occurs in veins, and replaces plagioclase.
	20% fence biotite and normbiende in about equal proportion Matrix is quartz rich	
	Accessories: 20 micron-sized zircons are present in the quartz-rich	
	matrix.	
OTD1218	Dacitic composition is inferred from the presence of small amounts of	All ferromagnesian minerals are completely altered to sericite and
(1048-1048.8)	quartz crystals (5%).	opaque minerals.
Dacite	40% plagioclase crystals	Plagioclase is albite and sericite altered.
	10% andesitic to dacitic rock fragments	The groundmass is strongly quartz-sericite altered.
	42% quartz-feldspar-rich groundmass highly altered	
	3% biotite altered to sericite and quartz.	
	Accessories: zircon, monazite(?), rutile and apatite are found.	
OTD404(399)	45% plagioclase as phenocrysts >2.5mm	Original ferromagnesian minerals altered to sericite, chlorite and
Dacite	5% quartz phenocrysis 5% ferromagnesian minerals (possibly biotite), completed altered	opaque minerals. All plagioclase is affected by fine sericitic alteration, and brown hematite dusting imparting a red color in
	45% recrystallized quartz-feldspar-rich matrix	hand specimen
	Accessories: apatite is common as fine needles, and monazite is	
	present as large corroded grains.	

EGRCD073(120)	70% feldspar, with K-feldspar to plagioclase about 2: 3.	All ferromagnesian minerals are altered to actinolite, chlorite,			
Quartz monzodiorite	Plagioclase is early and commonly intergrown with later	epidote, quartz, sphene and opaques.			
	K-feldspar.				
	10% quartz, interstitial between feldspar crystals				
	20% ferromagnesian minerals, now represented by mainly chlorite				
OTDCD200/504)	and epidote.				
OTRCD388(504) Quartz monzodiorite	Complete recrystallization to fine-grained quartz and muscovite.	Small patches of chlorite apparently replace fine muscovite alteration. Dark opagues are fine-grained hornite			
Quarte moneourorite		aleration. Dark opaques die fine granied bofine.			
OTD258(82.5)	55% muscovite (sericite) replacing original plagioclase phenocrysts	Rutile appears to mark former ferromagnesian mineral sites as			
Quartz monzodiorite	and matrix	very fine grains, whereas tourmaline and topaz occurs with			
	34% quartz, mainly in granular aggregates (0.1mm) replacing original	muscovite alteration. The topaz forms relatively large zoned			
	matrix	grains, up to 20 microns. Inclusions that outline the zones are			
	10% pyrite	possibly rutile.			
	1% topaz, rutile, and tourmaline.	Plagioclase phenocrysts are entirely replaced by fine muscovite,			
		whilst ferromagnesian minerals appear to be replaced by quartz in			
		oriented mosaic-like patches (see image above), together with fine			
OTD242(1247)		rutile. No zircon was observed in the thin section.			
Ourtz monzodiorite	Highly recrystallized porphyritic texture, very faint gnosts of	Intense quartz sericite alteration. Some resistate minerals			
Quarte moneourorne	rock comprises petches of querty and sericite	(possibly monazite) are present but appear to be confided by			
OTD514	Now composed of about 50% quartz and 45% muscovite: the	the intense sencite aneration. No zircons were observed.			
(1289.15 - 1293.7)	remainder – mainly sulfides, and accessory minerals				
Quartz monzodiorite	Accessories: pale brown translucent prisms of possible zircon (?).				
	with darker red granules of rutile. Rutile also occurs as inclusions in				
	this mineral.				
OTD514	Due to alteration the sample comprises approximately 45% quartz and				
(1405.85-1410.15) Quartz monzodiorite	50% muscovite. The remainder includes bornite and chalcopyrite. Accessories: $<1\%$ accessory monazite, anatite and zircon				
Quartz monzodiorne	60% plagioclase	Pink K-feldspar intergrown quartz yeins and forming selvages to			
OTD514(2161.35)	10% quartz, partly secondary	quartz veins. Very fine clay hematite dusting affects all feldspar			
Quartz monzodiorite	10% K-feldspar alteration intergrown with quartz	minerals and imparts a red color in hand specimen. In addition.			
	20% completely altered ferromagnesian minerals (chlorite, opaques).	fine sericite replaces feldspar. All primary ferromagnesian phases			
		are completely altered to chlorite, sericite and opaques.			
OTD786(150)	70% plagioclase	Complete destruction of ferromagnesian phases, to chlorite and			
Quartz monzodiorite	20% chlorite and calcite, in patches up to 3mm, which represent	calcite, opaques. Apatite occurs in original ferromagnesian sites.			
	sites of former ferromagnesian minerals.	Plagioclase is relatively unaltered, but exhibits a fine			
	5% quartz in fine-grained aggregates filling interstitial sites (above)	hematite dusting, giving the red appearance in hand			
	3% opaques.	specimen. Interstitial infillings could be more sodic			
	Accessories: apatite, 1 zircon was observed.	plagioclase (albite) + quartz.			

well as			
he			
5% chlorite.			
esicles (see			
nes, possibly			
n the fine-			
grained matrix.			
ve) and in			
in patches			
ered.			
in			
ninerals			
liniciais			
n of all			
on or an			
t smaller			
, sinuitor			
ether with			
out 20% of			