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Abstract  The application of allometric, or mass dependent, relationships within 20 

radioecology has increased with the evolution of models to predict the exposure of organisms 21 

other than man. Allometry presents a method of addressing the lack of empirical data on 22 

radionuclide transfer and metabolism for the many radionuclide-species combinations which 23 

may need to be considered. However, sufficient data across a range of species with different 24 

masses are required to establish allometric relationships and this is not always available. Here 25 

an alternative allometric approach to predict the biological half-life of radionuclides in 26 

homoeothermic vertebrates which does not require such data is derived. Biological half-life 27 

values are predicted for four radionuclides and compared to available data for a range of 28 

species. All predictions were within a factor of five of the observed values when the model 29 

was parameterised appropriate to the feeding strategy of each species. This is an encouraging 30 

level of agreement given that the allometric models are intended to provide broad 31 

approximations rather than exact values. However, reasons why some radionuclides deviate 32 

from what would be anticipated from Kleiber’s law need to be determined to allow a more 33 

complete exploitation of the potential of allometric extrapolation within radioecological 34 

models. 35 

 36 

Keywords: Allometry, biological half-life, metabolic rate, radionuclide, environmental 37 

assessment 38 

 39 

  40 
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Introduction 41 

 42 

Size affects rates of all biological structures and processes from cellular metabolism to 43 

population dynamics (Peters 1983; Hoppeler and Weibel 2005). The dependence of a 44 

biological variable (Y) on body mass (M) is typically characterised by an allometric scaling 45 

law of the form: 46 

Y = aM
b
           (1) 47 

where a and b (the allometric exponent) are constants. 48 

In the 1930’s Kleiber (1932) found that basal metabolic rate (measured as heat production) 49 

across 13 groups of mature animals ranging from a ring dove (<200 g body mass) to a steer 50 

(about 680 kg body mass) was proportional to mass to the power 0.74. Following further 51 

analyses which demonstrated similar exponents Kleiber suggested that ‘metabolic body size’ 52 

(now generally referred to as metabolic liveweight) could be determined as M
0.75

 where M is 53 

the mass of the animal (Kleiber 1947); this has since become known as Kleiber’s law. There 54 

have been many compilations of allometric relationships for biological parameters across 55 

large mass ranges and a multitude of animal and plant species (e.g. Peters 1983; Hoppeler 56 

and Weibel 2005; Higley 2010).  57 

In this paper the use of allometric relationships in radioecological models is explored and in 58 

particular a simple solution is suggested to enable their more widespread application to 59 

homoeothermic vertebrates. 60 

 61 

Allometry in radioecology 62 

 63 

Many of the reported allometric relationships are useful in radioecological modelling, for 64 

instance, dry matter food ingestion rates, water ingestion rates, inhalation rates, etc. and these 65 

have been used in a number of models of the radionuclide transfer to wildlife (e.g. Beresford 66 

et al. 2008; Johansen et al. 2012) including the US Department of Energy’s RESRAD-Biota 67 

model (USDOE 2002). 68 

Moreover, there are specific radioecological parameters which have been shown to scale 69 

allometrically, with relationships for biological half-life across species having been reported 70 
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in the 1970’s (e.g. Stara et al. 1971; Kitchings et al. 1976). In more recent years, the 71 

application of allometry to radioecology has received revived attention during the 72 

development of models to predict the exposure of wildlife to radionuclides in both terrestrial 73 

(Higley et al. 2003; Higley 2010; Beresford et al. 2008; Sheppard 2001) and aquatic 74 

ecosystems (Vives i Batlle et al. 2007; 2009; Brown et al. 2004). The reason for this attention 75 

is the potential of allometry to help address the lack of data for the large number of organism-76 

radionuclide combinations which may need to be assessed (Beresford et al. 2004; Higley et 77 

al. 2003; IAEA in-press).  78 

In the marine environment, allometric relationships have been found across plankton, 79 

seaweed, fish, crustaceans and molluscs (Vives i Batlle et al. 2007; 2009) for the 80 

concentration ratio (CR) of activity concentrations in organisms to those in water (M
-0.26±0.09

) 81 

and also the biological half-life of elimination (M
0.16±0.03

). The CR scaled better allometrically 82 

for particle seeking radionuclides, mainly lanthanides and actinides. A relationship between 83 

the independent term of the allometric power function (a) and the sediment-water partition 84 

coefficient (kd) was also observed. This was strongest for particle seeking radionuclides, 85 

suggesting the importance of particle-reactive material sorbed onto food and ingested in 86 

particulate form relative to conservative radionuclides which tend to stay largely in the 87 

aqueous phase.   88 

For terrestrial organisms, allometric relationships have also been suggested for the dietary 89 

transfer coefficient (i.e. the ratio of the activity concentration of a radionuclide in an 90 

organism to the daily intake of that radionuclide) (MacDonald 1996). However, Beresford et 91 

al. (2004) demonstrated that this was the consequence of the dependence of daily dry matter 92 

intake on mass and that the ratio between the activity concentration in the animal and that in 93 

feed is independent of mass. 94 

USDOE (2002) presents allometric relationships for the biological half-lives of 16 elements 95 

in terrestrial/riparian vertebrates. Many of these have an exponent of approximately 0.25, 96 

which can be explained on the basis of the relationship between the biological half-life and 97 

the metabolic rate as described below.  98 

Taking a simple model, adapted from Sazykina (2000) of intake versus elimination for an 99 

adult organism of total mass M then the radionuclide activity concentration y (Bq kg
-1

, fresh 100 

mass) of the organism changes according to: 101 

 102 
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 104 

where Br is the metabolic rate (kg d
-1

); a is a proportionality constant between the rate of 105 

biological loss of a radionuclide from the organism and the metabolic rate of the organism; Af 106 

is the radionuclide activity concentration in food (Bq kg
-1

 dry matter); and 
AQ1 ,

AQ0 are the 107 

total element concentrations in the organism (mg kg
-1 

fresh mass) and in food (mg kg
-1 

dry 108 

matter) respectively (here, isotopic equilibrium is assumed, i.e. that the ratio of the 109 

radionuclide concentration in the organism to that in the diet is the same as the concentration 110 

ratio for the total element). This gives the solution: 111 
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        (3) 112 

Where y0 is the activity concentration of the organism at t = 0, i.e. at the beginning of 113 

depuration. If Af  = 0 and y0 ≠ 0 (representing a depuration process) Eq. 3 becomes reduced to 114 

a simple exponential, and applying the definition of biological half-life (ie 
t

BT
y ey 2/1

2ln

0



  ) 115 

yields: 116 

ra
B

B

M
T



2ln
2/1


           (4) 117 

If Kleiber’s law is now applied (i.e. Br = aM
0.75

) then:  118 

0.25
1/2

ln 2
B

a

T M
a

            (5) 119 

This is in agreement with the exponent values quoted by USDOE (2002) for many 120 

radionuclides (note, however, that some radionuclides within USDOE do not scale as 121 

approximately 0.25 as discussed later). 122 

The application of allometric biological half-life relationships allows broad approximations to 123 

be made to help address the limitations of the current empirical data for wildlife. However, to 124 

derive such relationships, adequate data are required for a given element and for a number of 125 

species across a range of masses. Sheppard (2001) proposed that, if it is accepted that there is 126 
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an approximation of the exponent applicable for all elements (i.e. in the case of biological 127 

half-life, 0.25), then only an estimation of the multiplicand is needed for any given element. 128 

In the following section, a method of estimating this multiplicand is derived and, hence, the 129 

applicability of allometric approaches to estimating biological half-life is extended. 130 

 131 

 132 

Materials and methods 133 

 134 

Extending the application of allometry in radioecology 135 

 136 

If one starts by considering a simple first-order linear retention model with constant input: 137 

1

1/2

ln 2f r

B

f A Idy
y

dt M T
           (6) 138 

where y is the fresh mass activity concentration in the whole organism (Bq kg
-1

), Ir is the dry 139 

matter ingestion rate (kg d
-1

), f1 is the fractional gastrointestinal absorption coefficient and 140 

other terms have been defined above.  141 

Equation 6 implies a single component release which is not always observed. However, 142 

current allometric relationships predict the long component of loss only (USDOE 2002). At 143 

equilibrium (t=), Eq. 6 equals zero and the equilibrium activity concentration in the 144 

organism (yeq) is given by: 145 

1 1/2

ln 2

f r BA f I T

eq M
y            (7)

 
146 

This can be rearranged to give the ratio between the activity concentrations in the whole 147 

organism (fresh mass) and the diet (dry matter) (CRorg_diet): 148 

1 1/2

ln 2

r B
org diet

f I T
CR

M
            (8) 149 

If it is assumed that the biological half-life scales allometrically to body mass to the power of 150 

0.25 and that intake rate, which is proportional to metabolic rate, scales allometrically to 151 

body mass to the power of 0.75 (see Nagy 2001), then: 152 
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0.750.25
1/2B B I
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This gives: 154 

0.75 0.25

1

ln 2
org diet B I

f M M
CR a a

M


          (9) 155 

Therefore, mass cancels out and: 156 

1

ln 2
org diet B I

f
CR a a                     (10) 157 

If it is accepted that CRorg-diet approximates to a constant for a given element across all 158 

species as suggested in Beresford et al. (2004) (and later accepted for farm animals in IAEA 159 

(2010)) then a solution to aB can be proposed: 160 

1

ln 2
B org diet

I

a CR
a f

                    (11) 161 

Hence an estimate of TB1/2 can be derived for an element if CRorg-diet and f1 are known: 162 

1

ln 2 0.25
1/2 org diet

I

CR
B a f

T M                    (12) 163 

Values of aI are relatively well documented for terrestrial vertebrates (e.g. Nagy 2001). If the 164 

ingestion rate is known, then aI can be substituted by: (Ir×M
-0.75

) 165 

 166 

Testing the hypothesis 167 

 168 

For this test the primary source of TB1/2 values was Whicker and Shultz (1982), who tabulated 169 

estimates from the literature for a number of radionuclides and terrestrial organisms. For Cs, 170 

data were supplemented by values presented in Battison et al. (1991) and Gaare and Staaland 171 

(1994). Observed TB1/2 values from these sources for Cs, I, Sr and Co are given Table 1. The 172 

TB1/2 values are for the long component of loss, consistent with the allometric TB1/2 173 

relationships suggested for use in environmental assessment models (USDOE 2002). 174 

Nagy (2001) fitted allometric relationships to predict dry matter intake rates of terrestrial 175 

vertebrates presenting these on the basis of, for example, taxonomic grouping or feeding 176 

strategy and aI values from this source were used here. Reflecting the species for which TB1/2 177 
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data are available, the aI values from Nagy (2001)
1
 were used for ‘all mammals’ (aI=0.057 d

-1
 178 

kg
0.25

), carnivorous mammals (aI=0.027d
-1

 kg
0.25

) and herbivorous mammals (aI=0.15d
-1

 179 

kg
0.25

); the aI value for rodents ((aI=0.059 d
-1

 kg
0.25

)) is similar to that of ‘all mammals’. 180 

Estimates of f1 have been taken from IAEA (2010) which cites values from ICRP (2006) for 181 

monogastric animals and additionally presents f1 for ruminants. 182 

To estimate values of CRorg-diet CRmeat-diet values presented by IAEA (2010) were used which 183 

relate the fresh weight activity concentration in meat (i.e. muscle) to the dry matter activity 184 

concentration in the diet of farm animals (Table 1). Whilst IAEA (2010) presents these 185 

parameter values for Co, Cs and I, it does not include a CRmeat-diet value for Sr. Dietary 186 

transfer coefficients (i.e. the ratio of the activity concentration of Sr in meat to the daily 187 

intake of Sr) presented in IAEA (2010) have been used together with typical dry matter 188 

intake rates from IAEA (1994) to estimate the average CRorg-diet across all five species for 189 

which data are available (cattle, goat, sheep, poultry and pig) in IAEA (2010) (Table 1).  190 

Yankovich et al. (2010) present tissue to wholebody radionuclide activity concentration 191 

conversion factors for a range of wildlife groups which could be used to derive wholebody 192 

CRorg-diet estimates from CRmeat-diet values. However, Cs is the only element of interest here for 193 

which Yankovich et al. (2010) report a conversion factor for mammals. Therefore, for Sr and 194 

Co, conversion factors were estimated using data presented in Barnett et al. (2013) for wood 195 

mice and roe deer; a conversion factor for I has been estimated from information presented in 196 

Coughtrey et al. (1983) (Table 1). 197 

 198 

Results and Discussion 199 

 200 

The aI for ‘all mammals’ was used to predict TB1/2 values for all available comparisons (Table 201 

2). All predictions were within an order of magnitude of the observed values with most being 202 

within a factor of three. This can be considered to be satisfactory, given that the allometric 203 

models are designed to give a broad approximation rather than an exact value. For Cs and I 204 

there is a tendency to under-predict, whereas for Co all estimates are over-predictions. If the 205 

aI suggested for carnivorous mammals by Nagy (2001) is used there is a marked 206 

improvement in predictions for Cs and I for carnivorous species (Table 2). However, if the aI 207 

                                                           
1
 Nagy (2001) presents relationships based upon mass in units of grammes, we have converted these to 

kilogrammes  
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applicable to herbivorous mammals is applied, then the predictions for the relatively few 208 

herbivores for which there were data are underestimated with the exception of the estimates 209 

for Co in laboratory rabbit, and Sr in mule deer (Table 2).  210 

A linear regression of TB1/2 values predicted using aI values appropriate to the feeding type of 211 

each species with the measured data (from Table 2) yields an R
2
 value of 0.58 with a slope of 212 

1.4 and an intercept which is not significantly different from zero (p<0.001). 213 

As both mule deer and reindeer are ruminants, predictions for these animals were also made 214 

using the ruminant specific f1 values from (IAEA 2010) of 0.8 and 0.11 for Cs and Sr 215 

respectively. This made little difference to the predictions for Cs (an increase by 25 %) but in 216 

the case of mule deer the Sr TB1/2 predicted using the herbivorous mammal aI and ruminant f1 217 

values was 1,000 days compared with the observed value of 228 days. 218 

Our ability to obtain reasonable predictions is in part dependent upon the quality of data 219 

available for the required input parameters. For many elements in IAEA (2010), CRmeat-diet are 220 

based upon few observations (e.g. I is based upon six studies and Co on three) and the value 221 

for Sr had to be estimated as described above. Similarly, the correction factors to convert 222 

from CRmeat-diet to CRorg-diet are based on relatively few data as exemplified by the need to 223 

derive them for Co, I and Sr. Investigation of the data used by Nagy (2001) to derive the 224 

allometric dry matter intake relationship for herbivores shows that they are dominated by 225 

relatively small species with many of the larger species being marsupials. 226 

It should also be acknowledged that the dry matter intake relationships presented by Nagy 227 

(2001) are for animals under field and not laboratory conditions and that field metabolic rates 228 

are generally higher than basal metabolic rates determined for housed animals (Nagy 2005). 229 

This may result in a tendency to under-prediction of TB1/2 for housed (i.e. experimental) 230 

animals as was observed for Cs and I (Table 2).  231 

An assumption of the approach developed here is that TB1/2 scales to the power of 0.25. Of the 232 

allometric expressions derived for TB1/2 for 16 radionuclides by USDOE this is true for eight 233 

(Cs, Co, Ra, Sb, Sr, U, Zn and Zr). The mass scaling functions for I and H reported by 234 

USDOE are 0.55 and 0.13 respectively. However, other sources suggest that the scaling 235 

function for the TB1/2 for these two radionuclides should be circa 0.25 (Galeriu et al. 2003; 236 

MacDonald 1996).  237 

For five elements in USDOE (2002) (Am, Ce, Eu, Pu and Th) biological half-life scales to 238 

the power of 0.8. For all of these ICRP Publication 30 (ICRP 1979; 1981; 1988) is quoted as 239 
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the data source but unfortunately it not possible to find the data within this publication to 240 

independently verify the allometric equations presented by USDOE (2002). None of these 241 

elements play an active biological role and hence it could perhaps be suggested that there is 242 

no reason for them to follow a metabolically driven uptake process (i.e. as signified by a mass 243 

scaling function of 0.25). However, it is noted that some of the elements which do scale as 244 

mass to the power of 0.25 are not essential elements either (e.g. U). The assumption that 245 

CRorg-diet is independent of mass for any elements for which TB1/2 is proven to not scale 246 

allometrically with a value approximating to 0.25 will be invalid (i.e. see Eq. 9).Therefore, it 247 

is recommended that the reasons for the deviation of some elements from the mass scaling 248 

function of 0.25 be explored and/or the relationships presented by USDOE (2002) be 249 

independently verified.  250 

It should be acknowledged that there is considerable debate with regard to the numerical 251 

values for the allometric exponent, in particular whether it should be 0.75 or perhaps 0.67 for 252 

basal metabolic rate (e.g. West et al. 1997; Hoppeler and Weibel 2005; Isaac and Carbone 253 

2010; Agutter and Tuszynski 2011). It has also been suggested that the scaling exponent may 254 

itself be dependent upon body mass (Savage et al. 2008). In discussing this issue with respect 255 

to radioecological models, Higley and Bytwerk (2007) suggested that given other 256 

uncertainties in radioecological modelling, the exact value of the allometric scaling exponent 257 

‘may not be of critical importance’ for practical (rather than theoretical) purposes, and this 258 

suggestion is supported here.   259 

 260 

Conclusions 261 

 262 

Based upon the above evaluation, Eq. 12 could be applied to make predictions of TB1/2 values 263 

for application in wildlife assessment models expanding upon the limited range of 264 

radionuclides for which allometric TB1/2 equations are currently available (USDOE 2002). 265 

The approach presented requires that values of CR org-diet  and f1 are available for the 266 

radionuclide of interest. These parameters are presented in, or can be estimated from, existing 267 

compilations for many radionuclides (e.g. IAEA 2010); a basic premise of the suggested 268 

model is that the two parameters are not species specific. However, reasons why some 269 

radionuclides deviate from what would be anticipated from Kleiber’s law (see Eq. 5) need to 270 
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be determined to enable more complete exploitation of the potential of allometric 271 

extrapolation within radioecological models. 272 

The current assumption of a single long-component of loss in some wildlife assessment 273 

models (e.g. USDOE 2002; Avila et al. 2004) should yield estimates of the equilibrium 274 

activity concentration in organism which are conservative (i.e. they should be overestimated 275 

compared to a model assuming more than one loss component). However, if used in dynamic 276 

models this assumption will predict slower changes in organism activity concentrations than 277 

would be observed in reality as a result of changes in activity concentrations in environmental 278 

media. Theoretically it is possible to generalise an expression to suggest that both the short 279 

and long-tem biological half-lives have an allometric exponent of 0.25 although this requires 280 

validation with suitable data. 281 

Although not tested here it is recommend that the application of Eq. 12 to make 282 

approximations of TB1/2 for edible tissues of farm animals, a relatively poorly studied 283 

parameter for many radionuclides, be tested against available data.  284 

 285 
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Table 1 Values used to parameterise Eq. 12; conversion factor is defined as ratio of the fresh 398 

mass wholebody activity concentration to that of muscle (meat) (Barnett et al. 2013; 399 
Coughtrey et al. 1983; IAEA 1994, 2010; Yankovich et al. 2010).  400 
 401 

Element f1 CRmeat-diet Conversion factor
 CRorg-diet 

Co 0.1 3.1x10
-1

 3 9.3x10
-1

 

Cs 1 3.9x10
-1

 1 3.9x10
-1

 

I 1 9.4x10
-2

 5 4.7x10
-1

 

Sr 0.3 2.2x10
-2

 400 8.9 

  402 
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 403 

Table 2  Comparison of reported TB1/2 values with estimates from Eq. 12 assuming different 404 
aI values. 405 
 406 

Speices Mass 

(kg) 

TB1/2 

reported 

Predicted TB1/2 using aI for: Reference 

ID All 

mammals 

Carnivores Herbivores 

Radiocaesium       

Harvest mouse 1.0x10
-2

 3.7 1.5   1 

Laboratory mouse 2.0x10
-2

 5.1 1.8   1 

Whitefooted 

mouse 

2.1x10
-2

 3.5 1.8   1 

Cotton rat 1.3x10
-1

 8.4 2.8   1 

Laboratory rat 1.9x10
-1

 6.3 3.1   1 

Rabbit 1.6 11 5.3  2.0 2 

Arctic fox 4.9 17.5 7 15  3 

Silver fox 5.3 25.3 7.1 15  3 

Coyote 9.5 26 8.3 17  3 

Red fox 10 29 8.4 18  1 

Coyote 12 22 8.7 18  3 

Dog 19 28 9.8 21  1 

Wolf 31 23 11 24  3 

Mule deer 55 14 13  4.8 1 

Reindeer 80 14 14  5.3 1 

Radiocobalt       

Whitefooted 

mouse 

2.0x10
-2

 5.2 42   1 

Laboratory mouse 2.5x10
-2

 4.8 45   1 

Laboratory rat 4.0x10
-1

 11 89   1 

Guinea pig 4.7x10
-1

 21 93   1 

Laboratory rabbit 3.0 13 148  56 1 

Radioiodine       

Laboratory mouse 2.1x10
-2

 5.2 2.2   1 

Cotton rat 1.1x10
-1

 8 3.3   1 

Laboratory rat 2.1x10
-1

 2.5 3.8   1 

Guinea pig 5.0x10
-1

 26 4.8   1 

Jack rabbit 1.9 5 6.7  2.5 1 

Laboratory rabbit 3.7 13 7.9  3.0 1 

Dog 12 17 10 22   

Radiostrontium       

Laboratory mouse 3.010
-2

 43 140   1 

Laboratory Rat 2.010
-1

 590 240   1 

Dog 1 530 640 1,300  1 
Mule deer 65 190 1,000  380 1 
References: (1) Whicker and Shultz (1982); (2) Battiston et al. (1991); (3) Gaare and Staaland (1994). 407 
 408 
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